ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Deficient Rules

For discussion of other cellular automata.

Deficient Rules

Postby 83bismuth38 » April 18th, 2018, 9:27 pm

I started a thing on discord. I asked about a rule I had in mind for a while, DeficientLife (i am not explaining it again just look at it and figure it out) and then moved on to DeficientSeeds, which seems more interesting. DefLife:
@RULE DeficientLife
*********************************
**** COMPILED FROM RUELTABEL ****
*********************************
Envisioned by 83bismuth38;
"any cell born with transition x will become a cell with the rule b3-x/s23 until it survives for a generation, and then it reverts to b3/s23".

1 permute
2 c
3 e
4 k
5 a
6 i
7 n
8 y
9 q
10 j
11 r


@TABLE
neighborhood: Moore
symmetries: rotate4reflect
n_states: 12

var __all__0 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

var live_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
var live_1 = live_0
var live_2 = live_0
var live_3 = live_0

var NoC_0 = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11}
var NoC_1 = NoC_0
var NoC_2 = NoC_0

var NoE_0 = {1, 2, 4, 5, 6, 7, 8, 9, 10, 11}
var NoE_1 = NoE_0
var NoE_2 = NoE_0

var NoK_0 = {1, 2, 3, 5, 6, 7, 8, 9, 10, 11}
var NoK_1 = NoK_0
var NoK_2 = NoK_0

var NoA_0 = {1, 2, 3, 4, 6, 7, 8, 9, 10, 11}
var NoA_1 = NoA_0
var NoA_2 = NoA_0

var NoI_0 = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11}
var NoI_1 = NoI_0
var NoI_2 = NoI_0

var NoN_0 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11}
var NoN_1 = NoN_0
var NoN_2 = NoN_0

var NoY_0 = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11}
var NoY_1 = NoY_0
var NoY_2 = NoY_0

var NoQ_0 = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11}
var NoQ_1 = NoQ_0
var NoQ_2 = NoQ_0

var NoJ_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11}
var NoJ_1 = NoJ_0
var NoJ_2 = NoJ_0

var NoR_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
var NoR_1 = NoR_0
var NoR_2 = NoR_0

var any_0 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
var any_1 = any_0
var any_2 = any_0
var any_3 = any_0
var any_4 = any_0
var any_5 = any_0
var any_6 = any_0
var any_7 = any_0
var any_8 = any_0

0, 0, NoC_0, 0, 0, 0, NoC_1, 0, NoC_2, 2
0, NoE_0, 0, NoE_1, 0, 0, 0, NoE_2, 0, 3
0, 0, 0, NoK_0, 0, NoK_1, 0, 0, NoK_2, 4
0, NoA_0, 0, 0, 0, 0, 0, NoA_1, NoA_2, 5
0, NoI_0, NoI_1, 0, 0, 0, 0, 0, NoI_2, 6
0, 0, NoN_0, NoN_1, 0, 0, 0, 0, NoN_2, 7
0, 0, NoY_0, 0, 0, NoY_1, 0, 0, NoY_2, 8
0, NoQ_0, 0, 0, NoQ_1, 0, 0, 0, NoQ_2, 9
0, NoJ_0, 0, NoJ_1, 0, 0, 0, 0, NoJ_2, 10
0, NoR_0, 0, 0, 0, NoR_1, 0, 0, NoR_2, 11
live_0, 0, live_1, 0, 0, 0, 0, 0, live_2, 1
live_0, live_1, 0, 0, 0, 0, 0, live_2, 0, 1
live_0, 0, 0, live_1, 0, 0, 0, 0, live_2, 1
live_0, live_1, 0, 0, 0, 0, 0, 0, live_2, 1
live_0, live_1, 0, 0, 0, live_2, 0, 0, 0, 1
live_0, 0, 0, 0, live_1, 0, 0, 0, live_2, 1
live_0, 0, live_1, 0, 0, 0, live_2, 0, live_3, 1
live_0, live_1, 0, live_2, 0, 0, 0, live_3, 0, 1
live_0, 0, 0, live_1, 0, live_2, 0, 0, live_3, 1
live_0, live_1, 0, 0, 0, 0, 0, live_2, live_3, 1
live_0, live_1, live_2, 0, 0, 0, 0, 0, live_3, 1
live_0, 0, live_1, live_2, 0, 0, 0, 0, live_3, 1
live_0, 0, live_1, 0, 0, live_2, 0, 0, live_3, 1
live_0, live_1, 0, 0, live_2, 0, 0, 0, live_3, 1
live_0, live_1, 0, live_2, 0, 0, 0, 0, live_3, 1
live_0, live_1, 0, 0, 0, live_2, 0, 0, live_3, 1
any_0, any_1, any_2, any_3, any_4, any_5, any_6, any_7, any_8, 0
DefSeeds:
@RULE DeficientSeeds
*********************************
**** COMPILED FROM RUELTABEL ****
*********************************

1 permute
2 c
3 e
4 k
5 a
6 i
7 n


@TABLE
neighborhood: Moore
symmetries: rotate4reflect
n_states: 8

var NoC_0 = {1, 3, 4, 5, 6, 7}
var NoC_1 = NoC_0

var NoE_0 = {1, 2, 4, 5, 6, 7}
var NoE_1 = NoE_0

var NoK_0 = {1, 2, 3, 5, 6, 7}
var NoK_1 = NoK_0

var NoA_0 = {1, 2, 3, 4, 6, 7}
var NoA_1 = NoA_0

var NoI_0 = {1, 2, 3, 4, 5, 7}
var NoI_1 = NoI_0

var NoN_0 = {1, 2, 3, 4, 5, 6}
var NoN_1 = NoN_0

var any_0 = {0, 1, 2, 3, 4, 5, 6, 7}
var any_1 = any_0
var any_2 = any_0
var any_3 = any_0
var any_4 = any_0
var any_5 = any_0
var any_6 = any_0
var any_7 = any_0
var any_8 = any_0

0, 0, NoC_0, 0, 0, 0, 0, 0, NoC_1, 2
0, NoE_0, 0, 0, 0, 0, 0, NoE_1, 0, 3
0, 0, 0, NoK_0, 0, 0, 0, 0, NoK_1, 4
0, NoA_0, 0, 0, 0, 0, 0, 0, NoA_1, 5
0, NoI_0, 0, 0, 0, NoI_1, 0, 0, 0, 6
0, 0, 0, 0, NoN_0, 0, 0, 0, NoN_1, 7

any_0, any_1, any_2, any_3, any_4, any_5, any_6, any_7, any_8, 0
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!

No football of any dui mauris said that.
User avatar
83bismuth38
 
Posts: 418
Joined: March 2nd, 2017, 4:23 pm
Location: Still sitting around in Sagittarius A...

Re: Deficient Rules

Postby KittyTac » April 18th, 2018, 10:03 pm

RUELTABEL? Is it a typo?
User avatar
KittyTac
 
Posts: 241
Joined: December 21st, 2017, 9:58 am

Re: Deficient Rules

Postby M. I. Wright » April 18th, 2018, 10:25 pm

...sorry, we were messing with these rules in Discord and I was writing them quickly in my own "rueltabel" thing because I didn't want to bother with Golly's bound variables. The header's a bit obnoxious, and I forgot to remove it before sending the files to Discord; I'll take it out or tone it down a bit in the future so it doesn't look so much like tactless evangelizing on my part :oops:
Last edited by M. I. Wright on April 19th, 2018, 2:41 am, edited 1 time in total.
M. I. Wright
 
Posts: 346
Joined: June 13th, 2015, 12:04 pm

Re: Deficient Rules

Postby 77topaz » April 19th, 2018, 1:37 am

KittyTac wrote:RUELTABEL? Is it a typo?


No, it is not.
User avatar
77topaz
 
Posts: 513
Joined: January 12th, 2018, 9:19 pm

Re: Deficient Rules

Postby cordership3 » April 19th, 2018, 2:10 pm

A p76 mod 38 beehive puffer:
x = 3, y = 4, rule = DeficientLife
.J$A.C$A.A$.2A!
oh ok
User avatar
cordership3
 
Posts: 74
Joined: August 23rd, 2016, 8:53 am
Location: haha long boy

Re: Deficient Rules

Postby 83bismuth38 » April 19th, 2018, 7:22 pm

soo... I'm not good at ruletables, but I know how to make deficient rules with birth from 1-3. All i need is a deficient B12345678/S012345678. Unless I somehow figure it out. otherwise, not much else to say...
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!

No football of any dui mauris said that.
User avatar
83bismuth38
 
Posts: 418
Joined: March 2nd, 2017, 4:23 pm
Location: Still sitting around in Sagittarius A...

Re: Deficient Rules

Postby M. I. Wright » April 19th, 2018, 10:59 pm

EDIT: Use the updated script instead.

Usage:
$ python3 <FILENAME>.py [output dir] [rulestring in B/S form] [OPTIONAL rulename]
If the rulename isn't given, it'll be made from the rulestring by replacing the slash with an underscore, capitalizing the B/S, and appending '_deficient'.
Make sure the rulestring is written with a slash.


----

EDIT (~3h after posting): Fixed bugs in handling isotropic rulestrings, B8 transitions, and generation of variables for isotropic rules. If anyone's already saved this to their computer please re-copy it!

Quick and dirty Python 3 script to generate these:
import sys
from os import path

N_HOODS = 'cekainyqjrtwz'
NAPKINS = {
  k: dict(zip(N_HOODS, v)) for k, v in {
    '0': '',
    '1': ['00000001', '10000000'],
    '2': ['01000001', '10000010', '00100001', '10000001', '10001000', '00010001'],
    '3': ['01000101', '10100010', '00101001', '10000011', '11000001', '01100001', '01001001', '10010001', '10100001', '10001001'],
    '4': ['01010101', '10101010', '01001011', '11100001', '01100011', '11000101', '01100101', '10010011', '10101001', '10100011', '11001001', '10110001', '10011001'],
    '5': ['10111010', '01011101', '11010110', '01111100', '00111110', '10011110', '10110110', '01101110', '01011110', '01110110'],
    '6': ['10111110', '01111101', '11011110', '01111110', '01110111', '11101110'],
    '7': ['11111110', '01111111'],
    '8': ''
    }.items()
  }


def invert_segment(sz, segment):
    if segment and segment[0] == '-':
        return [t for t in N_HOODS[:sz] if t not in segment]
    return segment


def combine_rstring(segment):
    cop, last = {}, 0
    for i, v in enumerate(segment, 1):
        if v.isdigit():
            after = next((idx for idx, j in enumerate(segment[i:], i) if j.isdigit()), len(segment))
            cop[v] = invert_segment(len(NAPKINS[v]), segment[i:after])
    return cop


def replace_bind(transition, pre, iso='', count=0):
    cop = []
    for i in map(int, transition):
        if not i:
            cop.append(0)
            continue
        cop.append('{}{}_{}'.format(pre, iso, count))
        count += 1
    return cop


def write_table(fp, rname, n_states, n_live, d_vars, transitions):
    fp.write('@RULE {}\n@TABLE\n'.format(rname))
    fp.write('n_states:{}\nneighborhood:Moore\nsymmetries:rotate4reflect\n'.format(n_states))
    # Variables
    live = range(1, n_states)
    for k, v in d_vars.items():
        range_ = {i for i in live if i != 2+N_HOODS.index(k)}
        if not range_:
            continue
        fp.write('\nvar not_{}_0 = {}'.format(k, range_))
        for n in range(1, v):
            fp.write('\nvar not_{0}_{1} = not_{0}_0'.format(k, n))
    fp.write('\nvar any_0 = {}'.format(set(range(n_states))))
    for n in range(9):
        fp.write('\nvar any_{} = any_0'.format(n))
    fp.write('\nvar live_0 = {}'.format(set(live)))
    for n in range(1, n_live):
        fp.write('\nvar live_{} = live_0'.format(n))
    fp.write('\n')
    # Transitions
    for tr in transitions:
        fp.write('\n' + ','.join(map(str, tr)))


if __name__ == '__main__':
    outdir, rulestring, *rulename = sys.argv[1:]
    transitions = []
    rulename = rulename[0] if rulename else rulestring.translate(str.maketrans('/bs', '_BS')) + '_deficient'
   
