ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Other Loop rules

For discussion of other cellular automata.

Re: Other Loop rules

Postby c0b0p0 » July 16th, 2014, 10:02 pm

@fluffykitty: Here is another way they can "get along" with cross-shaped loops and a host of other loops.

NOTE: This rule is a modification of the first rule you posted on this thread, so don't be surprised if it doesn't show SDSR-like behavior.

@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is unmarked right reflector
#state 27 is unmarked right reflector constructor
@TABLE
n_states:28
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,0,0,0,0,0,0,0,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,0,0,0,0,0,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#fluffykitty's transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 230 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red

x = 266, y = 185, rule = GoucherParticleLoop
7.pB238.C10.pB$7.B.AB.ABC231.B.AB.AB.pB3.AB.AC$7.A238.A6.A3.B3.pC$13.
A239.I3.A$7.B5.B232.B3.D10.A$7.A237.pBA.IA3.AB.ABD2.B$.C11.A236.B2.D$
.B.AB.ApCD4.B.AI.ABpB229.A10.A$.A11.D232.pB9.D.BA.B$19.A226.AB.ABD5.A
3.pB$.B17.B237.B$.A244.B7.D$7.D11.A226.A2.DA.BA3.AB.ABpB$pBBA.QA.B4.D
BA.BA.B230.B3.H2.D$7.A11.C226.pC7.A6.A$13.A232.A3.A10.B$7.H5.B231.C.B
A.B2.pB11.E$7.A242.pB10.F2$6.C$13.pB158$132.C$133.AB.AC$132.B3.B$132.
A2$131.CBA.HA$136.P!
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby fluffykitty » July 17th, 2014, 3:49 pm

I modified my rule to have the marked reflectors:
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is unmarked right turn
#state 22 is unmarked right constructor
#state 23 is push turn
#state 24 is special push
#state 25 is special constructor
#state 26 is stop special push 1
#state 27 is stop special push 2
#state 28 is separator
#state 29 is stable construction done
#state 30 is double done
#state 31 is death signal
@TABLE
n_states:32
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,22,31}
var q={p}
var r={0,1}
var s={3,4,6,16,21}
var t={s}
var u={3,21}
var aa={23}
var ab={24}
var ac={25}
var ad={26}
var ae={27}
var af={28}
var ag={29}
var ah={30}
var ai={31}
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,u,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
1,p,aa,7,0,0,0,0,0,20 #
p,0,0,7,0,1,0,0,0,5
12,p,s,0,0,0,0,0,1,0 #
12,p,1,0,0,0,0,0,s,0 #
12,s,0,0,1,2,t,0,0,0 #
12,p,1,0,0,u,0,0,4,0 #
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
p,1,a,b,c,ag,d,e,f,12 #
p,1,a,b,c,ah,d,e,f,12 #
6,ai,a,b,c,d,e,f,12,0
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
ag,p,0,a,b,c,d,e,0,0
p,4,0,0,0,1,0,12,0,12
p,u,0,12,0,1,0,0,0,12
p,6,0,0,0,1,0,12,0,ag #
p,6,0,12,0,1,0,0,0,ag #
u,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,0,0,8,5,0,0,0,0,12
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,u,0,12,0,1,0,ag,0,12 #
p,a,b,c,d,e,f,g,h,1
0,6,0,1,0,2,0,0,af,17 #
0,p,12,i,j,e,l,m,o,p
0,p,0,0,ai,ag,0,0,0,12 #
0,p,i,j,e,l,m,o,12,p
0,p,0,1,0,6,0,12,0,ai #
0,p,i,c,d,e,f,g,o,p ##
0,p,u,i,j,e,l,m,1,p
0,17,1,i,m,e,k,j,3,ac #5
#0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,u,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,0,0,0,0,2,0,0,ac,12 #
5,2,0,0,c,d,e,0,0,7
7,5,a,b,c,d,e,f,g,12 #
7,1,0,0,0,0,p,0,0,af #
7,0,12,0,0,r,0,0,p,ah #
7,a,b,c,d,e,f,g,h,0
0,7,0,0,0,0,0,0,0,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#unmarked transitions
5,0,0,0,0,22,0,0,0,21
0,22,5,0,0,0,0,0,1,5
#my transitions
#complete loop
5,0,0,1,17,2,0,0,0,aa
ab,1,0,0,0,ac,0,0,6,ac #
aa,a,b,c,d,e,f,g,h,0
0,0,0,0,0,aa,0,0,0,3
0,0,0,1,0,1,1,aa,0,ab
ab,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,ab,0,2
0,17,1,i,m,e,k,j,u,ac
ac,0,0,0,6,2,1,0,0,ab
0,0,0,0,0,ab,0,0,0,ac
ac,0,0,0,0,8,0,0,0,ad
ad,a,b,c,d,e,f,g,h,1
0,0,0,0,0,ad,0,0,0,ae
ae,a,b,c,d,e,f,g,h,0
0,0,0,ae,0,0,0,0,0,5
#resolve collisions
0,7,0,0,0,s,0,0,0,12
0,0,0,s,0,0,0,ae,0,12
0,r,0,0,0,7,0,0,u,ag
#separate
0,0,0,6,0,1,0,0,0,af
6,0,0,0,0,17,0,af,0,3
af,0,0,6,17,0,0,0,0,0
#constructor signal collision
0,0,0,7,0,0,p,1,0,12
#constructor constructor collision
0,0,0,7,0,0,0,5,0,5
5,a,b,c,d,e,f,7,g,12
#opening loop contact
ac,1,0,0,0,ac,0,0,6,1
0,6,1,ac,ac,0,0,0,0,af
#clean up constructors
5,0,0,0,0,0,p,12,0,0
#constructor reflector collision
0,s,0,0,0,1,t,0,0,12
#error
ac,0,0,8,0,0,0,1,0,12
#two constructor collision
0,0,0,0,0,7,0,0,ac,12
#double done
0,7,0,0,0,7,0,0,0,ah
ah,p,0,0,0,q,0,0,0,0
#construction signal collision 2
0,0,0,0,0,0,0,p,ag,p
#death
s,ai,a,b,c,d,e,f,g,0
5,ai,a,b,c,d,e,f,g,0
#too close
#ab,1,0,0,0,ac,0,0,6,ac
#reverse interaction
0,0,0,18,0,0,12,0,0,5
#turn into reflector
0,9,1,0,0,u,0,0,5,12
#12,p,1,0,0,u,0,0,4,0
#two one
12,0,0,0,0,0,7,0,0,ah
ah,p,a,b,c,d,e,f,g,12
#7,0,12,0,0,r,0,0,p,12
#retract advance
#1,u,0,12,0,1,0,ag,0,12
#7x7 fix
#5,0,0,0,2,0,0,ac,12
#clear error
ac,0,21,1,0,0,0,0,0,0
#construct undefined
#5,0,0,0,0,21,0,0,0,22
#0,0,5,21,1,0,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
7 255 64  0   #red-orange
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 230 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #yellow
15 255 255 128 #pale yellow
16 150 0   0   #dark red
17 100 66  66  #medium wood
18 128 0   255 #purple
19 255 0   255 #magenta
20 128 255 128 #pale green
21 100 0   75  #dark purple
22 255 0   255 #light magenta

The loops:
x = 266, y = 185, rule = GoucherParticleLoop
7.U238.C10.U$7.B.AB.ABC231.B.AB.AB.U3.AB.AC$7.A238.A6.A3.B3.V$13.A
239.I3.A$7.B5.B232.B3.D10.A$7.A237.UA.IA3.AB.ABD2.B$.C11.A236.B2.D$.B
.AB.AVD4.B.AI.ABU229.A10.A$.A11.D232.U9.D.BA.B$19.A226.AB.ABD5.A3.U$.
B17.B237.B$.A244.B7.D$7.D11.A226.A2.DA.BA3.AB.ABU$UBA.QA.B4.DBA.BA.B
230.B3.H2.D$7.A11.C226.V7.A6.A$13.A232.A3.A10.B$7.H5.B231.C.BA.B2.U
11.E$7.A242.U10.F2$6.C$13.U158$132.C$133.AB.AC$132.B3.B$132.A2$131.CB
A.HA$136.P!
I like making rules
fluffykitty
 
Posts: 617
Joined: June 14th, 2014, 5:03 pm

Re: Other Loop rules

Postby c0b0p0 » July 18th, 2014, 8:14 pm

Here is a start for an SDSR-ized version of my rule.
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is immune signal tail
@TABLE
n_states:30
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,5,p}
var t={s}

s,28,0,0,0,t,0,0,0,28
28,a,b,c,d,e,f,g,h,29
29,a,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,0,0,0,0,0,0,0,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,0,0,0,0,0,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 230 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
29  50 25  50 #dark purple
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby fluffykitty » July 18th, 2014, 11:52 pm

