ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

tlife (B3/S2-i34q)

For discussion of other cellular automata.

Re: tlife (B3/S2-i34q)

Postby BlinkerSpawn » September 11th, 2017, 11:23 pm

A for awesome wrote:A P2:
x = 29, y = 27, rule = B3/S2-i34q
13b3o$4bo19bo$2bobo6bobobobo6bobo$6bo15bo$2o5b2obobo3bobob2o5b2o2$bo7b
2o7b2o7bo$12bo3bo$2b2o7b2o3b2o7b2o2$3bo21bo2$4b2o17b2o2$4bo19bo2$2b2o
21b2o$11b2o3b2o$2bo7bobo3bobo7bo2$2o6bob2o5b2obo6b2o$7bo13bo$bo5bo3b2o
3b2o3bo5bo$3bobo17bobo$3bo8b2ob2o8bo2$14bo!
Probably reducible.

Very late reduction but a reduction nonetheless:
x = 21, y = 17, rule = B3/S2-i34q
9b3o2$3bo3bobobobo3bo$bobo13bobo$2bobobobo3bobobobo$2bo15bo$5b2o7b2o$
3bo4bo3bo4bo$3bo3b2o3b2o3bo$2bo15bo2$obo15bobo$bo2bo11bo2bo$2b3o11b3o$
5b2o7b2o$4bo2bo5bo2bo$5b2o7b2o!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1467
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tlife (B3/S2-i34q)

Postby A for awesome » September 12th, 2017, 10:37 am

M. I. Wright wrote:@A for awesome: Very nice partials! This still with gfind?

Thanks! No, they're not gfind partials — I found them while testing a non-totalistic hack to qfind. It's not really worth posting at the moment, so nobody should get their hopes up.
M. I. Wright wrote:Lastly, here's the "trans-disemiMWSS" gun, in isolation, as a p240:
rle

I like the period-tripling reaction! But shouldn't that be p480?...
BlinkerSpawn wrote:
A for awesome wrote:A P2:
rle
Probably reducible.

Very late reduction but a reduction nonetheless:
x = 21, y = 17, rule = B3/S2-i34q
9b3o2$3bo3bobobobo3bo$bobo13bobo$2bobobobo3bobobobo$2bo15bo$5b2o7b2o$
3bo4bo3bo4bo$3bo3b2o3b2o3bo$2bo15bo2$obo15bobo$bo2bo11bo2bo$2b3o11b3o$
5b2o7b2o$4bo2bo5bo2bo$5b2o7b2o!

Trivial reduction to your reduction:
x = 19, y = 15, rule = B3/S2-i34q
3bo4b3o4bo$bobo11bobo$2bobobobobobobobo$2bo13bo$5b2o5b2o$3bo4bobo4bo$
3bo3b2ob2o3bo$2bo13bo2$obo13bobo$bo2bo9bo2bo$2b3o9b3o$5b2o5b2o$4bo2bo
3bo2bo$5b2o5b2o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1407
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: tlife (B3/S2-i34q)

Postby M. I. Wright » September 12th, 2017, 9:15 pm

A for awesome wrote:Thanks! No, they're not gfind partials — I found them while testing a non-totalistic hack to qfind. It's not really worth posting at the moment, so nobody should get their hopes up.
I see (and wow, I'd completely forgotten what qfind was before looking up its thread again). Looks like it's serving its purpose well thus far, though!
I like the period-tripling reaction! But shouldn't that be p480?...
That it should, my bad - edited.
-----
I've just realized there's a simple PULL6 salvo on the same lanes as BlinkerSpawn's PULL1:
x = 8, y = 11, rule = B3/S2-i34q
6bo$6bo$5b3o2$3o$bo4$3b2o$3b2o!
And it allows for the important reactions:
x = 103, y = 13, rule = B3/S2-i34q
14bo22bo31bo30bo$12bo3bo18b2o2bo27b2o2bo26bo3bo$11bo25bo31bo27bo$11bo
85bo$11b6o80b6o$34bo31bo$34b3o29b3o$34bo31bo$9b6o80b6o$bobo5bo85bo$o2b
o5bo85bo$bobo6bo3bo81bo3bo$12bo85bo!

