## BSFK rulespace

For discussion of other cellular automata.

### BSFK rulespace

Since Generations is usually inadequate for stabilizing rules, I tried to come up with a Generations-like rulespace that would be better for stabilizing explosive rules. This rulespace is expressed in the form of Bb/Ss/Kk/Ff. b and s are sometimes multiple numbers, but k and f are single numbers. Using this, the rule goes as follows.

1. There are three states: living, dead, and destructive.
2. A living cell does not die unless it has k or more destructive neighbors. If it does not have s living neighbors, it becomes a destructive cell in the next generation.
3. If a destructive cell has one or more living neighbors, it dies.
4. A cell is born if it has less than f destructive neighbors and has b living neighbors.

Of course, the natural thing to do would be to try to make a rule like Brian's Brain. B2/S/K1/F2 seems to be the rule most like Brian's Brain, although it has much more oscillator variety. It is somewhat like 2x2 in that you can make arbitarily long period oscillators in this rule.
`x = 192, y = 192, rule = B2SK1F2.A\$A\$3.A\$2.A\$5.A\$4.A\$7.A\$6.A\$9.A\$8.A\$11.A\$10.A\$13.A\$12.A\$15.A\$14.A\$17.A\$16.A\$19.A\$18.A\$21.A\$20.A\$23.A\$22.A\$25.A\$24.A\$27.A\$26.A\$29.A\$28.A\$31.A\$30.A\$33.A\$32.A\$35.A\$34.A\$37.A\$36.A\$39.A\$38.A\$41.A\$40.A\$43.A\$42.A\$45.A\$44.A\$47.A\$46.A\$49.A\$48.A\$51.A\$50.A\$53.A\$52.A\$55.A\$54.A\$57.A\$56.A\$59.A\$58.A\$61.A\$60.A\$63.A\$62.A\$65.A\$64.A\$67.A\$66.A\$69.A\$68.A\$71.A\$70.A\$73.A\$72.A\$75.A\$74.A\$77.A\$76.A\$79.A\$78.A\$81.A\$80.A\$83.A\$82.A\$85.A\$84.A\$87.A\$86.A\$89.A\$88.A\$91.A\$90.A\$93.A\$92.A\$95.A\$94.A\$97.A\$96.A\$99.A\$98.A\$101.A\$100.A\$103.A\$102.A\$105.A\$104.A\$107.A\$106.A\$109.A\$108.A\$111.A\$110.A\$113.A\$112.A\$115.A\$114.A\$117.A\$116.A\$119.A\$118.A\$121.A\$120.A\$123.A\$122.A\$125.A\$124.A\$127.A\$126.A\$129.A\$128.A\$131.A\$130.A\$133.A\$132.A\$135.A\$134.A\$137.A\$136.A\$139.A\$138.A\$141.A\$140.A\$143.A\$142.A\$145.A\$144.A\$147.A\$146.A\$149.A\$148.A\$151.A\$150.A\$153.A\$152.A\$155.A\$154.A\$157.A\$156.A\$159.A\$158.A\$161.A\$160.A\$163.A\$162.A\$165.A\$164.A\$167.A\$166.A\$169.A\$168.A\$171.A\$170.A\$173.A\$172.A\$175.A\$174.A\$177.A\$176.A\$179.A\$178.A\$181.A\$180.A\$183.A\$182.A\$185.A\$184.A\$187.A\$186.A\$189.A\$188.A\$191.A\$190.A!`

Rakes are not as common in this rule, but they still exist.
`x = 12, y = 11, rule = B2SK1F2.2A2\$A2.A\$4.A\$5.A\$6.A\$7.A\$8.A\$9.A\$10.A\$11.A!`
c0b0p0

Posts: 645
Joined: February 26th, 2014, 4:48 pm

### Re: BSFK rulespace

I underestimated my own rule! Here's a nice p4 shuttle oscillator, a real backrake, and a diagonal ship.
`x = 5, y = 6, rule = B2SF2K1B3.B2\$.A.A3\$B3.B!`

`x = 5, y = 6, rule = B2SF2K13.A\$2.A\$A3.A\$A3.A\$2.A\$3.A!`

`x = 5, y = 4, rule = B2SF2K14.A2\$3.A\$A.A!`
c0b0p0

Posts: 645
Joined: February 26th, 2014, 4:48 pm

### Re: BSFK rulespace

Brian Prentice
bprentice

Posts: 552
Joined: September 10th, 2009, 6:20 pm
Location: Coos Bay, Oregon

### Re: BSFK rulespace

@bprentice: Here's the rule table.
`@RULE B2SF2K1@TABLEn_states:3neighborhood:Mooresymmetries:permutevar a={0,2}var b={0,1,2}var c={b}var d={b}var e={b}var f={b}var g={b}var h={b}var i={a}var j={a}var k={a}var l={a}var m={b}0,1,1,a,0,0,0,0,0,11,2,h,b,c,d,e,f,g,02,1,b,c,d,e,f,g,h,01,g,h,m,b,c,d,e,f,2@COLORS# colors from# http://necsi.org/postdocs/sayama/sdsr/java/loops.java# Color.black,Color.blue,Color.red,Color.green,# Color.yellow,Color.magenta,Color.white,Color.cyan,Color.orange1    0    0  2552  255    0    03    0  255    0`

Here's a p24 shuttle and a sparky diagonal ship.
`x = 12, y = 12, rule = B2SF2K12.B2\$11.B\$8.A2\$10.A\$5.A2\$5.A.A\$B2\$9.B!`

`x = 7, y = 6, rule = B2SF2K14.A\$6.A2\$4.A\$3.A\$A.A!`
c0b0p0

Posts: 645
Joined: February 26th, 2014, 4:48 pm

### Re: BSFK rulespace

Here's a failed replicator -> glider converter, which might be usable for a gun.
`x = 8, y = 9, rule = B2SF2K17.B3\$4.A.A2\$4.A2\$B\$.B3.B!`
c0b0p0

Posts: 645
Joined: February 26th, 2014, 4:48 pm

### Re: BSFK rulespace

A Java implementation of the BSFK family of rules is included in the following archive:

http://bprentice.webenet.net/Java%20Square%20Cell/BSFK.zip

The program extends my basic Square Cell program which is briefly described in the file "Java Square Cell.html" which is included in the archive. The Java source code together with some example patterns are also included.

The program supports the generation and exploration of new random rules. To generate a new rule, repeatedly hit the N key until an interesting rule is found. Two dialogs are used to control the automaton. The first of these displays or changes the four parameters B, S, F and K. The second determines which parameters are changed by the random rule generator. Either B and S or F and K or B, S, F and K can be changed.