My SDSR rule:
@RULE SDSRGoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is unmarked right turn
#state 22 is unmarked right constructor
#state 23 is push turn
#state 24 is special push
#state 25 is special constructor
#state 26 is stop special push 1
#state 27 is stop special push 2
#state 28 is separator
#state 29 is stable construction done
#state 30 is double done
#state 31 is death signal
#state 32 is pre-death signal
#state 33 is death blocker
@TABLE
n_states:34
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,22,31}
var q={p}
var r={0,1}
var s={3,4,6,16,21,33}
var t={s}
var u={3,21,32}
var aa={23}
var ab={24}
var ac={25}
var ad={26}
var ae={27}
var af={28}
var ag={29}
var ah={30}
var ai={31}
var aj={32}
var ak={33}
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,u,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
1,p,aa,7,0,0,0,0,0,20 #
p,0,0,7,0,1,0,0,0,5
12,p,s,0,0,0,0,0,1,0 #
12,p,1,0,0,0,0,0,s,0 #
12,s,0,0,1,2,t,0,0,0 #
12,p,1,0,0,u,0,0,4,0 #
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
p,1,a,b,c,ag,d,e,f,12 #
p,1,a,b,c,ah,d,e,f,12 #
6,ai,a,b,c,d,e,f,12,0
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
ag,p,0,a,b,c,d,e,0,0
p,4,0,0,0,1,0,12,0,12
p,u,0,12,0,1,0,0,0,12
2,6,0,0,0,1,0,12,0,ag #
2,6,0,12,0,1,0,0,0,ag #
u,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,0,0,8,5,0,0,0,0,aj #12
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,u,0,12,0,1,0,ag,0,aj # #12
p,a,b,c,d,e,f,g,h,1
0,6,0,1,0,2,0,0,af,17 #
0,p,12,i,j,e,l,m,o,p
0,p,0,0,ai,ag,0,0,0,aj # #12
0,p,i,j,e,l,m,o,12,p
0,p,0,1,0,6,0,12,0,ai #
0,p,i,c,d,e,f,g,o,p ##
0,2,32,0,0,1,0,0,1,31
0,p,u,i,j,e,l,m,1,p
0,17,1,i,m,e,k,j,3,ac #5
#0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,u,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,0,0,0,0,2,0,0,ac,aj # #12
5,2,0,0,c,d,e,0,0,7
7,5,a,b,c,d,e,f,g,12 #
7,1,0,0,0,0,p,0,0,af #
7,0,12,0,0,r,0,0,p,ah #
7,a,b,c,d,e,f,g,h,0
0,7,0,0,0,0,0,0,0,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#unmarked transitions
5,0,0,0,0,22,0,0,0,21
0,22,5,0,0,0,0,0,1,5
#my transitions
#complete loop
5,0,0,1,17,2,0,0,0,aa
ab,1,0,0,0,ac,0,0,6,ac #
aa,a,b,c,d,e,f,g,h,0
0,0,0,0,0,aa,0,0,0,3
0,0,0,1,0,1,1,aa,0,ab
ab,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,ab,0,2
0,17,1,i,m,e,k,j,u,ac
ac,0,0,0,6,2,1,0,0,ab
0,0,0,0,0,ab,0,0,0,ac
ac,0,0,0,0,8,0,0,0,ad
ad,a,b,c,d,e,f,g,h,1
0,0,0,0,0,ad,0,0,0,ae
ae,a,b,c,d,e,f,g,h,0
0,0,0,ae,0,0,0,0,0,5
#resolve collisions
0,7,0,0,0,s,0,0,0,12
0,0,0,s,0,0,0,ae,0,12
0,r,0,0,0,7,0,0,u,ag
#separate
0,0,0,6,0,1,0,0,0,af
6,0,0,0,0,17,0,af,0,aj #3
af,0,0,6,17,0,0,0,0,0
#constructor signal collision
0,0,0,7,0,0,p,1,0,12
#constructor constructor collision
0,0,0,7,0,0,0,5,0,5
5,a,b,c,d,e,f,7,g,12
#opening loop contact
ac,1,0,0,0,ac,0,0,6,1
0,6,1,ac,ac,0,0,0,0,af
#clean up constructors
5,0,0,0,0,0,p,12,0,0
#constructor reflector collision
0,s,0,0,0,1,t,0,0,12 #12
#error
ac,0,0,8,0,0,0,1,0,aj #12
#two constructor collision
0,0,0,0,0,7,0,0,ac,12
#double done
0,7,0,0,0,7,0,0,0,ah
ah,p,0,0,0,q,0,0,0,0
#construction signal collision 2
0,0,0,0,0,0,0,p,ag,p
#death
s,ai,a,b,c,d,e,f,g,0
5,ai,a,b,c,d,e,f,g,0
ac,ai,a,b,c,d,e,f,g,0
#too close
#ab,1,0,0,0,ac,0,0,6,ac
#reverse interaction
0,0,0,18,0,0,12,0,0,5
#turn into reflector
0,9,1,0,0,u,0,0,5,aj #12
#12,p,1,0,0,u,0,0,4,0
#two one
12,0,0,0,0,0,7,0,0,ah
ah,p,a,b,c,d,e,f,g,12
#7,0,12,0,0,r,0,0,p,12
#retract advance
#1,u,0,12,0,1,0,ag,0,12
#7x7 fix
#5,0,0,0,2,0,0,ac,12
#clear error
ac,0,21,1,0,0,0,0,0,0
#construct undefined
#5,0,0,0,0,21,0,0,0,22
#0,0,5,21,1,0,0,0,0,5
#self-destruct
#0,9,1,0,0,u,0,0,5,aj
#ac,0,0,8,0,0,0,1,0,aj
#0,s,0,0,0,1,t,0,0,aj
#6,0,0,0,0,17,0,af,0,aj
aj,0,0,0,ai,1,0,0,0,ak
ac,0,0,0,6,ai,1,0,0,0
af,0,0,0,0,0,0,6,ai,0
#resolve something
0,0,3,17,1,0,af,0,0,12
#collision
0,7,0,0,p,0,1,0,0,ag
0,a,0,0,ag,p,0,0,0,p
0,0,0,1,7,0,0,7,0,ag
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
7 255 64  0   #red-orange
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 230 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #yellow
15 255 255 128 #pale yellow
16 150 0   0   #dark red
17 100 66  66  #medium wood
18 128 0   255 #purple
19 255 0   255 #magenta
20 128 255 128 #pale green
21 100 0   75  #dark purple
22 255 0   255 #light magenta
31 255 128 0   #orange
32 255 192 128 #light orange
33 128 64 0    #dark orange

Dying loop:
x = 18, y = 11, rule = SDSRGoucherParticleLoop
$6.F$5.A.AB.AC$6.H3.B$6.A$10.A$5.C.BA.B$10.C!

(Note the a? variables. Thy can be used to insert states starting from state 20.)
I like making rules
fluffykitty
 
Posts: 617
Joined: June 14th, 2014, 5:03 pm

Re: Other Loop rules

Postby c0b0p0 » July 19th, 2014, 9:59 pm

@fluffykitty: I like your rule, but it might be wasting states -- I think your earlier rule only needs three more states to destroy a loop (and one does nothing except eating the escaping signals). All that is needed to make the earlier rule into a working rule is the new state to kill escaping signals, a way to make the immune signal survive its entrance into the loop, and a way to make the immune signal.
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is immune signal tail
@TABLE
n_states:30
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,5,p}
var t={s,i}
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
0,28,29,0,0,0,0,0,4,28
4,28,a,b,c,d,e,f,g,0
0,28,3,0,0,0,0,0,29,28
3,28,a,b,c,d,e,f,g,0
0,28,26,0,0,0,0,0,29,28
26,28,a,b,c,d,e,f,g,0
28,a,b,c,d,e,f,g,h,29
29,a,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,0,0,0,0,0,0,0,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,0,0,0,0,0,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 230 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
29  50 25  50 #dark purple
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby fluffykitty » July 20th, 2014, 12:09 am