This will make round 2 of the sawtooth effort a lot simpler than the first one, since the block'll get pulled 24(!) cells instead of a meager 3 each salvo cycle, allowing for much lower periods on the tester reactions (and hopefully it'll need a much less liberal application of cellular sticky-tack to fix any timing mishaps). Hope I can finish it soon.

EDIT: revisiting the period-tripling reflector from forever ago, trying to make a viable splitter out of it. Close:
x = 16, y = 22, rule = B3/S2-i34q
13bo$13b3o$14b2o$14bo$15bo$15bo12$bo$3o$3bo9b2o$2bo10bobo$13bo!
(the reaction that makes a glider from the right-hand spinner is really versatile; on the previous page I listed two 90deg glider reflectors with the same reaction)
M. I. Wright
 
Posts: 313
Joined: June 13th, 2015, 12:04 pm

Re: tlife (B3/S2-i34q)

Postby A for awesome » September 30th, 2017, 11:15 am

Potential c/7 pushalong:
x = 17, y = 7, rule = B3/S2-i34q
o2bo9bo2bo$obo11bobo$5bo5bo$3b4o3b4o$2bo4bobo4bo$2bob2obobob2obo$5b2o
3b2o!

Unlikely, though.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1407
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: tlife (B3/S2-i34q)

Postby BlinkerSpawn » September 30th, 2017, 11:34 am

M. I. Wright wrote:EDIT: revisiting the period-tripling reflector from forever ago, trying to make a viable splitter out of it. Close:
x = 16, y = 22, rule = B3/S2-i34q
13bo$13b3o$14b2o$14bo$15bo$15bo12$bo$3o$3bo9b2o$2bo10bobo$13bo!
(the reaction that makes a glider from the right-hand spinner is really versatile; on the previous page I listed two 90deg glider reflectors with the same reaction)

Feels nice to be part of this thread again:
x = 41, y = 22, rule = B3/S2-i34q
13bo$13b3o$14b2o$14bo$15bo17bob2o$15bo18b2o2$39b2o$29b2ob2o4bo$30bob2o
$31bo2bo$33bobo$33b2o$34bo4$bo$3o$3bo9b2o$2bo10bobo$13bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1467
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tlife (B3/S2-i34q)

Postby A for awesome » September 30th, 2017, 4:09 pm

Component (probably reducible — 5 or 6 G seems excessive for a pi inserter):
x = 16, y = 16, rule = B3/S2-i34q
10bo$8b2o$9b2o4$bo$2bo9bo$3o4b2o2bobo$6bobo3bobo$3b2o2bo6bo$2bobo9b2o$
4bo$7b2o$6b2o$8bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1407
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: tlife (B3/S2-i34q)

Postby BlinkerSpawn » September 30th, 2017, 5:15 pm

A for awesome wrote:Component (probably reducible — 5 or 6 G seems excessive for a pi inserter):
x = 16, y = 16, rule = B3/S2-i34q
10bo$8b2o$9b2o4$bo$2bo9bo$3o4b2o2bobo$6bobo3bobo$3b2o2bo6bo$2bobo9b2o$
4bo$7b2o$6b2o$8bo!

Reduced a bit:
x = 19, y = 13, rule = B3/S2-i34q
12bo$12bobo$12b2o$6bo$4bobo$5b2o3bo$11bo$9b3o3bo$14bobo$15bobo$b2o4b2o
8bo$obo3bobo8b2o$2bo5bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1467
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tlife (B3/S2-i34q)

Postby A for awesome » September 30th, 2017, 6:55 pm

BlinkerSpawn wrote:Reduced a bit:
x = 19, y = 13, rule = B3/S2-i34q
12bo$12bobo$12b2o$6bo$4bobo$5b2o3bo$11bo$9b3o3bo$14bobo$15bobo$b2o4b2o
8bo$obo3bobo8b2o$2bo5bo!