The results are somewhat disappointing. However, alternate definitions of the rule family can easily be explored by recoding the step method in file BSFK.java.

Brian Prentice
bprentice

Posts: 552
Joined: September 10th, 2009, 6:20 pm
Location: Coos Bay, Oregon

### Re: BSFK rulespace

This makes a nice factory which should be able to be turned into a gun.
`x = 28, y = 6, rule = B2SF2K13.22B2\$B23.A2.B\$B23.A2.B2\$3.22B!`
c0b0p0

Posts: 645
Joined: February 26th, 2014, 4:48 pm

### Re: BSFK rulespace

Here's a nice lightspeed diagonal spaceship rake and a p16.
`x = 226, y = 61, rule = B2SF2K1223.A.A\$222.A2\$208.A.A10.A\$207.A2\$193.A.A10.A\$192.A2\$178.A.A10.A\$177.A2\$163.A.A10.A\$162.A2\$148.A.A10.A\$147.A2\$133.A.A10.A\$132.A2\$118.A.A10.A\$117.A2\$103.A.A10.A\$102.A2\$88.A.A10.A\$87.A2\$73.A.A10.A\$72.A2\$58.A.A10.A\$57.A2\$43.A.A10.A\$42.A2\$28.A.A10.A\$27.A\$49.A\$26.A21.A\$16.A.A10.A18.A30.A\$24.A.3A5.B.B.B7.B30.A\$18.A7.A11.B38.A24.A\$2.A10.A12.A2.B8.B4.B6.B4.B6.B4.B6.B4.A20.A\$A3.A3.B16.4A2.B68.A\$A12.A.A9.2A18.A3.B11.B11.B11.B11.B4.A31.AB\$2.A34.B5.A5.B11.B4.A6.B11.B11.B35.AB6.AB\$3.A26.B2.B21.B9.A67.ABA3.AB\$.A26.A26.A35.B23.B23.AB\$.A23.A17.A9.A3.A5.B5.A17.B23.B23.B5.AB\$2.A23.A.A13.A2.A22.A\$45.A7.A3.A\$42.A6.B5.A5.B23.B23.B19.AB\$43.A.A9.B71.AB\$71.B4.A50.AB\$74.A54.AB\$74.A\$76.A!`

`x = 9, y = 12, rule = B2SF2K13.3B2\$5.A2.B\$8.B\$5.A\$B\$B\$5.A\$8.B\$.A3.A2.B2\$3.3B!`
c0b0p0

Posts: 645
Joined: February 26th, 2014, 4:48 pm

### Re: BSFK rulespace

This is very explosive rule. Two cells are enough for quadratic growth:

`x = 1, y = 2, rule = B2SF2K1A\$A!`

As for linear growth it requires 4 cells (at least of what I could find):

`x = 4, y = 2, rule = B2SF2K1A2.A\$A2.A!`

simsim314

Posts: 1685
Joined: February 10th, 2014, 1:27 pm

### Re: BSFK rulespace

Here is a series of linear puffers:

`x = 69, y = 24, rule = B2SF2K15\$4.2A11.2A\$3.A12.A\$6.A8.A3.A14.2A11.2A13.2A\$20.A12.A\$7.A10.A13.A3.A9.A2.A11.A2.A\$31.A18.A\$7.A22.A17.A11.A\$15.A13.A3.A\$3.A3.A24.A27.A3.A\$31.A\$4.A.A54.A.A!`

Here is p24:

`x = 16, y = 11, rule = B2SF2K1\$7.B\$6.3A\$7.B\$4.A.A.A.A\$3.BAB2.ABABA\$4.A3.B3AB\$7.3A.3A\$8.B3AB\$8.ABABA\$10.A!`

And here is a series of extendable oscillators:

`x = 457, y = 90, rule = B2SF2K131\$431.A\$432.A\$429.A\$430.A\$377.A49.A\$325.A52.A49.A\$326.A48.A49.A\$323.A52.A49.A\$273.A50.A48.A49.A\$274.A46.A52.A49.A\$231.A39.A50.A48.A49.A\$232.A39.A46.A52.A49.A\$189.A39.A39.A50.A48.A49.A\$147.A42.A39.A39.A46.A52.A49.A\$148.A38.A39.A39.A50.A48.A49.A\$115.A29.A42.A39.A39.A46.A52.A49.A\$116.A29.A38.A39.A39.A50.A48.A49.A\$113.A29.A42.A39.A39.A46.A52.A49.A\$114.A29.A38.A39.A39.A50.A48.A49.A\$111.A29.A42.A39.A39.A46.A52.A49.A\$81.A30.A29.A38.A39.A39.A50.A48.A49.A\$82.A26.A29.A42.A39.A39.A46.A52.A49.A\$59.A19.A30.A29.A38.A39.A39.A50.A48.A49.A\$60.A19.A26.A29.A42.A39.A39.A46.A52.A49.A\$37.A19.A19.A30.A29.A38.A39.A39.A50.A48.A49.A\$38.A19.A19.A26.A29.A42.A39.A39.A46.A52.A49.A\$35.A19.A19.A30.A29.A38.A39.A39.A50.A48.A49.A\$36.A19.A19.A26.A29.A42.A39.A39.A46.A52.A49.A\$23.A9.A19.A19.A30.A29.A38.A39.A39.A50.A48.A49.A\$24.A9.A19.A19.A26.A29.A42.A39.A39.A46.A52.A49.A\$21.A9.A19.A19.A30.A29.A38.A39.A39.A50.A48.A49.A\$22.A9.A19.A19.A99.A39.A39.A99.A49.A!`

It can be extended to this direction:

`x = 54, y = 34, rule = B2SF2K15\$41.A\$42.A\$39.A3.A\$40.A3.A\$37.A3.A\$38.A3.A\$35.A3.A\$36.A3.A\$13.A19.A3.A\$14.A19.A3.A\$11.A3.A15.A3.A\$12.A3.A15.A3.A\$9.A3.A15.A3.A\$10.A3.A15.A3.A\$7.A3.A15.A3.A\$8.A3.A15.A3.A\$9.A19.A\$10.A19.A!`

For some reason not all of the "lengths" survive. And what survive or not, is kinda mystery for me.

