ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Deficient Rules

For discussion of other cellular automata.

Deficient Rules

Postby 83bismuth38 » April 18th, 2018, 9:27 pm

I started a thing on discord. I asked about a rule I had in mind for a while, DeficientLife (i am not explaining it again just look at it and figure it out) and then moved on to DeficientSeeds, which seems more interesting. DefLife:
@RULE DeficientLife
*********************************
**** COMPILED FROM RUELTABEL ****
*********************************
Envisioned by 83bismuth38;
"any cell born with transition x will become a cell with the rule b3-x/s23 until it survives for a generation, and then it reverts to b3/s23".

1 permute
2 c
3 e
4 k
5 a
6 i
7 n
8 y
9 q
10 j
11 r


@TABLE
neighborhood: Moore
symmetries: rotate4reflect
n_states: 12

var __all__0 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

var live_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
var live_1 = live_0
var live_2 = live_0
var live_3 = live_0

var NoC_0 = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11}
var NoC_1 = NoC_0
var NoC_2 = NoC_0

var NoE_0 = {1, 2, 4, 5, 6, 7, 8, 9, 10, 11}
var NoE_1 = NoE_0
var NoE_2 = NoE_0

var NoK_0 = {1, 2, 3, 5, 6, 7, 8, 9, 10, 11}
var NoK_1 = NoK_0
var NoK_2 = NoK_0

var NoA_0 = {1, 2, 3, 4, 6, 7, 8, 9, 10, 11}
var NoA_1 = NoA_0
var NoA_2 = NoA_0

var NoI_0 = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11}
var NoI_1 = NoI_0
var NoI_2 = NoI_0

var NoN_0 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11}
var NoN_1 = NoN_0
var NoN_2 = NoN_0

var NoY_0 = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11}
var NoY_1 = NoY_0
var NoY_2 = NoY_0

var NoQ_0 = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11}
var NoQ_1 = NoQ_0
var NoQ_2 = NoQ_0

var NoJ_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11}
var NoJ_1 = NoJ_0
var NoJ_2 = NoJ_0

var NoR_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
var NoR_1 = NoR_0
var NoR_2 = NoR_0

var any_0 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
var any_1 = any_0
var any_2 = any_0
var any_3 = any_0
var any_4 = any_0
var any_5 = any_0
var any_6 = any_0
var any_7 = any_0
var any_8 = any_0

0, 0, NoC_0, 0, 0, 0, NoC_1, 0, NoC_2, 2
0, NoE_0, 0, NoE_1, 0, 0, 0, NoE_2, 0, 3
0, 0, 0, NoK_0, 0, NoK_1, 0, 0, NoK_2, 4
0, NoA_0, 0, 0, 0, 0, 0, NoA_1, NoA_2, 5
0, NoI_0, NoI_1, 0, 0, 0, 0, 0, NoI_2, 6
0, 0, NoN_0, NoN_1, 0, 0, 0, 0, NoN_2, 7
0, 0, NoY_0, 0, 0, NoY_1, 0, 0, NoY_2, 8
0, NoQ_0, 0, 0, NoQ_1, 0, 0, 0, NoQ_2, 9
0, NoJ_0, 0, NoJ_1, 0, 0, 0, 0, NoJ_2, 10
0, NoR_0, 0, 0, 0, NoR_1, 0, 0, NoR_2, 11
live_0, 0, live_1, 0, 0, 0, 0, 0, live_2, 1
live_0, live_1, 0, 0, 0, 0, 0, live_2, 0, 1
live_0, 0, 0, live_1, 0, 0, 0, 0, live_2, 1
live_0, live_1, 0, 0, 0, 0, 0, 0, live_2, 1
live_0, live_1, 0, 0, 0, live_2, 0, 0, 0, 1
live_0, 0, 0, 0, live_1, 0, 0, 0, live_2, 1
live_0, 0, live_1, 0, 0, 0, live_2, 0, live_3, 1
live_0, live_1, 0, live_2, 0, 0, 0, live_3, 0, 1
live_0, 0, 0, live_1, 0, live_2, 0, 0, live_3, 1
live_0, live_1, 0, 0, 0, 0, 0, live_2, live_3, 1
live_0, live_1, live_2, 0, 0, 0, 0, 0, live_3, 1
live_0, 0, live_1, live_2, 0, 0, 0, 0, live_3, 1
live_0, 0, live_1, 0, 0, live_2, 0, 0, live_3, 1
live_0, live_1, 0, 0, live_2, 0, 0, 0, live_3, 1
live_0, live_1, 0, live_2, 0, 0, 0, 0, live_3, 1
live_0, live_1, 0, 0, 0, live_2, 0, 0, live_3, 1
any_0, any_1, any_2, any_3, any_4, any_5, any_6, any_7, any_8, 0
DefSeeds:
@RULE DeficientSeeds
*********************************
**** COMPILED FROM RUELTABEL ****
*********************************

1 permute
2 c
3 e
4 k
5 a
6 i
7 n


@TABLE
neighborhood: Moore
symmetries: rotate4reflect
n_states: 8

var NoC_0 = {1, 3, 4, 5, 6, 7}
var NoC_1 = NoC_0

var NoE_0 = {1, 2, 4, 5, 6, 7}
var NoE_1 = NoE_0

var NoK_0 = {1, 2, 3, 5, 6, 7}
var NoK_1 = NoK_0

var NoA_0 = {1, 2, 3, 4, 6, 7}
var NoA_1 = NoA_0

var NoI_0 = {1, 2, 3, 4, 5, 7}
var NoI_1 = NoI_0

var NoN_0 = {1, 2, 3, 4, 5, 6}
var NoN_1 = NoN_0

var any_0 = {0, 1, 2, 3, 4, 5, 6, 7}
var any_1 = any_0
var any_2 = any_0
var any_3 = any_0
var any_4 = any_0
var any_5 = any_0
var any_6 = any_0
var any_7 = any_0
var any_8 = any_0

0, 0, NoC_0, 0, 0, 0, 0, 0, NoC_1, 2
0, NoE_0, 0, 0, 0, 0, 0, NoE_1, 0, 3
0, 0, 0, NoK_0, 0, 0, 0, 0, NoK_1, 4
0, NoA_0, 0, 0, 0, 0, 0, 0, NoA_1, 5
0, NoI_0, 0, 0, 0, NoI_1, 0, 0, 0, 6
0, 0, 0, 0, NoN_0, 0, 0, 0, NoN_1, 7

any_0, any_1, any_2, any_3, any_4, any_5, any_6, any_7, any_8, 0
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!

No football of any dui mauris said that.
User avatar
83bismuth38
 
Posts: 447
Joined: March 2nd, 2017, 4:23 pm
Location: Still sitting around in Sagittarius A...

Re: Deficient Rules

Postby KittyTac » April 18th, 2018, 10:03 pm

RUELTABEL? Is it a typo?
User avatar
KittyTac
 
Posts: 507
Joined: December 21st, 2017, 9:58 am

Re: Deficient Rules

Postby M. I. Wright » April 18th, 2018, 10:25 pm

...sorry, we were messing with these rules in Discord and I was writing them quickly in my own "rueltabel" thing because I didn't want to bother with Golly's bound variables. The header's a bit obnoxious, and I forgot to remove it before sending the files to Discord; I'll take it out or tone it down a bit in the future so it doesn't look so much like tactless evangelizing on my part :oops:
Last edited by M. I. Wright on April 19th, 2018, 2:41 am, edited 1 time in total.
M. I. Wright
 
Posts: 356
Joined: June 13th, 2015, 12:04 pm

Re: Deficient Rules

Postby 77topaz » April 19th, 2018, 1:37 am

KittyTac wrote:RUELTABEL? Is it a typo?


No, it is not.
User avatar
77topaz
 
Posts: 828
Joined: January 12th, 2018, 9:19 pm

Re: Deficient Rules

Postby cordership3 » April 19th, 2018, 2:10 pm

A p76 mod 38 beehive puffer:
x = 3, y = 4, rule = DeficientLife
.J$A.C$A.A$.2A!
huehuehue
User avatar
cordership3
 
Posts: 92
Joined: August 23rd, 2016, 8:53 am
Location: haha long boy

Re: Deficient Rules

Postby 83bismuth38 » April 19th, 2018, 7:22 pm

soo... I'm not good at ruletables, but I know how to make deficient rules with birth from 1-3. All i need is a deficient B12345678/S012345678. Unless I somehow figure it out. otherwise, not much else to say...
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!

No football of any dui mauris said that.
User avatar
83bismuth38
 
Posts: 447
Joined: March 2nd, 2017, 4:23 pm
Location: Still sitting around in Sagittarius A...

Re: Deficient Rules

Postby M. I. Wright » April 19th, 2018, 10:59 pm

EDIT: Use the updated script instead.

Usage:
$ python3 <FILENAME>.py [output dir] [rulestring in B/S form] [OPTIONAL rulename]
If the rulename isn't given, it'll be made from the rulestring by replacing the slash with an underscore, capitalizing the B/S, and appending '_deficient'.
Make sure the rulestring is written with a slash.


----

EDIT (~3h after posting): Fixed bugs in handling isotropic rulestrings, B8 transitions, and generation of variables for isotropic rules. If anyone's already saved this to their computer please re-copy it!

Quick and dirty Python 3 script to generate these:
import sys
from os import path

N_HOODS = 'cekainyqjrtwz'
NAPKINS = {
  k: dict(zip(N_HOODS, v)) for k, v in {
    '0': '',
    '1': ['00000001', '10000000'],
    '2': ['01000001', '10000010', '00100001', '10000001', '10001000', '00010001'],
    '3': ['01000101', '10100010', '00101001', '10000011', '11000001', '01100001', '01001001', '10010001', '10100001', '10001001'],
    '4': ['01010101', '10101010', '01001011', '11100001', '01100011', '11000101', '01100101', '10010011', '10101001', '10100011', '11001001', '10110001', '10011001'],
    '5': ['10111010', '01011101', '11010110', '01111100', '00111110', '10011110', '10110110', '01101110', '01011110', '01110110'],
    '6': ['10111110', '01111101', '11011110', '01111110', '01110111', '11101110'],
    '7': ['11111110', '01111111'],
    '8': ''
    }.items()
  }


def invert_segment(sz, segment):
    if segment and segment[0] == '-':
        return [t for t in N_HOODS[:sz] if t not in segment]
    return segment


def combine_rstring(segment):
    cop, last = {}, 0
    for i, v in enumerate(segment, 1):
        if v.isdigit():
            after = next((idx for idx, j in enumerate(segment[i:], i) if j.isdigit()), len(segment))
            cop[v] = invert_segment(len(NAPKINS[v]), segment[i:after])
    return cop


def replace_bind(transition, pre, iso='', count=0):
    cop = []
    for i in map(int, transition):
        if not i:
            cop.append(0)
            continue
        cop.append('{}{}_{}'.format(pre, iso, count))
        count += 1
    return cop


def write_table(fp, rname, n_states, n_live, d_vars, transitions):
    fp.write('@RULE {}\n@TABLE\n'.format(rname))
    fp.write('n_states:{}\nneighborhood:Moore\nsymmetries:rotate4reflect\n'.format(n_states))
    # Variables
    live = range(1, n_states)
    for k, v in d_vars.items():
        range_ = {i for i in live if i != 2+N_HOODS.index(k)}
        if not range_:
            continue
        fp.write('\nvar not_{}_0 = {}'.format(k, range_))
        for n in range(1, v):
            fp.write('\nvar not_{0}_{1} = not_{0}_0'.format(k, n))
    fp.write('\nvar any_0 = {}'.format(set(range(n_states))))
    for n in range(9):
        fp.write('\nvar any_{} = any_0'.format(n))
    fp.write('\nvar live_0 = {}'.format(set(live)))
    for n in range(1, n_live):
        fp.write('\nvar live_{} = live_0'.format(n))
    fp.write('\n')
    # Transitions
    for tr in transitions:
        fp.write('\n' + ','.join(map(str, tr)))


if __name__ == '__main__':
    outdir, rulestring, *rulename = sys.argv[1:]
    transitions = []
    rulename = rulename[0] if rulename else rulestring.translate(str.maketrans('/bs', '_BS')) + '_deficient'
   