Further reduced:
x = 14, y = 10, rule = B3/S2-i34q
7bobo$4bo2b2o$2bobo3bo$3b2o2$2o3b2o3bo$b2obobo2bobo$o5bo3bobo$12bo$12b
2o!

I'm sure it can be done in 3G.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1407
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: tlife (B3/S2-i34q)

Postby GUYTU6J » October 1st, 2017, 5:40 am

Funny waves
x = 692, y = 21, rule = B3/S2-i34q:T692,21
$396bobo6b2o6bo$146bobo5b2o6b2o6b2o6b2o24bo7bo6bobo5b2o7bo122bo6b2o6b
2o6b2o6b2o3bo3bo4b3o6b2o5b3o$141bo4bobo5b3o6bo5bobo5bo2bo4b4o2b2ob2o3b
2obo3bo3b5o4bo2bo4b3o5b2o6b3o6b2o105bo4bo3bo5b2o5bo2bo5b2o7bo2bob3o4bo
2bo3bo3bo4b5o$99bo8bo6bobo5b2o7bo6bo8bo7bo7bo12bo7b3obo4b2ob3ob2o4b4ob
2obo2bo3bo6b2o2bo3bobob3o3bo2b2ob3o3b4o5b2o6bo86bo7b5o14b2o4bobo3bob3o
2bobo6bo7b4o4b7o6b2o$90bobo5bo2bo4b2o2bo3bo2bo5b3o5b2o6bo23b2o5b3o8bo
14bobo2bo2bobo5bobob2ob2o3b2ob2obo2bob2o2bobobobob3o3bobo2b2obob2ob2ob
obo3bob2o4b3o6bo79b3o3b3ob2o3b2obo5bobo14b2o3bo3bo3bo8bo2b9o2bo4b4o30b
o8bo7bo$50bo7b2o6b2o7bo6bobo5bobo5bobo5b3o5bo2bo4bobo7bo5b2o6b2o6bo2bo
4bob2o6bo5b3o6b2obo5b7ob2obo4bo2bob4ob2o2b2o2b2o2bo12bobobo5b2o4b3o3bo
b2ob2ob3ob3ob2o3b2ob2o4b3o6bo7bo53bo2b2o6bo4b2obo5bobo7bo15b2o6b2o5bob
2ob2o7b4o4bo2b6o3b2obo5bobo6bo6bobo5b3o6b3o6b2o6b2o7bo6bo$41b2o6bo7bo
8b2o6b2o7bo7bo7bo15bo7bo6b2o6b2o6b2o6b2o7bo6bobo13b2o7bo4b2obo4b4o4bo
4b3o6bo7b2obo4b2ob2o3b2obo5bo5bobo2b2o3bo7b2ob2o3bo2b2ob2o3b2ob2o4bobo
5b3o6bo30bo2bo4b3o4bobo5b3o5b2o6b4o6bo3bo3bob2o4bobo2bo7bo4bobo2b6o2b
2o6bob2o2b2o2b2ob2o6bo14b2o6b2o7b2obo5bobo5b4o5b2o4b3o5b2o7bo$48bo2bo
5b3o6bo15bo80bo13bo2bo5b4o2bob2o2bobo4b2obo12bobo5bo3bo3bo7bo3bo3bo2bo
3b2o2bo7bo2bobobo4b2ob4ob2ob2o4b3o2b2ob2o3b2ob2o4b3o5b3o5b3o5b2o6b2o2b
o8bo3bo7bo2bo7b2o6b2o2bob3ob3ob2o2bobo2b3o3b2o2bo3b2o3bobo5bo7b2o7bobo
b5obobo2bo2b5o3b2o2bo4b2obo5bo7bobo8bobo5bo6bo2b2o6b2ob3ob2o3b2obo5b3o
6b2o4bobo6b2o6b2o6bo6b2o7bo6bo6b2o6bo7bo$bo7bo14bo32b2o4bobo5bobo15b2o
6bo27bo36b3o5bo2bo4bo7bo9bobobobob3obob7o2b2ob3o3bob2o4bo2b3o2bobob2o
2bob3o5b2obob2ob2ob3o3bo3b3o3bo3bo3bo5bob2obo2bo2bo3bo3bo3bo3bo3bo3bo
2bo4bob2o4bobo6b2o3bo2b2o2b5o3bo2b2o3b5o3b2ob2ob3o5b2o3bo5b2o2b2o2b2o
3bo3bobob5obob2o2b6obob2ob2obo2bo7bo3b2o3b2ob2o3b2obo4b2o2bo4bob2o4b3o
6bo11b2obo3bo3b3ob3ob2o3b2o2b2ob2o3b2ob2o4bob2o4b3o6b2o6b2o2bo4bob2o2b
2o2bo4b2o2bo3bo4bob2o4bobo5b3o5b2o6bo$obo5bobo5b3o6bo5b3o4bob2o6bo9b2o
