It has 7 natural gliders. A 2c/4, 4c/8, 2c/8, c/6, 2c/12, c/14 orthogonal, as well as a c/7 diagonal:

Code: Select all

`x = 10, y = 66, rule = B2-ac3i4a/S12`

3bo$obobo2$obobo$3bo4$2bo$ob2ob2o$obobo3bo$obobobo2bo$obobobo2bo$2bobo

3bo$obo2b2o4$bo$o$o$bo3$2obobo$bo3bo$bo3bo$2obobo5$2bo$2bo$bo$o$bo$2bo

$2bo7$2bo$2o6$2o$2bo8$3b2o$bo2bo2$o$2o!

Where as B2-ac3i/S12's soups were very stable and stabilized in very few generations, B2-ac3i4a/S12's soups seem to last longer, but always stabilize eventually.

Alongside the natural spaceships, there exist artificial spaceships of speeds c/2, 2c/4, c/3, 2c/6, and 2c/8 orthogonal, as well as puffers for xc/2x and c/3:

Code: Select all

`x = 335, y = 59, rule = B2-ac3i4a/S12`

2b2o9b2o14bo11b2o7b2o11b2o16b2o11b2o7b2o11b2o26bo57b2o7b2o9b4o2b2o13b

2o13b2o17b2o14bobo27bo6bo$bo3b2o5bo3b2o10bobo9bo2bo5bo2bo4b4obo2bob4o

4b4obo2bob4o4bo2bo5bo2bo4b4obo2bob4o18bo3bo54bo2bo5bo2bo8bo2bobo2bo11b

o2bo11bo2bo15bo2bo12bo3bo24b2obo4bob2o$7bo10bo5b2o7b2o11bo10bo2bo6bo2b

o4bo2bo6bo2bo10bo10bo2bo6bo2bo17b2o3b2o59bo13bobobo67bobo25bobo6bobo$o

bo8bobo9bo2bobobobo2bo3bobobobobobobobo2bobobobo2bobobobo2bobobobo2bob

obobo2bobobobobobobobo2bobobobo2bobobobo16b2o3b2o52bobobobobobobobo6bo

bobobobobo9bob2obo9bob2obo13bob2obo42b3o2b3o$2bo3bobo4bo3bobo8bobo10bo

bo5bobo6bobo6bobo6bobo6bobo8bo5bo8bobo6bobo79bobo5bobo7bo2bobobobobo9b

o4bo46bobo24bob10obo$2b2o9b2o7bobobobobobobobo4bobobobobobo6bobo6bobo

6bobo6bobo4bobobobobobobobo4bobo6bobo21bo78bobobobob2o7b8o5b3o6b3o9bo

6bo37b2o12b2o$3bo2bobo5bo2bobo4bo3bobo3bo5b2obo5bob2o4bo2b2o4b2o2bo4bo

2b2o4b2o2bo7bo5bo7bo2b2o4b2o2bo19b3o73bo3bo3bo4b2o5b2o6b2o3bob3o4b3obo

4b6o4b6o34bobo8bobo$28bobo9bobo2bobo2bobo8bo4bo12bo4bo7bobobobobobobob

o7bo4bo24bo82bo14b4o5bo3bo6bo3bo3bo3bo6bo3bo36bo8bo$6bobo8bobo3bobob2o

b2obobo9bobo9bo13bo3bobo8bobo7bo5bo7bobo8bobo20bo82bo14bo2bo24b3o10b3o

36bo8bo$6bo10bo7bobo3bobo8bob2ob2obo26bo8bo5bobobobobobobobo5bo8bo21bo

bo95bo4bo24bobo8bobo7b6o$5b2o9b2o7bo7bo10bo3bo47bo5bo36b2o7b2o91bob2ob

o6b5o2b5o7bo10bo8bo4bo$4b2o10bo7b2o7b2o41bobo6bobo4bobobobobobobobo4bo

bo6bobo15bo2bobobobo2bo89bo6bo9bo2bo11bo10bo8b2o2b2o$24bo9b2o42bo6bo

10bo5bo10bo6bo22bobo97b2o12bo2bo10bo12bo8bo2bo$14bo2bo60b2o4b2o6bobobo

bobobobobo6b2o4b2o16bobobobobobobobo87bo8bo21bobo2bo4bo2bobo4bob2o2b2o

bo$14bo64bo3b2o11bo5bo11bo4bo19bo3bobo3bo120b2o2bo2b2o2bo2b2o3bo3b4o3b