And here are some diagonal patterns:

`x = 35, y = 41, rule = B2SF2K112\$27.A2\$27.A\$26.A\$22.A10\$7.A.A\$6.A2\$5.A\$14.A2\$14.A\$13.A\$11.A!`

And here is some interesting pattern but it needs to be "stubilized":

`x = 4, y = 4, rule = B2SF2K1.A\$3.A\$2.2A!`

`x = 6, y = 5, rule = B2SF2K14.2A\$2.A\$A\$A\$2.A!`

EDIT

Here is interesting diagonal ship:

`x = 10, y = 9, rule = B2SF2K1A\$4.A\$A\$.A3\$3.A4.A\$4.A\$8.A!`

Synthesis of diagonal rake from "large" glider:

`x = 22, y = 20, rule = B2SF2K18\$17.A\$16.A\$4.B10.A\$15.A\$17.A3\$8.B!`

Another orthogonal puffer:

`x = 23, y = 13, rule = B2SF2K13\$10.A2\$7.A\$5.A3.6A2.A\$5.A\$6.A5.A2.A!`

p8 oscillator:
`x = 8, y = 8, rule = B2SF2K12\$3.A\$4.A2\$2.A.A!`

And finally 3 cell methuselah (defined as pattern that stops to grow in population after N generations):

`x = 3, y = 3, rule = B2SF2K1A2\$A.A!`

stabilizes after 147 generations.

simsim314

Posts: 1685
Joined: February 10th, 2014, 1:27 pm

### Re: BSFK rulespace

Here are some interesting glider syntheses:

`x = 372, y = 146, rule = B2SF2K1253.BA\$255.BA5.2A\$255.BA\$253.BA6.A2.A5\$368.B2.B\$368.A2.A\$369.2B\$369.2A5\$365.B2.B\$365.A2.A\$366.2B\$366.2A13\$366.2A2\$365.A2.A5\$161.A\$51.A111.A\$A52.A109.A156.A\$2.A50.A56.A50.A160.A\$2.A48.A60.A98.A110.A\$A111.A100.A107.A\$110.A102.A106.A\$211.A\$63.2A104.2A\$10.2A\$62.A2.A102.A2.A149.2A\$9.A2.A109.2A\$218.2A100.A2.A\$121.A2.A\$217.A2.A38\$219.A2.A2\$220.2A\$162.A2.A2\$163.2A5\$159.B2.B56.A2.A\$159.A2.A\$160.2B58.2A\$160.2A7\$219.A2.A2\$220.2A\$254.A2.A2\$255.2A\$160.2A2\$159.A2.A2\$219.A2.A2\$220.2A\$254.B2.B3\$219.B2.B32.2B\$219.A2.A\$220.2B\$220.2A13\$220.2A2\$219.A2.A!`

simsim314

Posts: 1685
Joined: February 10th, 2014, 1:27 pm

### Re: BSFK rulespace

simsim314 wrote:And here is some interesting pattern but it needs to be "stubilized":

`x = 4, y = 4, rule = B2SF2K1.A\$3.A\$2.2A!`

`x = 6, y = 5, rule = B2SF2K14.2A\$2.A\$A\$A\$2.A!`

A variation of the first pattern which isn't explosive, but creates many high period oscillators:
`x = 12, y = 12, rule = B2SF2K18.BA\$9.ABA\$9.ABA\$8.ABA\$7.ABA\$6.ABA\$5.ABA\$4.ABA\$B2.ABA\$3ABA\$.2BA\$.2A!`

In the dot field left behind on the NW front by the second pattern, there are some interesting objects propagating, e.g. this one, which is normally a chaotic rake / puffer but is tamed by a row of dots:
`x = 73, y = 22, rule = B2SF2K1B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B2\$67.A3.A\$67.A\$69.A13\$B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B2\$67.A3.A\$67.A\$B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B3.B4.A!`
The latest version of the 5S Project contains over 47,000 spaceships. Tabulated pages up to period 160 are available on the LifeWiki.
wildmyron

Posts: 1108
Joined: August 9th, 2013, 12:45 am

### Re: BSFK rulespace

wildmyron wrote:A variation of the first pattern which isn't explosive, but creates many high period oscillators:

Nice! This comes out to be sort of sawtooth with linear minimums and quadratic maximums.

simsim314

Posts: 1685
Joined: February 10th, 2014, 1:27 pm

### Re: BSFK rulespace

I was thinking that the statement of "destructive cells die if they have 1 or more living neighbors" was a bit arbitrary. So I was thinking that maybe there could be a larger super-set rulespace BSFKL of the format Bb/Ss/Ff/Kk/Ll where rule 3 is replaced by the following:

"A destructive cell only survives if it has l living neighbors. If it does not, it dies."

With this change, Bb/Ss/Ff/Kk rules would be equivalent to Bb/Ss/Ff/Kk/L0.

(just a thought)
Sphenocorona

Posts: 480
Joined: April 9th, 2013, 11:03 pm

### Re: BSFK rulespace

@Sphenocorona: Good idea, but to make the thing more general, I suggest that F, K, and L be changed to groups of numbers, so B2/S/F2/K1 would be B2/S/F2345678/K12345678/L0. Note than in the original notation, F1 stabilizes almost all rules, since a single destructive dot is an indestructible pattern.
@simsim314: All of the lengths can be expressed in the form (2^n - 2), where n is an integer.
`[M2] (golly 2.5)#R B2SF2K11 0 0 1 02 0 0 0 13 0 0 0 21 0 1 0 02 1 4 4 12 1 4 4 03 2 5 5 64 0 3 3 75 0 0 0 82 0 1 1 42 0 0 1 02 4 1 0 42 4 0 0 03 10 11 12 134 0 0 0 143 0 2 2 52 0 4 0 03 0 2 0 173 5 6 6 04 0 16 18 195 15 20 0 02 1 0 4 13 22 0 6 03 2 5 17 64 23 3 0 243 6 0 0 04 7 26 26 05 25 27 0 06 0 9 21 283 2 22 5 64 30 0 26 05 0 0 31 06 32 0 0 07 29 33 0 0`

Here's a (real) diagonally moving rake. If this rule can be proven to have universal construction, a breeder would be proven possible.
`x = 46, y = 41, rule = B2SF2K1A.A\$3.A\$3.A2\$6.B3\$6.B7\$24.A2\$24.A\$25.2A2\$28.2A\$25.A4.A\$26.A\$30.A10\$39.A2\$39.A\$40.2A2\$43.2A\$40.A4.A\$41.A\$45.A!`
c0b0p0

Posts: 645
Joined: February 26th, 2014, 4:48 pm

### Re: BSFK rulespace

Here's a one-time failed replicator -> puffer converter.
`x = 4, y = 5, rule = B2SF2K13.A2\$.A.A2\$B!`
c0b0p0

Posts: 645
Joined: February 26th, 2014, 4:48 pm

### Re: BSFK rulespace

c0b0p0 wrote:to make the thing more general, I suggest that F, K, and L be changed to groups of numbers

This was a very good suggestion!