6bo3bob4o2b3obo4bo7b4ob2o2b3ob2o6b2o14b3o3bob2o4bobo4bo3bo4b2obo4b2obo
5b3o5b2obo4b7o7bo3bo3bobo7b2obo2bo2bobo5bo3bo4bo2bo4bo9bo2bo5b3o2b2o2b
2o3b4o4b2o2b5o3bo2b2o3bob2o4bob2o4bob2o4bobo5bobo5b3o6bo5b3o4bob2o6bo
9b2o6bo3bob4o2b3obo4bo7b4ob2o2b3ob2o6b2o14b3o3bob2o4bobo4bo3bo4b2obo4b
2obo5b3o5b2obo4b7o7bo3bo3bobo7b2obo2bo2bobo5bo3bo4bo2bo4bo9bo2bo5b3o2b
2o2b2o3b4o4b2o2b5o3bo2b2o3bob2o4bob2o4bob2o$ob2o4bobo6b2o3bo2b2o2b5o3b
o2b2o3b5o3b2ob2ob3o5b2o3bo5b2o2b2o2b2o3bo3bobob5obob2o2b6obob2ob2obo2b
o7bo3b2o3b2ob2o3b2obo4b2o2bo4bob2o4b3o6bo11b2obo3bo3b3ob3ob2o3b2o2b2ob
2o3b2ob2o4bob2o4b3o6b2o6b2o2bo4bob2o2b2o2bo4b2o2bo3bo4bob2o4bobo5b3o5b
2o6bo7bo7bo14bo32b2o4bobo5bobo15b2o6bo27bo36b3o5bo2bo4bo7bo9bobobobob
3obob7o2b2ob3o3bob2o4bo2b3o2bobob2o2bob3o5b2obob2ob2ob3o3bo3b3o3bo3bo
3bo5bob2obo2bo2bo3bo3bo3bo3bo3bo3bo2bo$b2o6b2o2bo8bo3bo7bo2bo7b2o6b2o
2bob3ob3ob2o2bobo2b3o3b2o2bo3b2o3bobo5bo7b2o7bobob5obobo2bo2b5o3b2o2bo
4b2obo5bo7bobo8bobo5bo6bo2b2o6b2ob3ob2o3b2obo5b3o6b2o4bobo6b2o6b2o6bo
6b2o7bo6bo6b2o6bo7bo77bo2bo5b3o6bo15bo80bo13bo2bo5b4o2bob2o2bobo4b2obo
12bobo5bo3bo3bo7bo3bo3bo2bo3b2o2bo7bo2bobobo4b2ob4ob2ob2o4b3o2b2ob2o3b
2ob2o4b3o5b3o5b3o$17bo2bo4b3o4bobo5b3o5b2o6b4o6bo3bo3bob2o4bobo2bo7bo
4bobo2b6o2b2o6bob2o2b2o2b2ob2o6bo14b2o6b2o7b2obo5bobo5b4o5b2o4b3o5b2o
7bo163b2o6bo7bo8b2o6b2o7bo7bo7bo15bo7bo6b2o6b2o6b2o6b2o7bo6bobo13b2o7b
o4b2obo4b4o4bo4b3o6bo7b2obo4b2ob2o3b2obo5bo5bobo2b2o3bo7b2ob2o3bo2b2ob
2o3b2ob2o4bobo5b3o6bo$24bo2b2o6bo4b2obo5bobo7bo15b2o6b2o5bob2ob2o7b4o
4bo2b6o3b2obo5bobo6bo6bobo5b3o6b3o6b2o6b2o7bo6bo196bo7b2o6b2o7bo6bobo
5bobo5bobo5b3o5bo2bo4bobo7bo5b2o6b2o6bo2bo4bob2o6bo5b3o6b2obo5b7ob2obo
4bo2bob4ob2o2b2o2b2o2bo12bobobo5b2o4b3o3bob2ob2ob3ob3ob2o3b2ob2o4b3o6b
o7bo$26b3o3b3ob2o3b2obo5bobo14b2o3bo3bo3bo8bo2b9o2bo4b4o30bo8bo7bo276b
obo5bo2bo4b2o2bo3bo2bo5b3o5b2o6bo23b2o5b3o8bo14bobo2bo2bobo5bobob2ob2o
3b2ob2obo2bob2o2bobobobob3o3bobo2b2obob2ob2obobo3bob2o4b3o6bo$17bo7b5o
14b2o4bobo3bob3o2bobo6bo7b4o4b7o6b2o342bo8bo6bobo5b2o7bo6bo8bo7bo7bo
12bo7b3obo4b2ob3ob2o4b4ob2obo2bo3bo6b2o2bo3bobob3o3bo2b2ob3o3b4o5b2o6b
o$13bo4bo3bo5b2o5bo2bo5b2o7bo2bob3o4bo2bo3bo3bo4b5o401bo4bobo5b3o6bo5b
obo5bo2bo4b4o2b2ob2o3b2obo3bo3b5o4bo2bo4b3o5b2o6b3o6b2o$13bo6b2o6b2o6b
2o6b2o3bo3bo4b3o6b2o5b3o415bobo5b2o6b2o6b2o6b2o24bo7bo6bobo5b2o7bo$50b
obo6b2o6bo!