o$13bobobo74bobobobobobobobo36bobo$13bo3bo76bobobobobobo7bo2bo2bo2bo

16bobob2ob2obobo$12bo4b2o75bobobobobobo7bo8bo18bobo3bobo145b2o$18b2o

73b2obobobobob2o9bo2bo21bo7bo$12bo80bobo2bobo2bobo5bobo6bobo16b2o7b2o

144b2o$98bobo10bo3bo2bo3bo16bo9b2o$95bob2ob2obo6b2obo6bob2o$97bo3bo8bo

2bo6bo2bo$113b2o4b2o$114bo4bo3$6bo25bo$3b7o19b7o$bo4bo4bo15bo4bo4bo$bo

9bo15bo9bo$o4bobo4bo13bo4bobo4bo$2bo2b3o2bo17bo2b3o2bo$2bobo3bobo17bob

o3bobo$bo2bo3bo2bo15bo2bo3bo2bo$b2obo3bob2o15b2obo3bob2o$3bo5bo19b3ob

3o$b3o5b3o$2bo7bo19bobobo$b2o7b2o18bo3b2o$2bobo3bobo23bo$4bo3bo$4bo3bo

$6bo$3b3ob3o5$b2o6b2o$o2bo4bo2bo2$4o4b4o4$2b3o2b3o$o10bo$3b2o2b2o!

The 2c/8 can be eaten like so, however only in one parity. Perhaps a bi-parity eater will be desirable:

Code: Select all

`x = 19, y = 27, rule = B2-ac3i4a/S12`

4bo11bo$3bo12bo$2bo$obo5bo6b3o$bo5bo$7bo8bo$8bo7bo14$o3bo12bo$bobo13bo

$2bo$bobo4bo7b3o$o3bo2bo$7bo9bo$8bo8bo!

It also has natural infinite growth. This 5-cell pattern, much like the switch engine, evolves into an unstable puffer engine, breaking down at around 635 gens, and stabilizing completely at 1624, making this the rule's equivalent of the R-pentomino:

Code: Select all

`x = 4, y = 3, rule = B2-ac3i4a/S12`

o2bo$2bo$obo!

You can crash that pattern into debris to produce several puffers, natural ones are shown below:

Code: Select all

`x = 16, y = 16, rule = B2-ac3i4a/S12`

bobobbbooobboooo$

oobbobbbbbooobbo$

bboooooooooobobo$

oooobbbboobboooo$

bbbboooobbbooobb$

oboboooobbobbbbb$

obboobobbboobooo$

oobooooboooboobb$

booobbbboooboooo$

oboobbboobbboobo$

obooooobbbbbbbbo$

oobbobooobobbooo$

ooobbbooooobboob$

bobobbooooobooob$

bobobbboboobboob$

bbboboooboobbbbb!

Code: Select all

`x = 16, y = 16, rule = B2-ac3i4a/S12`

boobbbbbbooooobo$

obooboboobooobob$

booooobbbboobooo$

bbbobbbbbbobooob$

obboooobboobbbbo$

bobooobbobbbobbb$

obbooooobbbobbbo$

oobooobooboooobb$

oobbbooobobooobb$

bbbbbbbboboobbob$

boobooooobbbbbob$

obobobooboobbobb$

obbooobobboobboo$

bbooboobboobbbob$

bobobooobbobbbbb$

oobbbobboooobobb!

Code: Select all

`x = 16, y = 16, rule = B2-ac3i4a/S12`

obbbbbbobbobobbb$

obbbobobbbooboob$

bboboobbobbboooo$

ooobbbbbobbboooo$

ooboboobobbbbobb$

bbobbbooobbbbooo$

bbobobbbobbobooo$

bobobbboobobbobb$

oobbboboooooobbb$

obobbbobooobbbob$

obooboobobbbobbo$

bboooobobobobbbb$

boboboobbobooboo$

oboooobbboboooob$

obobooobboooooob$

boobbbbooobbbooo!