    # Get rid of B and S from the start of each segment
    (_, *birth), (_, *survival) = map(str.strip, rulestring.split('/'))
    birth, survival = combine_rstring(birth), combine_rstring(survival)
    n_live = 0
    for num, isos in birth.items():
        if num == '0':
            transitions.append([*[0]*9, 1])
        elif num == '8':
            transitions.append([0, *('live_{}'.format(i) for i in range(8)), 1])
            n_live = 8
        elif isos:
            transitions.extend([0, *replace_bind(NAPKINS[num][iso], 'not_', iso), idx] for idx, iso in enumerate(isos, 2))
        else:
            transitions.extend([0, *replace_bind(NAPKINS[num][iso], 'not_', iso), idx] for idx, iso in enumerate(N_HOODS[:len(NAPKINS[num])], 2))
    d_vars = {k: sum(1 for i in tr if isinstance(i, str)) for k, tr in zip((j for n, li in birth.items() for j in N_HOODS[:len(NAPKINS[n])] if not li or j in li), transitions)}
    transitions.append('')
   
    for num, isos in survival.items():
        if num == '0':
            transitions.append(['live_0', *[0]*8, 1])
        elif num == '8':
            transitions.append([*('live_{}'.format(i) for i in range(9)), 1])
            n_live = 9
        elif isos:
            transitions.extend(['live_0', *replace_bind(NAPKINS[num][iso], 'live', count=1), 1] for iso in isos)
        else:
            transitions.extend(['live_0', *replace_bind(NAPKINS[num][iso], 'live', count=1), 1] for iso in N_HOODS[:len(NAPKINS[num])])
    n_live = max(n_live, *(sum(1 for i in tr if isinstance(i, str)) for tr in transitions[1+transitions.index(''):]))
    n_states = 1 + max(t[-1] for t in transitions if t)
    transitions.append([*('any_{}'.format(i) for i in range(9)), 0])
   
    with open(path.join(outdir, rulename+'.rule'), 'w') as fp:
        write_table(fp, rulename, n_states, n_live, d_vars, transitions)
(And by 'dirty' I mean very dirty. Some bona-fide questionable stuff in here :roll:)

Here's B12345678/S01245678:
@RULE B12345678_S012345678_deficient
@TABLE
n_states:15
neighborhood:Moore
symmetries:rotate4reflect

var not_c_0 = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
var not_c_1 = not_c_0
var not_c_2 = not_c_0
var not_c_3 = not_c_0
var not_c_4 = not_c_0
var not_c_5 = not_c_0
var not_c_6 = not_c_0
var not_e_0 = {1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
var not_e_1 = not_e_0
var not_e_2 = not_e_0
var not_e_3 = not_e_0
var not_e_4 = not_e_0
var not_e_5 = not_e_0
var not_e_6 = not_e_0
var not_k_0 = {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
var not_k_1 = not_k_0
var not_k_2 = not_k_0
var not_k_3 = not_k_0
var not_k_4 = not_k_0
var not_k_5 = not_k_0
var not_a_0 = {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14}
var not_a_1 = not_a_0
var not_a_2 = not_a_0
var not_a_3 = not_a_0
var not_a_4 = not_a_0
var not_a_5 = not_a_0
var not_i_0 = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14}
var not_i_1 = not_i_0
var not_i_2 = not_i_0
var not_i_3 = not_i_0
var not_i_4 = not_i_0
var not_i_5 = not_i_0
var not_n_0 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14}
var not_n_1 = not_n_0
var not_n_2 = not_n_0
var not_n_3 = not_n_0
var not_n_4 = not_n_0
var not_n_5 = not_n_0
var not_y_0 = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14}
var not_y_1 = not_y_0
var not_y_2 = not_y_0
var not_y_3 = not_y_0
var not_y_4 = not_y_0
var not_q_0 = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14}
var not_q_1 = not_q_0
var not_q_2 = not_q_0
var not_q_3 = not_q_0
var not_q_4 = not_q_0
var not_j_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14}
var not_j_1 = not_j_0
var not_j_2 = not_j_0
var not_j_3 = not_j_0
var not_j_4 = not_j_0
var not_r_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14}
var not_r_1 = not_r_0
var not_r_2 = not_r_0
var not_r_3 = not_r_0
var not_r_4 = not_r_0
var not_t_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14}
var not_t_1 = not_t_0
var not_t_2 = not_t_0
var not_t_3 = not_t_0
var not_w_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14}
var not_w_1 = not_w_0
var not_w_2 = not_w_0
var not_w_3 = not_w_0
var not_z_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
var not_z_1 = not_z_0
var not_z_2 = not_z_0
var not_z_3 = not_z_0
var any_0 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
var any_0 = any_0
var any_1 = any_0
var any_2 = any_0
var any_3 = any_0
var any_4 = any_0
var any_5 = any_0
var any_6 = any_0
var any_7 = any_0
var any_8 = any_0
var live_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
var live_1 = live_0
var live_2 = live_0
var live_3 = live_0
var live_4 = live_0
var live_5 = live_0
var live_6 = live_0
var live_7 = live_0
var live_8 = live_0

0,0,0,0,0,0,0,0,not_c_0,2
0,not_e_0,0,0,0,0,0,0,0,3
0,0,not_c_0,0,0,0,0,0,not_c_1,2
0,not_e_0,0,0,0,0,0,not_e_1,0,3
0,0,0,not_k_0,0,0,0,0,not_k_1,4
0,not_a_0,0,0,0,0,0,0,not_a_1,5
0,not_i_0,0,0,0,not_i_1,0,0,0,6
0,0,0,0,not_n_0,0,0,0,not_n_1,7
0,0,not_c_0,0,0,0,not_c_1,0,not_c_2,2
0,not_e_0,0,not_e_1,0,0,0,not_e_2,0,3
0,0,0,not_k_0,0,not_k_1,0,0,not_k_2,4
0,not_a_0,0,0,0,0,0,not_a_1,not_a_2,5
0,not_i_0,not_i_1,0,0,0,0,0,not_i_2,6
0,0,not_n_0,not_n_1,0,0,0,0,not_n_2,7
0,0,not_y_0,0,0,not_y_1,0,0,not_y_2,8
0,not_q_0,0,0,not_q_1,0,0,0,not_q_2,9
0,not_j_0,0,not_j_1,0,0,0,0,not_j_2,10
0,not_r_0,0,0,0,not_r_1,0,0,not_r_2,11
0,0,not_c_0,0,not_c_1,0,not_c_2,0,not_c_3,2
0,not_e_0,0,not_e_1,0,not_e_2,0,not_e_3,0,3
0,0,not_k_0,0,0,not_k_1,0,not_k_2,not_k_3,4
0,not_a_0,not_a_1,not_a_2,0,0,0,0,not_a_3,5
0,0,not_i_0,not_i_1,0,0,0,not_i_2,not_i_3,6
0,not_n_0,not_n_1,0,0,0,not_n_2,0,not_n_3,7
0,0,not_y_0,not_y_1,0,0,not_y_2,0,not_y_3,8
0,not_q_0,0,0,not_q_1,0,0,not_q_2,not_q_3,9
0,not_j_0,0,not_j_1,0,not_j_2,0,0,not_j_3,10
0,not_r_0,0,not_r_1,0,0,0,not_r_2,not_r_3,11
0,not_t_0,not_t_1,0,0,not_t_2,0,0,not_t_3,12
0,not_w_0,0,not_w_1,not_w_2,0,0,0,not_w_3,13
0,not_z_0,0,0,not_z_1,not_z_2,0,0,not_z_3,14
0,not_c_0,0,not_c_1,not_c_2,not_c_3,0,not_c_4,0,2
0,0,not_e_0,0,not_e_1,not_e_2,not_e_3,0,not_e_4,3
0,not_k_0,not_k_1,0,not_k_2,0,not_k_3,not_k_4,0,4
0,0,not_a_0,not_a_1,not_a_2,not_a_3,not_a_4,0,0,5
0,0,0,not_i_0,not_i_1,not_i_2,not_i_3,not_i_4,0,6
0,not_n_0,0,0,not_n_1,not_n_2,not_n_3,not_n_4,0,7
0,not_y_0,0,not_y_1,not_y_2,0,not_y_3,not_y_4,0,8
0,0,not_q_0,not_q_1,0,not_q_2,not_q_3,not_q_4,0,9
0,0,not_j_0,0,not_j_1,not_j_2,not_j_3,not_j_4,0,10
0,0,not_r_0,not_r_1,not_r_2,0,not_r_3,not_r_4,0,11
0,not_c_0,0,not_c_1,not_c_2,not_c_3,not_c_4,not_c_5,0,2
0,0,not_e_0,not_e_1,not_e_2,not_e_3,not_e_4,0,not_e_5,3
0,not_k_0,not_k_1,0,not_k_2,not_k_3,not_k_4,not_k_5,0,4
0,0,not_a_0,not_a_1,not_a_2,not_a_3,not_a_4,not_a_5,0,5
0,0,not_i_0,not_i_1,not_i_2,0,not_i_3,not_i_4,not_i_5,6
0,not_n_0,not_n_1,not_n_2,0,not_n_3,not_n_4,not_n_5,0,7
0,not_c_0,not_c_1,not_c_2,not_c_3,not_c_4,not_c_5,not_c_6,0,2
0,0,not_e_0,not_e_1,not_e_2,not_e_3,not_e_4,not_e_5,not_e_6,3
0,live_0,live_1,live_2,live_3,live_4,live_5,live_6,live_7,1

live_0,0,0,0,0,0,0,0,0,1
live_0,0,0,0,0,0,0,0,live_1,1
live_0,live_1,0,0,0,0,0,0,0,1
live_0,0,live_1,0,0,0,0,0,live_2,1
live_0,live_1,0,0,0,0,0,live_2,0,1
live_0,0,0,live_1,0,0,0,0,live_2,1
live_0,live_1,0,0,0,0,0,0,live_2,1
live_0,live_1,0,0,0,live_2,0,0,0,1
live_0,0,0,0,live_1,0,0,0,live_2,1
live_0,0,live_1,0,0,0,live_2,0,live_3,1
live_0,live_1,0,live_2,0,0,0,live_3,0,1
live_0,0,0,live_1,0,live_2,0,0,live_3,1
live_0,live_1,0,0,0,0,0,live_2,live_3,1
live_0,live_1,live_2,0,0,0,0,0,live_3,1
live_0,0,live_1,live_2,0,0,0,0,live_3,1
live_0,0,live_1,0,0,live_2,0,0,live_3,1
live_0,live_1,0,0,live_2,0,0,0,live_3,1
live_0,live_1,0,live_2,0,0,0,0,live_3,1
live_0,live_1,0,0,0,live_2,0,0,live_3,1
live_0,0,live_1,0,live_2,0,live_3,0,live_4,1
live_0,live_1,0,live_2,0,live_3,0,live_4,0,1
live_0,0,live_1,0,0,live_2,0,live_3,live_4,1
live_0,live_1,live_2,live_3,0,0,0,0,live_4,1
live_0,0,live_1,live_2,0,0,0,live_3,live_4,1
live_0,live_1,live_2,0,0,0,live_3,0,live_4,1
live_0,0,live_1,live_2,0,0,live_3,0,live_4,1
live_0,live_1,0,0,live_2,0,0,live_3,live_4,1
live_0,live_1,0,live_2,0,live_3,0,0,live_4,1
live_0,live_1,0,live_2,0,0,0,live_3,live_4,1
live_0,live_1,live_2,0,0,live_3,0,0,live_4,1
live_0,live_1,0,live_2,live_3,0,0,0,live_4,1
live_0,live_1,0,0,live_2,live_3,0,0,live_4,1
live_0,live_1,0,live_2,live_3,live_4,0,live_5,0,1
live_0,0,live_1,0,live_2,live_3,live_4,0,live_5,1
live_0,live_1,live_2,0,live_3,0,live_4,live_5,0,1
live_0,0,live_1,live_2,live_3,live_4,live_5,0,0,1
live_0,0,0,live_1,live_2,live_3,live_4,live_5,0,1
live_0,live_1,0,0,live_2,live_3,live_4,live_5,0,1
live_0,live_1,0,live_2,live_3,0,live_4,live_5,0,1
live_0,0,live_1,live_2,0,live_3,live_4,live_5,0,1
live_0,0,live_1,0,live_2,live_3,live_4,live_5,0,1
live_0,0,live_1,live_2,live_3,0,live_4,live_5,0,1
live_0,live_1,0,live_2,live_3,live_4,live_5,live_6,0,1
live_0,0,live_1,live_2,live_3,live_4,live_5,0,live_6,1
live_0,live_1,live_2,0,live_3,live_4,live_5,live_6,0,1
live_0,0,live_1,live_2,live_3,live_4,live_5,live_6,0,1
live_0,0,live_1,live_2,live_3,0,live_4,live_5,live_6,1
live_0,live_1,live_2,live_3,0,live_4,live_5,live_6,0,1
live_0,live_1,live_2,live_3,live_4,live_5,live_6,live_7,0,1
live_0,0,live_1,live_2,live_3,live_4,live_5,live_6,live_7,1
live_0,live_1,live_2,live_3,live_4,live_5,live_6,live_7,live_8,1
any_0,any_1,any_2,any_3,any_4,any_5,any_6,any_7,any_8,0
Last edited by M. I. Wright on April 22nd, 2018, 1:56 pm, edited 3 times in total.
M. I. Wright
 