    # Get rid of B and S from the start of each segment
    (_, *birth), (_, *survival) = map(str.strip, rulestring.split('/'))
    birth, survival = combine_rstring(birth), combine_rstring(survival)
    n_live = 0
    for num, isos in birth.items():
        if num == '0':
            transitions.append([*[0]*9, 1])
        elif num == '8':
            transitions.append([0, *('live_{}'.format(i) for i in range(8)), 1])
            n_live = 8
        elif isos:
            transitions.extend([0, *replace_bind(NAPKINS[num][iso], 'not_', iso), idx] for idx, iso in enumerate(isos, 2))
        else:
            transitions.extend([0, *replace_bind(NAPKINS[num][iso], 'not_', iso), idx] for idx, iso in enumerate(N_HOODS[:len(NAPKINS[num])], 2))
    d_vars = {k: sum(1 for i in tr if isinstance(i, str)) for k, tr in zip((j for n, li in birth.items() for j in N_HOODS[:len(NAPKINS[n])] if not li or j in li), transitions)}
    transitions.append('')
   
    for num, isos in survival.items():
        if num == '0':
            transitions.append(['live_0', *[0]*8, 1])
        elif num == '8':
            transitions.append([*('live_{}'.format(i) for i in range(9)), 1])
            n_live = 9
        elif isos:
            transitions.extend(['live_0', *replace_bind(NAPKINS[num][iso], 'live', count=1), 1] for iso in isos)
        else:
            transitions.extend(['live_0', *replace_bind(NAPKINS[num][iso], 'live', count=1), 1] for iso in N_HOODS[:len(NAPKINS[num])])
    n_live = max(n_live, *(sum(1 for i in tr if isinstance(i, str)) for tr in transitions[1+transitions.index(''):]))
    n_states = 1 + max(t[-1] for t in transitions if t)
    transitions.append([*('any_{}'.format(i) for i in range(9)), 0])
   
    with open(path.join(outdir, rulename+'.rule'), 'w') as fp:
        write_table(fp, rulename, n_states, n_live, d_vars, transitions)
(And by 'dirty' I mean very dirty. Some bona-fide questionable stuff in here :roll:)

Here's B12345678/S01245678:
@RULE B12345678_S012345678_deficient
@TABLE
n_states:15
neighborhood:Moore
symmetries:rotate4reflect

var not_c_0 = {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
var not_c_1 = not_c_0
var not_c_2 = not_c_0
var not_c_3 = not_c_0
var not_c_4 = not_c_0
var not_c_5 = not_c_0
var not_c_6 = not_c_0
var not_e_0 = {1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
var not_e_1 = not_e_0
var not_e_2 = not_e_0
var not_e_3 = not_e_0
var not_e_4 = not_e_0
var not_e_5 = not_e_0
var not_e_6 = not_e_0
var not_k_0 = {1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
var not_k_1 = not_k_0
var not_k_2 = not_k_0
var not_k_3 = not_k_0
var not_k_4 = not_k_0
var not_k_5 = not_k_0
var not_a_0 = {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14}
var not_a_1 = not_a_0
var not_a_2 = not_a_0
var not_a_3 = not_a_0
var not_a_4 = not_a_0
var not_a_5 = not_a_0
var not_i_0 = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14}
var not_i_1 = not_i_0
var not_i_2 = not_i_0
var not_i_3 = not_i_0
var not_i_4 = not_i_0
var not_i_5 = not_i_0
var not_n_0 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14}
var not_n_1 = not_n_0
var not_n_2 = not_n_0
var not_n_3 = not_n_0
var not_n_4 = not_n_0
var not_n_5 = not_n_0
var not_y_0 = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14}
var not_y_1 = not_y_0
var not_y_2 = not_y_0
var not_y_3 = not_y_0
var not_y_4 = not_y_0
var not_q_0 = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14}
var not_q_1 = not_q_0
var not_q_2 = not_q_0
var not_q_3 = not_q_0
var not_q_4 = not_q_0
var not_j_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14}
var not_j_1 = not_j_0
var not_j_2 = not_j_0
var not_j_3 = not_j_0
var not_j_4 = not_j_0
var not_r_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14}
var not_r_1 = not_r_0
var not_r_2 = not_r_0
var not_r_3 = not_r_0
var not_r_4 = not_r_0
var not_t_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14}
var not_t_1 = not_t_0
var not_t_2 = not_t_0
var not_t_3 = not_t_0
var not_w_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14}
var not_w_1 = not_w_0
var not_w_2 = not_w_0
var not_w_3 = not_w_0
var not_z_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
var not_z_1 = not_z_0
var not_z_2 = not_z_0
var not_z_3 = not_z_0
var any_0 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
var any_0 = any_0
var any_1 = any_0
var any_2 = any_0
var any_3 = any_0
var any_4 = any_0
var any_5 = any_0
var any_6 = any_0
var any_7 = any_0
var any_8 = any_0
var live_0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}
var live_1 = live_0
var live_2 = live_0
var live_3 = live_0
var live_4 = live_0
var live_5 = live_0
var live_6 = live_0
var live_7 = live_0
var live_8 = live_0

0,0,0,0,0,0,0,0,not_c_0,2
0,not_e_0,0,0,0,0,0,0,0,3
0,0,not_c_0,0,0,0,0,0,not_c_1,2
0,not_e_0,0,0,0,0,0,not_e_1,0,3
0,0,0,not_k_0,0,0,0,0,not_k_1,4
0,not_a_0,0,0,0,0,0,0,not_a_1,5
0,not_i_0,0,0,0,not_i_1,0,0,0,6
0,0,0,0,not_n_0,0,0,0,not_n_1,7
0,0,not_c_0,0,0,0,not_c_1,0,not_c_2,2
0,not_e_0,0,not_e_1,0,0,0,not_e_2,0,3
0,0,0,not_k_0,0,not_k_1,0,0,not_k_2,4
0,not_a_0,0,0,0,0,0,not_a_1,not_a_2,5
0,not_i_0,not_i_1,0,0,0,0,0,not_i_2,6
0,0,not_n_0,not_n_1,0,0,0,0,not_n_2,7
0,0,not_y_0,0,0,not_y_1,0,0,not_y_2,8
0,not_q_0,0,0,not_q_1,0,0,0,not_q_2,9
0,not_j_0,0,not_j_1,0,0,0,0,not_j_2,10
0,not_r_0,0,0,0,not_r_1,0,0,not_r_2,11
0,0,not_c_0,0,not_c_1,0,not_c_2,0,not_c_3,2
0,not_e_0,0,not_e_1,0,not_e_2,0,not_e_3,0,3
0,0,not_k_0,0,0,not_k_1,0,not_k_2,not_k_3,4
0,not_a_0,not_a_1,not_a_2,0,0,0,0,not_a_3,5
0,0,not_i_0,not_i_1,0,0,0,not_i_2,not_i_3,6
0,not_n_0,not_n_1,0,0,0,not_n_2,0,not_n_3,7
0,0,not_y_0,not_y_1,0,0,not_y_2,0,not_y_3,8
0,not_q_0,0,0,not_q_1,0,0,not_q_2,not_q_3,9
0,not_j_0,0,not_j_1,0,not_j_2,0,0,not_j_3,10
0,not_r_0,0,not_r_1,0,0,0,not_r_2,not_r_3,11
0,not_t_0,not_t_1,0,0,not_t_2,0,0,not_t_3,12
0,not_w_0,0,not_w_1,not_w_2,0,0,0,not_w_3,13
0,not_z_0,0,0,not_z_1,not_z_2,0,0,not_z_3,14
0,not_c_0,0,not_c_1,not_c_2,not_c_3,0,not_c_4,0,2
0,0,not_e_0,0,not_e_1,not_e_2,not_e_3,0,not_e_4,3
0,not_k_0,not_k_1,0,not_k_2,0,not_k_3,not_k_4,0,4
0,0,not_a_0,not_a_1,not_a_2,not_a_3,not_a_4,0,0,5
0,0,0,not_i_0,not_i_1,not_i_2,not_i_3,not_i_4,0,6
0,not_n_0,0,0,not_n_1,not_n_2,not_n_3,not_n_4,0,7
0,not_y_0,0,not_y_1,not_y_2,0,not_y_3,not_y_4,0,8
0,0,not_q_0,not_q_1,0,not_q_2,not_q_3,not_q_4,0,9
0,0,not_j_0,0,not_j_1,not_j_2,not_j_3,not_j_4,0,10
0,0,not_r_0,not_r_1,not_r_2,0,not_r_3,not_r_4,0,11
0,not_c_0,0,not_c_1,not_c_2,not_c_3,not_c_4,not_c_5,0,2
0,0,not_e_0,not_e_1,not_e_2,not_e_3,not_e_4,0,not_e_5,3
0,not_k_0,not_k_1,0,not_k_2,not_k_3,not_k_4,not_k_5,0,4
0,0,not_a_0,not_a_1,not_a_2,not_a_3,not_a_4,not_a_5,0,5
0,0,not_i_0,not_i_1,not_i_2,0,not_i_3,not_i_4,not_i_5,6
0,not_n_0,not_n_1,not_n_2,0,not_n_3,not_n_4,not_n_5,0,7
0,not_c_0,not_c_1,not_c_2,not_c_3,not_c_4,not_c_5,not_c_6,0,2
0,0,not_e_0,not_e_1,not_e_2,not_e_3,not_e_4,not_e_5,not_e_6,3
0,live_0,live_1,live_2,live_3,live_4,live_5,live_6,live_7,1

live_0,0,0,0,0,0,0,0,0,1
live_0,0,0,0,0,0,0,0,live_1,1
live_0,live_1,0,0,0,0,0,0,0,1
live_0,0,live_1,0,0,0,0,0,live_2,1
live_0,live_1,0,0,0,0,0,live_2,0,1
live_0,0,0,live_1,0,0,0,0,live_2,1
live_0,live_1,0,0,0,0,0,0,live_2,1
live_0,live_1,0,0,0,live_2,0,0,0,1
live_0,0,0,0,live_1,0,0,0,live_2,1
live_0,0,live_1,0,0,0,live_2,0,live_3,1
live_0,live_1,0,live_2,0,0,0,live_3,0,1
live_0,0,0,live_1,0,live_2,0,0,live_3,1
live_0,live_1,0,0,0,0,0,live_2,live_3,1
live_0,live_1,live_2,0,0,0,0,0,live_3,1
live_0,0,live_1,live_2,0,0,0,0,live_3,1
live_0,0,live_1,0,0,live_2,0,0,live_3,1
live_0,live_1,0,0,live_2,0,0,0,live_3,1
live_0,live_1,0,live_2,0,0,0,0,live_3,1
live_0,live_1,0,0,0,live_2,0,0,live_3,1
live_0,0,live_1,0,live_2,0,live_3,0,live_4,1
live_0,live_1,0,live_2,0,live_3,0,live_4,0,1
live_0,0,live_1,0,0,live_2,0,live_3,live_4,1
live_0,live_1,live_2,live_3,0,0,0,0,live_4,1
live_0,0,live_1,live_2,0,0,0,live_3,live_4,1
live_0,live_1,live_2,0,0,0,live_3,0,live_4,1
live_0,0,live_1,live_2,0,0,live_3,0,live_4,1
live_0,live_1,0,0,live_2,0,0,live_3,live_4,1
live_0,live_1,0,live_2,0,live_3,0,0,live_4,1
live_0,live_1,0,live_2,0,0,0,live_3,live_4,1
live_0,live_1,live_2,0,0,live_3,0,0,live_4,1
live_0,live_1,0,live_2,live_3,0,0,0,live_4,1
live_0,live_1,0,0,live_2,live_3,0,0,live_4,1
live_0,live_1,0,live_2,live_3,live_4,0,live_5,0,1
live_0,0,live_1,0,live_2,live_3,live_4,0,live_5,1
live_0,live_1,live_2,0,live_3,0,live_4,live_5,0,1
live_0,0,live_1,live_2,live_3,live_4,live_5,0,0,1
live_0,0,0,live_1,live_2,live_3,live_4,live_5,0,1
live_0,live_1,0,0,live_2,live_3,live_4,live_5,0,1
live_0,live_1,0,live_2,live_3,0,live_4,live_5,0,1
live_0,0,live_1,live_2,0,live_3,live_4,live_5,0,1
live_0,0,live_1,0,live_2,live_3,live_4,live_5,0,1
live_0,0,live_1,live_2,live_3,0,live_4,live_5,0,1
live_0,live_1,0,live_2,live_3,live_4,live_5,live_6,0,1
live_0,0,live_1,live_2,live_3,live_4,live_5,0,live_6,1
live_0,live_1,live_2,0,live_3,live_4,live_5,live_6,0,1
live_0,0,live_1,live_2,live_3,live_4,live_5,live_6,0,1
live_0,0,live_1,live_2,live_3,0,live_4,live_5,live_6,1
live_0,live_1,live_2,live_3,0,live_4,live_5,live_6,0,1
live_0,live_1,live_2,live_3,live_4,live_5,live_6,live_7,0,1
live_0,0,live_1,live_2,live_3,live_4,live_5,live_6,live_7,1
live_0,live_1,live_2,live_3,live_4,live_5,live_6,live_7,live_8,1
any_0,any_1,any_2,any_3,any_4,any_5,any_6,any_7,any_8,0
Last edited by M. I. Wright on August 1st, 2018, 7:50 pm, edited 4 times in total.
M. I. Wright
 