x = 1436, y = 45, rule = B3/S2-i34q:T1436,45
$720bo$695bo19bo8b3o3bo9bo4bo$670bo19bo8b3o3bo9bo3bobo7b3o2b3o3bo3bobo
2b3o3bo5bo4b2o$645bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b3o3bo3bob
o7b3o2b3o2b2o4bo4b4o$620bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b3o
3bo9bo4bo18b3o3bo8b2o3b2o4bob8o3b2o4bo3bobo3b2o3bo3bo$595bo19bo8b3o3bo
9bo3bobo7b3o2b3o2b3o3bo3bobo2b3o3bo9bo4bo57b2o4bo3bo6bobo2b3o2bob2obo
2bo4b3o3b2o3b2ob3o3b2o$570bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b
3o3bo9bo4bo66b3ob3o3bo5b2o4bo3bo6bobo2b3o2bo2b2o3b3o3bo4bo6b4ob2o2bob
4o2b2o3bobo4bo39bo4b2o$545bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b
3o3bo9bo4bo88bo8b2ob3o2bo2b2o3b2o4bob8o3b2o4bo15bo4bo2bobo6b3obob2ob3o
3b6ob3o5bo15bo5bo5bo3bo4b4o$520bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bo
bo2b3o3bo9bo4bo116b2o4b4o2b3o3b2o3bo4b4o37b3o2b2obob2o7b2o4bobo2bobo2b
ob4o4b3o3b2o4bo3b2o4bo9bob9o$495bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3b
obo2b3o3bo9bo4bo144b2o3bo14bo42b3ob2o3bo7b2o3bo2b3o3bo3bo4b4ob3o5b2o4b
o9b3o2b2o12bo2b6o$470bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b3o3bo
9bo4bo195bo4b2o23bo4b6o3b2o3b2o17bo3bo2bo4bo2bo3bob3o2b2o4bo5b3o2b2obo
b2ob4o3b4o4b6o4bo$445bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b3o3bo
9bo4bo204bo14bo4bo4b4o2b2o3b2o3b2o3bo4bo2bo4bo5b2o4bo3bo2b3o9bo3bo2bo
2bobo2b3o2b2o3b2o4bobo9b2o3b3o10b4ob4obo2b3o3b2o$420bo19bo8b3o3bo9bo3b
obo7b3o2b3o2b3o3bo3bobo2b3o3bo9bo4bo233b3o2b2ob2o6bo4bob4ob2o3bo2bobo
4bobobo2b2o3bo5b3o2b2o4b4obob2ob6o4b3o4b2o3b2o2bo6bobobo2b2o3b6o9bo2bo
bo2bobo2bob2ob3o2b2o3b4o$395bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo
2b3o3bo9bo4bo255bo7b2o4b8o3b2ob2o3b2obo4bobob2obobo3b2o3bobo2b3o3bo2bo
2b3obo2bob2o3bob2o2b2obo2bobo2bo2b3ob2obo2bobo2b3obo4bobo3b2o3bo4bobo
2bobo2bobo4bo4bo2b8o$370bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b3o
3bo9bo4bo274b2o3bo3b2o4bo4b4o4b2o4bo3bo2b3ob3o2b2o3b2o4bo4bo11bo28bo3b
obo2b2o4bo4bo17b3o2b2o4b6o2b2o3b2o3b2o3b2o6bob6o$345bo19bo8b3o3bo9bo3b
obo7b3o2b3o2b3o3bo3bobo2b3o3bo9bo4bo304bo5bo4b2o18bo4bo98bobo2b2o4bo4b
o2b2o3b2o4bo5bo5bo5b4o3b6o4bo4bo4bo$320bo19bo8b3o3bo9bo3bobo7b3o2b3o2b