With reference to this post:

http://www.conwaylife.com/forums/viewtopic.php?f=11&t=1381#p12045

http://bprentice.webenet.net/Java%20Square%20Cell/BSFKL.zip

This archive contains a Java program which implements this suggestion. I expect to add more example rules and patterns from time to time.

Brian Prentice
bprentice

Posts: 552
Joined: September 10th, 2009, 6:20 pm
Location: Coos Bay, Oregon

### Re: BSFK rulespace

Sixteen rules from the family BSFKL have been briefly explored and the results are in the updated archive here:

http://bprentice.webenet.net/Java%20Square%20Cell/BSFKL.zip

These rules were randomly generated by Square Cell.

Rule trees for three of these rules were generated by RuleTreeGen.java which is included with Golly. The rule file together with an example gun for each of these follow.

`@RULE B01378S07F1234567K036L01234578@TREEnum_states=3num_neighbors=8num_nodes=1041 0 0 01 1 1 02 0 0 11 1 2 02 0 0 32 1 3 13 2 4 51 0 2 02 0 0 72 3 7 33 4 8 91 1 0 02 1 3 113 5 9 124 6 10 132 7 3 73 8 4 152 3 7 113 9 15 174 10 16 182 11 11 13 12 17 204 13 18 215 14 19 222 7 3 03 15 9 244 16 10 252 11 0 33 17 24 274 18 25 285 19 26 293 20 27 54 21 28 315 22 29 326 23 30 331 0 0 22 0 35 72 7 7 73 8 36 373 9 37 174 10 38 392 0 11 73 24 17 414 25 39 425 26 40 433 27 41 94 28 42 455 29 43 466 30 44 474 31 45 135 32 46 496 33 47 507 34 48 511 0 2 22 35 0 532 7 53 73 36 54 552 7 7 03 37 55 574 38 56 583 17 57 274 39 58 605 40 59 613 41 27 154 42 60 635 43 61 646 44 62 654 45 63 185 46 64 676 47 65 687 48 66 695 49 67 226 50 68 717 51 69 728 52 70 732 53 1 533 54 2 752 7 53 03 55 75 774 56 76 783 57 77 84 58 78 805 59 79 813 27 8 94 60 80 835 61 81 846 62 82 854 63 83 255 64 84 876 65 85 887 66 86 895 67 87 296 68 88 917 69 89 928 70 90 931 0 1 02 1 3 953 20 27 964 21 28 975 22 29 986 71 91 997 72 92 1008 73 93 1019 74 94 102`

`x = 103, y = 97, rule = B01378S07F1234567K036L012345784.5A\$4.A.A.A\$4.B.A.B2\$2AB\$A\$3A29.5A\$A31.A.A.A\$2AB11.B2A15.B.A.B\$16.A\$14.3A11.2AB\$16.A11.A\$14.B2A11.3A\$28.A\$8.B.A.B15.2AB11.B2A\$8.A.A.A31.A\$8.5A29.3A\$44.A\$42.B2A2\$36.B.A.B\$24.2A10.A.A.A\$.2AB19.2A11.5A\$.A20.2A.AB\$.3A18.A.AB\$.A22.B\$.2AB13\$8.B31.B31.B\$6.A.AB28.A.AB28.A.AB\$6.2A.AB27.2A.AB27.2A.AB\$7.2A.AB27.2A.AB27.2A.AB\$8.2A.AB27.2A.AB27.2A.AB\$9.2A.AB27.2A.AB27.2A.AB\$10.2A.AB27.2A.AB27.2A.AB\$11.2A.A28.2A.A28.2A.A\$12.3A29.3A29.3A\$8.5A\$8.A.A.A70.2A\$8.B.A.B69.2A.B\$81.2A.B\$14.B2A63.2A.B\$16.A62.2A.B\$14.3A35.B.B.B.B19.2A.B\$16.A34.A25.2A.B\$2AB11.B2A34.8A.B16.A.B\$A57.A18.A\$3A55.A.B\$A46.2A9.A\$2AB43.B.A9.A.B\$48.A9.A\$4.B.A.B37.B.A9.A.B\$4.A.A.A39.A9.2A\$4.5A37.B.A\$48.A\$46.B.8A\$55.A\$48.B.B.B.B2\$62.3A\$64.2A\$63.B.A\$65.A8\$83.2A\$46.B.B.B.B29.2A.B4.B.B.B.B\$45.A35.2A.B12.A\$45.8A.B25.2A.B4.B.8A\$52.A26.2A.B7.A\$52.A.B23.2A.B6.B.A\$41.2A9.A24.2A.B9.A9.2A\$40.B.A9.A.B22.A.B8.B.A9.A.B\$42.A9.A24.A12.A9.A\$40.B.A9.A.B33.B.A9.A.B\$42.A9.2A35.2A9.A\$40.B.A57.A.B\$42.A16.9A32.A\$40.B.8A9.A7.A25.8A.B\$49.A10.B.B.B.B26.A\$42.B.B.B.B45.B.B.B.B!`

`@RULE B27S678F01378K1678L0123467@TREEnum_states=3num_neighbors=8num_nodes=1081 0 2 01 0 0 02 0 0 11 1 2 02 0 3 12 1 1 03 2 4 51 1 0 02 3 0 72 1 7 03 4 8 92 0 0 03 5 9 114 6 10 122 7 1 03 8 2 143 9 14 114 10 15 163 11 11 114 12 16 185 13 17 191 0 2 22 0 21 13 2 22 52 0 0 33 14 5 244 15 23 252 0 3 03 11 24 274 16 25 285 17 26 293 11 27 114 18 28 315 19 29 326 20 30 331 0 1 01 0 0 22 21 35 362 1 36 03 22 37 383 5 38 114 23 39 402 3 0 03 24 11 424 25 40 435 26 41 443 27 42 114 28 43 465 29 44 476 30 45 483 11 11 24 31 46 505 32 47 516 33 48 527 34 49 531 1 1 02 35 55 12 36 1 213 37 56 572 0 21 03 38 57 594 39 58 603 11 59 114 40 60 625 41 61 633 42 11 114 43 62 655 44 63 666 45 64 674 46 65 505 47 66 696 48 67 707 49 68 712 1 1 13 2 2 734 50 50 745 51 69 756 52 70 767 53 71 778 54 72 781 0 1 22 55 80 72 1 7 353 56 81 822 21 35 213 57 82 844 58 83 853 59 84 594 60 85 875 61 86 884 62 87 625 63 88 906 64 89 914 65 62 505 66 90 936 67 91 947 68 92 955 69 93 756 70 94 977 71 95 988 72 96 993 73 73 734 74 74 1015 75 75 1026 76 97 1037 77 98 1048 78 99 1059 79 100 106`