Posts: 356
Joined: June 13th, 2015, 12:04 pm

Re: Deficient Rules

Postby Saka » April 20th, 2018, 4:04 am

Wright, your script does not work when there are no survival conditions
Anyway,
4c/8o ship and rep in B23_S8_deficient
x = 19, y = 11, rule = B23_S8_deficient
4.B$4.F$4.B$2.DE.ED9.I.I$BK5.KB7.D.D3$4.B3$4.B!
Proud owner and founder of Sakagolue
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 2550
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Deficient Rules

Postby M. I. Wright » April 20th, 2018, 10:14 am

Saka wrote:Wright, your script does not work when there are no survival conditions

Blinkerspawn also pointed out that it misbehaves when there's more than one birth condition, because I didn't think to decouple sub-transitions of different neighbor counts -- cells born of 2c will block B3c, for instance. I think it's fixable but I'm not sure yet how much effort it would be. (Will try when I get home)
Last edited by M. I. Wright on April 20th, 2018, 2:54 pm, edited 1 time in total.
M. I. Wright
 
Posts: 356
Joined: June 13th, 2015, 12:04 pm

Re: Deficient Rules

Postby Majestas32 » April 20th, 2018, 10:20 am

Probs not much effort. Will try when I get home. It's pretty much just 53 states ye?
Please, stop spam searching Snowflakes.
User avatar
Majestas32
 
Posts: 509
Joined: November 20th, 2017, 12:22 pm
Location: 'Merica

Re: Deficient Rules

Postby Saka » April 20th, 2018, 10:14 pm

Various DeificientSeeds patterns made from a sparky ship bismuth discovered on discord
Back rake
x = 20, y = 22, rule = DeficientSeeds
16.E.E3$3.D$.2D4.E7.E3.E2$.2D4.E7.E3.E$3.D3$16.E.E$15.E.E3$2.D$2D4.E
7.E3.E2$2D4.E7.E3.E$2.D3$15.E.E!

Forward rake
x = 29, y = 26, rule = DeficientSeeds
4$22.E.E2$10.D$8.2D2.E9.E.E2$8.2D2.E9.E.E$10.D4$15.2E6.E$10.D3.C7.E$
8.2D10.2E2$8.2D10.2E$10.D3.C7.E$15.2E$22.E!


Osc puffers
x = 21, y = 23, rule = DeficientSeeds
17.E.E3$4.D$2.2D4.E7.E3.E2$2.2D4.E7.E3.E$4.D3$17.E.E2$15.E.E3$2.D$2D
4.E7.E3.E2$2D4.E7.E3.E$2.D3$15.E.E!

x = 23, y = 23, rule = DeficientSeeds
19.E.E3$6.D$4.2D4.E7.E3.E2$4.2D4.E7.E3.E$6.D3$19.E.E2$15.E.E3$2.D$2D
4.E7.E3.E2$2D4.E7.E3.E$2.D3$15.E.E!


G -> Osc
x = 61, y = 70, rule = DeficientSeeds
28.D$26.D2$2.D7.E.E4.E.E7.D$2D2.E.E6.E2.E3.E7.E5.E2$2D2.E.E6.E2.E3.E
7.E5.E$2.D7.E.E4.E.E4$7.D2.E3.E$5.2D8.E2$5.2D8.E$7.D2.E3.E2$36.2D$38.
D$38.D10$43.2E$45.C$43.E2.E$44.E.E11$49.B2$50.C$52.B11$56.2D$58.D$57.
EDE3$44.D$42.2D4.E7.E3.E2$42.2D4.E7.E3.E$44.D3$57.E.E!


Double rake thing
x = 105, y = 79, rule = DeficientSeeds
11.E$2.D2.E.E$2D6.E2.E15.E6.E.E$27.E$2D6.E2.E16.E.E3.E.E$2.D2.E.E$11.
E3$7.D$5.2D2.E4.E2$5.2D2.E4.E$7.D2$36.B2$37.C$39.B11$43.2D$45.D$45.D
10$50.2E$52.C$50.E2.E$51.E.E12$62.D$63.D$59.E2$44.D17.E32.E.E3.E.E$
42.2D2.E.E.E25.E5.E11.E3.E.E3.E$99.F$42.2D2.E.E.E5.E.E.E.E13.E5.E11.E
3.E.E3.E$44.D50.E.E3.E.E2$58.E.E2$58.E.E2$98.E.E2$86.D$84.2D2.E9.E.E
2$84.2D2.E9.E.E$86.D2$98.E.E!


EDIT:
New c/4d ship
x = 5, y = 5, rule = DeficientSeeds
E2$E$.E$3.2E!

Rake for the regular c/4d ship
x = 43, y = 46, rule = DeficientSeeds
17.E$10.2E$5.D3.C7.E$3.2D10.2E$34.E$3.2D10.2E$5.D3.C7.E16.E.ED$10.2E$
17.E2$9.E4.E.E$5.D7.F$3.2D2.E.E2$3.2D2.E.E$5.D7.F$9.E4.E.E2$40.2D$42.
D$42.D5$39.D$39.D$37.2D2$6.E4.E.E$2.D7.F$2D2.E.E2$2D2.E.E$2.D7.F$6.E
4.E.E2$14.E$7.2E$2.D3.C7.E16.E.ED$2D10.2E$31.E$2D10.2E$2.D3.C7.E$7.2E
$14.E!
Proud owner and founder of Sakagolue
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 2550
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Deficient Rules

Postby M. I. Wright » April 21st, 2018, 1:23 pm

Alright, finally got around to it!

EDIT: If you don't have Python 3, use the version at this URL and copy/paste the rulefile it prints out into Golly. (Start it by hitting "Run" up top)


Usage:
$ python3 deficient_rulegen.py [output dir] [rulestring in B/S form] [OPTIONAL rulename]
If the rulename isn't given, it'll be made from the rulestring by replacing the slash with an underscore, capitalizing the B/S, and appending '_deficient' or '_pdeficient'. Make sure the rulestring is written with a slash.

You can also use the "-p" ("--perm") flag, which removes the stipulation that a cell must return to state 1 after surviving more than one generation. Gives some interesting B2 rules.


deficient_rulegen.py:
import sys
from os import path

N_HOODS = 'cekainyqjrtwz'
NAPKINS = {
  k: dict(zip(N_HOODS, v)) for k, v in {
    '0': '',
    '1': ['00000001', '10000000'],
    '2': ['01000001', '10000010', '00100001', '10000001', '10001000', '00010001'],
    '3': ['01000101', '10100010', '00101001', '10000011', '11000001', '01100001', '01001001', '10010001', '10100001', '10001001'],
    '4': ['01010101', '10101010', '01001011', '11100001', '01100011', '11000101', '01100101', '10010011', '10101001', '10100011', '11001001', '10110001', '10011001'],
    '5': ['10111010', '01011101', '11010110', '01111100', '00111110', '10011110', '10110110', '01101110', '01011110', '01110110'],
    '6': ['10111110', '01111101', '11011110', '01111110', '01110111', '11101110'],
    '7': ['11111110', '01111111'],
    '8': ''
    }.items()
  }


def order_segment(sz, segment):
    if not segment or segment[0] == '-':
        return [t for t in N_HOODS[:sz] if t not in segment]
    return [t for t in N_HOODS if t in segment]


def combine_rstring(segment):
    cop, last = {}, 0
    for i, v in enumerate(segment, 1):
        if v.isdigit():
            after = next((idx for idx, j in enumerate(segment[i:], i) if j.isdigit()), len(segment))
            cop[v] = order_segment(len(NAPKINS[v]), segment[i:after])
    return cop


def replace_bind(transition, pre, sub='', count=0):
    cop = []
    for i in map(int, transition):
        if not i:
            cop.append(0)
            continue
        cop.append('{}{}_{}'.format(pre, sub, count))
        count += 1
    return cop


def write_table(fp, rname, n_states, n_live, d_vars, transitions):
    fp.write('@RULE {}\n@TABLE\n'.format(rname))
    fp.write('n_states:{}\nneighborhood:Moore\nsymmetries:rotate4reflect\n'.format(n_states))
    # Variables
    live = range(1, n_states)
    for sub, (state, count) in d_vars.items():
        range_ = {i for i in live if i != state}
        if not range_:
            continue
        fp.write('\nvar not_{}_0 = {}'.format(sub, range_))
        for n in range(1, count):
            fp.write('\nvar not_{0}_{1} = not_{0}_0'.format(sub, n))
    fp.write('\nvar any_0 = {}'.format(set(range(n_states))))
    for n in range(9):
        fp.write('\nvar any_{} = any_0'.format(n))
    fp.write('\nvar live_0 = {}'.format(set(live)))
    for n in range(1, n_live):
        fp.write('\nvar live_{} = live_0'.format(n))
    fp.write('\n')
    # Transitions
    for tr in transitions:
        fp.write('\n' + ','.join(map(str, tr)))


if __name__ == '__main__':
    outdir, rulestring, *rulename = (i for i in sys.argv[1:] if i not in ('-p', '--perm'))
    transitions = []
    PERM = '--perm' in sys.argv or '-p' in sys.argv
    rulename = rulename[0] if rulename else rulestring.translate(str.maketrans('/bs', '_BS')) + ('_deficient', '_pdeficient')[PERM]
   
    # Get rid of B and S from the start of each segment
    (_, *birth), (_, *survival) = map(str.strip, rulestring.split('/'))
    birth, survival = combine_rstring(birth), combine_rstring(survival)
    n_live, sum_len = 0, 2
    for counter, (num, subs) in enumerate(birth.items()):
        if num == '0':
            transitions.append([*[0]*9, 1])
        elif num == '8':
            transitions.append([0, *('live_{}'.format(i) for i in range(8)), 1])
            n_live = 8
        else:
            transitions.extend([0, *replace_bind(NAPKINS[num][sub], 'not_', num+sub), idx] for idx, sub in enumerate(subs, sum_len))
            sum_len = 1 + transitions[-1][-1]
    d_vars = {k: (tr[-1], sum(1 for i in tr if isinstance(i, str))) for k, tr in zip((n+j for n, li in birth.items() for j in N_HOODS[:len(NAPKINS[n])] if not li or j in li), transitions)}
    transitions.append('')
   
    END = 'live_0' if PERM else 1  # Bind if rule is to be 'permanently deficient'
    for num, subs in survival.items():
        if num == '0':
            transitions.append(['live_0', *[0]*8, END])
        elif num == '8':
            transitions.append([*('live_{}'.format(i) for i in range(9)), END])
            n_live = 9
        else:
            transitions.extend(['live_0', *replace_bind(NAPKINS[num][sub], 'live', count=1), END] for sub in subs)
   
    n_live = n_live if not survival else max(n_live, *(sum(1 for i in tr if isinstance(i, str)) for tr in transitions[1+transitions.index(''):]))
    n_states = 1 + max(t[-1] for t in transitions if t and isinstance(t[-1], int))
    transitions.append([*('any_{}'.format(i) for i in range(9)), 0])
   
    with open(path.join(outdir, rulename+'.rule'), 'w') as fp:
        write_table(fp, rulename, n_states, n_live, d_vars, transitions)
        print('Created {}\n'.format(path.realpath(fp.name)))


EDIT: Fixed isotropic-nontot-rule handling (for real this time) and in the process reduced jankiness a little bit.
EDIT II: Made it reorder your input for isotropic nontot rules, so it won't fail if you input "B2ae/S" rather than "B2ea/S".
EDIT III: Added the "-p" ("--perm)" flag.
EDIT IV: Fixed nontot rules.. again... because I borked them in edit III. (This should be the final edit.)
Last edited by M. I. Wright on April 23rd, 2018, 7:26 pm, edited 10 times in total.
M. I. Wright
 
Posts: 356
Joined: June 13th, 2015, 12:04 pm

Re: Deficient Rules

Postby cordership3 » April 21st, 2018, 5:06 pm

Here, a deficient soup search collection for Deficient Seeds.