@c0b0p0:In my rule I used the separation state* (28) to create the immune signal (31). You should probably add that state to create the signal. (Though it would be nicer if you made your own mechanism.)
*See "separate" section in my transitions.
Also update:
@RULE SDSRGoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is unmarked right turn
#state 22 is unmarked right constructor
#state 23 is push turn
#state 24 is special push
#state 25 is special constructor
#state 26 is stop special push 1
#state 27 is stop special push 2
#state 28 is separator
#state 29 is stable construction done
#state 30 is double done
#state 31 is death signal
#state 32 is pre-death signal
#state 33 is death blocker
@TABLE
n_states:34
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,22,31}
var q={p}
var r={0,1}
var s={3,4,6,16,21,33}
var t={s}
var u={3,21,32}
var aa={23}
var ab={24}
var ac={25}
var ad={26}
var ae={27}
var af={28}
var ag={29}
var ah={30}
var ai={31}
var aj={32}
var ak={33}
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,u,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
1,p,aa,7,0,0,0,0,0,20 #
p,0,0,7,0,1,0,0,0,5
12,p,s,0,0,0,0,0,1,0 #
12,p,1,0,0,0,0,0,s,0 #
12,s,0,0,1,2,t,0,0,0 #
12,p,1,0,0,u,0,0,4,0 #
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
p,1,a,b,c,ag,d,e,f,12 #
p,1,a,b,c,ah,d,e,f,12 #
6,ai,a,b,c,d,e,f,12,0
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
ag,p,0,a,b,c,d,e,0,0
p,4,0,0,0,1,0,12,0,12
p,u,0,12,0,1,0,0,0,12
2,6,0,0,0,1,0,12,0,ag #
2,6,0,12,0,1,0,0,0,ag #
u,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,0,0,8,5,0,0,0,0,aj #12
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,u,0,12,0,1,0,ag,0,aj # #12
p,a,b,c,d,e,f,g,h,1
0,6,0,1,0,2,0,0,af,17 #
0,p,12,i,j,e,l,m,o,p
0,p,0,0,ai,ag,0,0,0,aj # #12
0,p,i,j,e,l,m,o,12,p
0,p,0,1,0,6,0,12,0,ai #
0,p,i,c,d,e,f,g,o,p ##
0,2,32,0,0,1,0,0,1,31
0,p,u,i,j,e,l,m,1,p
0,17,1,i,m,e,k,j,3,ac #5
#0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,u,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,0,0,0,0,2,0,0,ac,aj # #12
5,2,0,0,c,d,e,0,0,7
7,5,a,b,c,d,e,f,g,12 #
7,1,0,0,0,0,p,0,0,af #
7,0,12,0,0,r,0,0,p,ah #
7,a,b,c,d,e,f,g,h,0
0,7,0,0,0,0,0,0,0,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#unmarked transitions
5,0,0,0,0,22,0,0,0,21
0,22,5,0,0,0,0,0,1,5
#my transitions
#complete loop
5,0,0,1,17,2,0,0,0,aa
ab,1,0,0,0,ac,0,0,6,ac #
aa,a,b,c,d,e,f,g,h,0
0,0,0,0,0,aa,0,0,0,3
0,0,0,1,0,1,1,aa,0,ab
ab,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,ab,0,2
0,17,1,i,m,e,k,j,u,ac
ac,0,0,0,6,2,1,0,0,ab
0,0,0,0,0,ab,0,0,0,ac
ac,0,0,0,0,8,0,0,0,ad
ad,a,b,c,d,e,f,g,h,1
0,0,0,0,0,ad,0,0,0,ae
ae,a,b,c,d,e,f,g,h,0
0,0,0,ae,0,0,0,0,0,5
#resolve collisions
0,7,0,0,0,s,0,0,0,12
0,0,0,s,0,0,0,ae,0,12
0,r,0,0,0,7,0,0,u,ag
#separate
0,0,0,6,0,1,0,0,0,af
6,0,0,0,0,17,0,af,0,aj #3
af,0,0,6,17,0,0,0,0,0
#constructor signal collision
0,0,0,7,0,0,p,1,0,12
#constructor constructor collision
0,0,0,7,0,0,0,5,0,5
5,a,b,c,d,e,f,7,g,12
#opening loop contact
ac,1,0,0,0,ac,0,0,6,1
0,6,1,ac,ac,0,0,0,0,af
#clean up constructors
5,0,0,0,0,0,p,12,0,0
#constructor reflector collision
0,s,0,0,0,1,t,0,0,12 #12
#error
ac,0,0,8,0,0,0,1,0,aj #12
#two constructor collision
0,0,0,0,0,7,0,0,ac,12
#double done
0,7,0,0,0,7,0,0,0,ah
ah,p,0,0,0,q,0,0,0,0
#construction signal collision 2
0,0,0,0,0,0,0,p,ag,p
#death
s,ai,a,b,c,d,e,f,g,0
5,ai,a,b,c,d,e,f,g,0
ac,ai,a,b,c,d,e,f,g,0
#too close
#ab,1,0,0,0,ac,0,0,6,ac
#reverse interaction
0,0,0,18,0,0,12,0,0,5
#turn into reflector
0,9,1,0,0,u,0,0,5,aj #12
#12,p,1,0,0,u,0,0,4,0
#two one
12,0,0,0,0,0,7,0,0,ah
ah,p,a,b,c,d,e,f,g,12
#7,0,12,0,0,r,0,0,p,12
#retract advance
#1,u,0,12,0,1,0,ag,0,12
#7x7 fix
#5,0,0,0,2,0,0,ac,12
#clear error
ac,0,21,1,0,0,0,0,0,0
#construct undefined
#5,0,0,0,0,21,0,0,0,22
#0,0,5,21,1,0,0,0,0,5
#self-destruct
#0,9,1,0,0,u,0,0,5,aj
#ac,0,0,8,0,0,0,1,0,aj
#0,s,0,0,0,1,t,0,0,aj
#6,0,0,0,0,17,0,af,0,aj
aj,0,0,0,ai,1,0,0,0,ak
ac,0,0,0,6,ai,1,0,0,0
af,0,0,0,0,0,0,6,ai,0
#resolve something
0,0,3,17,1,0,af,0,0,12
#collision
0,7,0,0,p,0,1,0,0,ag
0,a,0,0,ag,p,0,0,0,p
0,0,0,1,7,0,0,7,0,ag
#what
0,0,0,1,p,0,0,7,0,5
#17,1,0,0,0,5,0,0,0
#huh
0,0,0,7,0,0,p,12,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
7 255 64  0   #red-orange
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 230 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #yellow
15 255 255 128 #pale yellow
16 150 0   0   #dark red
17 100 66  66  #medium wood
18 128 0   255 #purple
19 255 0   255 #magenta
20 128 255 128 #pale green
21 100 0   75  #dark purple
22 255 0   255 #light magenta
31 255 128 0   #orange
32 255 192 128 #light orange
33 128 64 0    #dark orange
I like making rules
fluffykitty
 
Posts: 617
Joined: June 14th, 2014, 5:03 pm

Re: Other Loop rules

Postby fluffykitty » July 20th, 2014, 11:02 am

Some fixes: (I think the synchronization nightmares might be removable. That would be very nice.)
@RULE SDSRGoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is unmarked right turn
#state 22 is unmarked right constructor
#state 23 is push turn
#state 24 is special push
#state 25 is special constructor
#state 26 is stop special push 1
#state 27 is stop special push 2
#state 28 is separator
#state 29 is stable construction done
#state 30 is double done
#state 31 is death signal
#state 32 is pre-death signal
#state 33 is death blocker
#state 34 is trigger retract
@TABLE
n_states:35
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,22,31,34}
var q={p}
var r={0,1}
var s={3,4,6,16,21,33}
var t={s}
var u={3,21,32}
var aa={23}
var ab={24}
var ac={25}
var ad={26}
var ae={27}
var af={28}
var ag={29}
var ah={30}
var ai={31}
var ba={32}
var bb={33}
var bc={34}
#unpositioned rules
6,0,0,0,0,17,0,0,0,ba
#ordinary rules
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,u,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
1,p,aa,7,0,0,0,0,0,20 #
p,0,0,7,0,1,0,0,0,5
12,p,s,0,0,0,0,0,1,0 #
12,p,1,0,0,0,0,0,s,0 #
12,s,0,0,1,2,t,0,0,0 #
12,p,1,0,0,u,0,0,4,0 #
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
p,1,a,b,c,ag,d,e,f,12 #
p,1,a,b,c,ah,d,e,f,12 #
6,ai,a,b,c,d,e,f,12,0
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
ag,p,0,a,b,c,d,e,0,0
p,4,0,0,0,1,0,12,0,12
p,u,0,12,0,1,0,0,0,12
2,6,0,0,0,1,0,12,0,ag #
2,6,0,12,0,1,0,0,0,ag #
u,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,0,0,8,5,0,0,0,0,ba #12
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,u,0,12,0,1,0,ag,0,ba # #12
17,5,0,0,0,1,0,0,0,bc #
p,a,b,c,d,e,f,g,h,1
0,6,0,1,0,2,0,0,af,17 #
0,p,12,i,j,e,l,m,o,p
0,p,0,0,ai,ag,0,0,0,ba # #12
0,p,i,j,e,l,m,o,12,p
0,p,0,1,0,6,0,12,0,ai #
0,0,0,3,bc,5,0,2,0,12 #
0,p,i,c,d,e,f,g,o,p ##
0,2,32,0,0,1,0,0,1,31
0,0,0,0,0,0,1,34,3,0 #
0,p,u,i,j,e,l,m,1,p
0,17,1,i,m,e,k,j,3,ac #5
#0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,u,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,0,0,0,0,2,0,0,ac,ba # #12
5,2,0,0,c,d,e,0,0,7
7,5,a,b,c,d,e,f,g,12 #
7,1,0,0,0,0,p,0,0,af #
7,0,12,0,0,r,0,0,p,ah #
7,a,b,c,d,e,f,g,h,0
0,7,0,0,0,0,0,0,0,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
5,17,0,0,0,0,0,0,0,1 #
#17,5,0,0,0,1,0,0,0,34 #
#unmarked transitions
5,0,0,0,0,22,0,0,0,21
0,22,5,0,0,0,0,0,1,5
#my transitions
#complete loop
5,0,0,1,17,2,0,0,0,aa
ab,1,0,0,0,ac,0,0,6,ac #
aa,a,b,c,d,e,f,g,h,0
0,0,0,0,0,aa,0,0,0,3
0,0,0,1,0,1,1,aa,0,ab
ab,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,ab,0,2
0,17,1,i,m,e,k,j,u,ac
ac,0,0,0,6,2,1,0,0,ab
0,0,0,0,0,ab,0,0,0,ac
ac,0,0,0,0,8,0,0,0,ad
ad,a,b,c,d,e,f,g,h,1
0,0,0,0,0,ad,0,0,0,ae
ae,a,b,c,d,e,f,g,h,0
0,0,0,ae,0,0,0,0,0,5
#resolve collisions
0,7,0,0,0,s,0,0,0,12
0,0,0,s,0,0,0,ae,0,12
0,r,0,0,0,7,0,0,u,ag
#separate
0,0,0,6,0,1,0,0,0,af
6,0,0,0,0,17,0,af,0,ba #3
af,0,0,6,17,0,0,0,0,0
#constructor signal collision
0,0,0,7,0,0,p,1,0,12
#constructor constructor collision
0,0,0,7,0,0,0,5,0,5
5,a,b,c,d,e,f,7,g,12
#opening loop contact
ac,1,0,0,0,ac,0,0,6,1
0,6,1,ac,ac,0,0,0,0,af
#clean up constructors
5,0,0,0,0,0,p,12,0,0
#constructor reflector collision
0,s,0,0,0,1,t,0,0,12 #12
#error
ac,0,0,8,0,0,0,1,0,ba #12
#two constructor collision
0,0,0,0,0,7,0,0,ac,12
#double done
0,7,0,0,0,7,0,0,0,ah
ah,p,0,0,0,q,0,0,0,0
#construction signal collision 2
0,0,0,0,0,0,0,p,ag,p
#death
s,ai,a,b,c,d,e,f,g,0
5,ai,a,b,c,d,e,f,g,0
ac,ai,a,b,c,d,e,f,g,0
#too close
#ab,1,0,0,0,ac,0,0,6,ac
#reverse interaction
0,0,0,18,0,0,12,0,0,5
#turn into reflector
0,9,1,0,0,u,0,0,5,ba #12
#12,p,1,0,0,u,0,0,4,0
#two one
12,0,0,0,0,0,7,0,0,ah
ah,p,a,b,c,d,e,f,g,12
#7,0,12,0,0,r,0,0,p,12
#retract advance
#1,u,0,12,0,1,0,ag,0,12
#7x7 fix
#5,0,0,0,2,0,0,ac,12
#clear error
ac,0,21,1,0,0,0,0,0,0
#construct undefined
#5,0,0,0,0,21,0,0,0,22
#0,0,5,21,1,0,0,0,0,5
#self-destruct
#0,9,1,0,0,u,0,0,5,ba
#ac,0,0,8,0,0,0,1,0,ba
#0,s,0,0,0,1,t,0,0,ba
#6,0,0,0,0,17,0,af,0,ba
ba,0,0,0,ai,1,0,0,0,bb
ac,0,0,0,6,ai,1,0,0,0
af,0,0,0,0,0,0,6,ai,0
#6,0,0,0,0,17,0,0,0,ba
#resolve something
0,0,3,17,1,0,af,0,0,12
#collision
0,7,0,0,p,0,1,0,0,ag
0,a,0,0,ag,p,0,0,0,p
0,0,0,1,7,0,0,7,0,ag
#what
0,0,0,1,p,0,0,7,0,5
#17,1,0,0,0,5,0,0,0
#huh
0,0,0,7,0,0,p,12,0,5
#trigger retract
#17,5,0,0,0,1,0,0,0,bc
s,bc,a,b,c,d,e,f,g,0
5,bc,a,b,c,d,e,f,g,0
ac,bc,a,b,c,d,e,f,g,0
#0,0,0,3,bc,5,0,2,0,12
#messed up death
af,6,17,0,12,0,0,0,0,0
#6,0,0,0,0,ba,0,0,0,0
16,0,0,0,0,0,ai,1,0,0
#messed up growth
ac,0,0,0,5,0,0,0,0,12
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
7 255 64  0   #red-orange
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 230 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #yellow
15 255 255 128 #pale yellow
16 150 0   0   #dark red
17 100 66  66  #medium wood
18 128 0   255 #purple
19 255 0   255 #magenta
20 128 255 128 #pale green
21 100 0   75  #dark purple
22 255 0   255 #light magenta
31 255 128 0   #orange
32 255 192 128 #light orange
33 128 64 0    #dark orange
I like making rules
fluffykitty
 