`x = 72, y = 79, rule = B27S678F01378K1678L012346760.A\$52.A14.BA\$50.A.A14.BA\$12.AB6.A27.AB14.A.A\$12.AB6.A.A25.AB14.A\$14.A.A6.BA31.A\$16.A7.B\$21.B3.A\$21.AB\$25.2A2\$70.2A\$70.2B\$23.2A44.A2\$2A22.A43.A\$2B23.2B42.2B\$2.A22.2A44.A2\$2.2A66.2A\$68.B2.B\$68.2A2\$2A66.A\$4.BA63.2B\$.A3.B65.A\$2.B7.A\$2.AB6.A.A57.A\$4.A.A6.BA53.2B\$6.A6.BA53.2A23\$56.AB4.A\$56.AB3.B2.A\$58.A2.B3.BA\$60.A4.B.A\$64.A3B\$65.A2.A2\$69.A\$67.2B\$66.A2\$67.A\$68.2B\$43.2A23.2A\$43.2B\$45.A2\$46.A\$44.2B\$43.A2\$44.A2.A\$45.3BA\$45.A.B4.A\$46.AB3.B2.A\$48.A2.B3.BA\$50.A4.BA!`

`@RULE B12367S147F145678K1267L0125@TREEnum_states=3num_neighbors=8num_nodes=1281 0 2 01 0 1 01 0 0 02 0 1 21 1 0 02 1 0 42 2 4 23 3 5 61 0 2 22 0 8 42 4 4 23 5 9 102 2 2 03 6 10 124 7 11 131 0 1 21 1 0 22 8 15 162 4 16 23 9 17 182 2 2 13 10 18 204 11 19 212 0 1 03 12 20 234 13 21 245 14 22 251 0 0 22 15 0 272 16 27 273 17 28 292 2 27 03 18 29 314 19 30 321 1 1 02 1 0 343 20 31 354 21 32 365 22 33 372 0 34 03 23 35 394 24 36 405 25 37 416 26 38 422 0 8 22 27 2 273 28 44 452 27 27 83 29 45 474 30 46 481 1 2 02 0 8 503 31 47 514 32 48 525 33 49 532 34 50 343 35 51 554 36 52 565 37 53 576 38 54 582 0 34 23 39 55 604 40 56 615 41 57 626 42 58 637 43 59 642 2 16 23 44 17 662 27 2 153 45 66 684 46 67 691 1 2 22 8 15 713 47 68 724 48 69 735 49 70 742 50 71 503 51 72 764 52 73 775 53 74 786 54 75 792 34 50 43 55 76 814 56 77 825 57 78 836 58 79 847 59 80 853 60 81 64 61 82 875 62 83 886 63 84 897 64 85 908 65 86 912 15 8 162 16 16 273 17 93 943 66 94 314 67 95 962 15 0 153 68 31 984 69 96 995 70 97 1002 71 15 713 72 98 1024 73 99 1035 74 100 1046 75 101 1052 50 71 43 76 102 1074 77 103 1085 78 104 1096 79 105 1107 80 106 1112 4 4 43 81 107 1134 82 108 1145 83 109 1156 84 110 1167 85 111 1178 86 112 1182 2 4 03 6 113 1204 87 114 1215 88 115 1226 89 116 1237 90 117 1248 91 118 1259 92 119 126`

`x = 24, y = 24, rule = B12367S147F145678K1267L0125A16.A.A\$.A15.B.B\$A16.A.A2\$21.3A2\$21.3A16\$21.A.A\$22.B!`

Brian Prentice
bprentice

Posts: 552
Joined: September 10th, 2009, 6:20 pm
Location: Coos Bay, Oregon

### Re: BSFK rulespace

@bprentice: Something must be wrong with your rule. The updated rule definiton was as follows.
1. There are three states: living, dead, and destructive.
2. A living cell does not die unless it has k destructive neighbors. If it does not have s living neighbors, it becomes a destructive cell in the next generation.
3. If a destructive cell does not have l living neighbors, it dies.
4. A cell is born if it does not have f destructive neighbors and has b living neighbors.
Row 1 evolves into Row 2. It should evolve into Row 3.
x = 25, y = 16, rule = B12367S147F145678K1267L0125
.A11.B8.2A6\$.B20.2A7\$3A18.4A\$ABA10.B7.4A\$3A18.4A!
c0b0p0

Posts: 645
Joined: February 26th, 2014, 4:48 pm

### Re: BSFK rulespace

c0b0p0 wrote:Something must be wrong with your rule.

This rule family is expressed in the form of Bb/Ss/Ff/Kk/Ll.
Each of b, s, f, k and l can be multiple unique numbers in the range 0 to 8.

A cell can be in one of three states: live, dead or destructive.
A live cell dies if it has k destructive neighbors.
If a live cell does not have k destructive neighbors but does have s live neighbors it remains alive.
If a live cell has neither k destructive neighbors nor s live neighbors it becomes a destructive cell.
A destructive cell dies if it has l live neighbors and remains a destructive cell otherwise.
A cell is born if it has f destructive neighbors and b live neighbors.

Here is the Java Step method code:

`  public int step(int row, int column)  {    int neighbors[] =    {      squareCell.getNeighbor(row - 1, column - 1),      squareCell.getNeighbor(row    , column - 1),      squareCell.getNeighbor(row + 1, column - 1),      squareCell.getNeighbor(row - 1, column    ),      squareCell.getNeighbor(row + 1, column    ),      squareCell.getNeighbor(row - 1, column + 1),      squareCell.getNeighbor(row    , column + 1),      squareCell.getNeighbor(row + 1, column + 1)    };    int cell = squareCell.getNeighbor(row, column);    int count1 = 0;    int count2 = 0;    for (int i = 0; i < 8; i++)      if (neighbors[i] == 1)        count1++;      else if (neighbors[i] == 2)        count2++;    if (cell == 1)      if (k[count2] == 1)        return 0;      else      {        if (s[count1] == 1)          return 1;        return 2;      }    else if (cell == 2)      if (l[count1] == 1)        return 0;      else        return 2;    else      if ((f[count2] == 1) && (b[count1] == 1))        return 1;    return 0;  } `

Since no rules have been published using your revised definition I suggest we use mine.