Posts: 346
Joined: June 13th, 2015, 12:04 pm

Re: Deficient Rules

Postby Saka » April 20th, 2018, 4:04 am

Wright, your script does not work when there are no survival conditions
Anyway,
4c/8o ship and rep in B23_S8_deficient
x = 19, y = 11, rule = B23_S8_deficient
4.B$4.F$4.B$2.DE.ED9.I.I$BK5.KB7.D.D3$4.B3$4.B!
Proud owner and founder of Sakagolue
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 2479
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Deficient Rules

Postby M. I. Wright » April 20th, 2018, 10:14 am

Saka wrote:Wright, your script does not work when there are no survival conditions

Blinkerspawn also pointed out that it misbehaves when there's more than one birth condition, because I didn't think to decouple sub-transitions of different neighbor counts -- cells born of 2c will block B3c, for instance. I think it's fixable but I'm not sure yet how much effort it would be. (Will try when I get home)
Last edited by M. I. Wright on April 20th, 2018, 2:54 pm, edited 1 time in total.
M. I. Wright
 
Posts: 346
Joined: June 13th, 2015, 12:04 pm

Re: Deficient Rules

Postby Majestas32 » April 20th, 2018, 10:20 am

Probs not much effort. Will try when I get home. It's pretty much just 53 states ye?
I type all my RLE's by hand. Golly is for wimps.
User avatar
Majestas32
 
Posts: 420
Joined: November 20th, 2017, 12:22 pm
Location: 'Merica

Re: Deficient Rules

Postby Saka » April 20th, 2018, 10:14 pm

Various DeificientSeeds patterns made from a sparky ship bismuth discovered on discord
Back rake
x = 20, y = 22, rule = DeficientSeeds
16.E.E3$3.D$.2D4.E7.E3.E2$.2D4.E7.E3.E$3.D3$16.E.E$15.E.E3$2.D$2D4.E
7.E3.E2$2D4.E7.E3.E$2.D3$15.E.E!

Forward rake
x = 29, y = 26, rule = DeficientSeeds
4$22.E.E2$10.D$8.2D2.E9.E.E2$8.2D2.E9.E.E$10.D4$15.2E6.E$10.D3.C7.E$
8.2D10.2E2$8.2D10.2E$10.D3.C7.E$15.2E$22.E!


Osc puffers
x = 21, y = 23, rule = DeficientSeeds
17.E.E3$4.D$2.2D4.E7.E3.E2$2.2D4.E7.E3.E$4.D3$17.E.E2$15.E.E3$2.D$2D
4.E7.E3.E2$2D4.E7.E3.E$2.D3$15.E.E!

x = 23, y = 23, rule = DeficientSeeds
19.E.E3$6.D$4.2D4.E7.E3.E2$4.2D4.E7.E3.E$6.D3$19.E.E2$15.E.E3$2.D$2D
4.E7.E3.E2$2D4.E7.E3.E$2.D3$15.E.E!


G -> Osc
x = 61, y = 70, rule = DeficientSeeds
28.D$26.D2$2.D7.E.E4.E.E7.D$2D2.E.E6.E2.E3.E7.E5.E2$2D2.E.E6.E2.E3.E
7.E5.E$2.D7.E.E4.E.E4$7.D2.E3.E$5.2D8.E2$5.2D8.E$7.D2.E3.E2$36.2D$38.
D$38.D10$43.2E$45.C$43.E2.E$44.E.E11$49.B2$50.C$52.B11$56.2D$58.D$57.
EDE3$44.D$42.2D4.E7.E3.E2$42.2D4.E7.E3.E$44.D3$57.E.E!


Double rake thing
x = 105, y = 79, rule = DeficientSeeds
11.E$2.D2.E.E$2D6.E2.E15.E6.E.E$27.E$2D6.E2.E16.E.E3.E.E$2.D2.E.E$11.
E3$7.D$5.2D2.E4.E2$5.2D2.E4.E$7.D2$36.B2$37.C$39.B11$43.2D$45.D$45.D
10$50.2E$52.C$50.E2.E$51.E.E12$62.D$63.D$59.E2$44.D17.E32.E.E3.E.E$
42.2D2.E.E.E25.E5.E11.E3.E.E3.E$99.F$42.2D2.E.E.E5.E.E.E.E13.E5.E11.E
3.E.E3.E$44.D50.E.E3.E.E2$58.E.E2$58.E.E2$98.E.E2$86.D$84.2D2.E9.E.E
2$84.2D2.E9.E.E$86.D2$98.E.E!


EDIT:
New c/4d ship
x = 5, y = 5, rule = DeficientSeeds
E2$E$.E$3.2E!

Rake for the regular c/4d ship
x = 43, y = 46, rule = DeficientSeeds
17.E$10.2E$5.D3.C7.E$3.2D10.2E$34.E$3.2D10.2E$5.D3.C7.E16.E.ED$10.2E$
17.E2$9.E4.E.E$5.D7.F$3.2D2.E.E2$3.2D2.E.E$5.D7.F$9.E4.E.E2$40.2D$42.
D$42.D5$39.D$39.D$37.2D2$6.E4.E.E$2.D7.F$2D2.E.E2$2D2.E.E$2.D7.F$6.E
4.E.E2$14.E$7.2E$2.D3.C7.E16.E.ED$2D10.2E$31.E$2D10.2E$2.D3.C7.E$7.2E
$14.E!
Proud owner and founder of Sakagolue
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 2479
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Deficient Rules

Postby M. I. Wright » April 21st, 2018, 1:23 pm

Alright, finally got around to it!

EDIT: If you don't have Python 3, use the version at this URL and copy/paste the rulefile it prints out into Golly. (Start it by hitting "Run" up top)


Usage:
$ python3 deficient_rulegen.py [output dir] [rulestring in B/S form] [OPTIONAL rulename]
If the rulename isn't given, it'll be made from the rulestring by replacing the slash with an underscore, capitalizing the B/S, and appending '_deficient' or '_pdeficient'. Make sure the rulestring is written with a slash.

You can also use the "-p" ("--perm") flag, which removes the stipulation that a cell must return to state 1 after surviving more than one generation. Gives some interesting B2 rules.


deficient_rulegen.py:
import sys
from os import path

N_HOODS = 'cekainyqjrtwz'
NAPKINS = {
  k: dict(zip(N_HOODS, v)) for k, v in {
    '0': '',
    '1': ['00000001', '10000000'],
    '2': ['01000001', '10000010', '00100001', '10000001', '10001000', '00010001'],
    '3': ['01000101', '10100010', '00101001', '10000011', '11000001', '01100001', '01001001', '10010001', '10100001', '10001001'],
    '4': ['01010101', '10101010', '01001011', '11100001', '01100011', '11000101', '01100101', '10010011', '10101001', '10100011', '11001001', '10110001', '10011001'],
    '5': ['10111010', '01011101', '11010110', '01111100', '00111110', '10011110', '10110110', '01101110', '01011110', '01110110'],
    '6': ['10111110', '01111101', '11011110', '01111110', '01110111', '11101110'],
    '7': ['11111110', '01111111'],
    '8': ''
    }.items()
  }


def order_segment(sz, segment):
    if not segment or segment[0] == '-':
        return [t for t in N_HOODS[:sz] if t not in segment]
    return [t for t in N_HOODS if t in segment]


def combine_rstring(segment):
    cop, last = {}, 0
    for i, v in enumerate(segment, 1):
        if v.isdigit():
            after = next((idx for idx, j in enumerate(segment[i:], i) if j.isdigit()), len(segment))
            cop[v] = order_segment(len(NAPKINS[v]), segment[i:after])
    return cop


def replace_bind(transition, pre, sub='', count=0):
    cop = []
    for i in map(int, transition):
        if not i:
            cop.append(0)
            continue
        cop.append('{}{}_{}'.format(pre, sub, count))
        count += 1
    return cop


def write_table(fp, rname, n_states, n_live, d_vars, transitions):
    fp.write('@RULE {}\n@TABLE\n'.format(rname))
    fp.write('n_states:{}\nneighborhood:Moore\nsymmetries:rotate4reflect\n'.format(n_states))
    # Variables
    live = range(1, n_states)
    for sub, (state, count) in d_vars.items():
        range_ = {i for i in live if i != state}
        if not range_:
            continue
        fp.write('\nvar not_{}_0 = {}'.format(sub, range_))
        for n in range(1, count):
            fp.write('\nvar not_{0}_{1} = not_{0}_0'.format(sub, n))
    fp.write('\nvar any_0 = {}'.format(set(range(n_states))))
    for n in range(9):
        fp.write('\nvar any_{} = any_0'.format(n))
    fp.write('\nvar live_0 = {}'.format(set(live)))
    for n in range(1, n_live):
        fp.write('\nvar live_{} = live_0'.format(n))
    fp.write('\n')
    # Transitions
    for tr in transitions:
        fp.write('\n' + ','.join(map(str, tr)))


if __name__ == '__main__':
    outdir, rulestring, *rulename = (i for i in sys.argv[1:] if i not in ('-p', '--perm'))
    transitions = []
    PERM = '--perm' in sys.argv or '-p' in sys.argv
    rulename = rulename[0] if rulename else rulestring.translate(str.maketrans('/bs', '_BS')) + ('_deficient', '_pdeficient')[PERM]
   
    # Get rid of B and S from the start of each segment
    (_, *birth), (_, *survival) = map(str.strip, rulestring.split('/'))
    birth, survival = combine_rstring(birth), combine_rstring(survival)
    n_live, sum_len = 0, 2
    for counter, (num, subs) in enumerate(birth.items()):
        if num == '0':
            transitions.append([*[0]*9, 1])
        elif num == '8':
            transitions.append([0, *('live_{}'.format(i) for i in range(8)), 1])
            n_live = 8
        else:
            transitions.extend([0, *replace_bind(NAPKINS[num][sub], 'not_', num+sub), idx] for idx, sub in enumerate(subs, sum_len))
            sum_len = 1 + transitions[-1][-1]
    d_vars = {k: (tr[-1], sum(1 for i in tr if isinstance(i, str))) for k, tr in zip((n+j for n, li in birth.items() for j in N_HOODS[:len(NAPKINS[n])] if not li or j in li), transitions)}
    transitions.append('')
   
    END = 'live_0' if PERM else 1  # Bind if rule is to be 'permanently deficient'
    for num, subs in survival.items():
        if num == '0':
            transitions.append(['live_0', *[0]*8, END])
        elif num == '8':
            transitions.append([*('live_{}'.format(i) for i in range(9)), END])
            n_live = 9
        else:
            transitions.extend(['live_0', *replace_bind(NAPKINS[num][sub], 'live', count=1), END] for sub in subs)
   
    n_live = n_live if not survival else max(n_live, *(sum(1 for i in tr if isinstance(i, str)) for tr in transitions[1+transitions.index(''):]))
    n_states = 1 + max(t[-1] for t in transitions if t and isinstance(t[-1], int))
    transitions.append([*('any_{}'.format(i) for i in range(9)), 0])
   
    with open(path.join(outdir, rulename+'.rule'), 'w') as fp:
        write_table(fp, rulename, n_states, n_live, d_vars, transitions)
        print('Created {}\n'.format(path.realpath(fp.name)))


EDIT: Fixed isotropic-nontot-rule handling (for real this time) and in the process reduced jankiness a little bit.
EDIT II: Made it reorder your input for isotropic nontot rules, so it won't fail if you input "B2ae/S" rather than "B2ea/S".
EDIT III: Added the "-p" ("--perm)" flag.
EDIT IV: Fixed nontot rules.. again... because I borked them in edit III. (This should be the final edit.)
Last edited by M. I. Wright on April 23rd, 2018, 7:26 pm, edited 10 times in total.
M. I. Wright
 
Posts: 346
Joined: June 13th, 2015, 12:04 pm

Re: Deficient Rules

Postby cordership3 » April 21st, 2018, 5:06 pm

Here, a deficient soup search collection for Deficient Seeds.