Posts: 617
Joined: June 14th, 2014, 5:03 pm

Re: Other Loop rules

Postby c0b0p0 » July 20th, 2014, 10:35 pm

@fluffykitty: I noticed you also used an intermediate state, state 33.
Here is my updated rule. The only thing left to make is a mechanism for immune signal production.
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is immune signal tail
#state 30 is eater
@TABLE
n_states:31
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,5,26,p}
var t={s}
0,30,0,0,0,28,0,0,0,28
26,28,a,b,c,d,e,f,g,0
0,0,0,0,29,28,26,0,0,28
28,a,b,29,c,6,d,e,f,30
0,p,0,28,0,6,0,a,0,28
30,29,0,0,0,0,0,0,0,0
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
28,a,b,c,d,e,f,g,h,29
29,a,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,0,0,0,0,0,0,0,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,0,0,0,0,0,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 230 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
29  50 25  50 #dark purple
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby fluffykitty » July 21st, 2014, 11:17 am

c0b0p0 wrote:@fluffykitty: I noticed you also used an intermediate state, state 33.
[snip]

Actually state 32 is the intermediate state. State 33 kills the signals. (See "dying loop"* in my first version of SDSRGoucherParticleLoop.)
*http://www.conwaylife.com/forums/viewtopic.php?f=11&t=1316&start=53
I like making rules
fluffykitty
 
Posts: 617
Joined: June 14th, 2014, 5:03 pm

Re: Other Loop rules

Postby c0b0p0 » July 22nd, 2014, 3:02 pm

fluffykitty wrote:(Though it would be nicer if you made your own mechanism.)

Here is my "state efficent" approach to immune signal production (for one timing). Unfortunately, it seems that the eater is destroyed by the immune signal, and I am not sure how to avoid that.
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is immune signal tail
#state 30 is eater
@TABLE
n_states:31
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,5,26,p}
var t={s}
var u={3,4,26}
0,28,29,0,0,0,0,0,4,28
0,28,0,0,0,3,0,0,0,28
0,0,29,28,3,0,0,0,0,28
0,0,0,28,0,0,0,4,0,28
u,28,a,b,c,d,e,f,g,0
30,29,0,1,0,0,0,0,0,1
1,30,29,0,0,0,0,0,0,22
1,p,1,0,0,0,0,0,6,28
p,0,0,1,0,1,0,6,0,29
0,1,0,0,1,28,6,0,0,28
0,1,p,0,0,28,0,0,0,28
0,26,0,1,0,28,0,0,0,28
0,0,0,1,0,0,29,28,26,28
0,3,0,1,0,28,0,0,0,28
0,0,0,1,0,0,29,28,3,28
0,0,p,1,0,0,0,28,0,28
0,1,0,4,0,0,0,28,0,28
0,1,0,0,4,28,29,0,0,28
0,30,0,0,0,28,0,0,0,28
26,28,a,b,c,d,e,f,g,0
0,0,0,0,29,28,26,0,0,28
28,a,b,29,c,6,d,e,f,30
0,p,0,28,0,6,0,a,0,28
30,29,0,0,0,0,0,0,0,0
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
28,a,b,c,d,e,f,g,h,29
29,a,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,0,0,0,0,0,0,0,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,0,0,0,0,0,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 230 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
29  50 25  50 #dark purple
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby fluffykitty » July 22nd, 2014, 3:53 pm

c0b0p0 wrote:
fluffykitty wrote:(Though it would be nicer if you made your own mechanism.)

Here is my "state efficent" approach to immune signal production (for one timing). Unfortunately, it seems that the eater is destroyed by the immune signal, and I am not sure how to avoid that.
[rule goes here]

Nice. But do you even need the immune head? The immune head seems to only pull the immune tail.
I like making rules
fluffykitty
 
Posts: 617
Joined: June 14th, 2014, 5:03 pm

Re: Other Loop rules

Postby c0b0p0 » July 23rd, 2014, 10:14 pm

fluffykitty wrote:Nice. But do you even need the immune head? The immune head seems to only pull the immune tail.

No, but if one removes the immune head, there are two consequences.
1. symmetries:rotate4 must be replaced with symmetries:none, causing a set of headaches over the awkward symmetry and nostalgia for the time when the immune head existed.
2. There must be four different kinds of immune tail, so overall you waste two states (and by extension time and processing power).
On the topic of reducing necessary states, one cannot even delete the eater (state 30) if one fixes a very serious error involving state 8, because state 30 is then required to prevent the immune signal escaping. Here is the new version of GoucherParticleLoop with the error fixed.
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is immune signal tail
@TABLE
n_states:30
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,5,26,p}
var t={s}
var u={3,4,26}
0,0,0,0,1,8,6,0,0,0
0,28,29,0,0,0,0,0,4,28
0,28,0,0,0,3,0,0,0,28
0,0,29,28,3,0,0,0,0,28
0,0,0,28,0,0,0,4,0,28
u,28,a,b,c,d,e,f,g,0
1,p,1,0,0,0,0,0,6,28
p,0,0,1,0,1,0,6,0,29
0,1,0,0,1,28,6,0,0,28
0,1,p,0,0,28,0,0,0,28
0,26,0,1,0,28,0,0,0,28
0,0,0,1,0,0,29,28,26,28
0,3,0,1,0,28,0,0,0,28
0,0,0,1,0,0,29,28,3,28
0,0,p,1,0,0,0,28,0,28
0,1,0,4,0,0,0,28,0,28
0,1,0,0,4,28,29,0,0,28
26,28,a,b,c,d,e,f,g,0
0,0,0,0,29,28,26,0,0,28
0,p,0,28,0,6,0,a,0,28
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
28,a,b,c,d,e,f,g,h,29
29,a,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,0,0,0,0,0,0,0,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,0,0,0,0,0,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 230 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
29  50 25  50 #dark purple
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby fluffykitty » July 24th, 2014, 11:07 am

Well why? Also, why not let the head do all the work and remove the tail?
I like making rules
fluffykitty
 
Posts: 617
Joined: June 14th, 2014, 5:03 pm

Re: Other Loop rules

Postby c0b0p0 » July 25th, 2014, 7:48 pm

fluffykitty wrote:Well why?


Because it is essential (if one wants to destroy a loop) to have the immune signal go in all four directions.

fluffykitty wrote:let the head do all the work

Do you mean replacing state 29 with state 1? I tried that, but it didn't work. If someone could engineer a working SDSRGoucherParticleLoop with state 29 replaced by state 1, I would be very grateful.