Brian Prentice
bprentice

Posts: 552
Joined: September 10th, 2009, 6:20 pm
Location: Coos Bay, Oregon

### Re: BSFK rulespace

Two more rules have been added to the archive here:

http://bprentice.webenet.net/Java%20Square%20Cell/BSFKL.zip

This brings the total to eighteen. The BSFKL rule family seems to be rich in interesting rules and with Square Cell they are easy to find.

A Golly rule tree has been generated for one of the new rules and this rule file together with a diagonal gun and some diagonal ships are here:

`@RULE B136S0248F124568K04567L01278@TREEnum_states=3num_neighbors=8num_nodes=1201 0 0 01 0 1 02 0 0 11 1 2 02 0 0 32 1 3 13 2 4 51 0 0 22 0 7 12 3 1 33 4 8 93 5 9 54 6 10 111 1 2 22 7 7 132 1 13 13 8 14 151 0 2 02 3 1 173 9 15 184 10 16 192 1 17 03 5 18 214 11 19 225 12 20 231 0 1 22 7 7 252 13 25 133 14 26 273 15 27 154 16 28 291 1 0 02 17 1 313 18 15 324 19 29 335 20 30 342 0 31 03 21 32 364 22 33 375 23 34 386 24 35 391 0 2 22 7 7 412 25 41 253 26 42 432 13 25 413 27 43 454 28 44 462 1 41 03 15 45 484 29 46 495 30 47 502 31 0 313 32 48 524 33 49 535 34 50 546 35 51 553 36 52 364 37 53 575 38 54 586 39 55 597 40 56 602 7 0 132 41 13 413 42 62 633 43 63 434 44 64 651 1 0 22 41 25 673 45 43 684 46 65 695 47 66 702 0 67 03 48 68 724 49 69 735 50 70 746 51 71 753 52 72 524 53 73 775 54 74 786 55 75 797 56 76 804 57 77 575 58 78 826 59 79 837 60 80 848 61 81 852 0 0 172 13 17 133 62 87 883 63 88 634 64 89 902 25 41 73 43 63 924 65 90 935 66 91 942 67 7 673 68 92 964 69 93 975 70 94 986 71 95 993 72 96 724 73 97 1015 74 98 1026 75 99 1037 76 100 1042 31 0 03 52 72 1064 77 101 1075 78 102 1086 79 103 1097 80 104 1108 81 105 1113 36 106 24 57 107 1135 82 108 1146 83 109 1157 84 110 1168 85 111 1179 86 112 118`

`x = 47, y = 78, rule = B136S0248F124568K04567L012784.B.2A9.2A.B\$4.B2.B9.B2.B\$4.2A.B9.B.2A2\$B.2A17.2A.B\$B2.B17.B2.B\$2A.B17.B.2A2\$2A.B17.B.2A\$B2.B17.B2.B\$B.2A17.2A.B2\$4.2A.B9.B.2A\$4.B2.B9.B2.B\$4.B.2A9.2A.B18\$20.2A.B\$20.B2.B\$20.B.2A2\$24.2A.B\$24.B2.B\$24.B.2A\$19.2A.B\$19.B2.B\$19.B.2A2\$23.2A.B\$23.B2.B\$23.B.2A18\$26.B.2A9.2A.B\$26.B2.B9.B2.B\$26.2A.B9.B.2A2\$22.B.2A17.2A.B\$22.B2.B17.B2.B\$22.2A.B17.B.2A2\$22.2A.B17.B.2A\$22.B2.B17.B2.B\$22.B.2A17.2A.B2\$26.2A.B9.B.2A\$26.B2.B9.B2.B\$26.B.2A9.2A.B!`

`x = 103, y = 40, rule = B136S0248F124568K04567L01278.A44.A44.A\$A2.A41.A2.A41.A2.A\$2.2A43.2A43.2A\$3A7.B34.3A7.B34.3A7.B\$10.B44.B44.B\$9.2A43.2A43.2A3\$96.A2B\$96.A\$98.A\$96.2BA\$100.A2B\$100.A\$102.A\$100.2BA\$59.A2B\$59.A\$61.A\$59.2BA\$63.A2B\$63.A\$65.A\$63.2BA9\$30.A2B\$30.A\$32.A\$30.2BA\$34.A2B\$34.A\$36.A\$34.2BA!`

Brian Prentice
bprentice

Posts: 552
Joined: September 10th, 2009, 6:20 pm
Location: Coos Bay, Oregon

### Re: BSFK rulespace

The rule B2SK1F2, which started this thread, is also a member of the BSFKL rule family. It is rule B2SF01K12345678L12345678 in that family. Here is the Golly rule tree:

`@RULE B2SF01K12345678L12345678@TREEnum_states=3num_neighbors=8num_nodes=601 0 2 21 0 2 01 0 0 22 0 1 21 1 2 01 0 0 02 1 4 52 2 5 23 3 6 71 1 0 02 4 1 92 5 9 53 6 10 113 7 11 74 8 12 132 1 1 52 9 5 53 10 15 162 5 5 53 11 16 184 12 17 193 7 18 74 13 19 215 14 20 223 15 15 183 16 18 184 17 24 253 18 18 184 19 25 275 20 26 284 21 27 215 22 28 306 23 29 314 24 24 274 25 27 275 26 33 344 27 27 275 28 34 366 29 35 375 30 36 306 31 37 397 32 38 405 33 33 365 34 36 366 35 42 435 36 36 366 37 43 457 38 44 466 39 45 397 40 46 488 41 47 496 42 42 456 43 45 457 44 51 526 45 45 457 46 52 548 47 53 557 48 54 488 49 55 579 50 56 58`

Unfortunately, no gun or replicator has yet been found in this rule so here is a diagonal ship:

`x = 63, y = 70, rule = B2SF01K12345678L1234567851.A.A\$50.A3.A2\$48.B.A3.A\$47.2A2.A.A\$49.A\$46.A10.A2\$56.A2\$57.A\$58.A.A8\$50.2A\$52.A\$49.A13\$53.2A\$55.A\$52.A11\$45.A\$47.A\$48.A7.2A\$58.A\$48.A6.A2\$40.A\$48.B\$6.A34.A\$4.A37.A.A\$3.BA43.B2.B\$5.A15.A\$.A.A15.A\$A3.A14.A31.B2.B\$20.A15.A\$A3.A29.A\$.A.A30.A19.B2.B\$35.A15.A7.2A\$8.A40.A11.A\$6.A3.A38.A8.A\$11.A38.A\$59.A\$11.A48.A.A!`