First row: c/3d, c/4d, and another c/4d discovered by 83bismuth83.

Second row: p12 and 3 p6's.

x = 112, y = 35, rule = DeficientSeeds
3$54.E$23.2D$22.D31.E32.B$22.D32.E29.F$57.2E26.B13$100.B$33.B66.F$33.
F66.B$6.E.E24.B$65.B$65.F3.B25.BFB5.BFB$31.DE.ED27.BF4.F$30.D5.D28.F
4.FB$65.B3.F30.B$6.E.E60.B30.F$100.B!
huehuehue
User avatar
cordership3
 
Posts: 92
Joined: August 23rd, 2016, 8:53 am
Location: haha long boy

Re: Deficient Rules

Postby danny » April 21st, 2018, 10:50 pm

Patterns in B2/S34678_D, including (to my knowledge) the first gun in a deficient rule:
x = 245, y = 220, rule = B2_S34678_deficient
153.A9.A38.E$152.3A7.3A37.3A$153.A9.A38.3A$163.A38.E$162.2A$163.A$
163.A$162.3A$163.A12$97.C54.GC.CG7.A23.A2.A11.C2.A.G4.D$77.B19.A54.C
3.C6.A20.A2.6A11.C26.C$77.F2.E14.E2A68.A4.C6.C4.3A.A4.A13.A6.A.B18.B$
77.B17.E2A54.C3.C8.A8.2A8.A2.6A9.A.2A2.2E22.2A$79.2E16.A54.GC.CG17.2A
12.A2.A10.2A11.B16.2A$77.B3.E.E13.C74.6A26.A2.A2.D4.E18.B$77.F3.E.E
88.6A28.A.E2.C.E.E15.C$77.B96.2A28.D2.E4.E$80.2ED91.2A34.E.E$79.CA2.F
87.C6.C$81.A2.F$85.D$82.F133.2A$60.B13.B6.D.D129.C6.C$58.C3.C9.C3.C
20.C116.C4.C21.C$71.CA.A22.A118.2A26.B$57.BF2.B8.D2.A2.C18.E2A114.A2.
4A2.A20.2A$72.A4.E17.E2A114.A2.4A2.A20.2A$67.B2.A2.A23.A118.2A26.B$
61.E.E5.A27.C116.C4.C21.C$74.F138.C6.C$61.E.E11.D140.2A4$153.F$111.E
4.E8.E4.E21.E$112.4A10.4A23.A$111.E.2A.E8.E.2A.E21.E$113.2A12.2A24.F
2$60.2A12.2A$58.E.2A.E8.E.2A.E$59.4A10.4A$58.E4.E8.E4.E5$113.D11.E.E$
114.F87.E$91.C27.A5.E.E74.3A$91.A23.A2.A2.B80.3A$91.2AE17.E4.A85.E$
91.2AE18.C2.A2.D8.B2.FB$91.A22.A.AC$91.C20.C3.C9.C3.C$105.D.D6.B13.B$
106.F$103.D$104.F2.A$105.F2.AC$106.D2E104.E$111.B101.3A$105.E.E3.F
101.3A$91.C13.E.E3.B101.E$91.A16.2E$91.2AE17.B$91.2AE14.E2.F$91.A19.B
$91.C10$78.A2.A2.A$77.9A$78.A5.A8$60.C39.C53.B9.B4.2D31.E$60.A36.B64.
F5.D33.3A$60.2AE32.E2.2A62.B5.D33.3A$60.2AE32.E2.2A53.F.F46.E$60.A36.
B56.F$60.C39.C51.2D.2D$153.D.D$153.D.D6$215.E$60.C39.C114.3A$60.A36.B
117.3A$60.2AE32.E2.2A115.E$60.2AE32.E2.2A$60.A36.B$60.C39.C7$27.E4.E
8.E4.E67.D2ED10.D2ED$28.4A10.4A69.2A12.2A$27.E.2A.E8.E.2A.E32.A5.A29.
2A12.2A$29.2A12.2A33.9A$77.2A3.A3.A27.D2.D10.D2.D$77.A3.A3.2A$77.9A$
78.A5.A8$66.C25.C$66.A28.B$64.E2A26.2A2.E$64.E2A26.2A2.E$66.A28.B$66.
C25.C9$66.C25.C$66.A28.B$64.E2A26.2A2.E$64.E2A26.2A2.E$66.A28.B$66.C
25.C20$.A$3A$.A8$26.A$25.3A$26.A18$28.A13.A$27.A.A11.3A$28.A13.A5$28.
A$27.A.A$28.A!

@RULE B2_S34678_deficient
@TABLE
n_states:8
neighborhood:Moore
symmetries:rotate4reflect

var not_2c_0 = {1, 3, 4, 5, 6, 7}
var not_2c_1 = not_2c_0
var not_2e_0 = {1, 2, 4, 5, 6, 7}
var not_2e_1 = not_2e_0
var not_2k_0 = {1, 2, 3, 5, 6, 7}
var not_2k_1 = not_2k_0
var not_2a_0 = {1, 2, 3, 4, 6, 7}
var not_2a_1 = not_2a_0
var not_2i_0 = {1, 2, 3, 4, 5, 7}
var not_2i_1 = not_2i_0
var not_2n_0 = {1, 2, 3, 4, 5, 6}
var not_2n_1 = not_2n_0
var any_0 = {0, 1, 2, 3, 4, 5, 6, 7}
var any_0 = any_0
var any_1 = any_0
var any_2 = any_0
var any_3 = any_0
var any_4 = any_0
var any_5 = any_0
var any_6 = any_0
var any_7 = any_0
var any_8 = any_0
var live_0 = {1, 2, 3, 4, 5, 6, 7}
var live_1 = live_0
var live_2 = live_0
var live_3 = live_0
var live_4 = live_0
var live_5 = live_0
var live_6 = live_0
var live_7 = live_0
var live_8 = live_0

0,0,not_2c_0,0,0,0,0,0,not_2c_1,2
0,not_2e_0,0,0,0,0,0,not_2e_1,0,3
0,0,0,not_2k_0,0,0,0,0,not_2k_1,4
0,not_2a_0,0,0,0,0,0,0,not_2a_1,5
0,not_2i_0,0,0,0,not_2i_1,0,0,0,6
0,0,0,0,not_2n_0,0,0,0,not_2n_1,7

live_0,0,live_1,0,0,0,live_2,0,live_3,1
live_0,live_1,0,live_2,0,0,0,live_3,0,1
live_0,0,0,live_1,0,live_2,0,0,live_3,1
live_0,live_1,0,0,0,0,0,live_2,live_3,1
live_0,live_1,live_2,0,0,0,0,0,live_3,1
live_0,0,live_1,live_2,0,0,0,0,live_3,1
live_0,0,live_1,0,0,live_2,0,0,live_3,1
live_0,live_1,0,0,live_2,0,0,0,live_3,1
live_0,live_1,0,live_2,0,0,0,0,live_3,1
live_0,live_1,0,0,0,live_2,0,0,live_3,1
live_0,0,live_1,0,live_2,0,live_3,0,live_4,1
live_0,live_1,0,live_2,0,live_3,0,live_4,0,1
live_0,0,live_1,0,0,live_2,0,live_3,live_4,1
live_0,live_1,live_2,live_3,0,0,0,0,live_4,1
live_0,0,live_1,live_2,0,0,0,live_3,live_4,1
live_0,live_1,live_2,0,0,0,live_3,0,live_4,1
live_0,0,live_1,live_2,0,0,live_3,0,live_4,1
live_0,live_1,0,0,live_2,0,0,live_3,live_4,1
live_0,live_1,0,live_2,0,live_3,0,0,live_4,1
live_0,live_1,0,live_2,0,0,0,live_3,live_4,1
live_0,live_1,live_2,0,0,live_3,0,0,live_4,1
live_0,live_1,0,live_2,live_3,0,0,0,live_4,1
live_0,live_1,0,0,live_2,live_3,0,0,live_4,1
live_0,live_1,0,live_2,live_3,live_4,live_5,live_6,0,1
live_0,0,live_1,live_2,live_3,live_4,live_5,0,live_6,1
live_0,live_1,live_2,0,live_3,live_4,live_5,live_6,0,1
live_0,0,live_1,live_2,live_3,live_4,live_5,live_6,0,1
live_0,0,live_1,live_2,live_3,0,live_4,live_5,live_6,1
live_0,live_1,live_2,live_3,0,live_4,live_5,live_6,0,1
live_0,live_1,live_2,live_3,live_4,live_5,live_6,live_7,0,1
live_0,0,live_1,live_2,live_3,live_4,live_5,live_6,live_7,1
live_0,live_1,live_2,live_3,live_4,live_5,live_6,live_7,live_8,1
any_0,any_1,any_2,any_3,any_4,any_5,any_6,any_7,any_8,0

EDIT: p250 gun (second gun in this rule):
x = 96, y = 96, rule = B2_S34678_deficient
14.D2$14.D$22.E18.F3.F$22.E$23.D16.E5.E$23.D16.BF3.FB$40.E5.E$9.E3.E
8.C.3ACD$8.E.A.A.E10.A2.D$9.A.B3.C10.B13.E5.E$10.B5.CG22.BF3.FB$9.A
30.E5.E$8.E5.E$D.D6.E3.E2A25.F3.F$10.C3.2A2EA$11.C3.E.E.A$11.G3.2E3.B
$15.A3.AC$16.A.A$17.BC.C2$3.2E3.C$5.2D$8.A$8.2A$8.A.B$8.C$8.2D12$5.EB
E2.EBE$3.F2.F4.F2.F4$3.F2.F4.F2.F$5.EBE2.EBE3$83.EBE2.EBE$81.F2.F4.F
2.F4$81.F2.F4.F2.F$83.EBE2.EBE12$86.2D$87.C$85.B.A$86.2A$87.A$89.2D$
87.C3.2E2$75.C.CB$77.A.A$75.CA3.A$75.B3.2E3.G$76.A.E.E3.C$77.A2E2A3.C
$50.F3.F25.2AE3.E6.D.D$81.E5.E$49.E5.E30.A$49.BF3.FB22.GC5.B$49.E5.E
13.B10.C3.B.A$67.D2.A10.E.A.A.E$67.DC3A.C8.E3.E$49.E5.E$49.BF3.FB16.D
$49.E5.E16.D$73.E$50.F3.F18.E$81.D2$81.D!

EDIT2: p2:
x = 6, y = 6, rule = B2_S34678_deficient
4.D$5.D$4.A$3.2A$D.2A$.D!

p102, 8 cells:
x = 9, y = 9, rule = B2_S34678_deficient
3.E.E3$E7.E2$E7.E3$3.E.E!