Here is the complete SDSRGoucherParticleLoop (for one timing only).
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is immune signal tail
#state 30 is eater
@TABLE
n_states:31
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,5,26,p}
var t={s}
var u={3,4,26}
0,0,p,0,0,22,0,0,6,23
6,28,a,b,c,d,e,f,g,30
30,28,a,b,c,d,e,f,g,0
0,0,0,30,0,0,0,28,0,28
28,30,0,0,0,29,0,0,0,1
0,0,0,0,30,28,29,0,0,22
0,0,0,0,1,8,6,0,0,0
0,28,29,0,0,0,0,0,4,28
0,28,0,0,0,3,0,0,0,28
0,0,29,28,3,0,0,0,0,28
0,0,0,28,0,0,0,4,0,28
u,28,a,b,c,d,e,f,g,0
1,p,1,0,0,0,0,0,6,28
p,0,0,1,0,1,0,6,0,29
1,p,1,0,0,0,0,0,3,28
p,0,0,1,0,1,0,3,0,29
0,1,0,0,1,28,6,0,0,28
0,1,p,0,0,28,0,0,0,28
0,26,0,1,0,28,0,0,0,28
0,0,0,1,0,0,29,28,26,28
0,3,0,1,0,28,0,0,0,28
0,0,0,1,0,0,29,28,3,28
0,0,p,1,0,0,0,28,0,28
0,1,0,4,0,0,0,28,0,28
0,1,0,0,4,28,29,0,0,28
26,28,a,b,c,d,e,f,g,0
0,0,0,0,29,28,26,0,0,28
0,p,0,28,0,6,0,a,0,28
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
28,a,b,c,d,e,f,g,h,29
29,a,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,0,0,0,0,0,0,0,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,0,0,0,0,0,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 230 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
29  50 25  50 #dark purple
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby fluffykitty » July 25th, 2014, 8:29 pm

c0b0p0 wrote:
fluffykitty wrote:let the head do all the work

Do you mean replacing state 29 with state 1? I tried that, but it didn't work. If someone could engineer a working SDSRGoucherParticleLoop with state 29 replaced by state 1, I would be very grateful.

Didn't I do that? (Also, I'm not really working on the rule anymore. If you want you can work on my version.)
c0b0p0 wrote:
fluffykitty wrote:Well why?


Because it is essential (if one wants to destroy a loop) to have the immune signal go in all four directions.

Correction: Well why no symmetry? What happens?
I like making rules
fluffykitty
 
Posts: 617
Joined: June 14th, 2014, 5:03 pm

Re: Other Loop rules

Postby c0b0p0 » July 27th, 2014, 4:42 pm

fluffykitty wrote:Didn't I do that?

Yes. I was wondering whether the immune cell could be protected without the additional states.

fluffykitty wrote:What happens?

Each immune signal becomes a 2D replicator.

Here is the new SDSRGoucherParticleLoop (for one timing). It fixes certain timing problems that stopped construction.
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is immune signal tail
#state 30 is eater
@TABLE
n_states:31
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,5,26,p}
var t={s}
var u={3,4,26}
0,0,p,0,0,22,0,0,6,23
6,28,a,b,c,d,e,f,g,30
30,28,a,b,c,d,e,f,g,0
0,0,0,30,0,0,0,28,0,28
28,30,0,0,0,29,0,0,0,1
0,0,0,0,30,28,29,0,0,22
0,0,0,0,1,8,6,0,0,0
0,28,29,0,0,0,0,0,4,28
0,28,0,0,0,3,0,0,0,28
0,0,29,28,3,0,0,0,0,28
0,0,0,28,0,0,0,4,0,28
u,28,a,b,c,d,e,f,g,0
1,p,1,0,0,0,0,0,6,28
p,0,0,1,0,1,0,6,0,29
1,p,1,0,0,0,0,0,3,28
p,0,0,1,0,1,0,3,0,29
0,1,0,0,1,28,6,0,0,28
0,1,p,0,0,28,0,0,0,28
0,26,0,1,0,28,0,0,0,28
0,0,0,1,0,0,29,28,26,28
0,3,0,1,0,28,0,0,0,28
0,0,0,1,0,0,29,28,3,28
0,0,p,1,0,0,0,28,0,28
0,1,0,4,0,0,0,28,0,28
0,1,0,0,4,28,29,0,0,28
26,28,a,b,c,d,e,f,g,0
0,0,0,0,29,28,26,0,0,28
0,p,0,28,0,6,0,a,0,28
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
28,a,b,c,d,e,f,g,h,29
29,a,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,0,0,0,0,0,0,0,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,0,0,0,0,0,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 230 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
29  50 25  50 #dark purple
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby c0b0p0 » July 28th, 2014, 9:35 pm

It is probably impossible to SDSR-ize a loop with state 29 replaced by state 1, but replacing state 29 with state 12 is sucessful!
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is eater
@TABLE
n_states:30
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,5,26,p}
var t={s}
var u={3,4,26}
# b used to be p
0,0,0,0,0,0,1,28,6,28
0,3,0,0,0,0,0,p,12,0
0,a,b,c,d,22,e,f,6,23
6,28,a,b,c,d,e,f,g,29
29,28,a,b,c,d,e,f,g,0
0,0,0,29,0,0,0,28,0,28
28,29,0,0,0,12,0,0,0,1
0,0,0,0,29,28,12,0,0,22
0,0,0,0,1,8,6,0,0,0
0,28,12,0,0,0,0,0,4,28
0,28,0,0,0,3,0,0,0,28
0,0,12,28,3,0,0,0,0,28
0,0,0,28,0,0,0,4,0,28
u,28,a,b,c,d,e,f,g,0
1,p,1,0,0,0,0,0,6,28
p,0,0,1,0,1,0,6,0,12
1,p,1,0,0,0,0,0,3,28
p,0,0,1,0,1,0,3,0,12
0,1,0,0,1,28,6,0,0,28
0,1,p,0,0,28,0,0,0,28
0,26,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,26,28
0,3,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,3,28
0,0,p,1,0,0,0,28,0,28
0,1,0,4,0,0,0,28,0,28
0,1,0,0,4,28,12,0,0,28
26,28,a,b,c,d,e,f,g,0
0,0,0,0,12,28,26,0,0,28
0,p,0,28,0,6,0,a,0,28
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
28,a,b,c,d,e,f,g,h,12
12,28,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,0,0,0,0,0,0,0,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,0,0,0,0,0,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 229 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby c0b0p0 » July 30th, 2014, 8:32 pm

I corrected a few errors in my rule that resulted from the change from state 29 to state 12.
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is eater
@TABLE
n_states:30
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,5,26,p}
var t={s}
var u={3,4,26}
# b used to be p
22,1,0,0,0,p,0,0,6,28
p,a,b,c,d,22,e,f,6,23
0,p,0,29,0,0,0,28,0,28
0,p,12,6,0,0,0,0,0,0
0,0,0,0,0,0,1,28,6,28
0,3,0,0,0,0,0,p,12,0
0,a,b,c,d,22,e,f,6,23
6,28,a,b,c,d,e,f,g,29
29,28,a,b,c,d,e,f,g,0
0,0,0,29,0,0,0,28,0,28
28,29,0,0,0,12,0,0,0,1
28,29,0,0,0,12,0,1,0,1
0,0,0,0,29,28,12,0,0,22
1,0,0,0,29,28,12,0,0,22
0,0,0,0,1,8,6,0,0,0
0,28,12,0,0,0,0,0,4,28
0,28,0,0,0,3,0,0,0,28
0,0,12,28,3,0,0,0,0,28
0,0,0,28,0,0,0,4,0,28
u,28,a,b,c,d,e,f,g,0
1,p,1,0,0,0,0,0,6,28
p,0,0,1,0,1,0,6,0,12
1,p,1,0,0,0,0,0,3,28
p,0,0,1,0,1,0,3,0,12
0,1,0,0,1,28,6,0,0,28
0,1,p,0,0,28,0,0,0,28
0,26,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,26,28
0,3,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,3,28
0,0,p,1,0,0,0,28,0,28
0,1,0,4,0,0,0,28,0,28
0,1,0,0,4,28,12,0,0,28
26,28,a,b,c,d,e,f,g,0
0,0,0,0,12,28,26,0,0,28
0,p,0,28,0,6,0,a,0,28
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
28,a,b,c,d,e,f,g,h,12
12,28,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,0,0,0,0,0,0,0,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,0,0,0,0,0,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 229 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby c0b0p0 » July 31st, 2014, 8:04 pm

In the interest of SDSRizing this rule, here is my attempt to prevent the formation of a common constellation seen in the evolution of wildmyron's loop.
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is eater
@TABLE
n_states:30
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,5,26,p}
var t={s}
var u={3,4,26}
var v={0,p}
# b used to be p
0,26,0,7,0,0,0,v,r,28
0,0,0,18,0,0,0,0,26,5
5,5,a,b,c,d,e,f,g,0
5,a,5,b,c,d,e,f,g,0
22,1,0,0,0,p,0,0,6,28
p,a,b,c,d,22,e,f,6,23
0,p,0,29,0,0,0,28,0,28
0,p,12,6,0,0,0,0,0,0
0,0,0,0,0,0,1,28,6,28
0,3,0,0,0,0,0,p,12,0
0,a,b,c,d,22,e,f,6,23
6,28,a,b,c,d,e,f,g,29
29,28,a,b,c,d,e,f,g,0
0,0,0,29,0,0,0,28,0,28
28,29,0,0,0,12,0,0,0,1
28,29,0,0,0,12,0,1,0,1
0,0,0,0,29,28,12,0,0,22
1,0,0,0,29,28,12,0,0,22
0,0,0,0,1,8,6,0,0,0
0,28,12,0,0,0,0,0,4,28
0,28,0,0,0,3,0,0,0,28
0,0,12,28,3,0,0,0,0,28
0,0,0,28,0,0,0,4,0,28
u,28,a,b,c,d,e,f,g,0
1,p,1,0,0,0,0,0,6,28
p,0,0,1,0,1,0,6,0,12
1,p,1,0,0,0,0,0,3,28
p,0,0,1,0,1,0,3,0,12
0,1,0,0,1,28,6,0,0,28
0,1,p,0,0,28,0,0,0,28
0,26,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,26,28
0,3,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,3,28
0,0,p,1,0,0,0,28,0,28
0,1,0,4,0,0,0,28,0,28
0,1,0,0,4,28,12,0,0,28
26,28,a,b,c,d,e,f,g,0
0,0,0,0,12,28,26,0,0,28
0,p,0,28,0,6,0,a,0,28
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
28,a,b,c,d,e,f,g,h,12
12,28,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,i,j,k,l,m,n,o,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,0,0,0,0,0,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 229 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby c0b0p0 » September 2nd, 2014, 8:34 pm

c0b0p0 wrote:In the interest of SDSRizing this rule, here is my attempt to prevent the formation of a common constellation seen in the evolution of wildmyron's loop.