Code: Select all

`x = 16, y = 32, rule = B2-ac3i4a/S12`

bobbobbbbbbboboo$

bbbbbbbbbbbbbbob$

obboboobbobbobbo$

oboobooobooboboo$

ooboooobboobboob$

obobbbooobbobbbb$

bobobbboobooooob$

oobooooboooboooo$

bbobbbbbooobbobo$

oooobboobobbbobb$

bbooobobbboobbbo$

bbbobooobobbobob$

oobboobooboobbbo$

oobobobbobbbbboo$

bbbobooobobboboo$

obboobobbbbobbob$

obboobobbbbobbob$

bbbobooobobboboo$

oobobobbobbbbboo$

oobboobooboobbbo$

bbbobooobobbobob$

bbooobobbboobbbo$

oooobboobobbbobb$

bbobbbbbooobbobo$

oobooooboooboooo$

bobobbboobooooob$

obobbbooobbobbbb$

ooboooobboobboob$

oboobooobooboboo$

obboboobbobbobbo$

bbbbbbbbbbbbbbob$

bobbobbbbbbboboo!

--

There's also a reflection reaction with the 2c/8. Here it is at p38:

Code: Select all

`x = 10, y = 6, rule = B2-ac3i4a/S12`

o8bo$o3bo4bo$3bo$3bo$o3bo4bo$o8bo!

And p54:

Code: Select all

`x = 12, y = 6, rule = B2-ac3i4a/S12`

o10bo$o3bo6bo$3bo$3bo$o3bo6bo$o10bo!

It can be carried on to generate infinite oscillators. The infinite p8+4n works too. (The p134 reflector isomer is the most common naturally)

--

Glider storage oscillator, p20:

Code: Select all

`x = 24, y = 12, rule = B2-ac3i4a/S12`

21bo$21bo2$20b4o$bo$o20bo$o20bo$bo$20b4o2$21bo$21bo!

Pull reaction:

Code: Select all

`x = 12, y = 4, rule = B2-ac3i4a/S12`

bo$o9b2o$o$bo!

14c/40 dirty fuse:

Code: Select all

`x = 49, y = 49, rule = B2-ac3i4a/S12`

b2o$obo$bo4$5b2o7$12bo$12bo6$19b2o7$26bo$26bo6$33b2o7$40bo$40bo6$47b2o

!

--

The second to last c/2 puffer is like Life's slow puffer, it creates debris, then lights a fuse. Here it is stabilized into a wickstretcher, and modified to produce even-spaced dominoes:

Code: Select all

`x = 36, y = 20, rule = B2-ac3i4a/S12`

7b2o18b2o$6bo2bo16bo2bo2$5bob2obo14bob2obo2$4bo6bo12bo6bo$6o4b6o4b6o4b

6o$o3bo6bo3bo4bo3bo6bo3bo$3o10b3o4b3o10b3o$bobo8bobo6bobo8bobo$2bo10bo

8bo10bo$2bo10bo8bo10bo$bo12bo6bo12bo$obo2bo4bo2bobo4bobo2bo4bo2bobo$2o

2bo2b2o2bo2b2o4b2o2bobo2bobo2b2o3$7b2o2$7b2o!

The even-spaced domino puffer can be paired up to bounce a 2c/8 between them, causing slow movement:

Code: Select all

`x = 16, y = 40, rule = B2-ac3i4a/S12`

7b2o$6bo2bo2$5bob2obo2$4bo6bo$6o4b6o$o3bo6bo3bo$3o10b3o$bobo8bobo$2bo

10bo$2bo10bo$bo12bo$obo2bo4bo2bobo$2o2bobo2bobo2b2o5$6bo2bo$7b2o5$2o2b

obo2bobo2b2o$obo2bo4bo2bobo$bo12bo$2bo10bo$2bo10bo$bobo8bobo$3o10b3o$o

3bo6bo3bo$6o4b6o$4bo6bo2$5bob2obo2$6bo2bo$7b2o!