This rule is awesome.
Last edited by danny on April 21st, 2018, 11:03 pm, edited 1 time in total.
get down with the sickness.
User avatar
danny
 
Posts: 665
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Deficient Rules

Postby Saka » April 21st, 2018, 10:54 pm

B1e/S02 deficient has 2 cool ships (2c/8 and 4c/20)
x = 21, y = 5, rule = B1e_S02_deficient
2.A.A.A11.A$17.2A.A$A7.A$4.A12.2A$18.A.A!

neat 2c/4d ship
x = 3, y = 4, rule = B1e2e4c_S_deficient
.C$C.C2$C!
Proud owner and founder of Sakagolue
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 2550
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Deficient Rules

Postby Bullet51 » April 21st, 2018, 11:43 pm

There is a breeder hiding somewhere, but we need some AbhpzTation:
x = 322, y = 132, rule = DeficientLife
10.F$9.A.A299.F$8.JA.AF297.3A$8.A2.A12.JAJ18.JAJ12.JAJ18.JAJ12.JAJ
125.F14.F20.F14.F20.F13.A2.A$7.FA.AJ12.A2.A16.A2.A12.A2.A16.A2.A12.A
2.A123.A.A12.A.A18.A.A12.A.A18.A.A13.3A$8.A.A14.G2A16.2AG14.G2A16.2AG
14.G2A122.IA.AI10.IA.AI16.IA.AI10.IA.AI16.IA.AI13.F$9.F215.GI10.IG22.
GI10.IG22.GI$13.2A205.FA4.FAF6.FAF4.AF12.FA4.FAF6.FAF4.AF12.FA4.FAF6.
2A$12.A.A6.AJ3.A18.A3.JA6.AJ3.A18.A3.JA6.AJ3.A125.G.JA8.AJ.G20.G.JA8.
AJ.G20.G.JA7.EA2.I.A$8.FA2.A9.A4.A16.A4.A8.A4.A16.A4.A8.A4.A122.IA.JA
10.AJ.AI16.IA.JA10.AJ.AI16.IA.JA10.A3.A$.2A6.A2.A10.AJF.A16.A.FJA10.A
JF.A16.A.FJA10.AJF.A123.3A12.3A18.3A12.3A18.3A11.E9.2A$A2.A20.3A18.3A
12.3A18.3A12.3A6.2A108.2A7.F14.F20.F14.F20.F13.EAE5.A2.A$.2A7.AE13.F
20.F14.F20.F14.F6.A2.A106.A2.A101.2A$105.2A11.A96.2A$117.ACA82.EAE$
13.2A101.A3.A81.3A102.2A$12.A2.A99.FAF.FAF79.A3.A100.A2.A$13.2A101.A
2.JA80.A.2A102.2A$117.ACA82.2AE$118.A$107.F$103.A.GA.A105.A$.2A99.A.A
108.ACB.G2A99.2A$A2.A98.A.AGEAE108.K2A98.A2.A$.2A100.A215.2A2$123.2A
72.2A$13.2A107.A2.A70.A2.A107.2A$12.A2.A107.2A72.2A107.A2.A$13.2A292.
2A$296.G$25.G.A266.FA$26.2A267.2A$26.F$.2A316.2A$A2.A314.A2.A$.2A316.
2A2$123.2A72.2A$13.2A107.A2.A70.A2.A107.2A$12.A2.A107.2A72.2A107.A2.A
$13.2A292.2A5$.2A316.2A$A2.A314.A2.A$.2A316.2A2$123.2A72.2A$13.2A107.
A2.A70.A2.A107.2A$12.A2.A107.2A11.A60.2A107.A2.A$13.2A120.ACA46.EAE
120.2A$134.A3.A45.3A$133.FAF.FAF43.A3.A$134.A2.JA44.A.2A$135.ACA46.2A
E$.2A133.A182.2A$A2.A121.F192.A2.A$.2A118.A.GA.A69.A122.2A$120.A.A72.
ACB.G2A75.G$44.G.A73.A.AGEAE72.K2A73.FA$13.2A30.2A74.A154.2A29.2A$12.
A2.A29.F260.A2.A$13.2A126.2A36.2A126.2A$140.A2.A34.A2.A$141.2A36.2A3$
.2A316.2A$A2.A314.A2.A$.2A316.2A2$119.A82.A$13.2A103.A.A80.A.A103.2A$
12.A2.A102.A.A80.A.A102.A2.A$13.2A104.A21.2A36.2A21.A104.2A$140.A2.A
34.A2.A$141.2A36.2A3$.2A316.2A$A2.A314.A2.A$.2A316.2A$153.EAE$153.A.A
10.JAJ$13.2A138.EAE9.A3.A137.2A$12.A2.A290.A2.A$13.2A126.2A23.A.A10.
2A126.2A$140.A2.A7.EAE11.A2.K9.A2.A$141.2A8.A.AJ.I7.JAK3.AF7.2A$151.A
.J2A2.G5.A.HI.G88.G$63.G.A89.J3A4.JA91.FA$.2A61.2A94.E.E94.2A60.2A$A
2.A60.F93.A.A.A155.A2.A$.2A155.A3.E2.A153.2A$137.2A25.F18.2A$137.2A3.
K2A33.J.A2.2A$13.2A125.FA2.AF26.2A3.C3A126.2A$12.A2.A119.F13.CA20.F6.
JF126.A2.A$13.2A119.A.AG34.2A9.A2.AJ119.2A$134.A3.A46.2A$135.3AJ43.2A
.F$136.F2$.2A316.2A$A2.A314.A2.A$.2A316.2A3$13.2A292.2A$12.A2.A290.A
2.A$13.2A122.A46.A122.2A$136.A.A44.A.A$136.A.A44.A.A$137.A46.A2$.2A
316.2A$A2.A314.A2.A$.2A316.2A3$13.2A224.G67.2A$12.A2.A66.G.A152.FA67.
A2.A$13.2A68.2A153.2A67.2A$83.F4$.2A316.2A$A2.A314.A2.A!
Still drifting.
Bullet51
 
Posts: 485
Joined: July 21st, 2014, 4:35 am

Re: Deficient Rules

Postby M. I. Wright » April 22nd, 2018, 3:03 pm

Here's a ship, for starters:
x = 70, y = 137, rule = DeficientLife
44.2A$43.FA.A$24.EAE17.A.A$24.3A18.A$22.E5.E$22.A2.KA.A$22.E5.E$23.E
2.A$24.EAE3$49.2A$48.A2.A$49.2A2$19.2A$18.A2.A$19.2A6$49.2A$48.A2.A$
49.2A2$19.2A$18.A2.A$19.2A$56.A$55.A2.E$58.A2.JA$59.D2A.A$50.F6.A.A.A
2.A$49.2A3.E3.A3.2A$48.A5.A$49.3A3.A$50.F$19.2A$18.A2.A$19.2A$67.2A$
66.A2.A$67.2A2$47.2A$46.A2.A$47.2A3$19.2A$18.A2.A$19.2A$67.2A$66.A2.A
$67.2A2$47.2A$46.A2.A$47.2A3$19.2A$18.A2.A$19.2A47.CA$55.I$56.A2.2A$
57.A3.A$47.EA8.A.A2.A$47.2A7.A3.2A$46.A2.G2.AJ$47.3A$47.EAE2$19.2A$
18.A2.A$19.2A44.2A$64.A2.A$65.2A2$45.2A$44.A2.A$45.2A4$19.2A$18.A2.A$
19.2A44.2A$64.A2.A$65.2A2$45.2A$44.A2.A$45.2A$7.A3.A$6.A.K.AJ$5.A3.KA
J7.2A$6.2A10.J2.J$18.A2.A$17.F3.J$18.A.A33.A3.A$19.F34.JA.K.A$45.2A7.
JAK3.A$44.J2.J10.2A$.2A41.A2.A$A2.A40.J3.F$.2A42.A.A$46.F$21.2A$20.A
2.A$21.2A40.2A$62.A2.A$33.E2A27.2A$33.A2.A$33.EA.A6.2A$35.A6.A2.A$.2A
40.2A$A2.A$.2A18.G2A$19.2AKA.J$18.FA3.J2$24.G38.2A$24.K37.A2.A$50.EAE
10.2A$50.A.A$49.A2.A$49.A.A$49.EAE2.2A$54.2A3$49.2A$48.A2.A$49.2A!


EDIT: With some finagling, it can be tacked on to the breeder!
x = 356, y = 190, rule = DeficientLife
44.F$43.A.A299.F$25.A16.JA.AF297.3A$23.EA.AE14.A2.A12.JAJ18.JAJ12.JAJ
18.JAJ12.JAJ125.F14.F20.F14.F20.F13.A2.A$23.2A.2A13.FA.AJ12.A2.A16.A
2.A12.A2.A16.A2.A12.A2.A123.A.A12.A.A18.A.A12.A.A18.A.A13.3A$24.A.A
15.A.A14.G2A16.2AG14.G2A16.2AG14.G2A122.IA.AI10.IA.AI16.IA.AI10.IA.AI
16.IA.AI13.F$23.A4.E14.F215.GI10.IG22.GI10.IG22.GI$23.A.2A.A18.2A205.
FA4.FAF6.FAF4.AF12.FA4.FAF6.FAF4.AF12.FA4.FAF6.2A$22.G5.A17.A.A6.AJ3.
A18.A3.JA6.AJ3.A18.A3.JA6.AJ3.A125.G.JA8.AJ.G20.G.JA8.AJ.G20.G.JA7.EA
2.I.A$22.A.A17.FA2.A9.A4.A16.A4.A8.A4.A16.A4.A8.A4.A122.IA.JA10.AJ.AI
16.IA.JA10.AJ.AI16.IA.JA10.A3.A$21.A2.A18.A2.A10.AJF.A16.A.FJA10.AJF.
A16.A.FJA10.AJF.A123.3A12.3A18.3A12.3A18.3A11.E9.2A$20.FAF35.3A18.3A
12.3A18.3A12.3A6.2A108.2A7.F14.F20.F14.F20.F13.EAE5.A2.A$21.AJB20.AE
13.F20.F14.F20.F14.F6.A2.A106.A2.A101.2A$139.2A11.A96.2A$151.ACA82.EA
E$47.2A101.A3.A81.3A102.2A$46.A2.A99.FAF.FAF79.A3.A100.A2.A$47.2A101.
A2.JA80.A.2A102.2A$151.ACA82.2AE$152.A$19.2A120.F$18.A2.A115.A.GA.A
105.A$19.2A115.A.A108.ACB.G2A99.2A$136.A.AGEAE108.K2A98.A2.A$137.A
215.2A2$157.2A72.2A$47.2A107.A2.A70.A2.A107.2A$46.A2.A107.2A72.2A107.
A2.A$47.2A292.2A$330.G$59.G.A266.FA$19.2A39.2A267.2A$18.A2.A38.F$19.
2A332.2A$352.A2.A$353.2A2$157.2A72.2A$47.2A107.A2.A70.A2.A107.2A$46.A
2.A107.2A72.2A107.A2.A$47.2A292.2A3$19.2A$18.A2.A$19.2A332.2A$352.A2.
A$353.2A2$157.2A72.2A$47.2A107.A2.A70.A2.A107.2A$46.A2.A107.2A11.A60.
2A107.A2.A$47.2A120.ACA46.EAE120.2A$168.A3.A45.3A$167.FAF.FAF43.A3.A$
19.2A147.A2.JA44.A.2A$18.A2.A147.ACA46.2AE$19.2A149.A182.2A$159.F192.
A2.A$155.A.GA.A69.A122.2A$154.A.A72.ACB.G2A75.G$78.G.A73.A.AGEAE72.K
2A73.FA$47.2A30.2A74.A154.2A29.2A$46.A2.A29.F260.A2.A$47.2A126.2A36.
2A126.2A$174.A2.A34.A2.A$175.2A36.2A$19.2A$18.A2.A$19.2A36.F295.2A$
56.A.A293.A2.A$55.IA.AI293.2A$56.K.K$55.K3.K93.A82.A$47.2A6.6H91.A.A
80.A.A103.2A$46.A2.A6.K3.K91.A.A80.A.A102.A2.A$47.2A5.JAG.B94.A21.2A
36.2A21.A104.2A$53.E2.G117.A2.A34.A2.A$53.A2.A118.2A36.2A$19.2A32.A$
18.A2.A32.A.I$19.2A44.2A286.2A$64.A2.A284.A2.A$65.2A286.2A$187.EAE$
45.2A140.A.A10.JAJ$44.A2.A139.EAE9.A3.A137.2A$45.2A293.A2.A$175.2A23.
A.A10.2A126.2A$174.A2.A7.EAE11.A2.K9.A2.A$175.2A8.A.AJ.I7.JAK3.AF7.2A
$19.2A164.A.J2A2.G5.A.HI.G88.G$18.A2.A75.G.A89.J3A4.JA91.FA$19.2A44.
2A31.2A94.E.E94.2A60.2A$64.A2.A30.F93.A.A.A155.A2.A$65.2A125.A3.E2.A
153.2A$171.2A25.F18.2A$45.2A124.2A3.K2A33.J.A2.2A$10.F33.A2.A126.FA2.
AF26.2A3.C3A126.2A$9.A.A33.2A122.F13.CA20.F6.JF126.A2.A$8.IA.AI155.A.
AG34.2A9.A2.AJ119.2A$9.K.K156.A3.A46.2A$8.K3.K156.3AJ43.2A.F$7.6H6.2A
38.G.A108.F$7.K3.K6.A2.A38.2A$9.B.GAJ5.2A39.F4.2A286.2A$11.G2.E49.A2.
A284.A2.A$11.A2.A50.2A286.2A$14.A$11.I.A31.2A$.2A41.A2.A293.2A$A2.A
41.2A293.A2.A$.2A168.A46.A122.2A$170.A.A44.A.A$21.2A147.A.A44.A.A$20.
A2.A147.A46.A$21.2A32.F$54.A.A296.2A$53.IA.AI294.A2.A$54.K.K296.2A$
53.K3.K$45.2A6.6H$.2A41.A2.A6.K3.K214.G67.2A$A2.A41.2A5.JAG.B59.G.A
152.FA67.A2.A$.2A48.E2.G62.2A153.2A67.2A$51.A2.A62.F$21.2A28.A$20.A2.
A28.A.I$21.2A40.2A$62.A2.A287.2A$63.2A287.A2.A2$6.A.G34.2A$6.2A34.A2.
A$.2A4.F35.2A$A2.A$.2A2$21.2A$20.A2.A$21.2A40.2A$62.A2.A$63.2A2$43.2A
$42.A2.A$43.2A4$21.2A34.G.A$20.A2.A34.2A$21.2A35.F4.2A$62.A2.A$63.2A
2$43.2A$42.A2.A$43.2A$37.K$36.K.A$31.A3.G2A$21.2A7.A.AK2.A$20.A2.A5.A
2.A.K.A$21.2A7.2A3.A$41.EA$38.AC4.A$40.KA3.A$41.G.AHCA$42.A2.A$42.3A$
43.F2$13.2A$12.J2.J$12.A2.AE$12.A2.2A31.JAJ3F$13.A3.I36.A$14.2A.2A35.
A$15.J2AE24.EA8.F$43.A2.FJ3A$43.EAJ3.F$16.A$16.A.2A$20.A$16.2A.K$16.A
34.2A$49.2A2.A$49.JFJA!
M. I. Wright
 