Brian Prentice
bprentice

Posts: 552
Joined: September 10th, 2009, 6:20 pm
Location: Coos Bay, Oregon

### Re: BSFK rulespace

Here is a rake which shoots only to one side.
`x = 197, y = 181, rule = B2SF2K1A.A\$3.A3.A\$8.A\$8.A\$22.A\$4.A2.B15.A\$23.A\$21.A15.A\$7.B2.B27.A\$38.A\$36.A15.A\$10.B2.B39.A\$53.A\$6.A44.A15.A\$3.A9.B2.B7.A43.A\$4.2A62.A\$24.A41.A15.A\$16.B2.B5.2A56.A\$83.A\$25.B55.A15.A\$19.B2.B75.A\$98.A\$30.A.A63.A15.A\$22.B90.A\$30.A.A80.A\$111.A15.A\$25.B102.A\$128.A\$9.A116.A15.A\$6.A21.B114.A44.A\$7.2A134.A\$141.A15.A30.A\$31.B7.A118.A30.2A\$158.A\$39.A116.A15.A16.B\$34.B5.2A131.A\$173.A\$40.B130.A15.A6.A.A\$37.B150.A\$188.A5.A.A\$45.A.A138.A2\$45.A.A\$12.A\$9.A\$10.2A13\$15.A\$12.A\$13.2A13\$18.A\$15.A\$16.2A13\$21.A\$18.A\$19.2A13\$24.A\$21.A\$22.2A13\$27.A\$24.A\$25.2A13\$30.A\$27.A\$28.2A13\$33.A\$30.A\$31.2A13\$36.A\$33.A\$34.2A13\$39.A\$36.A\$37.2A!`
c0b0p0

Posts: 645
Joined: February 26th, 2014, 4:48 pm

### Re: BSFK rulespace

Here is a rule that was fun to explore:

`@RULE B2358S04567F0456K2567L01235@TREEnum_states=3num_neighbors=8num_nodes=1221 0 1 01 0 2 02 0 1 01 1 2 02 1 3 11 0 0 02 0 1 53 2 4 62 3 3 12 1 1 53 4 8 92 5 5 03 6 9 114 7 10 121 0 1 22 3 14 13 8 15 92 5 5 13 9 9 174 10 16 183 11 17 24 12 18 205 13 19 211 1 1 02 14 23 142 1 14 53 15 24 253 9 25 174 16 26 272 1 1 13 17 17 294 18 27 305 19 28 313 2 29 64 20 30 335 21 31 346 22 32 352 23 14 01 0 0 22 14 0 383 24 37 392 5 38 13 25 39 414 26 40 422 1 1 33 17 41 444 27 42 455 28 43 462 1 3 53 29 44 484 30 45 495 31 46 506 32 47 512 5 5 53 6 48 534 33 49 545 34 50 556 35 51 567 36 52 572 14 14 142 0 14 53 37 59 602 38 5 143 39 60 624 40 61 632 1 14 33 41 62 654 42 63 665 43 64 671 1 0 02 3 3 693 44 65 704 45 66 715 46 67 726 47 68 732 5 69 53 48 70 754 49 71 765 50 72 776 51 73 787 52 74 793 53 75 534 54 76 815 55 77 826 56 78 837 57 79 848 58 80 851 1 2 22 14 87 142 14 14 383 59 88 892 5 38 03 60 89 914 61 90 922 14 0 143 62 91 944 63 92 955 64 93 962 3 14 693 65 94 984 66 95 995 67 96 1006 68 97 1012 69 69 693 70 98 1034 71 99 1045 72 100 1056 73 101 1067 74 102 1073 75 103 754 76 104 1095 77 105 1106 78 106 1117 79 107 1128 80 108 1133 53 75 114 81 109 1155 82 110 1166 83 111 1177 84 112 1188 85 113 1199 86 114 120`

It is Rule 019 in the updated achieve here:

http://bprentice.webenet.net/Java%20Square%20Cell/BSFKL.zip

The following two ships show the rhythms in the rule:

`x = 153, y = 35, rule = B2358S04567F0456K2567L0123557.A\$56.BA11.BA\$9.A45.2BA12.A53.A\$8.BA11.BA32.2B12.BA52.BA11.BA\$7.2BA12.A41.A57.2BA12.A\$7.2B12.BA99.2B12.BA\$16.A33.A80.A\$49.BA\$2.A45.2BA21.A\$.BA45.2B25.ABA5.ABA\$2BA21.A32.A7.A9.ABA5.ABA53.A\$2B25.ABA5.ABA34.A69.ABA5.ABA\$9.A7.A9.ABA5.ABA104.ABA5.ABA\$24.A114.A\$78.AB14.AB14.AB3.BA\$78.AB14.AB14.AB4.A\$30.AB14.AB14.AB14.AB14.AB14.AB4.A\$30.AB14.AB14.AB14.AB14.AB14.AB.A3.A4.A2.A4.A2.A\$30.AB14.AB14.AB14.AB14.AB14.AB4.A\$78.AB14.AB14.AB4.A\$78.AB14.AB14.AB3.BA\$24.A114.A\$9.A7.A9.ABA5.ABA104.ABA5.ABA\$2B25.ABA5.ABA34.A69.ABA5.ABA\$2BA21.A32.A7.A9.ABA5.ABA53.A\$.BA45.2B25.ABA5.ABA\$2.A45.2BA21.A\$49.BA\$16.A33.A80.A\$7.2B12.BA99.2B12.BA\$7.2BA12.A41.A57.2BA12.A\$8.BA11.BA32.2B12.BA52.BA11.BA\$9.A45.2BA12.A53.A\$56.BA11.BA\$57.A!`