First row: c/3d, c/4d, and another c/4d discovered by 83bismuth83.

Second row: p12 and 3 p6's.

x = 112, y = 35, rule = DeficientSeeds
3$54.E$23.2D$22.D31.E32.B$22.D32.E29.F$57.2E26.B13$100.B$33.B66.F$33.
F66.B$6.E.E24.B$65.B$65.F3.B25.BFB5.BFB$31.DE.ED27.BF4.F$30.D5.D28.F
4.FB$65.B3.F30.B$6.E.E60.B30.F$100.B!
oh ok
User avatar
cordership3
 
Posts: 74
Joined: August 23rd, 2016, 8:53 am
Location: haha long boy

Re: Deficient Rules

Postby danny » April 21st, 2018, 10:50 pm

Patterns in B2/S34678_D, including (to my knowledge) the first gun in a deficient rule:
x = 245, y = 220, rule = B2_S34678_deficient
153.A9.A38.E$152.3A7.3A37.3A$153.A9.A38.3A$163.A38.E$162.2A$163.A$
163.A$162.3A$163.A12$97.C54.GC.CG7.A23.A2.A11.C2.A.G4.D$77.B19.A54.C
3.C6.A20.A2.6A11.C26.C$77.F2.E14.E2A68.A4.C6.C4.3A.A4.A13.A6.A.B18.B$
77.B17.E2A54.C3.C8.A8.2A8.A2.6A9.A.2A2.2E22.2A$79.2E16.A54.GC.CG17.2A
12.A2.A10.2A11.B16.2A$77.B3.E.E13.C74.6A26.A2.A2.D4.E18.B$77.F3.E.E
88.6A28.A.E2.C.E.E15.C$77.B96.2A28.D2.E4.E$80.2ED91.2A34.E.E$79.CA2.F
87.C6.C$81.A2.F$85.D$82.F133.2A$60.B13.B6.D.D129.C6.C$58.C3.C9.C3.C
20.C116.C4.C21.C$71.CA.A22.A118.2A26.B$57.BF2.B8.D2.A2.C18.E2A114.A2.
4A2.A20.2A$72.A4.E17.E2A114.A2.4A2.A20.2A$67.B2.A2.A23.A118.2A26.B$
61.E.E5.A27.C116.C4.C21.C$74.F138.C6.C$61.E.E11.D140.2A4$153.F$111.E
4.E8.E4.E21.E$112.4A10.4A23.A$111.E.2A.E8.E.2A.E21.E$113.2A12.2A24.F
2$60.2A12.2A$58.E.2A.E8.E.2A.E$59.4A10.4A$58.E4.E8.E4.E5$113.D11.E.E$
114.F87.E$91.C27.A5.E.E74.3A$91.A23.A2.A2.B80.3A$91.2AE17.E4.A85.E$
91.2AE18.C2.A2.D8.B2.FB$91.A22.A.AC$91.C20.C3.C9.C3.C$105.D.D6.B13.B$
106.F$103.D$104.F2.A$105.F2.AC$106.D2E104.E$111.B101.3A$105.E.E3.F
101.3A$91.C13.E.E3.B101.E$91.A16.2E$91.2AE17.B$91.2AE14.E2.F$91.A19.B
$91.C10$78.A2.A2.A$77.9A$78.A5.A8$60.C39.C53.B9.B4.2D31.E$60.A36.B64.
F5.D33.3A$60.2AE32.E2.2A62.B5.D33.3A$60.2AE32.E2.2A53.F.F46.E$60.A36.
B56.F$60.C39.C51.2D.2D$153.D.D$153.D.D6$215.E$60.C39.C114.3A$60.A36.B
117.3A$60.2AE32.E2.2A115.E$60.2AE32.E2.2A$60.A36.B$60.C39.C7$27.E4.E
8.E4.E67.D2ED10.D2ED$28.4A10.4A69.2A12.2A$27.E.2A.E8.E.2A.E32.A5.A29.
2A12.2A$29.2A12.2A33.9A$77.2A3.A3.A27.D2.D10.D2.D$77.A3.A3.2A$77.9A$
78.A5.A8$66.C25.C$66.A28.B$64.E2A26.2A2.E$64.E2A26.2A2.E$66.A28.B$66.
C25.C9$66.C25.C$66.A28.B$64.E2A26.2A2.E$64.E2A26.2A2.E$66.A28.B$66.C
25.C20$.A$3A$.A8$26.A$25.3A$26.A18$28.A13.A$27.A.A11.3A$28.A13.A5$28.
A$27.A.A$28.A!

@RULE B2_S34678_deficient
@TABLE
n_states:8
neighborhood:Moore
symmetries:rotate4reflect

var not_2c_0 = {1, 3, 4, 5, 6, 7}
var not_2c_1 = not_2c_0
var not_2e_0 = {1, 2, 4, 5, 6, 7}
var not_2e_1 = not_2e_0
var not_2k_0 = {1, 2, 3, 5, 6, 7}
var not_2k_1 = not_2k_0
var not_2a_0 = {1, 2, 3, 4, 6, 7}
var not_2a_1 = not_2a_0
var not_2i_0 = {1, 2, 3, 4, 5, 7}
var not_2i_1 = not_2i_0
var not_2n_0 = {1, 2, 3, 4, 5, 6}
var not_2n_1 = not_2n_0
var any_0 = {0, 1, 2, 3, 4, 5, 6, 7}
var any_0 = any_0
var any_1 = any_0
var any_2 = any_0
var any_3 = any_0
var any_4 = any_0
var any_5 = any_0
var any_6 = any_0
var any_7 = any_0
var any_8 = any_0
var live_0 = {1, 2, 3, 4, 5, 6, 7}
var live_1 = live_0
var live_2 = live_0
var live_3 = live_0
var live_4 = live_0
var live_5 = live_0
var live_6 = live_0
var live_7 = live_0
var live_8 = live_0

0,0,not_2c_0,0,0,0,0,0,not_2c_1,2
0,not_2e_0,0,0,0,0,0,not_2e_1,0,3
0,0,0,not_2k_0,0,0,0,0,not_2k_1,4
0,not_2a_0,0,0,0,0,0,0,not_2a_1,5
0,not_2i_0,0,0,0,not_2i_1,0,0,0,6
0,0,0,0,not_2n_0,0,0,0,not_2n_1,7

live_0,0,live_1,0,0,0,live_2,0,live_3,1
live_0,live_1,0,live_2,0,0,0,live_3,0,1
live_0,0,0,live_1,0,live_2,0,0,live_3,1
live_0,live_1,0,0,0,0,0,live_2,live_3,1
live_0,live_1,live_2,0,0,0,0,0,live_3,1
live_0,0,live_1,live_2,0,0,0,0,live_3,1
live_0,0,live_1,0,0,live_2,0,0,live_3,1
live_0,live_1,0,0,live_2,0,0,0,live_3,1
live_0,live_1,0,live_2,0,0,0,0,live_3,1
live_0,live_1,0,0,0,live_2,0,0,live_3,1
live_0,0,live_1,0,live_2,0,live_3,0,live_4,1
live_0,live_1,0,live_2,0,live_3,0,live_4,0,1
live_0,0,live_1,0,0,live_2,0,live_3,live_4,1
live_0,live_1,live_2,live_3,0,0,0,0,live_4,1
live_0,0,live_1,live_2,0,0,0,live_3,live_4,1
live_0,live_1,live_2,0,0,0,live_3,0,live_4,1
live_0,0,live_1,live_2,0,0,live_3,0,live_4,1
live_0,live_1,0,0,live_2,0,0,live_3,live_4,1
live_0,live_1,0,live_2,0,live_3,0,0,live_4,1
live_0,live_1,0,live_2,0,0,0,live_3,live_4,1
live_0,live_1,live_2,0,0,live_3,0,0,live_4,1
live_0,live_1,0,live_2,live_3,0,0,0,live_4,1
live_0,live_1,0,0,live_2,live_3,0,0,live_4,1
live_0,live_1,0,live_2,live_3,live_4,live_5,live_6,0,1
live_0,0,live_1,live_2,live_3,live_4,live_5,0,live_6,1
live_0,live_1,live_2,0,live_3,live_4,live_5,live_6,0,1
live_0,0,live_1,live_2,live_3,live_4,live_5,live_6,0,1
live_0,0,live_1,live_2,live_3,0,live_4,live_5,live_6,1
live_0,live_1,live_2,live_3,0,live_4,live_5,live_6,0,1
live_0,live_1,live_2,live_3,live_4,live_5,live_6,live_7,0,1
live_0,0,live_1,live_2,live_3,live_4,live_5,live_6,live_7,1
live_0,live_1,live_2,live_3,live_4,live_5,live_6,live_7,live_8,1
any_0,any_1,any_2,any_3,any_4,any_5,any_6,any_7,any_8,0

EDIT: p250 gun (second gun in this rule):
x = 96, y = 96, rule = B2_S34678_deficient
14.D2$14.D$22.E18.F3.F$22.E$23.D16.E5.E$23.D16.BF3.FB$40.E5.E$9.E3.E
8.C.3ACD$8.E.A.A.E10.A2.D$9.A.B3.C10.B13.E5.E$10.B5.CG22.BF3.FB$9.A
30.E5.E$8.E5.E$D.D6.E3.E2A25.F3.F$10.C3.2A2EA$11.C3.E.E.A$11.G3.2E3.B
$15.A3.AC$16.A.A$17.BC.C2$3.2E3.C$5.2D$8.A$8.2A$8.A.B$8.C$8.2D12$5.EB
E2.EBE$3.F2.F4.F2.F4$3.F2.F4.F2.F$5.EBE2.EBE3$83.EBE2.EBE$81.F2.F4.F
2.F4$81.F2.F4.F2.F$83.EBE2.EBE12$86.2D$87.C$85.B.A$86.2A$87.A$89.2D$
87.C3.2E2$75.C.CB$77.A.A$75.CA3.A$75.B3.2E3.G$76.A.E.E3.C$77.A2E2A3.C
$50.F3.F25.2AE3.E6.D.D$81.E5.E$49.E5.E30.A$49.BF3.FB22.GC5.B$49.E5.E
13.B10.C3.B.A$67.D2.A10.E.A.A.E$67.DC3A.C8.E3.E$49.E5.E$49.BF3.FB16.D
$49.E5.E16.D$73.E$50.F3.F18.E$81.D2$81.D!

EDIT2: p2:
x = 6, y = 6, rule = B2_S34678_deficient
4.D$5.D$4.A$3.2A$D.2A$.D!

p102, 8 cells:
x = 9, y = 9, rule = B2_S34678_deficient
3.E.E3$E7.E2$E7.E3$3.E.E!