Posts: 356
Joined: June 13th, 2015, 12:04 pm

Re: Deficient Rules

Postby danny » April 22nd, 2018, 4:35 pm

A reaction found by Lukalot on the discord allows gliders to be duplicated at p13. Here is a p26 gun based on it:
x = 54, y = 54, rule = B2_S34678_deficient
31.GC.CG$17.A13.C3.C$16.3A$17.A13.C3.C$17.A13.GC.CG$16.2A$17.A$17.A$
16.3A$17.A$22.E.E$22.E2.E$23.C$24.2E$35.B2$34.C10.A2.A2.A$32.B11.9A$G
C.CG9.B30.A5.A$C3.C11.C2$C3.C12.B$GC.CG37.2E$41.C$40.E2.E$40.E.E3$11.
E.E$10.E2.E$12.C$10.2E37.GC.CG$36.B12.C3.C2$37.C11.C3.C$2.A5.A30.B9.G
C.CG$.9A11.B$2.A2.A2.A10.C2$18.B$28.2E$30.C$28.E2.E$29.E.E6$18.GC.CG$
18.C3.C2$18.C3.C$18.GC.CG!

It can be made p52, p104, p208, and pretty much any period 26*n, and the eaters can be removed for up to 4 barrels.
get down with the sickness.
User avatar
danny
 
Posts: 665
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Deficient Rules

Postby 83bismuth38 » April 22nd, 2018, 6:15 pm

i feel as though these could help build a sawtooth:
x = 48, y = 17, rule = B2_S34678_deficient
.E.E$F$.E.E2$32.E14.E$31.C.2A$45.E.E$31.A3.F$30.3A$26.E4.A2.2A2.E$31.
FB.A2.FB$26.E4.A2.2A2.E$30.3A$31.A3.F$45.E.E$31.C.2A$32.E14.E!
x = 50, y = 96, rule = B2_S34678_deficient
9.B6.B16.B6.B$9.F6.F16.F6.F$9.B6.B16.B6.B$9.B6.B16.B6.B2$7.B.A.B2.B.A
.B12.B.A.B2.B.A.B2$7.B.A.B2.B.A.B12.B.A.B2.B.A.B2$9.B6.B16.B6.B$9.B6.
B16.B6.B$9.F6.F16.F6.F$9.B6.B16.B6.B6$9.B6.B16.B6.B$9.F6.F16.F6.F$9.B
6.B16.B6.B$9.B6.B16.B6.B2$7.B.A.B2.B.A.B12.B.A.B2.B.A.B2$7.B.A.B2.B.A
.B12.B.A.B2.B.A.B2$9.B6.B16.B6.B$9.B6.B16.B6.B$9.F6.F16.F6.F$9.B6.B
16.B6.B10$.C46.C$3.B42.B$B48.B$3.B42.B$.C46.C24$8.C3A2.A20.A2.3AC$8.D
.A.2A22.2A.A.D$9.D.B26.B.D20$44.D.D3$43.E3.E$44.C.C$45.F!
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!

No football of any dui mauris said that.
User avatar
83bismuth38
 
Posts: 447
Joined: March 2nd, 2017, 4:23 pm
Location: Still sitting around in Sagittarius A...

Re: Deficient Rules

Postby danny » April 22nd, 2018, 6:29 pm

Potentially interesting reaction, assuming those sparks can be perturbed into giving another ortho glider.
#C [[ STOP 218 ]]
x = 51, y = 13, rule = B2_S34678_deficient
31.A2.A2.A2.A2.A2.A2.A$30.21A$31.A17.A6$4.E33.GC.CG$5.E32.C3.C$BF2.A$
5.E32.C3.C$4.E33.GC.CG!
get down with the sickness.
User avatar
danny
 
Posts: 665
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Deficient Rules

Postby danny » April 22nd, 2018, 6:56 pm

New discoveries oscillators:
x = 157, y = 130, rule = B2_S34678_deficient
3A38.C2.C4.C7.C11.E3.E10.A3.A7.E5.C7.2AE6.E2.E9.D4.D8.A8.A$2.A37.CA2.
AC5.B3.E.A2.E6.E.2A.2A.E7.3A.3A5.2A5.A.E3.E.2A7.4A8.D6.D6.5A2.5A$3A
39.2A6.A5.2A.A7.3A.B.3A6.2A2.A2.2A4.2A4.3A4.6A3.E2A2.2AE7.A4.A8.A2.4A
2.A$A41.2A5.2A6.4AC3.E2A.E3.E.2AE3.2A2.A.A2.2A3.E4.E.A5.6A4.A4.A6.C8A
C6.A2.A2.A2.A$3A37.CA2.AC3.A4.C4A7.A9.A5.A.A.A.A.A11.C7.2A.E4.A4.A4.D
.A2.A2.A2.A.D4.3A4.3A$41.C2.C3.B7.A.2A4.E2AE7.E2AE4.A.A.A.A19.E2A5.E
2A2.2AE2.D.2A2.A2.A2.2A.D4.A2.2A2.A$50.C4.E2.A.E4.A11.A4.A.A.A.A.A28.
4A7.3A.2A.3A7.A2.2A2.A$58.C7.B9.B4.2A2.A.A2.2A27.E2.E7.A2.A2.A2.A6.3A
4.3A$65.A11.A4.2A2.A2.2A39.A2.A2.A2.A6.A2.A2.A2.A$64.E2AE7.E2AE4.3A.
3A40.3A.2A.3A6.A2.4A2.A$66.A9.A7.A3.A38.D.2A2.A2.A2.2A.D2.5A2.5A$65.E
2A.E3.E.2AE50.D.A2.A2.A2.A.D4.A8.A$67.3A.B.3A54.C8AC$67.E.2A.2A.E56.A
4.A$69.E3.E57.D6.D$132.D4.D5$3A38.3A6.D8.C$2.A37.2A.2A5.C2.C7.E$3A37.
A3.A8.D5.A.2A.C$2.A37.2A.2A13.E3A$3A38.3A16.3AE$57.C.2A.A$60.E$62.C
13$3A38.E3.E7.D2.A2.D$A39.E.A.A.E8.3A$3A38.A.A.A5.D2.A3.A2.D$2.A39.A.
A8.A.A.A.A$3A38.A.A.A6.A.A.A.A.A$40.E.A.A.E4.2A2.A.A2.2A$41.E3.E6.A.A
.A.A.A$53.A.A.A.A$51.D2.A3.A2.D$55.3A$53.D2.A2.D10$3A.A38.B13.B$2.A.A
$3A.A41.E7.E$A3.A35.E4A.AE5.EA.4AE$3A.A35.E4A.AE5.EA.4AE$46.E7.E2$43.
B13.B13$3A.3A35.A$2.A.A36.2A.D$3A.3A33.2A3.A$A3.A.A38.2A$3A.3A34.D2.
3A$42.3A$43.2A14$3A.2A34.BFB$2.A.A.A$3A.3A$2.A3.A$3A3.A2$51.BFB14$A.
3A.A.A31.C.3A.C$A3.A.A.A34.A$A.3A.3A31.A2.A2.A$A3.A3.A31.3A.3A6.C.3A.
C$A.3A3.A31.A2.A2.A9.A$43.A9.A2.A2.A$40.C.3A.C6.3A.3A$53.A2.A2.A$56.A
$53.C.3A.C!

If anything, this should suffice for why this rulespace should be added to apgsearch :p

EDIT: New periods:
x = 48, y = 75, rule = B2_S34678_deficient
3A22.D9.C4.E2A2.2AE$2.A23.D6.E.A5.A.2A.A$3A22.A8.A.A4.A.2A.A$A23.2A9.
A.E2.E2A2.2AE$3A18.D2.A.2A7.C$20.D.2A3.2A.D$23.2A.A2.D$25.2A$25.A$24.
D$25.D10$A.A17.C2.4A2.C$A.A19.2A2.2A$3A18.A6.A$2.A17.2A2.2A2.2A$2.A
17.A2.A2.A2.A$20.A2.A2.A2.A$20.2A2.2A2.2A$21.A6.A$22.2A2.2A$20.C2.4A
2.C11$A.A.A17.F$A.A.A17.A$A.3A17.2A.2AF$A3.A18.3A$A3.A17.3A$20.F2A.2A
$25.A$25.F13$3A.2A18.B5.B$2.A.A.A19.F.F$3A.3A16.E7.E$A3.A.A15.E.A.A.A
.A.E$3A.3A13.B2.A2.3A2.A2.B2$21.F.2A2.A2.2A.F$24.A.A.A.A$21.F.2A2.A2.
2A.F2$20.B2.A2.3A2.A2.B$22.E.A.A.A.A.E$23.E7.E$26.F.F$24.B5.B!

p140 sparky osc:
x = 56, y = 12, rule = B2_S34678_deficient
.E.E20.E.E2.E.E20.E.E$E.A20.E.A4.A.E20.A.E$.A.AE46.EA.A$2.A.E18.2E6.
2E18.E.A$3.E2.E.D18.2A18.D.E2.E$5.E2AE18.2A18.E2AE$5.E2AE18.2A18.E2AE
$3.E2.E.D18.2A18.D.E2.E$2.A.E18.2E6.2E18.E.A$.A.AE46.EA.A$E.A20.E.A4.
A.E20.A.E$.E.E20.E.E2.E.E20.E.E!

p206 sparky osc:
x = 28, y = 28, rule = B2_S34678_deficient
13.2E$12.E2AE$11.E.2A.E$10.EA4.AE$10.E2A2.2AE$11.2E2.2E4$11.D4.D$3.2E
8.2A8.2E$2.E2AE3.D3.2A3.D3.E2AE$.E2.AE16.EA2.E$E2A7.2A.2A.2A7.2AE$E2A
7.2A.2A.2A7.2AE$.E2.AE16.EA2.E$2.E2AE3.D3.2A3.D3.E2AE$3.2E8.2A8.2E$
11.D4.D4$11.2E2.2E$10.E2A2.2AE$10.EA4.AE$11.E.2A.E$12.E2AE$13.2E!
get down with the sickness.
User avatar
danny
 