This rule actually prevents the formation of the common constellation seen in the evolution of wildmyron's loop, but there is still some immortal junk laying around here and there.
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is eater
@TABLE
n_states:30
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,5,26,p}
var t={s}
var u={3,4,26}
var v={0,p}
# b used to be p
0,0,0,0,0,8,3,0,0,0
0,p,0,0,0,u,0,28,0,28
0,26,0,7,0,0,0,v,r,28
0,0,0,18,0,0,0,0,26,5
5,5,a,b,c,d,e,f,g,0
5,a,5,b,c,d,e,f,g,0
22,1,0,0,0,p,0,0,6,28
p,a,b,c,d,22,e,f,6,23
0,p,0,29,0,0,0,28,0,28
0,p,12,6,0,0,0,0,0,0
0,0,0,0,0,0,1,28,6,28
0,3,0,0,0,0,0,p,12,0
0,a,b,c,d,22,e,f,6,23
6,28,a,b,c,d,e,f,g,29
29,28,a,b,c,d,e,f,g,0
0,0,0,29,0,0,0,28,0,28
28,29,0,0,0,12,0,0,0,1
28,29,0,0,0,12,0,1,0,1
0,0,0,0,29,28,12,0,0,22
1,0,0,0,29,28,12,0,0,22
0,0,0,0,1,8,6,0,0,0
0,28,12,0,0,0,0,0,4,28
0,28,0,0,0,3,0,0,0,28
0,0,12,28,3,0,0,0,0,28
0,0,0,28,0,0,0,4,0,28
u,28,a,b,c,d,e,f,g,0
1,p,1,0,0,0,0,0,6,28
p,0,0,1,0,1,0,6,0,12
1,p,1,0,0,0,0,0,3,28
p,0,0,1,0,1,0,3,0,12
0,1,0,0,1,28,6,0,0,28
0,1,p,0,0,28,0,0,0,28
0,26,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,26,28
0,3,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,3,28
0,0,p,1,0,0,0,28,0,28
0,1,0,4,0,0,0,28,0,28
0,1,0,0,4,28,12,0,0,28
26,28,a,b,c,d,e,f,g,0
0,0,0,0,12,28,26,0,0,28
0,p,0,28,0,6,0,a,0,28
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
28,a,b,c,d,e,f,g,h,12
12,28,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,i,j,k,l,m,n,o,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,0,0,0,0,0,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 229 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby c0b0p0 » October 1st, 2014, 9:40 pm

This modification of the loop rule has no immortal junk for a long time when running wildmyron's loop, but after about 19,000 generations, immortal junk starts getting made quickly.
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is eater
@TABLE
n_states:30
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,5,26,p}
var t={s}
var u={3,4,26}
var v={0,p}
# b used to be p
0,7,0,0,0,i,0,0,0,5
u,7,a,b,c,d,e,f,g,0
6,7,a,b,c,d,e,f,g,0
0,0,0,0,0,8,3,0,0,0
0,p,0,0,0,u,0,28,0,28
0,26,0,7,0,0,0,v,r,28
0,0,0,18,0,0,0,0,26,5
5,5,a,b,c,d,e,f,g,0
5,a,5,b,c,d,e,f,g,0
22,1,0,0,0,p,0,0,6,28
p,a,b,c,d,22,e,f,6,23
0,p,0,29,0,0,0,28,0,28
0,p,12,6,0,0,0,0,0,0
0,0,0,0,0,0,1,28,6,28
0,3,0,0,0,0,0,p,12,0
0,a,b,c,d,22,e,f,6,23
6,28,a,b,c,d,e,f,g,29
29,28,a,b,c,d,e,f,g,0
0,0,0,29,0,0,0,28,0,28
28,29,0,0,0,12,0,0,0,1
28,29,0,0,0,12,0,1,0,1
0,0,0,0,29,28,12,0,0,22
1,0,0,0,29,28,12,0,0,22
0,0,0,0,1,8,6,0,0,0
0,28,12,0,0,0,0,0,4,28
0,28,0,0,0,3,0,0,0,28
0,0,12,28,3,0,0,0,0,28
0,0,0,28,0,0,0,4,0,28
u,28,a,b,c,d,e,f,g,0
1,p,1,0,0,0,0,0,6,28
p,0,0,1,0,1,0,6,0,28
1,p,1,0,0,0,0,0,3,28
p,0,0,1,0,1,0,3,0,12
0,1,0,0,1,28,6,0,0,28
0,1,p,0,0,28,0,0,0,28
0,26,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,26,28
0,3,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,3,28
0,0,p,1,0,0,0,28,0,28
0,1,0,4,0,0,0,28,0,28
0,1,0,0,4,28,12,0,0,28
26,28,a,b,c,d,e,f,g,0
0,0,0,0,12,28,26,0,0,28
0,p,0,28,0,6,0,a,0,28
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
28,a,b,c,d,e,f,g,h,12
12,28,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,i,j,k,l,m,n,o,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,0,0,0,0,0,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,0,0,0,5,9,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,0,0,0,5,10,1,0,0,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,0,0,0,5,11,1,0,0,5
5,11,0,0,0,0,0,0,0,6
0,11,5,0,0,0,0,0,1,5
0,13,1,0,0,0,0,0,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,0,0,0,0,0,1,5
5,15,0,0,0,0,0,0,0,3
0,0,0,0,5,15,1,0,0,5
5,15,0,0,0,0,0,0,0,6
0,15,5,0,0,0,0,0,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 229 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby c0b0p0 » October 31st, 2014, 6:01 pm

This version of GoucherParticleLoop eliminates most of the codons in junk.
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is eater
@TABLE
n_states:30
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,5,26,p}
var t={s}
var u={3,4,26}
var v={0,p}
var w={0,1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,29}
var x={w}
var y={w}
var z={w}
var A={w}
var B={w}
var C={w}
# b used to be p
0,22,0,0,u,0,0,0,0,23
0,28,6,0,0,0,0,0,12,28
0,28,12,0,0,0,0,0,6,28
29,12,28,0,0,0,0,0,28,0
3,28,28,a,b,c,d,e,f,29
p,28,a,b,c,d,e,f,g,28
0,28,w,x,y,z,A,B,C,28
p,0,a,12,28,b,c,d,e,0
p,1,q,1,0,0,0,u,0,28
p,1,q,1,0,0,0,6,0,28
p,1,0,1,0,u,0,0,0,28
p,1,0,1,0,6,0,0,0,28
0,7,0,0,0,i,0,0,0,5
u,7,a,b,c,d,e,f,g,5
6,7,a,b,c,d,e,f,g,5
0,0,0,0,0,8,3,0,0,0
0,p,0,0,0,u,0,28,0,28
0,26,0,7,0,0,0,v,r,28
0,0,0,18,0,0,0,0,26,5
5,5,a,b,c,d,e,f,g,0
5,a,5,b,c,d,e,f,g,0
22,1,0,0,0,p,0,0,6,28
p,a,b,c,d,22,e,f,6,23
0,p,0,29,0,0,0,28,0,28
0,p,12,6,0,0,0,0,0,0
0,0,0,0,0,0,1,28,6,28
0,3,0,0,0,0,0,p,12,0
0,a,b,c,d,22,e,f,6,23
6,28,a,b,c,d,e,f,g,29
29,28,a,b,c,d,e,f,g,0
0,0,0,29,0,0,0,28,0,28
28,29,0,0,0,12,0,0,0,1
28,29,0,0,0,12,0,1,0,1
0,0,0,0,29,28,12,0,0,22
1,0,0,0,29,28,12,0,0,22
0,0,0,0,1,8,6,0,0,0
0,28,12,0,0,0,0,0,4,28
0,28,0,0,0,3,0,0,0,28
0,0,12,28,3,0,0,0,0,28
0,0,0,28,0,0,0,4,0,28
u,28,a,b,c,d,e,f,g,0
1,p,1,0,0,0,0,0,6,28
p,0,0,1,0,1,0,6,0,28
1,p,1,0,0,0,0,0,3,28
p,0,0,1,0,1,0,3,0,12
0,1,0,0,1,28,6,0,0,28
0,1,p,0,0,28,0,0,0,28
0,26,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,26,28
0,3,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,3,28
0,0,p,1,0,0,0,28,0,28
0,1,0,4,0,0,0,28,0,28
0,1,0,0,4,28,12,0,0,28
26,28,a,b,c,d,e,f,g,0
0,0,0,0,12,28,26,0,0,28
0,p,0,28,0,6,0,a,0,28
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
28,a,b,c,d,e,f,g,h,12
12,28,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,i,j,k,l,m,n,o,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,a,b,c,d,e,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,a,b,c,5,9,1,d,e,5
5,10,0,0,0,0,0,0,0,6
0,a,b,c,5,10,1,d,e,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,a,b,c,5,11,1,d,e,5
5,11,0,0,0,0,0,0,0,6
0,11,5,a,b,c,d,e,1,5
0,13,1,a,b,c,d,e,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,a,b,c,d,e,1,5
5,15,0,0,0,0,0,0,0,3
0,a,b,c,5,15,1,d,e,5
5,15,0,0,0,0,0,0,0,6
0,15,5,a,b,c,d,e,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 229 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby c0b0p0 » February 17th, 2015, 6:40 pm

c0b0p0 wrote:This version of GoucherParticleLoop eliminates most of the codons in junk.