This rule is awesome.
Last edited by danny on April 21st, 2018, 11:03 pm, edited 1 time in total.
call me danny.

physicists are the most honest people. you can pay them off all you want and they won't break the laws of physics.
User avatar
danny
 
Posts: 466
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Deficient Rules

Postby Saka » April 21st, 2018, 10:54 pm

B1e/S02 deficient has 2 cool ships (2c/8 and 4c/20)
x = 21, y = 5, rule = B1e_S02_deficient
2.A.A.A11.A$17.2A.A$A7.A$4.A12.2A$18.A.A!

neat 2c/4d ship
x = 3, y = 4, rule = B1e2e4c_S_deficient
.C$C.C2$C!
Proud owner and founder of Sakagolue
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 2479
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Deficient Rules

Postby Bullet51 » April 21st, 2018, 11:43 pm

There is a breeder hiding somewhere, but we need some AbhpzTation:
x = 322, y = 132, rule = DeficientLife
10.F$9.A.A299.F$8.JA.AF297.3A$8.A2.A12.JAJ18.JAJ12.JAJ18.JAJ12.JAJ
125.F14.F20.F14.F20.F13.A2.A$7.FA.AJ12.A2.A16.A2.A12.A2.A16.A2.A12.A
2.A123.A.A12.A.A18.A.A12.A.A18.A.A13.3A$8.A.A14.G2A16.2AG14.G2A16.2AG
14.G2A122.IA.AI10.IA.AI16.IA.AI10.IA.AI16.IA.AI13.F$9.F215.GI10.IG22.
GI10.IG22.GI$13.2A205.FA4.FAF6.FAF4.AF12.FA4.FAF6.FAF4.AF12.FA4.FAF6.
2A$12.A.A6.AJ3.A18.A3.JA6.AJ3.A18.A3.JA6.AJ3.A125.G.JA8.AJ.G20.G.JA8.
AJ.G20.G.JA7.EA2.I.A$8.FA2.A9.A4.A16.A4.A8.A4.A16.A4.A8.A4.A122.IA.JA
10.AJ.AI16.IA.JA10.AJ.AI16.IA.JA10.A3.A$.2A6.A2.A10.AJF.A16.A.FJA10.A
JF.A16.A.FJA10.AJF.A123.3A12.3A18.3A12.3A18.3A11.E9.2A$A2.A20.3A18.3A
12.3A18.3A12.3A6.2A108.2A7.F14.F20.F14.F20.F13.EAE5.A2.A$.2A7.AE13.F
20.F14.F20.F14.F6.A2.A106.A2.A101.2A$105.2A11.A96.2A$117.ACA82.EAE$
13.2A101.A3.A81.3A102.2A$12.A2.A99.FAF.FAF79.A3.A100.A2.A$13.2A101.A
2.JA80.A.2A102.2A$117.ACA82.2AE$118.A$107.F$103.A.GA.A105.A$.2A99.A.A
108.ACB.G2A99.2A$A2.A98.A.AGEAE108.K2A98.A2.A$.2A100.A215.2A2$123.2A
72.2A$13.2A107.A2.A70.A2.A107.2A$12.A2.A107.2A72.2A107.A2.A$13.2A292.
2A$296.G$25.G.A266.FA$26.2A267.2A$26.F$.2A316.2A$A2.A314.A2.A$.2A316.
2A2$123.2A72.2A$13.2A107.A2.A70.A2.A107.2A$12.A2.A107.2A72.2A107.A2.A
$13.2A292.2A5$.2A316.2A$A2.A314.A2.A$.2A316.2A2$123.2A72.2A$13.2A107.
A2.A70.A2.A107.2A$12.A2.A107.2A11.A60.2A107.A2.A$13.2A120.ACA46.EAE
120.2A$134.A3.A45.3A$133.FAF.FAF43.A3.A$134.A2.JA44.A.2A$135.ACA46.2A
E$.2A133.A182.2A$A2.A121.F192.A2.A$.2A118.A.GA.A69.A122.2A$120.A.A72.
ACB.G2A75.G$44.G.A73.A.AGEAE72.K2A73.FA$13.2A30.2A74.A154.2A29.2A$12.
A2.A29.F260.A2.A$13.2A126.2A36.2A126.2A$140.A2.A34.A2.A$141.2A36.2A3$
.2A316.2A$A2.A314.A2.A$.2A316.2A2$119.A82.A$13.2A103.A.A80.A.A103.2A$
12.A2.A102.A.A80.A.A102.A2.A$13.2A104.A21.2A36.2A21.A104.2A$140.A2.A
34.A2.A$141.2A36.2A3$.2A316.2A$A2.A314.A2.A$.2A316.2A$153.EAE$153.A.A
10.JAJ$13.2A138.EAE9.A3.A137.2A$12.A2.A290.A2.A$13.2A126.2A23.A.A10.
2A126.2A$140.A2.A7.EAE11.A2.K9.A2.A$141.2A8.A.AJ.I7.JAK3.AF7.2A$151.A
.J2A2.G5.A.HI.G88.G$63.G.A89.J3A4.JA91.FA$.2A61.2A94.E.E94.2A60.2A$A
2.A60.F93.A.A.A155.A2.A$.2A155.A3.E2.A153.2A$137.2A25.F18.2A$137.2A3.
K2A33.J.A2.2A$13.2A125.FA2.AF26.2A3.C3A126.2A$12.A2.A119.F13.CA20.F6.
JF126.A2.A$13.2A119.A.AG34.2A9.A2.AJ119.2A$134.A3.A46.2A$135.3AJ43.2A
.F$136.F2$.2A316.2A$A2.A314.A2.A$.2A316.2A3$13.2A292.2A$12.A2.A290.A
2.A$13.2A122.A46.A122.2A$136.A.A44.A.A$136.A.A44.A.A$137.A46.A2$.2A
316.2A$A2.A314.A2.A$.2A316.2A3$13.2A224.G67.2A$12.A2.A66.G.A152.FA67.
A2.A$13.2A68.2A153.2A67.2A$83.F4$.2A316.2A$A2.A314.A2.A!
Still drifting.
Bullet51
 
Posts: 453
Joined: July 21st, 2014, 4:35 am

Re: Deficient Rules

Postby M. I. Wright » April 22nd, 2018, 3:03 pm

Here's a ship, for starters:
x = 70, y = 137, rule = DeficientLife
44.2A$43.FA.A$24.EAE17.A.A$24.3A18.A$22.E5.E$22.A2.KA.A$22.E5.E$23.E
2.A$24.EAE3$49.2A$48.A2.A$49.2A2$19.2A$18.A2.A$19.2A6$49.2A$48.A2.A$
49.2A2$19.2A$18.A2.A$19.2A$56.A$55.A2.E$58.A2.JA$59.D2A.A$50.F6.A.A.A
2.A$49.2A3.E3.A3.2A$48.A5.A$49.3A3.A$50.F$19.2A$18.A2.A$19.2A$67.2A$
66.A2.A$67.2A2$47.2A$46.A2.A$47.2A3$19.2A$18.A2.A$19.2A$67.2A$66.A2.A
$67.2A2$47.2A$46.A2.A$47.2A3$19.2A$18.A2.A$19.2A47.CA$55.I$56.A2.2A$
57.A3.A$47.EA8.A.A2.A$47.2A7.A3.2A$46.A2.G2.AJ$47.3A$47.EAE2$19.2A$
18.A2.A$19.2A44.2A$64.A2.A$65.2A2$45.2A$44.A2.A$45.2A4$19.2A$18.A2.A$
19.2A44.2A$64.A2.A$65.2A2$45.2A$44.A2.A$45.2A$7.A3.A$6.A.K.AJ$5.A3.KA
J7.2A$6.2A10.J2.J$18.A2.A$17.F3.J$18.A.A33.A3.A$19.F34.JA.K.A$45.2A7.
JAK3.A$44.J2.J10.2A$.2A41.A2.A$A2.A40.J3.F$.2A42.A.A$46.F$21.2A$20.A
2.A$21.2A40.2A$62.A2.A$33.E2A27.2A$33.A2.A$33.EA.A6.2A$35.A6.A2.A$.2A
40.2A$A2.A$.2A18.G2A$19.2AKA.J$18.FA3.J2$24.G38.2A$24.K37.A2.A$50.EAE
10.2A$50.A.A$49.A2.A$49.A.A$49.EAE2.2A$54.2A3$49.2A$48.A2.A$49.2A!


EDIT: With some finagling, it can be tacked on to the breeder!
x = 356, y = 190, rule = DeficientLife
44.F$43.A.A299.F$25.A16.JA.AF297.3A$23.EA.AE14.A2.A12.JAJ18.JAJ12.JAJ
18.JAJ12.JAJ125.F14.F20.F14.F20.F13.A2.A$23.2A.2A13.FA.AJ12.A2.A16.A
2.A12.A2.A16.A2.A12.A2.A123.A.A12.A.A18.A.A12.A.A18.A.A13.3A$24.A.A
15.A.A14.G2A16.2AG14.G2A16.2AG14.G2A122.IA.AI10.IA.AI16.IA.AI10.IA.AI
16.IA.AI13.F$23.A4.E14.F215.GI10.IG22.GI10.IG22.GI$23.A.2A.A18.2A205.
FA4.FAF6.FAF4.AF12.FA4.FAF6.FAF4.AF12.FA4.FAF6.2A$22.G5.A17.A.A6.AJ3.
A18.A3.JA6.AJ3.A18.A3.JA6.AJ3.A125.G.JA8.AJ.G20.G.JA8.AJ.G20.G.JA7.EA
2.I.A$22.A.A17.FA2.A9.A4.A16.A4.A8.A4.A16.A4.A8.A4.A122.IA.JA10.AJ.AI
16.IA.JA10.AJ.AI16.IA.JA10.A3.A$21.A2.A18.A2.A10.AJF.A16.A.FJA10.AJF.
A16.A.FJA10.AJF.A123.3A12.3A18.3A12.3A18.3A11.E9.2A$20.FAF35.3A18.3A
12.3A18.3A12.3A6.2A108.2A7.F14.F20.F14.F20.F13.EAE5.A2.A$21.AJB20.AE
13.F20.F14.F20.F14.F6.A2.A106.A2.A101.2A$139.2A11.A96.2A$151.ACA82.EA
E$47.2A101.A3.A81.3A102.2A$46.A2.A99.FAF.FAF79.A3.A100.A2.A$47.2A101.
A2.JA80.A.2A102.2A$151.ACA82.2AE$152.A$19.2A120.F$18.A2.A115.A.GA.A
105.A$19.2A115.A.A108.ACB.G2A99.2A$136.A.AGEAE108.K2A98.A2.A$137.A
215.2A2$157.2A72.2A$47.2A107.A2.A70.A2.A107.2A$46.A2.A107.2A72.2A107.
A2.A$47.2A292.2A$330.G$59.G.A266.FA$19.2A39.2A267.2A$18.A2.A38.F$19.
2A332.2A$352.A2.A$353.2A2$157.2A72.2A$47.2A107.A2.A70.A2.A107.2A$46.A
2.A107.2A72.2A107.A2.A$47.2A292.2A3$19.2A$18.A2.A$19.2A332.2A$352.A2.
A$353.2A2$157.2A72.2A$47.2A107.A2.A70.A2.A107.2A$46.A2.A107.2A11.A60.
2A107.A2.A$47.2A120.ACA46.EAE120.2A$168.A3.A45.3A$167.FAF.FAF43.A3.A$
19.2A147.A2.JA44.A.2A$18.A2.A147.ACA46.2AE$19.2A149.A182.2A$159.F192.
A2.A$155.A.GA.A69.A122.2A$154.A.A72.ACB.G2A75.G$78.G.A73.A.AGEAE72.K
2A73.FA$47.2A30.2A74.A154.2A29.2A$46.A2.A29.F260.A2.A$47.2A126.2A36.
2A126.2A$174.A2.A34.A2.A$175.2A36.2A$19.2A$18.A2.A$19.2A36.F295.2A$
56.A.A293.A2.A$55.IA.AI293.2A$56.K.K$55.K3.K93.A82.A$47.2A6.6H91.A.A
80.A.A103.2A$46.A2.A6.K3.K91.A.A80.A.A102.A2.A$47.2A5.JAG.B94.A21.2A
36.2A21.A104.2A$53.E2.G117.A2.A34.A2.A$53.A2.A118.2A36.2A$19.2A32.A$
18.A2.A32.A.I$19.2A44.2A286.2A$64.A2.A284.A2.A$65.2A286.2A$187.EAE$
45.2A140.A.A10.JAJ$44.A2.A139.EAE9.A3.A137.2A$45.2A293.A2.A$175.2A23.
A.A10.2A126.2A$174.A2.A7.EAE11.A2.K9.A2.A$175.2A8.A.AJ.I7.JAK3.AF7.2A
$19.2A164.A.J2A2.G5.A.HI.G88.G$18.A2.A75.G.A89.J3A4.JA91.FA$19.2A44.
2A31.2A94.E.E94.2A60.2A$64.A2.A30.F93.A.A.A155.A2.A$65.2A125.A3.E2.A
153.2A$171.2A25.F18.2A$45.2A124.2A3.K2A33.J.A2.2A$10.F33.A2.A126.FA2.
AF26.2A3.C3A126.2A$9.A.A33.2A122.F13.CA20.F6.JF126.A2.A$8.IA.AI155.A.
AG34.2A9.A2.AJ119.2A$9.K.K156.A3.A46.2A$8.K3.K156.3AJ43.2A.F$7.6H6.2A
38.G.A108.F$7.K3.K6.A2.A38.2A$9.B.GAJ5.2A39.F4.2A286.2A$11.G2.E49.A2.
A284.A2.A$11.A2.A50.2A286.2A$14.A$11.I.A31.2A$.2A41.A2.A293.2A$A2.A
41.2A293.A2.A$.2A168.A46.A122.2A$170.A.A44.A.A$21.2A147.A.A44.A.A$20.
A2.A147.A46.A$21.2A32.F$54.A.A296.2A$53.IA.AI294.A2.A$54.K.K296.2A$
53.K3.K$45.2A6.6H$.2A41.A2.A6.K3.K214.G67.2A$A2.A41.2A5.JAG.B59.G.A
152.FA67.A2.A$.2A48.E2.G62.2A153.2A67.2A$51.A2.A62.F$21.2A28.A$20.A2.
A28.A.I$21.2A40.2A$62.A2.A287.2A$63.2A287.A2.A2$6.A.G34.2A$6.2A34.A2.
A$.2A4.F35.2A$A2.A$.2A2$21.2A$20.A2.A$21.2A40.2A$62.A2.A$63.2A2$43.2A
$42.A2.A$43.2A4$21.2A34.G.A$20.A2.A34.2A$21.2A35.F4.2A$62.A2.A$63.2A
2$43.2A$42.A2.A$43.2A$37.K$36.K.A$31.A3.G2A$21.2A7.A.AK2.A$20.A2.A5.A
2.A.K.A$21.2A7.2A3.A$41.EA$38.AC4.A$40.KA3.A$41.G.AHCA$42.A2.A$42.3A$
43.F2$13.2A$12.J2.J$12.A2.AE$12.A2.2A31.JAJ3F$13.A3.I36.A$14.2A.2A35.
A$15.J2AE24.EA8.F$43.A2.FJ3A$43.EAJ3.F$16.A$16.A.2A$20.A$16.2A.K$16.A
34.2A$49.2A2.A$49.JFJA!
M. I. Wright
 