3o3bo3bobo2b3o3bo9bo4bo506bo4bobo6bob2ob4obo2bobo2bobo2b3o2b2o3b2o3bo
4bo4bo14bo4b2o$315bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b3o3bo9bo4bo
536b6ob2obobo4bob2obobo2bobo2b3o3b2o3bo2bob2obobo2bobo2b3o3b2o3bo3bo4b
4o$bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4b
o4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo11b2o3bo
76b2o3b2o3bo3bobo7b3o2b3o2b3o3bo3bobo2b3o3bo9bo4bo551bo3bo4b4o3bo4bo5b
ob2o2b2o3bo14bo4b3o2bobo2bo2bobo2b2o2b3o8b10o4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo$obo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2b3o2b2o4b4o2b3o3bo71b2o2b2o4bo3bobo2b3o3bo9bo4bo576bo
4b2o20bobo2bobo5bo5b4o2b6o3b2o3b2o3b2o3bo8b2ob2obo4bo2bob4obo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo$obo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2b3o2b2o4b2ob3o2bo2b3o2b
3o2b2o59bob2obobo2bo5bo627b7o3b2obo6b7o47bob2obob2obobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo$bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo11b2o4bo6b2o3bo2bo3b2ob4o55bo2bobo2b3o3bo4bo4bo4b
o4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo11b2o4bo6b2o3bo2bo3b2ob4o55bo2bobo2b3o3bo4bo4bo4bo4bo4bo4bo4b
o4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo$234b7o3b2obo6b7o47bob2obob2obobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo
2bobo2bobo2bobo2bobo2b3o2b2o4b2ob3o2bo2b3o2b3o2b2o59bob2obobo2bo5bo$
209bo4b2o20bobo2bobo5bo5b4o2b6o3b2o3b2o3b2o3bo8b2ob2obo4bo2bob4obo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bob
o2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2bobo2b3o2b2o4b4o2b3o3bo
71b2o2b2o4bo3bobo2b3o3bo9bo4bo$209bo3bo4b4o3bo4bo5bob2o2b2o3bo14bo4b3o
2bobo2bo2bobo2b2o2b3o8b10o4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4b
o4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo
4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo4bo11b2o3bo76b2o3b2o3b
o3bobo7b3o2b3o2b3o3bo3bobo2b3o3bo9bo4bo$219b6ob2obobo4bob2obobo2bobo2b
3o3b2o3bo2bob2obobo2bobo2b3o3b2o3bo3bo4b4o729bo8b3o3bo9bo3bobo7b3o2b3o
2b3o3bo3bobo2b3o3bo9bo4bo$214bo4bobo6bob2ob4obo2bobo2bobo2b3o2b2o3b2o
3bo4bo4bo14bo4b2o740bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b3o3bo9b