`x = 118, y = 114, rule = B2358S04567F0456K2567L01235BA\$.A9.BA\$BA10.A\$11.BA\$3.A19\$27.3A\$27.B.B17\$69.BA\$17.BA50.BA11.BA\$18.A11.BA37.BA12.A\$17.BA12.A36.ABA11.BA\$30.BA37.AB7.A\$20.A\$10.BA16.2A21.3A9.A\$2.BA7.A16.2B21.B.B8.BA\$3.A6.BA16.2A33.A14.2B6.A\$2.BA32.A25.BA14.2A10.A7.A\$13.A28.A.B.A15.AB6.A7.2A10.A7.A\$21.A20.A.B.A31.2B6.A30.A\$36.A79.BA\$28.3A86.A\$28.3B12.2A15.A8.A11.A11.A11.A11.A\$28.2AB3.BA.AB3.BA25.AB6.A2B2AB10.AB10.AB10.A\$28.2AB3.BA.AB3.BA25.AB6.A2B2AB10.AB10.AB10.A\$28.3B12.2A15.A8.A11.A11.A11.A11.A\$28.3A86.A\$36.A79.BA\$21.A20.A.B.A31.2B6.A30.A\$13.A28.A.B.A15.AB6.A7.2A10.A7.A\$2.BA32.A25.BA14.2A10.A7.A\$3.A6.BA16.2A33.A14.2B6.A\$2.BA7.A16.2B21.B.B8.BA\$10.BA16.2A21.3A9.A\$20.A\$30.BA37.AB7.A\$17.BA12.A36.ABA11.BA\$18.A11.BA37.BA12.A\$17.BA50.BA11.BA\$69.BA17\$27.B.B\$27.3A19\$3.A\$11.BA\$BA10.A\$.A9.BA\$BA!`

Brian Prentice
bprentice

Posts: 552
Joined: September 10th, 2009, 6:20 pm
Location: Coos Bay, Oregon

### Re: BSFK rulespace

Here is Rule 024:

`@RULE B1S34F12467K2346L0123568@TREEnum_states=3num_neighbors=8num_nodes=1191 0 2 02 0 0 01 1 2 02 0 0 21 0 0 02 0 2 43 1 3 51 0 1 02 0 7 01 1 0 02 2 0 93 3 8 102 4 9 43 5 10 124 6 11 131 0 1 22 7 15 72 0 7 43 8 16 172 9 4 43 10 17 194 11 18 202 4 4 43 12 19 224 13 20 235 14 21 242 15 0 152 7 15 43 16 26 273 17 27 224 18 28 292 4 4 93 19 22 314 20 29 325 21 30 332 4 9 03 22 31 354 23 32 365 24 33 376 25 34 381 0 0 22 15 0 403 26 1 412 4 40 43 27 41 434 28 42 443 22 43 224 29 44 465 30 45 472 9 4 03 31 22 494 32 46 505 33 47 516 34 48 522 0 0 43 35 49 544 36 50 555 37 51 566 38 52 577 39 53 581 0 2 22 0 60 03 1 61 542 40 4 403 41 54 634 42 62 643 43 63 434 44 64 665 45 65 672 4 4 03 22 43 694 46 66 705 47 67 716 48 68 722 0 0 93 49 69 744 50 70 755 51 71 766 52 72 777 53 73 783 54 74 354 55 75 805 56 76 816 57 77 827 58 78 838 59 79 842 60 0 602 0 60 43 61 86 873 54 87 224 62 88 893 63 22 634 64 89 915 65 90 922 4 40 73 43 63 944 66 91 955 67 92 966 68 93 973 69 94 174 70 95 995 71 96 1006 72 97 1017 73 98 1022 9 4 23 74 17 1044 75 99 1055 76 100 1066 77 101 1077 78 102 1088 79 103 1092 0 2 03 35 104 1114 80 105 1125 81 106 1136 82 107 1147 83 108 1158 84 109 1169 85 110 117`

It supports numerous small objects that emit streams of gliders. Here are some examples:

`x = 6, y = 8, rule = B1S34F12467K2346L01235682A\$2A.B\$5.B\$5.B\$4.2A2\$.2A\$.2A!`

`x = 9, y = 8, rule = B1S34F12467K2346L01235687.2A\$.2A4.2A\$.2A3.A\$5.A\$5.A2B2\$2A\$2A!`

`x = 19, y = 16, rule = B1S34F12467K2346L01235687.2A\$.2A4.2A\$.2A\$6.B\$6.2A2\$2A8.A\$2A6.2BA7\$17.2A\$17.2A!`

`x = 23, y = 21, rule = B1S34F12467K2346L01235683.B3.2A\$.2A4.2A\$.2A3.A2\$8.B\$2.A5.B\$2A5.2A\$2A4\$15.B\$15.B\$14.2A5\$21.2A\$15.2A4.2A\$15.2A!`

`x = 19, y = 21, rule = B1S34F12467K2346L01235686.2A\$2A4.2A\$2A8\$10.B\$10.B\$9.2A6\$17.2A\$11.2A4.2A\$11.2A!`

`x = 6, y = 3, rule = B1S34F12467K2346L01235685.A\$3.ABA\$2BA!`

`x = 5, y = 6, rule = B1S34F12467K2346L01235682A\$B\$B3.A\$3.B\$3.B\$4.A!`

The rule also has a diagonal replicator from which oscillators and guns can be constructed. Here is an example:

`x = 112, y = 60, rule = B1S34F12467K2346L012356884.2BA11.A2B\$86.A11.A\$84.A15.A\$84.A2B11.2BA3\$78.2BA23.A2B\$80.A23.A\$78.A27.A\$69.2A8.2B23.2B\$70.B4.3B29.3B\$70.B\$69.3A3.B33.B\$65.3A5.B2.B31.B2.B\$66.B6.B2.A31.A2.B\$63.2A.B\$64.B.2A5.B2.A31.A2.B\$64.B8.B2.B31.B2.B\$63.3A9.B33.B\$59.3A\$60.B14.3B29.3B\$10.2BA3.A2B38.2A.B18.2B23.2B\$12.A3.A41.B.2A16.A27.A\$10.A7.A39.B21.A23.A\$10.A2B3.2BA38.3A18.2BA23.A2B\$6.2BA11.A2B30.3A\$8.A11.A33.B\$6.A15.A28.2A.B29.A2B11.2BA\$6.A2B11.2BA29.B.2A28.A15.A\$52.B33.A11.A\$51.3A30.2BA11.A2B\$2BA23.A2B18.3A\$2.A23.A21.B\$A27.A19.B\$A2B23.2BA19.2A12\$A2B23.2BA\$A27.A\$2.A23.A\$2BA23.A2B3\$6.A2B11.2BA\$6.A15.A\$8.A11.A\$6.2BA11.A2B\$10.A2B3.2BA5.B\$10.A7.A5.B\$12.A3.A7.2A\$10.2BA3.A2B!`

Brian Prentice
bprentice

Posts: 552
Joined: September 10th, 2009, 6:20 pm
Location: Coos Bay, Oregon

Next

### Who is online

Users browsing this forum: 2718281828 and 5 guests