As it turns out, there was a problem with the immune signal production. Along with other improvements, that problem is fixed and the new rule is below.
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is eater
@TABLE
n_states:30
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,5,26,p}
var t={s}
var u={3,4,26}
var v={0,p}
var w={0,1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,29}
var x={w}
var y={w}
var z={w}
var A={w}
var B={w}
var C={w}
# b used to be p
3,28,12,0,0,0,0,0,p,29
22,1,0,0,0,p,0,0,6,12
0,22,0,0,u,0,0,0,0,23
0,28,6,0,0,0,0,0,12,28
0,28,12,0,0,0,0,0,6,28
29,12,28,0,0,0,0,0,28,0
3,28,28,a,b,c,d,e,f,29
p,28,a,b,c,d,e,f,g,28
0,28,w,x,y,z,A,B,C,28
p,0,a,12,28,b,c,d,e,0
p,1,q,1,0,0,0,u,0,28
p,1,q,1,0,0,0,6,0,28
p,1,0,1,0,u,0,0,0,28
p,1,0,1,0,6,0,0,0,28
0,7,0,0,0,i,0,0,0,5
u,7,a,b,c,d,e,f,g,5
6,7,a,b,c,d,e,f,g,5
0,0,0,0,0,8,3,0,0,0
0,p,0,0,0,u,0,28,0,28
0,26,0,7,0,0,0,v,r,28
0,0,0,18,0,0,0,0,26,5
5,5,a,b,c,d,e,f,g,0
5,a,5,b,c,d,e,f,g,0
p,a,b,c,d,22,e,f,6,23
0,p,0,29,0,0,0,28,0,28
0,p,12,6,0,0,0,0,0,0
0,0,0,0,0,0,1,28,6,28
0,3,0,0,0,0,0,p,12,0
0,a,b,c,d,22,e,f,6,23
6,28,a,b,c,d,e,f,g,29
29,28,a,b,c,d,e,f,g,0
0,0,0,29,0,0,0,28,0,28
28,29,0,0,0,12,0,0,0,1
28,29,0,0,0,12,0,1,0,1
0,0,0,0,29,28,12,0,0,22
1,0,0,0,29,28,12,0,0,22
0,0,0,0,1,8,6,0,0,0
0,28,12,0,0,0,0,0,4,28
0,28,0,0,0,3,0,0,0,28
0,0,12,28,3,0,0,0,0,28
0,0,0,28,0,0,0,4,0,28
u,28,a,b,c,d,e,f,g,0
1,p,1,0,0,0,0,0,6,28
p,0,0,1,0,1,0,6,0,28
1,p,1,0,0,0,0,0,3,28
p,0,0,1,0,1,0,3,0,12
0,1,0,0,1,28,6,0,0,28
0,1,p,0,0,28,0,0,0,28
0,26,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,26,28
0,3,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,3,28
0,0,p,1,0,0,0,28,0,28
0,1,0,4,0,0,0,28,0,28
0,1,0,0,4,28,12,0,0,28
26,28,a,b,c,d,e,f,g,0
0,0,0,0,12,28,26,0,0,28
0,p,0,28,0,6,0,a,0,28
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
28,a,b,c,d,e,f,g,h,12
12,28,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,i,j,k,l,m,n,o,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,a,b,c,d,e,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,a,b,c,5,9,1,d,e,5
5,10,0,0,0,0,0,0,0,6
0,a,b,c,5,10,1,d,e,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,a,b,c,5,11,1,d,e,5
5,11,0,0,0,0,0,0,0,6
0,11,5,a,b,c,d,e,1,5
0,13,1,a,b,c,d,e,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,a,b,c,d,e,1,5
5,15,0,0,0,0,0,0,0,3
0,a,b,c,5,15,1,d,e,5
5,15,0,0,0,0,0,0,0,6
0,15,5,a,b,c,d,e,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 229 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby c0b0p0 » March 3rd, 2015, 7:18 pm

I fixed a bug with immune signal collisions, a bug that caused the eater to turn into a state 23 cell, and a bug with the immune signal in the presence of state 7. The result is below.
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is eater
@TABLE
n_states:30
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,7,26,p}
var t={s}
var u={3,4,26}
var v={0,p}
var w={0,1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,29}
var x={w}
var y={w}
var z={w}
var A={w}
var B={w}
var C={w}
var D={23,12}
# b used to be p
23,28,a,b,c,d,e,f,g,0
28,D,a,b,c,12,d,e,f,0
3,28,12,0,0,0,0,0,p,29
22,1,0,0,0,p,0,0,6,12
0,22,0,0,u,0,0,0,0,23
0,28,6,a,b,c,d,e,12,28
0,28,12,a,b,c,d,e,6,28
29,12,28,0,0,0,0,0,28,0
3,28,28,a,b,c,d,e,f,29
p,28,a,b,c,d,e,f,g,28
0,28,w,x,y,z,A,B,C,28
p,0,a,12,28,b,c,d,e,0
p,1,q,1,0,0,0,u,0,28
p,1,q,1,0,0,0,6,0,28
p,1,0,1,0,u,0,0,0,28
p,1,0,1,0,6,0,0,0,28
0,7,0,0,0,i,0,0,0,5
u,7,a,b,c,d,e,f,g,5
6,7,a,b,c,d,e,f,g,5
0,0,0,0,0,8,3,0,0,0
0,p,0,0,0,u,0,28,0,28
0,26,0,7,0,0,0,v,r,28
0,0,0,18,0,0,0,0,26,5
5,5,a,b,c,d,e,f,g,0
5,a,5,b,c,d,e,f,g,0
p,a,b,c,d,22,e,f,6,23
0,p,0,29,0,0,0,28,0,28
0,p,12,6,0,0,0,0,0,0
0,0,0,0,0,0,1,28,6,28
0,3,0,0,0,0,0,p,12,0
0,a,b,c,d,22,e,f,6,23
6,28,a,b,c,d,e,f,g,29
29,28,a,b,c,d,e,f,g,0
0,0,0,29,0,0,0,28,0,28
28,29,0,0,0,12,0,0,0,1
28,29,0,0,0,12,0,1,0,1
#0,0,0,0,29,28,12,0,0,22
1,0,0,0,29,28,12,0,0,22
0,0,0,0,1,8,6,0,0,0
0,28,12,0,0,0,0,0,4,28
0,28,0,0,0,3,0,0,0,28
0,0,12,28,3,0,0,0,0,28
0,0,0,28,0,0,0,4,0,28
u,28,a,b,c,d,e,f,g,0
1,p,1,0,0,0,0,0,6,28
p,0,0,1,0,1,0,6,0,28
1,p,1,0,0,0,0,0,3,28
p,0,0,1,0,1,0,3,0,12
0,1,0,0,1,28,6,0,0,28
0,1,p,0,0,28,0,0,0,28
0,26,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,26,28
0,3,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,3,28
0,0,p,1,0,0,0,28,0,28
0,1,0,4,0,0,0,28,0,28
0,1,0,0,4,28,12,0,0,28
26,28,a,b,c,d,e,f,g,0
0,0,0,0,12,28,26,0,0,28
0,p,0,28,0,6,0,a,0,28
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
28,a,b,c,d,e,f,g,h,12
12,28,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,i,j,k,l,m,n,o,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,a,b,c,d,e,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,a,b,c,5,9,1,d,e,5
5,10,0,0,0,0,0,0,0,6
0,a,b,c,5,10,1,d,e,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,a,b,c,5,11,1,d,e,5
5,11,0,0,0,0,0,0,0,6
0,11,5,a,b,c,d,e,1,5
0,13,1,a,b,c,d,e,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,a,b,c,d,e,1,5
5,15,0,0,0,0,0,0,0,3
0,a,b,c,5,15,1,d,e,5
5,15,0,0,0,0,0,0,0,6
0,15,5,a,b,c,d,e,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 229 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