o4bo$37bo5bo4b2o18bo4bo98bobo2b2o4bo4bo2b2o3b2o4bo5bo5bo5b4o3b6o4bo4bo
4bo815bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b3o3bo9bo4bo$32b2o3bo
3b2o4bo4b4o4b2o4bo3bo2b3ob3o2b2o3b2o4bo4bo11bo28bo3bobo2b2o4bo4bo17b3o
2b2o4b6o2b2o3b2o3b2o3b2o6bob6o861bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo
3bobo2b3o3bo9bo4bo$38bo7b2o4b8o3b2ob2o3b2obo4bobob2obobo3b2o3bobo2b3o
3bo2bo2b3obo2bob2o3bob2o2b2obo2bobo2bo2b3ob2obo2bobo2b3obo4bobo3b2o3bo
4bobo2bobo2bobo4bo4bo2b8o892bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo
2b3o3bo9bo4bo$41b3o2b2ob2o6bo4bob4ob2o3bo2bobo4bobobo2b2o3bo5b3o2b2o4b
4obob2ob6o4b3o4b2o3b2o2bo6bobobo2b2o3b6o9bo2bobo2bobo2bob2ob3o2b2o3b4o
923bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b3o3bo9bo4bo$37bo14bo4bo
4b4o2b2o3b2o3b2o3bo4bo2bo4bo5b2o4bo3bo2b3o9bo3bo2bo2bobo2b3o2b2o3b2o4b
obo9b2o3b3o10b4ob4obo2b3o3b2o954bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3b
obo2b3o3bo9bo4bo$53bo4b2o23bo4b6o3b2o3b2o17bo3bo2bo4bo2bo3bob3o2b2o4bo
5b3o2b2obob2ob4o3b4o4b6o4bo990bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bob
o2b3o3bo9bo4bo$27b2o3bo14bo42b3ob2o3bo7b2o3bo2b3o3bo3bo4b4ob3o5b2o4bo
9b3o2b2o12bo2b6o1026bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b3o3bo9b
o4bo$24b2o4b4o2b3o3b2o3bo4b4o37b3o2b2obob2o7b2o4bobo2bobo2bob4o4b3o3b
2o4bo3b2o4bo9bob9o1057bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b3o3bo
9bo4bo$21bo8b2ob3o2bo2b2o3b2o4bob8o3b2o4bo15bo4bo2bobo6b3obob2ob3o3b6o
b3o5bo15bo5bo5bo3bo4b4o1088bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b
3o3bo9bo4bo$24b3ob3o3bo5b2o4bo3bo6bobo2b3o2bo2b2o3b3o3bo4bo6b4ob2o2bob
4o2b2o3bobo4bo39bo4b2o1119bo19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b
3o3bo9bo4bo$40b2o4bo3bo6bobo2b3o2bob2obo2bo4b3o3b2o3b2ob3o3b2o1211bo
19bo8b3o3bo9bo3bobo7b3o2b3o2b3o3bo3bobo2b3o3bo9bo4bo$2bo4bo18b3o3bo8b
2o3b2o4bob8o3b2o4bo3bobo3b2o3bo3bo1247bo19bo8b3o3bo9bo3bobo7b3o2b3o2b
3o3bo3bobo2b3o3bo$2bo3bobo2b3o3bo3bobo7b3o2b3o2b2o4bo4b4o1307bo19bo8b
3o3bo9bo3bobo7b3o2b3o2b3o$bobo7b3o2b3o3bo3bobo2b3o3bo5bo4b2o1338bo19bo
8b3o3bo9bo$6b3o3bo9bo4bo1385bo19bo$2bo!
Welcome to share your ideas about
etymology of names!
User avatar
GUYTU6J
 