Posts: 665
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Deficient Rules

Postby 83bismuth38 » April 22nd, 2018, 7:50 pm

c/2 guns
x = 65, y = 64, rule = B2_S34678_deficient
8.2E$6.E.2A.E$7.4A$8.2A$6.F4AF$6.B.2A.B$8.2A4$6.E4.E3$2.B.D.2A2.2A.D.
B$2.F12.F$BF.F4.2A4.F.FB$2.F.D2E4.2ED.F$2.B4.E2AE4.B$8.2E$63.A$62.3A$
8.2E53.A$2.B4.E2AE4.B47.A$2.F.D2E4.2ED.F47.2A$BF.F4.2A4.F.FB34.C10.A$
2.F12.F31.2E.B12.A$2.B.D.2A2.2A.D.B37.B9.2A$47.2E.B12.A$52.C10.A$6.E
4.E51.2A$63.A$63.A$62.3A$8.2A53.A$6.B.2A.B$6.F4AF$8.2A$7.4A$6.E.2A.E$
8.2E5$12.A$13.A$10.A26.B8.B$11.A25.F8.F$35.BF.FB4.BF.FB$37.F8.F$35.D
2.D6.D2.D$38.E6.E$23.E2.FB4.E2.A2.E6.E2.A2.E4.BF2.E$24.A.A8.A3.E4.E3.
A8.A.A$22.E6A8.A.AE2.EA.A8.6AE$22.E6A8.A.AE2.EA.A8.6AE$24.A.A8.A3.E4.
E3.A8.A.A$23.E2.FB4.E2.A2.E6.E2.A2.E4.BF2.E$38.E6.E$35.D2.D6.D2.D$37.
F8.F$35.BF.FB4.BF.FB$37.F8.F$37.B8.B!
x = 48, y = 44, rule = B2_S34678_deficient
26.A$25.3A$26.A$26.A$26.2A$26.A$2.BC.C3.2E3.C.CB8.A$.A.A.A3.2A3.A.A.A
7.2A$6A3.2A3.6A6.A$6A3.2A3.6A6.A$.A.A.A3.2A3.A.A.A7.2A$2.BC.C3.2E3.C.
CB8.A$26.A$26.2A$26.A$26.A$25.3A3.A2.A2.A2.A2.A2.A$26.A3.18A$31.A14.A
6$38.2A$37.4A$36.B.2A.B$36.C4AC$38.2A$36.C4AC4$36.E4AE$36.E4AE4$36.C
4AC$38.2A$36.C4AC$36.B.2A.B$37.4A$38.2A!
c/3 diagonal guns:
x = 69, y = 65, rule = B2_S34678_deficient
15.D.D6.D.D$16.F8.F$13.B5.B2.B5.B$15.A.A6.A.A$13.D.A.A6.A.A.D2$12.B.A
12.A.B$.C38.C$.A.A13.D6.D13.A.A$5AE.E.E7.EA4.AE7.E.E.E5A$5AE.E.E7.EA
4.AE7.E.E.E5A$.A.A13.D6.D13.A.A$.C38.C$12.B.A12.A.B2$13.D.A.A6.A.A.D$
15.A.A6.A.A$13.B5.B2.B5.B$16.F8.F$15.D.D6.D.D4$58.2A$56.C4AC$58.2A$
57.4A$58.2A$58.2E2$58.2E2$58.2E3$55.B6.B$51.B.D10.D.B$55.A6.A$49.D2.
2A10.2A2.D$50.F16.F$49.D2.2A3.D2ED3.2A2.D$58.2A$51.B14.B3$51.B14.B$
58.2A$49.D2.2A3.D2ED3.2A2.D$50.F16.F$49.D2.2A10.2A2.D$55.A6.A$51.B.D
10.D.B$55.B6.B3$58.2E2$58.2E2$58.2E$58.2A$57.4A$58.2A$56.C4AC$58.2A!
x = 59, y = 59, rule = B2_S34678_deficient
15.D.D6.D.D$16.F8.F$13.B5.B2.B5.B$15.A.A6.A.A$13.D.A.A6.A.A.D2$12.B.A
12.A.B$.C38.C$.A.A13.D6.D13.A.A$5AE.E.E7.EA4.AE7.E.E.E5A$5AE.E.E7.EA
4.AE7.E.E.E5A$.A.A13.D6.D13.A.A$.C38.C$12.B.A12.A.B2$13.D.A.A6.A.A.D$
15.A.A6.A.A$13.B5.B2.B5.B19.2A$16.F8.F20.C4AC$15.D.D6.D.D21.2A$47.4A$
48.2A$48.2E2$48.2E2$48.2E3$45.B6.B$41.B.D10.D.B$45.A6.A$39.D2.2A10.2A
2.D$40.F16.F$39.D2.2A3.D2ED3.2A2.D$48.2A$41.B14.B3$41.B14.B$48.2A$39.
D2.2A3.D2ED3.2A2.D$40.F16.F$39.D2.2A10.2A2.D$45.A6.A$41.B.D10.D.B$45.
B6.B3$48.2E2$48.2E2$48.2E$48.2A$47.4A$48.2A$46.C4AC$48.2A!
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!

No football of any dui mauris said that.
User avatar
83bismuth38
 
Posts: 447
Joined: March 2nd, 2017, 4:23 pm
Location: Still sitting around in Sagittarius A...