Posts: 346
Joined: June 13th, 2015, 12:04 pm

Re: Deficient Rules

Postby danny » April 22nd, 2018, 4:35 pm

A reaction found by Lukalot on the discord allows gliders to be duplicated at p13. Here is a p26 gun based on it:
x = 54, y = 54, rule = B2_S34678_deficient
31.GC.CG$17.A13.C3.C$16.3A$17.A13.C3.C$17.A13.GC.CG$16.2A$17.A$17.A$
16.3A$17.A$22.E.E$22.E2.E$23.C$24.2E$35.B2$34.C10.A2.A2.A$32.B11.9A$G
C.CG9.B30.A5.A$C3.C11.C2$C3.C12.B$GC.CG37.2E$41.C$40.E2.E$40.E.E3$11.
E.E$10.E2.E$12.C$10.2E37.GC.CG$36.B12.C3.C2$37.C11.C3.C$2.A5.A30.B9.G
C.CG$.9A11.B$2.A2.A2.A10.C2$18.B$28.2E$30.C$28.E2.E$29.E.E6$18.GC.CG$
18.C3.C2$18.C3.C$18.GC.CG!

It can be made p52, p104, p208, and pretty much any period 26*n, and the eaters can be removed for up to 4 barrels.
call me danny.

physicists are the most honest people. you can pay them off all you want and they won't break the laws of physics.
User avatar
danny
 
Posts: 466
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Deficient Rules

Postby 83bismuth38 » April 22nd, 2018, 6:15 pm

i feel as though these could help build a sawtooth:
x = 48, y = 17, rule = B2_S34678_deficient
.E.E$F$.E.E2$32.E14.E$31.C.2A$45.E.E$31.A3.F$30.3A$26.E4.A2.2A2.E$31.
FB.A2.FB$26.E4.A2.2A2.E$30.3A$31.A3.F$45.E.E$31.C.2A$32.E14.E!
x = 50, y = 96, rule = B2_S34678_deficient
9.B6.B16.B6.B$9.F6.F16.F6.F$9.B6.B16.B6.B$9.B6.B16.B6.B2$7.B.A.B2.B.A
.B12.B.A.B2.B.A.B2$7.B.A.B2.B.A.B12.B.A.B2.B.A.B2$9.B6.B16.B6.B$9.B6.
B16.B6.B$9.F6.F16.F6.F$9.B6.B16.B6.B6$9.B6.B16.B6.B$9.F6.F16.F6.F$9.B
6.B16.B6.B$9.B6.B16.B6.B2$7.B.A.B2.B.A.B12.B.A.B2.B.A.B2$7.B.A.B2.B.A
.B12.B.A.B2.B.A.B2$9.B6.B16.B6.B$9.B6.B16.B6.B$9.F6.F16.F6.F$9.B6.B
16.B6.B10$.C46.C$3.B42.B$B48.B$3.B42.B$.C46.C24$8.C3A2.A20.A2.3AC$8.D
.A.2A22.2A.A.D$9.D.B26.B.D20$44.D.D3$43.E3.E$44.C.C$45.F!
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!

No football of any dui mauris said that.
User avatar
83bismuth38
 
Posts: 418
Joined: March 2nd, 2017, 4:23 pm
Location: Still sitting around in Sagittarius A...

Re: Deficient Rules

Postby danny » April 22nd, 2018, 6:29 pm

Potentially interesting reaction, assuming those sparks can be perturbed into giving another ortho glider.
#C [[ STOP 218 ]]
x = 51, y = 13, rule = B2_S34678_deficient
31.A2.A2.A2.A2.A2.A2.A$30.21A$31.A17.A6$4.E33.GC.CG$5.E32.C3.C$BF2.A$
5.E32.C3.C$4.E33.GC.CG!
call me danny.

physicists are the most honest people. you can pay them off all you want and they won't break the laws of physics.
User avatar
danny
 
Posts: 466
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Deficient Rules

Postby danny » April 22nd, 2018, 6:56 pm

New discoveries oscillators:
x = 157, y = 130, rule = B2_S34678_deficient
3A38.C2.C4.C7.C11.E3.E10.A3.A7.E5.C7.2AE6.E2.E9.D4.D8.A8.A$2.A37.CA2.
AC5.B3.E.A2.E6.E.2A.2A.E7.3A.3A5.2A5.A.E3.E.2A7.4A8.D6.D6.5A2.5A$3A
39.2A6.A5.2A.A7.3A.B.3A6.2A2.A2.2A4.2A4.3A4.6A3.E2A2.2AE7.A4.A8.A2.4A
2.A$A41.2A5.2A6.4AC3.E2A.E3.E.2AE3.2A2.A.A2.2A3.E4.E.A5.6A4.A4.A6.C8A
C6.A2.A2.A2.A$3A37.CA2.AC3.A4.C4A7.A9.A5.A.A.A.A.A11.C7.2A.E4.A4.A4.D
.A2.A2.A2.A.D4.3A4.3A$41.C2.C3.B7.A.2A4.E2AE7.E2AE4.A.A.A.A19.E2A5.E
2A2.2AE2.D.2A2.A2.A2.2A.D4.A2.2A2.A$50.C4.E2.A.E4.A11.A4.A.A.A.A.A28.
4A7.3A.2A.3A7.A2.2A2.A$58.C7.B9.B4.2A2.A.A2.2A27.E2.E7.A2.A2.A2.A6.3A
4.3A$65.A11.A4.2A2.A2.2A39.A2.A2.A2.A6.A2.A2.A2.A$64.E2AE7.E2AE4.3A.
3A40.3A.2A.3A6.A2.4A2.A$66.A9.A7.A3.A38.D.2A2.A2.A2.2A.D2.5A2.5A$65.E
2A.E3.E.2AE50.D.A2.A2.A2.A.D4.A8.A$67.3A.B.3A54.C8AC$67.E.2A.2A.E56.A
4.A$69.E3.E57.D6.D$132.D4.D5$3A38.3A6.D8.C$2.A37.2A.2A5.C2.C7.E$3A37.
A3.A8.D5.A.2A.C$2.A37.2A.2A13.E3A$3A38.3A16.3AE$57.C.2A.A$60.E$62.C
13$3A38.E3.E7.D2.A2.D$A39.E.A.A.E8.3A$3A38.A.A.A5.D2.A3.A2.D$2.A39.A.
A8.A.A.A.A$3A38.A.A.A6.A.A.A.A.A$40.E.A.A.E4.2A2.A.A2.2A$41.E3.E6.A.A
.A.A.A$53.A.A.A.A$51.D2.A3.A2.D$55.3A$53.D2.A2.D10$3A.A38.B13.B$2.A.A
$3A.A41.E7.E$A3.A35.E4A.AE5.EA.4AE$3A.A35.E4A.AE5.EA.4AE$46.E7.E2$43.
B13.B13$3A.3A35.A$2.A.A36.2A.D$3A.3A33.2A3.A$A3.A.A38.2A$3A.3A34.D2.
3A$42.3A$43.2A14$3A.2A34.BFB$2.A.A.A$3A.3A$2.A3.A$3A3.A2$51.BFB14$A.
3A.A.A31.C.3A.C$A3.A.A.A34.A$A.3A.3A31.A2.A2.A$A3.A3.A31.3A.3A6.C.3A.
C$A.3A3.A31.A2.A2.A9.A$43.A9.A2.A2.A$40.C.3A.C6.3A.3A$53.A2.A2.A$56.A
$53.C.3A.C!

If anything, this should suffice for why this rulespace should be added to apgsearch :p

EDIT: New periods:
x = 48, y = 75, rule = B2_S34678_deficient
3A22.D9.C4.E2A2.2AE$2.A23.D6.E.A5.A.2A.A$3A22.A8.A.A4.A.2A.A$A23.2A9.
A.E2.E2A2.2AE$3A18.D2.A.2A7.C$20.D.2A3.2A.D$23.2A.A2.D$25.2A$25.A$24.
D$25.D10$A.A17.C2.4A2.C$A.A19.2A2.2A$3A18.A6.A$2.A17.2A2.2A2.2A$2.A
17.A2.A2.A2.A$20.A2.A2.A2.A$20.2A2.2A2.2A$21.A6.A$22.2A2.2A$20.C2.4A
2.C11$A.A.A17.F$A.A.A17.A$A.3A17.2A.2AF$A3.A18.3A$A3.A17.3A$20.F2A.2A
$25.A$25.F13$3A.2A18.B5.B$2.A.A.A19.F.F$3A.3A16.E7.E$A3.A.A15.E.A.A.A
.A.E$3A.3A13.B2.A2.3A2.A2.B2$21.F.2A2.A2.2A.F$24.A.A.A.A$21.F.2A2.A2.
2A.F2$20.B2.A2.3A2.A2.B$22.E.A.A.A.A.E$23.E7.E$26.F.F$24.B5.B!

p140 sparky osc:
x = 56, y = 12, rule = B2_S34678_deficient
.E.E20.E.E2.E.E20.E.E$E.A20.E.A4.A.E20.A.E$.A.AE46.EA.A$2.A.E18.2E6.
2E18.E.A$3.E2.E.D18.2A18.D.E2.E$5.E2AE18.2A18.E2AE$5.E2AE18.2A18.E2AE
$3.E2.E.D18.2A18.D.E2.E$2.A.E18.2E6.2E18.E.A$.A.AE46.EA.A$E.A20.E.A4.
A.E20.A.E$.E.E20.E.E2.E.E20.E.E!

p206 sparky osc:
x = 28, y = 28, rule = B2_S34678_deficient
13.2E$12.E2AE$11.E.2A.E$10.EA4.AE$10.E2A2.2AE$11.2E2.2E4$11.D4.D$3.2E
8.2A8.2E$2.E2AE3.D3.2A3.D3.E2AE$.E2.AE16.EA2.E$E2A7.2A.2A.2A7.2AE$E2A
7.2A.2A.2A7.2AE$.E2.AE16.EA2.E$2.E2AE3.D3.2A3.D3.E2AE$3.2E8.2A8.2E$
11.D4.D4$11.2E2.2E$10.E2A2.2AE$10.EA4.AE$11.E.2A.E$12.E2AE$13.2E!
call me danny.

physicists are the most honest people. you can pay them off all you want and they won't break the laws of physics.
User avatar
danny
 