Posts: 347
Joined: August 5th, 2016, 10:27 am
Location: outside Plain of Life

Re: tlife (B3/S2-i34q)

Postby AbhpzTa » October 1st, 2017, 2:40 pm

A for awesome wrote:
BlinkerSpawn wrote:Reduced a bit:
x = 19, y = 13, rule = B3/S2-i34q
12bo$12bobo$12b2o$6bo$4bobo$5b2o3bo$11bo$9b3o3bo$14bobo$15bobo$b2o4b2o
8bo$obo3bobo8b2o$2bo5bo!

Further reduced:
x = 14, y = 10, rule = B3/S2-i34q
7bobo$4bo2b2o$2bobo3bo$3b2o2$2o3b2o3bo$b2obobo2bobo$o5bo3bobo$12bo$12b
2o!

I'm sure it can be done in 3G.

2G:
x = 14, y = 7, rule = B3/S2-i34q
2bo$obo$b2o7bo$4b3o2bobo$6bo3bobo$5bo6bo$12b2o!
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa
 
Posts: 335
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

Re: tlife (B3/S2-i34q)

Postby A for awesome » October 5th, 2017, 7:08 pm

Weird and probably useless:
x = 7, y = 3, rule = B3/S2-i34q
5bo$2o2b3o$bo2bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1407
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: tlife (B3/S2-i34q)

Postby A for awesome » October 12th, 2017, 11:01 am

2 c/7 partials:
x = 45, y = 41, rule = B3/S2-i34q
$7bobo$4b3o3b3o$2b5o3b5o$2b2o9b2o14b2o4bo4b2o$2b3obo3bob3o13b3obo5bob
3o$5b2o3b2o15bo2bob3ob3obo2bo$4b3o3b3o15b2obo7bob2o$3bo2bobobo2bo17bo
7bo$3b5ob5o17bo2bobo2bo$3b2obo3bob2o13b2o2bo7bo2b2o$3b2o7b2o12b3o3b2o
3b2o3b3o$3b3o5b3o12b2o15b2o$3b3o5b3o15b2obobobobob2o$5bo5bo16b5obobob
5o$3bo9bo14bo13bo$2b4o5b4o14bobobo3bobobo$3b3obobob3o18b3ob3o$2b5o3b5o
15bo3bobo3bo$b2o2b2o3b2o2b2o15b3o3b3o$b2o3bo3bo3b2o16bo5bo$b2o3bo3bo3b
2o$3bobo5bobo18bobobobo$4b2o5b2o19bobobobo$8bo23b3ob3o$2o5bobo5b2o$b2o
3b2ob2o3b2o15b2o5b2o$2bo3b2ob2o3bo15bo2bo3bo2bo$6bo3bo19bo2b2ob2o2bo$
6b5o24bo$8bo24bo3bo$4b3o3b3o20b2ob2o$3bob2o3b2obo21bo$2bo2b2o3b2o2bo$
2b3ob2ob2ob3o14b2ob2o3b2ob2o$29b2ob2o3b2ob2o$4bob2ob2obo16bo3bo3bo3bo$
3bo2bo3bo2bo15bo11bo$7bobo18bo3bo5bo3bo$6b2ob2o18b4o5b4o$5b2o3b2o18b3o
5b3o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1407
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Previous

Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 2 guests