Re: Deficient Rules

Postby 83bismuth38 » April 22nd, 2018, 8:28 pm

EDIT: first sawtooth yay
x = 301, y = 486, rule = B2_S34678_deficient
172.E.E4.E.E$202.E.E4.E.E$172.E.E4.E.E$202.E.E4.E.E2$171.E10.E$171.E
10.E18.E10.E$201.E10.E7$89.E.E4.E.E72.E10.E$119.E.E4.E.E45.F4.F21.E
10.E$89.E.E4.E.E72.E10.E21.F4.F$119.E.E4.E.E72.E10.E$172.F.F4.F.F$88.
E10.E71.F.F.F2.F.F.F19.F.F4.F.F$88.E10.E18.E10.E42.F.F4.F.F19.F.F.F2.
F.F.F$118.E10.E72.F.F4.F.F$171.E10.E$174.F4.F21.E10.E$171.E10.E21.F4.
F$201.E10.E3$88.E10.E$91.F4.F21.E10.E$88.E10.E21.F4.F$118.E10.E$89.F.
F4.F.F72.E10.E$88.F.F.F2.F.F.F19.F.F4.F.F42.E10.E18.E10.E$89.F.F4.F.F
19.F.F.F2.F.F.F71.E10.E$119.F.F4.F.F$88.E10.E72.E.E4.E.E$91.F4.F21.E
10.E72.E.E4.E.E$88.E10.E21.F4.F45.E.E4.E.E$118.E10.E72.E.E4.E.E7$88.E
10.E$88.E10.E18.E10.E$118.E10.E2$89.E.E4.E.E$119.E.E4.E.E$89.E.E4.E.E
$119.E.E4.E.E9$179.D$175.2E.F25.D$180.A24.F.2E$174.G.A.2A2.D20.A$175.
B.A3.F19.D2.2A.A.G$178.2A2.D19.F3.A.B$176.C24.D2.2A$180.2E25.C$166.B
5.B.A27.2E$164.C3.C5.A.F.CB29.A.B5.B$166.A6.E.E.C.F24.BC.F.A5.C3.C$
163.B.A.A.B7.BF.FB22.F.C.E.E6.A$166.A6.E.E.C.F22.BF.FB7.B.A.A.B$164.C
3.C5.A.F.CB24.F.C.E.E6.A$96.D69.B5.B.A29.BC.F.A5.C3.C$92.2E.F25.D58.
2E27.A.B5.B$97.A24.F.2E50.C25.2E$91.G.A.2A2.D20.A57.2A2.D24.C$92.B.A
3.F19.D2.2A.A.G48.B.A3.F19.D2.2A$95.2A2.D19.F3.A.B48.G.A.2A2.D19.F3.A
.B$93.C24.D2.2A57.A20.D2.2A.A.G$97.2E25.C50.2E.F24.A$83.B5.B.A27.2E
58.D25.F.2E$81.C3.C5.A.F.CB29.A.B5.B69.D$83.A6.E.E.C.F24.BC.F.A5.C3.C
$80.B.A.A.B7.BF.FB22.F.C.E.E6.A$83.A6.E.E.C.F22.BF.FB7.B.A.A.B$81.C3.
C5.A.F.CB24.F.C.E.E6.A$83.B5.B.A29.BC.F.A5.C3.C$97.2E27.A.B5.B$93.C
25.2E$95.2A2.D24.C$92.B.A3.F19.D2.2A$91.G.A.2A2.D19.F3.A.B$97.A20.D2.
2A.A.G$92.2E.F24.A$96.D25.F.2E$121.D11$260.B6.B16.B6.B$260.F6.F16.F6.
F$260.B6.B16.B6.B$260.B6.B16.B6.B2$258.B.A.B2.B.A.B12.B.A.B2.B.A.B$
162.E.E4.E.E9.D$212.E.E4.E.E36.B.A.B2.B.A.B12.B.A.B2.B.A.B2$201.G58.B
6.B16.B6.B$182.G77.B6.B16.B6.B$260.F6.F16.F6.F$162.E.E4.E.E88.B6.B16.
B6.B$202.D9.E.E4.E.E5$12.E.E4.E.E14.E.E4.E.E214.B6.B16.B6.B$260.F6.F
16.F6.F$79.E.E4.E.E9.D161.B6.B16.B6.B$12.E.E4.E.E14.E.E4.E.E83.E.E4.E
.E121.B6.B16.B6.B$13.F6.F16.F6.F117.E.E4.E.E9.D$12.F.F4.F.F14.F.F4.F.
F72.G93.E.E4.E.E36.B.A.B2.B.A.B12.B.A.B2.B.A.B$13.F6.F16.F6.F54.G$12.
E.E4.E.E14.E.E4.E.E155.G56.B.A.B2.B.A.B12.B.A.B2.B.A.B$79.E.E4.E.E93.
G$119.D9.E.E4.E.E121.B6.B16.B6.B$12.E.E4.E.E14.E.E4.E.E116.E.E4.E.E
88.B6.B16.B6.B$202.D9.E.E4.E.E38.F6.F16.F6.F$260.B6.B16.B6.B6$12.E.E
4.E.E14.E.E4.E.E33.E.E4.E.E9.D$129.E.E4.E.E2$12.E.E4.E.E14.E.E4.E.E
72.G$13.F6.F16.F6.F54.G152.C46.C$12.F.F4.F.F14.F.F4.F.F208.B42.B$13.F
6.F16.F6.F34.E.E4.E.E162.B48.B$12.E.E4.E.E14.E.E4.E.E73.D9.E.E4.E.E
115.B42.B$252.C46.C2$12.E.E4.E.E14.E.E4.E.E11$6.D44.D$5.D46.D$6.F44.F
$5.D46.D126.D$6.D44.D123.2E.F25.D$180.A24.F.2E$174.G.A.2A2.D20.A$175.
B.A3.F19.D2.2A.A.G$178.2A2.D19.F3.A.B$176.C24.D2.2A$180.2E25.C$166.B
5.B.A27.2E55.C3A2.A20.A2.3AC$164.C3.C5.A.F.CB29.A.B5.B41.D.A.2A22.2A.
A.D$166.A6.E.E.C.F24.BC.F.A5.C3.C40.D.B26.B.D$163.B.A.A.B7.BF.FB22.F.
C.E.E6.A34.E.E$166.A6.E.E.C.F22.BF.FB7.B.A.A.B31.E2.E$164.C3.C5.A.F.C
B24.F.C.E.E6.A35.C$96.D69.B5.B.A29.BC.F.A5.C3.C34.2E$92.2E.F25.D58.2E
27.A.B5.B$97.A24.F.2E50.C25.2E$91.G.A.2A2.D20.A57.2A2.D24.C$92.B.A3.F
19.D2.2A.A.G48.B.A3.F19.D2.2A$95.2A2.D19.F3.A.B48.G.A.2A2.D19.F3.A.B$
93.C24.D2.2A57.A20.D2.2A.A.G$97.2E25.C50.2E.F24.A$83.B5.B.A27.2E58.D
25.F.2E$81.C3.C5.A.F.CB29.A.B5.B69.D$12.E6.C18.C6.E37.A6.E.E.C.F24.BC
.F.A5.C3.C$13.2AE2.C.C16.C.C2.E2A35.B.A.A.B7.BF.FB22.F.C.E.E6.A$14.A.
ED.C18.C.DE.A39.A6.E.E.C.F22.BF.FB7.B.A.A.B$12.C4.D22.D4.C35.C3.C5.A.
F.CB24.F.C.E.E6.A$51.D31.B5.B.A29.BC.F.A5.C3.C$51.D45.2E27.A.B5.B$49.
2D42.C25.2E$95.2A2.D24.C$92.B.A3.F19.D2.2A$91.G.A.2A2.D19.F3.A.B$97.A
20.D2.2A.A.G$92.2E.F24.A$96.D25.F.2E$121.D17$162.E.E4.E.E9.D$212.E.E
4.E.E2$201.G$182.G2$162.E.E4.E.E$202.D9.E.E4.E.E7$79.E.E4.E.E9.D$129.
E.E4.E.E$162.E.E4.E.E9.D$118.G93.E.E4.E.E$99.G$201.G$79.E.E4.E.E93.G$
119.D9.E.E4.E.E$162.E.E4.E.E$202.D9.E.E4.E.E7$79.E.E4.E.E9.D$129.E.E
4.E.E2$118.G$99.G2$79.E.E4.E.E$119.D9.E.E4.E.E17$179.D$175.2E.F25.D$
180.A24.F.2E$174.G.A.2A2.D20.A$175.B.A3.F19.D2.2A.A.G$178.2A2.D19.F3.
A.B$176.C24.D2.2A$180.2E25.C42.2D$166.B5.B.A27.2E45.D$164.C3.C5.A.F.C
B29.A.B5.B31.D$166.A6.E.E.C.F24.BC.F.A5.C3.C35.C4.D22.D4.C$163.B.A.A.
B7.BF.FB22.F.C.E.E6.A39.A.ED.C18.C.DE.A$166.A6.E.E.C.F22.BF.FB7.B.A.A
.B35.2AE2.C.C16.C.C2.E2A$164.C3.C5.A.F.CB24.F.C.E.E6.A37.E6.C18.C6.E$
96.D69.B5.B.A29.BC.F.A5.C3.C$92.2E.F25.D58.2E27.A.B5.B$97.A24.F.2E50.
C25.2E$91.G.A.2A2.D20.A57.2A2.D24.C$92.B.A3.F19.D2.2A.A.G48.B.A3.F19.
D2.2A$95.2A2.D19.F3.A.B48.G.A.2A2.D19.F3.A.B$93.C24.D2.2A57.A20.D2.2A
.A.G$97.2E25.C50.2E.F24.A$83.B5.B.A27.2E58.D25.F.2E$45.2E34.C3.C5.A.F
.CB29.A.B5.B69.D$47.C35.A6.E.E.C.F24.BC.F.A5.C3.C$45.E2.E31.B.A.A.B7.
BF.FB22.F.C.E.E6.A$46.E.E34.A6.E.E.C.F22.BF.FB7.B.A.A.B$9.D.B26.B.D
40.C3.C5.A.F.CB24.F.C.E.E6.A$8.D.A.2A22.2A.A.D41.B5.B.A29.BC.F.A5.C3.
C$8.C3A2.A20.A2.3AC55.2E27.A.B5.B$93.C25.2E$95.2A2.D24.C$92.B.A3.F19.
D2.2A$91.G.A.2A2.D19.F3.A.B$97.A20.D2.2A.A.G$92.2E.F24.A$96.D25.F.2E
123.D44.D$121.D126.D46.D$249.F44.F$248.D46.D$249.D44.D11$255.E.E4.E.E
14.E.E4.E.E2$.C46.C$3.B42.B115.E.E4.E.E9.D73.E.E4.E.E14.E.E4.E.E$B48.
B162.E.E4.E.E34.F6.F16.F6.F$3.B42.B208.F.F4.F.F14.F.F4.F.F$.C46.C152.
G54.F6.F16.F6.F$182.G72.E.E4.E.E14.E.E4.E.E2$162.E.E4.E.E$202.D9.E.E
4.E.E33.E.E4.E.E14.E.E4.E.E6$9.B6.B16.B6.B$9.F6.F16.F6.F38.E.E4.E.E9.
D$9.B6.B16.B6.B88.E.E4.E.E116.E.E4.E.E14.E.E4.E.E$9.B6.B16.B6.B121.E.
E4.E.E9.D$118.G93.E.E4.E.E$7.B.A.B2.B.A.B12.B.A.B2.B.A.B56.G155.E.E4.
E.E14.E.E4.E.E$201.G54.F6.F16.F6.F$7.B.A.B2.B.A.B12.B.A.B2.B.A.B36.E.
E4.E.E93.G72.F.F4.F.F14.F.F4.F.F$119.D9.E.E4.E.E117.F6.F16.F6.F$9.B6.
B16.B6.B121.E.E4.E.E83.E.E4.E.E14.E.E4.E.E$9.B6.B16.B6.B161.D9.E.E4.E
.E$9.F6.F16.F6.F$9.B6.B16.B6.B214.E.E4.E.E14.E.E4.E.E5$79.E.E4.E.E9.D
$9.B6.B16.B6.B88.E.E4.E.E$9.F6.F16.F6.F$9.B6.B16.B6.B77.G$9.B6.B16.B
6.B58.G2$7.B.A.B2.B.A.B12.B.A.B2.B.A.B36.E.E4.E.E$119.D9.E.E4.E.E$7.B
.A.B2.B.A.B12.B.A.B2.B.A.B2$9.B6.B16.B6.B$9.B6.B16.B6.B$9.F6.F16.F6.F
$9.B6.B16.B6.B11$179.D$175.2E.F25.D$180.A24.F.2E$174.G.A.2A2.D20.A$
175.B.A3.F19.D2.2A.A.G$178.2A2.D19.F3.A.B$176.C24.D2.2A$180.2E25.C$
166.B5.B.A27.2E$164.C3.C5.A.F.CB29.A.B5.B$166.A6.E.E.C.F24.BC.F.A5.C
3.C$163.B.A.A.B7.BF.FB22.F.C.E.E6.A$166.A6.E.E.C.F22.BF.FB7.B.A.A.B$
164.C3.C5.A.F.CB24.F.C.E.E6.A$96.D69.B5.B.A29.BC.F.A5.C3.C$92.2E.F25.
D58.2E27.A.B5.B$97.A24.F.2E50.C25.2E$91.G.A.2A2.D20.A57.2A2.D24.C$92.
B.A3.F19.D2.2A.A.G48.B.A3.F19.D2.2A$95.2A2.D19.F3.A.B48.G.A.2A2.D19.F
3.A.B$93.C24.D2.2A57.A20.D2.2A.A.G$97.2E25.C50.2E.F24.A$83.B5.B.A27.
2E58.D25.F.2E$81.C3.C5.A.F.CB29.A.B5.B69.D$83.A6.E.E.C.F24.BC.F.A5.C
3.C$80.B.A.A.B7.BF.FB22.F.C.E.E6.A$83.A6.E.E.C.F22.BF.FB7.B.A.A.B$81.
C3.C5.A.F.CB24.F.C.E.E6.A$83.B5.B.A29.BC.F.A5.C3.C$97.2E27.A.B5.B$93.
C25.2E$95.2A2.D24.C$92.B.A3.F19.D2.2A$91.G.A.2A2.D19.F3.A.B$97.A20.D
2.2A.A.G$92.2E.F24.A$96.D25.F.2E$121.D9$172.E.E4.E.E$202.E.E4.E.E$
172.E.E4.E.E$202.E.E4.E.E2$171.E10.E$171.E10.E18.E10.E$201.E10.E7$89.
E.E4.E.E72.E10.E$119.E.E4.E.E45.F4.F21.E10.E$89.E.E4.E.E72.E10.E21.F
4.F$119.E.E4.E.E72.E10.E$172.F.F4.F.F$88.E10.E71.F.F.F2.F.F.F19.F.F4.
F.F$88.E10.E18.E10.E42.F.F4.F.F19.F.F.F2.F.F.F$118.E10.E72.F.F4.F.F$
171.E10.E$174.F4.F21.E10.E$171.E10.E21.F4.F$201.E10.E3$88.E10.E$91.F
4.F21.E10.E$88.E10.E21.F4.F$118.E10.E$89.F.F4.F.F72.E10.E$88.F.F.F2.F
.F.F19.F.F4.F.F42.E10.E18.E10.E$89.F.F4.F.F19.F.F.F2.F.F.F71.E10.E$
119.F.F4.F.F$88.E10.E72.E.E4.E.E$91.F4.F21.E10.E72.E.E4.E.E$88.E10.E
21.F4.F45.E.E4.E.E$118.E10.E72.E.E4.E.E7$88.E10.E$88.E10.E18.E10.E$
118.E10.E2$89.E.E4.E.E$119.E.E4.E.E$89.E.E4.E.E$119.E.E4.E.E!
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!

No football of any dui mauris said that.
User avatar
83bismuth38
 
Posts: 447
Joined: March 2nd, 2017, 4:23 pm
Location: Still sitting around in Sagittarius A...

Re: Deficient Rules

Postby danny » April 22nd, 2018, 8:33 pm

83bismuth38 found a replicator-like object that shoots sierpinski triangles of gliders -- and I made this wacky gun out of it:
x = 96, y = 1778, rule = B2_S34678_deficient
36.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A$35.54A$36.A
50.A1600$42.E.E4.E.E$72.E.E4.E.E2$42.E.E4.E.E$43.F6.F21.E.E4.E.E$42.F
.F4.F.F21.F6.F$41.F.F.F2.F.F.F19.F.F4.F.F$42.F.F4.F.F19.F.F.F2.F.F.F$
43.F6.F21.F.F4.F.F$42.E.E4.E.E21.F6.F$72.E.E4.E.E2$42.E.E4.E.E$72.E.E
4.E.E5$42.E.E4.E.E$72.E.E4.E.E2$42.E.E4.E.E$43.F6.F21.E.E4.E.E$42.F.F
4.F.F21.F6.F$41.F.F.F2.F.F.F19.F.F4.F.F$42.F.F4.F.F19.F.F.F2.F.F.F$
43.F6.F21.F.F4.F.F$42.E.E4.E.E21.F6.F$72.E.E4.E.E2$42.E.E4.E.E$72.E.E
4.E.E25$45.E.E$45.E30.E.E$45.D2.E29.E$44.C2.A.E25.E2.D$43.EA.A.A25.E.
A2.C$43.E.A.A27.A.A.AE$44.2E.A2.E25.A.A.E$47.A.A23.E2.A.2E$49.A24.A.A
$B43.EB.A26.A$42.A.2EA.A27.A.BE$.C37.BD4.E.2A26.A.A2E.A$3.B71.2A.E4.D
B$28.F8.BF3.FB4.A$75.A4.BF3.FB8.F$39.BD4.E.2A$42.A.2EA.A26.2A.E4.DB$
44.EB.A27.A.A2E.A$49.A26.A.BE$47.A.A24.A$44.2E.A2.E23.A.A$43.E.A.A25.
E2.A.2E$43.EA.A.A27.A.A.E$44.C2.A.E25.A.A.AE$45.D2.E25.E.A2.C$45.E29.
E2.D$45.E.E30.E$76.E.E25$42.E.E4.E.E$72.E.E4.E.E2$42.E.E4.E.E$43.F6.F
21.E.E4.E.E$42.F.F4.F.F21.F6.F$41.F.F.F2.F.F.F19.F.F4.F.F$42.F.F4.F.F
19.F.F.F2.F.F.F$43.F6.F21.F.F4.F.F$42.E.E4.E.E21.F6.F$72.E.E4.E.E2$
42.E.E4.E.E$72.E.E4.E.E5$42.E.E4.E.E$72.E.E4.E.E2$42.E.E4.E.E$43.F6.F
21.E.E4.E.E$42.F.F4.F.F21.F6.F$41.F.F.F2.F.F.F19.F.F4.F.F$42.F.F4.F.F
19.F.F.F2.F.F.F$43.F6.F21.F.F4.F.F$42.E.E4.E.E21.F6.F$72.E.E4.E.E2$
42.E.E4.E.E$72.E.E4.E.E34$36.A50.A$35.54A$36.A2.A2.A2.A2.A2.A2.A2.A2.
A2.A2.A2.A2.A2.A2.A2.A2.A2.A!

period is 9300
get down with the sickness.
User avatar
danny
 
Posts: 665
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Deficient Rules

Postby Billabob » April 23rd, 2018, 8:18 am

Block-on-dock puffer.
x = 35, y = 15, rule = DeficientLife
.2A29.2A$A2.A27.A2.A$.2A29.2A8$6.J20.JA$5.A.C18.2A.A$5.A.A17.F3.A$6.
2A18.3A$27.F!
▄▀
▀▀▀
User avatar
Billabob
 
Posts: 123
Joined: April 2nd, 2015, 5:28 pm

Next

Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 2 guests