Posts: 466
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Deficient Rules

Postby 83bismuth38 » April 22nd, 2018, 7:50 pm

c/2 guns
x = 65, y = 64, rule = B2_S34678_deficient
8.2E$6.E.2A.E$7.4A$8.2A$6.F4AF$6.B.2A.B$8.2A4$6.E4.E3$2.B.D.2A2.2A.D.
B$2.F12.F$BF.F4.2A4.F.FB$2.F.D2E4.2ED.F$2.B4.E2AE4.B$8.2E$63.A$62.3A$
8.2E53.A$2.B4.E2AE4.B47.A$2.F.D2E4.2ED.F47.2A$BF.F4.2A4.F.FB34.C10.A$
2.F12.F31.2E.B12.A$2.B.D.2A2.2A.D.B37.B9.2A$47.2E.B12.A$52.C10.A$6.E
4.E51.2A$63.A$63.A$62.3A$8.2A53.A$6.B.2A.B$6.F4AF$8.2A$7.4A$6.E.2A.E$
8.2E5$12.A$13.A$10.A26.B8.B$11.A25.F8.F$35.BF.FB4.BF.FB$37.F8.F$35.D
2.D6.D2.D$38.E6.E$23.E2.FB4.E2.A2.E6.E2.A2.E4.BF2.E$24.A.A8.A3.E4.E3.
A8.A.A$22.E6A8.A.AE2.EA.A8.6AE$22.E6A8.A.AE2.EA.A8.6AE$24.A.A8.A3.E4.
E3.A8.A.A$23.E2.FB4.E2.A2.E6.E2.A2.E4.BF2.E$38.E6.E$35.D2.D6.D2.D$37.
F8.F$35.BF.FB4.BF.FB$37.F8.F$37.B8.B!
x = 48, y = 44, rule = B2_S34678_deficient
26.A$25.3A$26.A$26.A$26.2A$26.A$2.BC.C3.2E3.C.CB8.A$.A.A.A3.2A3.A.A.A
7.2A$6A3.2A3.6A6.A$6A3.2A3.6A6.A$.A.A.A3.2A3.A.A.A7.2A$2.BC.C3.2E3.C.
CB8.A$26.A$26.2A$26.A$26.A$25.3A3.A2.A2.A2.A2.A2.A$26.A3.18A$31.A14.A
6$38.2A$37.4A$36.B.2A.B$36.C4AC$38.2A$36.C4AC4$36.E4AE$36.E4AE4$36.C
4AC$38.2A$36.C4AC$36.B.2A.B$37.4A$38.2A!
c/3 diagonal guns:
x = 69, y = 65, rule = B2_S34678_deficient
15.D.D6.D.D$16.F8.F$13.B5.B2.B5.B$15.A.A6.A.A$13.D.A.A6.A.A.D2$12.B.A
12.A.B$.C38.C$.A.A13.D6.D13.A.A$5AE.E.E7.EA4.AE7.E.E.E5A$5AE.E.E7.EA
4.AE7.E.E.E5A$.A.A13.D6.D13.A.A$.C38.C$12.B.A12.A.B2$13.D.A.A6.A.A.D$
15.A.A6.A.A$13.B5.B2.B5.B$16.F8.F$15.D.D6.D.D4$58.2A$56.C4AC$58.2A$
57.4A$58.2A$58.2E2$58.2E2$58.2E3$55.B6.B$51.B.D10.D.B$55.A6.A$49.D2.
2A10.2A2.D$50.F16.F$49.D2.2A3.D2ED3.2A2.D$58.2A$51.B14.B3$51.B14.B$
58.2A$49.D2.2A3.D2ED3.2A2.D$50.F16.F$49.D2.2A10.2A2.D$55.A6.A$51.B.D
10.D.B$55.B6.B3$58.2E2$58.2E2$58.2E$58.2A$57.4A$58.2A$56.C4AC$58.2A!
x = 59, y = 59, rule = B2_S34678_deficient
15.D.D6.D.D$16.F8.F$13.B5.B2.B5.B$15.A.A6.A.A$13.D.A.A6.A.A.D2$12.B.A
12.A.B$.C38.C$.A.A13.D6.D13.A.A$5AE.E.E7.EA4.AE7.E.E.E5A$5AE.E.E7.EA
4.AE7.E.E.E5A$.A.A13.D6.D13.A.A$.C38.C$12.B.A12.A.B2$13.D.A.A6.A.A.D$
15.A.A6.A.A$13.B5.B2.B5.B19.2A$16.F8.F20.C4AC$15.D.D6.D.D21.2A$47.4A$
48.2A$48.2E2$48.2E2$48.2E3$45.B6.B$41.B.D10.D.B$45.A6.A$39.D2.2A10.2A
2.D$40.F16.F$39.D2.2A3.D2ED3.2A2.D$48.2A$41.B14.B3$41.B14.B$48.2A$39.
D2.2A3.D2ED3.2A2.D$40.F16.F$39.D2.2A10.2A2.D$45.A6.A$41.B.D10.D.B$45.
B6.B3$48.2E2$48.2E2$48.2E$48.2A$47.4A$48.2A$46.C4AC$48.2A!
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!

No football of any dui mauris said that.
User avatar
83bismuth38
 
Posts: 418
Joined: March 2nd, 2017, 4:23 pm
Location: Still sitting around in Sagittarius A...