Re: Other Loop rules

Postby c0b0p0 » March 4th, 2015, 8:27 pm

I fixed a very destructive and harmful bug which did not allow the right-turn signal to be duplicated without an escort signal 3 cells ahead of it. The new rule is below.
@RULE GoucherParticleLoop
#state 0 is blank
#state 1 is tail
#state 2 is head
#state 3 is right reflector
#state 4 is left reflector
#state 5 is construction cell
#state 6 is duplicator
#state 7 is push constructor
#state 8 is right turn
#state 9 is left turn
#state 10 is left and right duplicator constructor
#state 13 is left duplicator constructor
#state 14 is right duplicator constructor
#state 11 is left and right left-turn constructor
#state 12 is "construction done" signal
#state 15 is left and right right-turn constructor
#state 16 is turner+latcher
#state 17 is construction signal
#state 18 is special
#state 19 is special
#state 20 is special
#state 21 is push turn
#state 22 is special push
#state 23 is special constructor
#state 24 is stop special push 1
#state 25 is stop special push 2
#state 26 is useless reflector
#state 27 is useless reflector constructor
#state 28 is immune signal
#state 29 is eater
@TABLE
n_states:30
neighborhood:Moore
symmetries:rotate4
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={0,3,4,5,6,7,16,18,19,20,26}
var j={i}
var k={i}
var l={i}
var m={i}
var n={i}
var o={i}
var p={2,8,9,10,11,13,14,15,17,27}
var q={p}
var r={0,1}
var s={0,1,7,26,p}
var t={s}
var u={3,4,26}
var v={0,p}
var w={0,1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,29}
var x={w}
var y={w}
var z={w}
var A={w}
var B={w}
var C={w}
var D={23,12}
# b used to be p
0,p,6,i,m,e,j,n,1,p
0,p,1,i,m,e,j,n,6,p
23,28,a,b,c,d,e,f,g,0
28,D,a,b,c,12,d,e,f,0
3,28,12,0,0,0,0,0,p,29
22,1,0,0,0,p,0,0,6,12
0,22,0,0,u,0,0,0,0,23
0,28,6,a,b,c,d,e,12,28
0,28,12,a,b,c,d,e,6,28
29,12,28,0,0,0,0,0,28,0
3,28,28,a,b,c,d,e,f,29
p,28,a,b,c,d,e,f,g,28
0,28,w,x,y,z,A,B,C,28
p,0,a,12,28,b,c,d,e,0
p,1,q,1,0,0,0,u,0,28
p,1,q,1,0,0,0,6,0,28
p,1,0,1,0,u,0,0,0,28
p,1,0,1,0,6,0,0,0,28
0,7,0,0,0,i,0,0,0,5
u,7,a,b,c,d,e,f,g,5
6,7,a,b,c,d,e,f,g,5
0,0,0,0,0,8,3,0,0,0
0,p,0,0,0,u,0,28,0,28
0,26,0,7,0,0,0,v,r,28
0,0,0,18,0,0,0,0,26,5
5,5,a,b,c,d,e,f,g,0
5,a,5,b,c,d,e,f,g,0
p,a,b,c,d,22,e,f,6,23
0,p,0,29,0,0,0,28,0,28
0,p,12,6,0,0,0,0,0,0
0,0,0,0,0,0,1,28,6,28
0,3,0,0,0,0,0,p,12,0
0,a,b,c,d,22,e,f,6,23
6,28,a,b,c,d,e,f,g,29
29,28,a,b,c,d,e,f,g,0
0,0,0,29,0,0,0,28,0,28
28,29,0,0,0,12,0,0,0,1
28,29,0,0,0,12,0,1,0,1
#0,0,0,0,29,28,12,0,0,22
1,0,0,0,29,28,12,0,0,22
0,0,0,0,1,8,6,0,0,0
0,28,12,0,0,0,0,0,4,28
0,28,0,0,0,3,0,0,0,28
0,0,12,28,3,0,0,0,0,28
0,0,0,28,0,0,0,4,0,28
u,28,a,b,c,d,e,f,g,0
1,p,1,0,0,0,0,0,6,28
p,0,0,1,0,1,0,6,0,28
1,p,1,0,0,0,0,0,3,28
p,0,0,1,0,1,0,3,0,12
0,1,0,0,1,28,6,0,0,28
0,1,p,0,0,28,0,0,0,28
0,26,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,26,28
0,3,0,1,0,28,0,0,0,28
0,0,0,1,0,0,12,28,3,28
0,0,p,1,0,0,0,28,0,28
0,1,0,4,0,0,0,28,0,28
0,1,0,0,4,28,12,0,0,28
26,28,a,b,c,d,e,f,g,0
0,0,0,0,12,28,26,0,0,28
0,p,0,28,0,6,0,a,0,28
6,28,a,b,c,d,e,f,g,0
s,28,i,j,k,t,l,m,n,28
28,a,b,c,d,e,f,g,h,12
12,28,b,c,d,e,f,g,h,0
0,1,0,0,1,17,3,0,0,2
0,1,0,0,0,19,0,0,0,17
20,a,b,c,d,e,f,g,h,19
19,a,b,c,d,e,f,g,h,5
0,0,0,17,5,0,0,0,0,0
0,0,0,0,0,0,5,17,0,0
5,2,3,0,0,0,0,0,1,18
18,a,b,c,d,e,f,g,h,0
0,18,0,0,0,0,0,0,0,5
0,17,3,0,0,0,0,0,1,2
0,1,7,0,0,p,0,0,0,12
p,0,7,0,0,1,0,0,0,12
0,1,0,7,0,p,0,0,0,19
0,1,0,0,7,p,0,0,0,17
1,p,7,0,0,0,0,0,0,12
1,p,0,7,0,0,0,0,0,20
p,0,0,7,0,1,0,0,0,5
12,p,1,0,0,0,0,0,6,0
12,i,p,j,1,q,k,l,m,12
12,p,1,i,0,1,q,0,0,12
12,i,j,k,l,p,1,m,q,12
12,p,i,j,q,1,k,l,1,12
12,p,i,j,k,q,1,l,1,12
12,p,1,i,1,q,j,k,l,12
12,p,1,i,j,k,l,m,n,12
12,p,1,i,j,k,l,m,n,12
12,p,i,j,k,l,m,n,1,12
12,1,p,i,j,k,l,m,n,12
12,1,i,j,k,l,m,n,p,12
p,1,a,b,c,12,d,e,f,12
6,p,a,b,c,d,e,f,12,16
6,p,12,b,c,d,e,f,a,16
12,p,a,b,c,d,e,f,g,0
p,4,0,0,0,1,0,12,0,12
p,3,0,12,0,1,0,0,0,12
3,p,a,b,c,d,e,f,12,0
4,p,12,b,c,d,e,f,a,0
1,7,0,0,0,0,0,2,0,5
1,a,b,c,d,e,f,g,h,0
p,a,b,c,d,e,f,g,h,1
0,p,12,i,j,e,l,m,o,p
0,p,i,j,e,l,m,o,12,p
0,p,i,c,d,e,f,g,o,p
0,p,3,i,j,e,l,m,1,p
0,p,26,i,j,e,l,m,1,p
#0,17,1,i,m,e,k,j,3,5
0,17,3,i,m,e,k,j,1,2
3,17,a,b,c,d,e,f,g,6
0,p,1,i,m,e,k,j,4,p
16,2,a,b,c,d,e,f,g,3
0,2,16,i,m,e,k,j,1,17
0,p,16,i,m,e,k,j,1,p
5,2,3,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,4,7
5,2,6,0,0,0,0,0,1,7
5,2,1,0,0,0,0,0,6,7
5,2,0,0,c,d,e,0,0,7
7,a,b,c,d,e,f,g,h,0
0,7,i,j,k,l,m,n,o,5
0,7,0,0,0,1,p,0,0,5
0,0,0,7,0,0,1,p,0,5
5,8,0,0,0,0,0,0,0,3
0,8,5,0,0,0,0,0,1,5
0,27,5,a,b,c,d,e,1,5
5,27,0,0,0,0,0,0,0,26
5,2,26,0,0,0,0,0,1,18
5,9,0,0,0,0,0,0,0,4
0,a,b,c,5,9,1,d,e,5
5,10,0,0,0,0,0,0,0,6
0,a,b,c,5,10,1,d,e,5
5,10,0,0,0,0,0,0,0,6
0,10,5,0,0,0,0,0,1,5
5,11,0,0,0,0,0,0,0,4
0,a,b,c,5,11,1,d,e,5
5,11,0,0,0,0,0,0,0,6
0,11,5,a,b,c,d,e,1,5
0,13,1,a,b,c,d,e,5,5
5,13,0,0,0,0,0,0,0,6
5,14,0,0,0,0,0,0,0,6
0,14,5,a,b,c,d,e,1,5
5,15,0,0,0,0,0,0,0,3
0,a,b,c,5,15,1,d,e,5
5,15,0,0,0,0,0,0,0,6
0,15,5,a,b,c,d,e,1,5
#my transitions
#useless
0,7,0,0,1,0,2,0,0,5
0,7,0,0,2,1,0,0,0,5
0,7,0,0,0,2,1,0,0,5
#complete loop
5,0,0,1,17,2,0,0,0,21
21,a,b,c,d,e,f,g,h,0
0,0,0,0,0,21,0,0,0,3
0,0,0,1,0,1,1,21,0,22
22,a,b,c,d,e,f,g,h,1
0,0,0,1,0,0,0,22,0,2
0,17,1,i,m,e,k,j,3,23
23,0,0,0,6,2,1,0,0,22
0,0,0,0,0,22,0,0,0,23
23,0,0,0,0,8,0,0,0,24
24,a,b,c,d,e,f,g,h,1
0,0,0,0,0,24,0,0,0,25
25,a,b,c,d,e,f,g,h,0
0,0,0,0,0,25,0,0,0,5
@COLORS
1 255 255 255 #white
2 0   0   255 #blue
3 255 0   0   #red
4 122 107 255 #lavender
5 0   255 255 #cyan
6 0   255 0   #green
8 255 128 128 #pale red
9 200 150 255 #pale lavender
10 200 255 255 #pale lavender-green
11 122 229 255 #lavender-green
12 133 99  99  #light wood
13 100 200 255 #deep lavender-green
14 255 255 0   #red-green
15 255 255 128 #pale red-green
16 150 0   0   #dark red
17 100 66  66  #medium wood
26 100 0   75  #dark blue-red
27 255 0   255 #blue-red
28 209 67  43  #crimson
c0b0p0
 
Posts: 645
Joined: February 26th, 2014, 4:48 pm

PreviousNext

Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 3 guests

cron