Re: Deficient Rules

Postby 83bismuth38 » April 22nd, 2018, 8:28 pm

EDIT: first sawtooth yay
x = 301, y = 486, rule = B2_S34678_deficient
172.E.E4.E.E$202.E.E4.E.E$172.E.E4.E.E$202.E.E4.E.E2$171.E10.E$171.E
10.E18.E10.E$201.E10.E7$89.E.E4.E.E72.E10.E$119.E.E4.E.E45.F4.F21.E
10.E$89.E.E4.E.E72.E10.E21.F4.F$119.E.E4.E.E72.E10.E$172.F.F4.F.F$88.
E10.E71.F.F.F2.F.F.F19.F.F4.F.F$88.E10.E18.E10.E42.F.F4.F.F19.F.F.F2.
F.F.F$118.E10.E72.F.F4.F.F$171.E10.E$174.F4.F21.E10.E$171.E10.E21.F4.
F$201.E10.E3$88.E10.E$91.F4.F21.E10.E$88.E10.E21.F4.F$118.E10.E$89.F.
F4.F.F72.E10.E$88.F.F.F2.F.F.F19.F.F4.F.F42.E10.E18.E10.E$89.F.F4.F.F
19.F.F.F2.F.F.F71.E10.E$119.F.F4.F.F$88.E10.E72.E.E4.E.E$91.F4.F21.E
10.E72.E.E4.E.E$88.E10.E21.F4.F45.E.E4.E.E$118.E10.E72.E.E4.E.E7$88.E
10.E$88.E10.E18.E10.E$118.E10.E2$89.E.E4.E.E$119.E.E4.E.E$89.E.E4.E.E
$119.E.E4.E.E9$179.D$175.2E.F25.D$180.A24.F.2E$174.G.A.2A2.D20.A$175.
B.A3.F19.D2.2A.A.G$178.2A2.D19.F3.A.B$176.C24.D2.2A$180.2E25.C$166.B
5.B.A27.2E$164.C3.C5.A.F.CB29.A.B5.B$166.A6.E.E.C.F24.BC.F.A5.C3.C$
163.B.A.A.B7.BF.FB22.F.C.E.E6.A$166.A6.E.E.C.F22.BF.FB7.B.A.A.B$164.C
3.C5.A.F.CB24.F.C.E.E6.A$96.D69.B5.B.A29.BC.F.A5.C3.C$92.2E.F25.D58.
2E27.A.B5.B$97.A24.F.2E50.C25.2E$91.G.A.2A2.D20.A57.2A2.D24.C$92.B.A
3.F19.D2.2A.A.G48.B.A3.F19.D2.2A$95.2A2.D19.F3.A.B48.G.A.2A2.D19.F3.A
.B$93.C24.D2.2A57.A20.D2.2A.A.G$97.2E25.C50.2E.F24.A$83.B5.B.A27.2E
58.D25.F.2E$81.C3.C5.A.F.CB29.A.B5.B69.D$83.A6.E.E.C.F24.BC.F.A5.C3.C
$80.B.A.A.B7.BF.FB22.F.C.E.E6.A$83.A6.E.E.C.F22.BF.FB7.B.A.A.B$81.C3.
C5.A.F.CB24.F.C.E.E6.A$83.B5.B.A29.BC.F.A5.C3.C$97.2E27.A.B5.B$93.C
25.2E$95.2A2.D24.C$92.B.A3.F19.D2.2A$91.G.A.2A2.D19.F3.A.B$97.A20.D2.
2A.A.G$92.2E.F24.A$96.D25.F.2E$121.D11$260.B6.B16.B6.B$260.F6.F16.F6.
F$260.B6.B16.B6.B$260.B6.B16.B6.B2$258.B.A.B2.B.A.B12.B.A.B2.B.A.B$
162.E.E4.E.E9.D$212.E.E4.E.E36.B.A.B2.B.A.B12.B.A.B2.B.A.B2$201.G58.B
6.B16.B6.B$182.G77.B6.B16.B6.B$260.F6.F16.F6.F$162.E.E4.E.E88.B6.B16.
B6.B$202.D9.E.E4.E.E5$12.E.E4.E.E14.E.E4.E.E214.B6.B16.B6.B$260.F6.F
16.F6.F$79.E.E4.E.E9.D161.B6.B16.B6.B$12.E.E4.E.E14.E.E4.E.E83.E.E4.E
.E121.B6.B16.B6.B$13.F6.F16.F6.F117.E.E4.E.E9.D$12.F.F4.F.F14.F.F4.F.
F72.G93.E.E4.E.E36.B.A.B2.B.A.B12.B.A.B2.B.A.B$13.F6.F16.F6.F54.G$12.
E.E4.E.E14.E.E4.E.E155.G56.B.A.B2.B.A.B12.B.A.B2.B.A.B$79.E.E4.E.E93.
G$119.D9.E.E4.E.E121.B6.B16.B6.B$12.E.E4.E.E14.E.E4.E.E116.E.E4.E.E
88.B6.B16.B6.B$202.D9.E.E4.E.E38.F6.F16.F6.F$260.B6.B16.B6.B6$12.E.E
4.E.E14.E.E4.E.E33.E.E4.E.E9.D$129.E.E4.E.E2$12.E.E4.E.E14.E.E4.E.E
72.G$13.F6.F16.F6.F54.G152.C46.C$12.F.F4.F.F14.F.F4.F.F208.B42.B$13.F
6.F16.F6.F34.E.E4.E.E162.B48.B$12.E.E4.E.E14.E.E4.E.E73.D9.E.E4.E.E
115.B42.B$252.C46.C2$12.E.E4.E.E14.E.E4.E.E11$6.D44.D$5.D46.D$6.F44.F
$5.D46.D126.D$6.D44.D123.2E.F25.D$180.A24.F.2E$174.G.A.2A2.D20.A$175.
B.A3.F19.D2.2A.A.G$178.2A2.D19.F3.A.B$176.C24.D2.2A$180.2E25.C$166.B
5.B.A27.2E55.C3A2.A20.A2.3AC$164.C3.C5.A.F.CB29.A.B5.B41.D.A.2A22.2A.
A.D$166.A6.E.E.C.F24.BC.F.A5.C3.C40.D.B26.B.D$163.B.A.A.B7.BF.FB22.F.
C.E.E6.A34.E.E$166.A6.E.E.C.F22.BF.FB7.B.A.A.B31.E2.E$164.C3.C5.A.F.C
B24.F.C.E.E6.A35.C$96.D69.B5.B.A29.BC.F.A5.C3.C34.2E$92.2E.F25.D58.2E
27.A.B5.B$97.A24.F.2E50.C25.2E$91.G.A.2A2.D20.A57.2A2.D24.C$92.B.A3.F
19.D2.2A.A.G48.B.A3.F19.D2.2A$95.2A2.D19.F3.A.B48.G.A.2A2.D19.F3.A.B$
93.C24.D2.2A57.A20.D2.2A.A.G$97.2E25.C50.2E.F24.A$83.B5.B.A27.2E58.D
25.F.2E$81.C3.C5.A.F.CB29.A.B5.B69.D$12.E6.C18.C6.E37.A6.E.E.C.F24.BC
.F.A5.C3.C$13.2AE2.C.C16.C.C2.E2A35.B.A.A.B7.BF.FB22.F.C.E.E6.A$14.A.
ED.C18.C.DE.A39.A6.E.E.C.F22.BF.FB7.B.A.A.B$12.C4.D22.D4.C35.C3.C5.A.
F.CB24.F.C.E.E6.A$51.D31.B5.B.A29.BC.F.A5.C3.C$51.D45.2E27.A.B5.B$49.
2D42.C25.2E$95.2A2.D24.C$92.B.A3.F19.D2.2A$91.G.A.2A2.D19.F3.A.B$97.A
20.D2.2A.A.G$92.2E.F24.A$96.D25.F.2E$121.D17$162.E.E4.E.E9.D$212.E.E
4.E.E2$201.G$182.G2$162.E.E4.E.E$202.D9.E.E4.E.E7$79.E.E4.E.E9.D$129.
E.E4.E.E$162.E.E4.E.E9.D$118.G93.E.E4.E.E$99.G$201.G$79.E.E4.E.E93.G$
119.D9.E.E4.E.E$162.E.E4.E.E$202.D9.E.E4.E.E7$79.E.E4.E.E9.D$129.E.E
4.E.E2$118.G$99.G2$79.E.E4.E.E$119.D9.E.E4.E.E17$179.D$175.2E.F25.D$
180.A24.F.2E$174.G.A.2A2.D20.A$175.B.A3.F19.D2.2A.A.G$178.2A2.D19.F3.
A.B$176.C24.D2.2A$180.2E25.C42.2D$166.B5.B.A27.2E45.D$164.C3.C5.A.F.C
B29.A.B5.B31.D$166.A6.E.E.C.F24.BC.F.A5.C3.C35.C4.D22.D4.C$163.B.A.A.
B7.BF.FB22.F.C.E.E6.A39.A.ED.C18.C.DE.A$166.A6.E.E.C.F22.BF.FB7.B.A.A
.B35.2AE2.C.C16.C.C2.E2A$164.C3.C5.A.F.CB24.F.C.E.E6.A37.E6.C18.C6.E$
96.D69.B5.B.A29.BC.F.A5.C3.C$92.2E.F25.D58.2E27.A.B5.B$97.A24.F.2E50.
C25.2E$91.G.A.2A2.D20.A57.2A2.D24.C$92.B.A3.F19.D2.2A.A.G48.B.A3.F19.
D2.2A$95.2A2.D19.F3.A.B48.G.A.2A2.D19.F3.A.B$93.C24.D2.2A57.A20.D2.2A
.A.G$97.2E25.C50.2E.F24.A$83.B5.B.A27.2E58.D25.F.2E$45.2E34.C3.C5.A.F
.CB29.A.B5.B69.D$47.C35.A6.E.E.C.F24.BC.F.A5.C3.C$45.E2.E31.B.A.A.B7.
BF.FB22.F.C.E.E6.A$46.E.E34.A6.E.E.C.F22.BF.FB7.B.A.A.B$9.D.B26.B.D
40.C3.C5.A.F.CB24.F.C.E.E6.A$8.D.A.2A22.2A.A.D41.B5.B.A29.BC.F.A5.C3.
C$8.C3A2.A20.A2.3AC55.2E27.A.B5.B$93.C25.2E$95.2A2.D24.C$92.B.A3.F19.
D2.2A$91.G.A.2A2.D19.F3.A.B$97.A20.D2.2A.A.G$92.2E.F24.A$96.D25.F.2E
123.D44.D$121.D126.D46.D$249.F44.F$248.D46.D$249.D44.D11$255.E.E4.E.E
14.E.E4.E.E2$.C46.C$3.B42.B115.E.E4.E.E9.D73.E.E4.E.E14.E.E4.E.E$B48.
B162.E.E4.E.E34.F6.F16.F6.F$3.B42.B208.F.F4.F.F14.F.F4.F.F$.C46.C152.
G54.F6.F16.F6.F$182.G72.E.E4.E.E14.E.E4.E.E2$162.E.E4.E.E$202.D9.E.E
4.E.E33.E.E4.E.E14.E.E4.E.E6$9.B6.B16.B6.B$9.F6.F16.F6.F38.E.E4.E.E9.
D$9.B6.B16.B6.B88.E.E4.E.E116.E.E4.E.E14.E.E4.E.E$9.B6.B16.B6.B121.E.
E4.E.E9.D$118.G93.E.E4.E.E$7.B.A.B2.B.A.B12.B.A.B2.B.A.B56.G155.E.E4.
E.E14.E.E4.E.E$201.G54.F6.F16.F6.F$7.B.A.B2.B.A.B12.B.A.B2.B.A.B36.E.
E4.E.E93.G72.F.F4.F.F14.F.F4.F.F$119.D9.E.E4.E.E117.F6.F16.F6.F$9.B6.
B16.B6.B121.E.E4.E.E83.E.E4.E.E14.E.E4.E.E$9.B6.B16.B6.B161.D9.E.E4.E
.E$9.F6.F16.F6.F$9.B6.B16.B6.B214.E.E4.E.E14.E.E4.E.E5$79.E.E4.E.E9.D
$9.B6.B16.B6.B88.E.E4.E.E$9.F6.F16.F6.F$9.B6.B16.B6.B77.G$9.B6.B16.B
6.B58.G2$7.B.A.B2.B.A.B12.B.A.B2.B.A.B36.E.E4.E.E$119.D9.E.E4.E.E$7.B
.A.B2.B.A.B12.B.A.B2.B.A.B2$9.B6.B16.B6.B$9.B6.B16.B6.B$9.F6.F16.F6.F
$9.B6.B16.B6.B11$179.D$175.2E.F25.D$180.A24.F.2E$174.G.A.2A2.D20.A$
175.B.A3.F19.D2.2A.A.G$178.2A2.D19.F3.A.B$176.C24.D2.2A$180.2E25.C$
166.B5.B.A27.2E$164.C3.C5.A.F.CB29.A.B5.B$166.A6.E.E.C.F24.BC.F.A5.C
3.C$163.B.A.A.B7.BF.FB22.F.C.E.E6.A$166.A6.E.E.C.F22.BF.FB7.B.A.A.B$
164.C3.C5.A.F.CB24.F.C.E.E6.A$96.D69.B5.B.A29.BC.F.A5.C3.C$92.2E.F25.
D58.2E27.A.B5.B$97.A24.F.2E50.C25.2E$91.G.A.2A2.D20.A57.2A2.D24.C$92.
B.A3.F19.D2.2A.A.G48.B.A3.F19.D2.2A$95.2A2.D19.F3.A.B48.G.A.2A2.D19.F
3.A.B$93.C24.D2.2A57.A20.D2.2A.A.G$97.2E25.C50.2E.F24.A$83.B5.B.A27.
2E58.D25.F.2E$81.C3.C5.A.F.CB29.A.B5.B69.D$83.A6.E.E.C.F24.BC.F.A5.C
3.C$80.B.A.A.B7.BF.FB22.F.C.E.E6.A$83.A6.E.E.C.F22.BF.FB7.B.A.A.B$81.
C3.C5.A.F.CB24.F.C.E.E6.A$83.B5.B.A29.BC.F.A5.C3.C$97.2E27.A.B5.B$93.
C25.2E$95.2A2.D24.C$92.B.A3.F19.D2.2A$91.G.A.2A2.D19.F3.A.B$97.A20.D
2.2A.A.G$92.2E.F24.A$96.D25.F.2E$121.D9$172.E.E4.E.E$202.E.E4.E.E$
172.E.E4.E.E$202.E.E4.E.E2$171.E10.E$171.E10.E18.E10.E$201.E10.E7$89.
E.E4.E.E72.E10.E$119.E.E4.E.E45.F4.F21.E10.E$89.E.E4.E.E72.E10.E21.F
4.F$119.E.E4.E.E72.E10.E$172.F.F4.F.F$88.E10.E71.F.F.F2.F.F.F19.F.F4.
F.F$88.E10.E18.E10.E42.F.F4.F.F19.F.F.F2.F.F.F$118.E10.E72.F.F4.F.F$
171.E10.E$174.F4.F21.E10.E$171.E10.E21.F4.F$201.E10.E3$88.E10.E$91.F
4.F21.E10.E$88.E10.E21.F4.F$118.E10.E$89.F.F4.F.F72.E10.E$88.F.F.F2.F
.F.F19.F.F4.F.F42.E10.E18.E10.E$89.F.F4.F.F19.F.F.F2.F.F.F71.E10.E$
119.F.F4.F.F$88.E10.E72.E.E4.E.E$91.F4.F21.E10.E72.E.E4.E.E$88.E10.E
21.F4.F45.E.E4.E.E$118.E10.E72.E.E4.E.E7$88.E10.E$88.E10.E18.E10.E$
118.E10.E2$89.E.E4.E.E$119.E.E4.E.E$89.E.E4.E.E$119.E.E4.E.E!
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!

No football of any dui mauris said that.
User avatar
83bismuth38
 
Posts: 418
Joined: March 2nd, 2017, 4:23 pm
Location: Still sitting around in Sagittarius A...

Re: Deficient Rules

Postby danny » April 22nd, 2018, 8:33 pm

83bismuth38 found a replicator-like object that shoots sierpinski triangles of gliders -- and I made this wacky gun out of it:
x = 96, y = 1778, rule = B2_S34678_deficient
36.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A$35.54A$36.A
50.A1600$42.E.E4.E.E$72.E.E4.E.E2$42.E.E4.E.E$43.F6.F21.E.E4.E.E$42.F
.F4.F.F21.F6.F$41.F.F.F2.F.F.F19.F.F4.F.F$42.F.F4.F.F19.F.F.F2.F.F.F$
43.F6.F21.F.F4.F.F$42.E.E4.E.E21.F6.F$72.E.E4.E.E2$42.E.E4.E.E$72.E.E
4.E.E5$42.E.E4.E.E$72.E.E4.E.E2$42.E.E4.E.E$43.F6.F21.E.E4.E.E$42.F.F
4.F.F21.F6.F$41.F.F.F2.F.F.F19.F.F4.F.F$42.F.F4.F.F19.F.F.F2.F.F.F$
43.F6.F21.F.F4.F.F$42.E.E4.E.E21.F6.F$72.E.E4.E.E2$42.E.E4.E.E$72.E.E
4.E.E25$45.E.E$45.E30.E.E$45.D2.E29.E$44.C2.A.E25.E2.D$43.EA.A.A25.E.
A2.C$43.E.A.A27.A.A.AE$44.2E.A2.E25.A.A.E$47.A.A23.E2.A.2E$49.A24.A.A
$B43.EB.A26.A$42.A.2EA.A27.A.BE$.C37.BD4.E.2A26.A.A2E.A$3.B71.2A.E4.D
B$28.F8.BF3.FB4.A$75.A4.BF3.FB8.F$39.BD4.E.2A$42.A.2EA.A26.2A.E4.DB$
44.EB.A27.A.A2E.A$49.A26.A.BE$47.A.A24.A$44.2E.A2.E23.A.A$43.E.A.A25.
E2.A.2E$43.EA.A.A27.A.A.E$44.C2.A.E25.A.A.AE$45.D2.E25.E.A2.C$45.E29.
E2.D$45.E.E30.E$76.E.E25$42.E.E4.E.E$72.E.E4.E.E2$42.E.E4.E.E$43.F6.F
21.E.E4.E.E$42.F.F4.F.F21.F6.F$41.F.F.F2.F.F.F19.F.F4.F.F$42.F.F4.F.F
19.F.F.F2.F.F.F$43.F6.F21.F.F4.F.F$42.E.E4.E.E21.F6.F$72.E.E4.E.E2$
42.E.E4.E.E$72.E.E4.E.E5$42.E.E4.E.E$72.E.E4.E.E2$42.E.E4.E.E$43.F6.F
21.E.E4.E.E$42.F.F4.F.F21.F6.F$41.F.F.F2.F.F.F19.F.F4.F.F$42.F.F4.F.F
19.F.F.F2.F.F.F$43.F6.F21.F.F4.F.F$42.E.E4.E.E21.F6.F$72.E.E4.E.E2$
42.E.E4.E.E$72.E.E4.E.E34$36.A50.A$35.54A$36.A2.A2.A2.A2.A2.A2.A2.A2.
A2.A2.A2.A2.A2.A2.A2.A2.A2.A!

period is 9300
call me danny.

physicists are the most honest people. you can pay them off all you want and they won't break the laws of physics.
User avatar
danny
 
Posts: 466
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Deficient Rules

Postby Billabob » April 23rd, 2018, 8:18 am

Block-on-dock puffer.
x = 35, y = 15, rule = DeficientLife
.2A29.2A$A2.A27.A2.A$.2A29.2A8$6.J20.JA$5.A.C18.2A.A$5.A.A17.F3.A$6.
2A18.3A$27.F!
▄▀
▀▀▀
User avatar
Billabob
 
Posts: 119
Joined: April 2nd, 2015, 5:28 pm

Next

Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 4 guests