A for awesome wrote:Three variants of the same S-to-B...
As I've said before, these won't mean anything until we can construct an X-to-S.
A for awesome wrote:Three variants of the same S-to-B...
BlinkerSpawn wrote:A for awesome wrote:Three variants of the same S-to-B...
As I've said before, these won't mean anything until we can construct an X-to-S.
x = 26, y = 32, rule = TLifeHistory
13.3B$13.3B$13.3B$13.3B$12.4B$9.13B$8.15B.B$9.15B2C$8.14B.B2C$8.14B2.
B$9.13B$8.14B$7.15B$2C5.15B$.C4.16B.B$.C.CB.17B2C$2.2CB.17B2C$4.17B.
2B$4.6BC10B$4.6B2C8B$5.4BC2BC7B$8.3BC7B$8.10B$10.8B$11.7B$12.6B$13.4B
$14.5B$17.2C$17.C$18.3C$20.C!
x = 28, y = 31, rule = TLifeHistory
13.3B2.3B$13.3B2.3B5.2C$13.3B2.3B5.C$12.4B2.3B2.BC.C$9.13B.B2C$8.16B$
9.15B$8.15B$8.16B$9.14B$8.14B$7.15B$2C5.15B$.C4.16B.B$.C.CB.17B2C$2.
2CB.17B2C$4.17B.2B$4.6BC10B$4.6B2C8B$5.4BC2BC7B$8.3BC7B$8.10B$10.8B$
11.7B$12.6B$13.4B$14.5B$17.2C$17.C$18.3C$20.C!
x = 30, y = 31, rule = TLifeHistory
22.3B$21.4B$21.4B$12.B6.8B$9.18B$8.20B$9.19B$8.19B$8.18B$9.17B$8.18B$
7.19B$2C5.17B.B2C$.C4.17B2.BC.C$.C.CB.18B4.C$2.2CB.18B4.2C$4.19B$4.6B
C10B.B2C$4.6B2C9B.BC.C$5.4BC2BC7B5.C$4.7BC7B6.2C$3.4B.10B$2.4B4.8B$.
4B6.7B$4B8.6B$3B10.4B$2B12.5B$B16.2C$17.C$18.3C$20.C!
x = 30, y = 31, rule = TLifeHistory
27.2C$18.DB7.C$16.D2BD2B2.BC.C$12.B3.B2D4B.B2C$9.8BD7B$8.18B$9.16B$8.
18B$8.18B$9.17B$8.18B$7.19B$2C5.17B.B2C$.C4.17B2.BC.C$.C.CB.18B4.C$2.
2CB.18B4.2C$4.19B$4.6BC10B.B2C$4.6B2C9B.BC.C$5.4BC2BC7B5.C$8.3BC7B6.
2C$8.10B$10.8B$11.7B$12.6B$13.4B$14.5B$17.2C$17.C$18.3C$20.C!
x = 30, y = 33, rule = TLifeHistory
10.4B8.2C$11.4B7.C$12.4B7.C$13.4B5.2C$14.4B4.B$12.B2.4B2.2B$9.16B$8.
17B$9.16B$8.18B$8.18B$9.17B$8.18B$7.19B$2C5.17B.B2C$.C4.17B2.BC.C$.C.
CB.18B4.C$2.2CB.18B4.2C$4.19B$4.6BC10B.B2C$4.6B2C9B.BC.C$5.4BC2BC7B5.
C$8.3BC7B6.2C$8.10B$10.8B$11.7B$12.6B$13.4B$14.5B$17.2C$17.C$18.3C$
20.C!
A for awesome wrote:Edit 3: A genuine, if useless, S-to-S:Code: Select allx = 30, y = 31, rule = TLifeHistory
27.2C$18.DB7.C$16.D2BD2B2.BC.C$12.B3.B2D4B.B2C$9.8BD7B$8.18B$9.16B$8.
18B$8.18B$9.17B$8.18B$7.19B$2C5.17B.B2C$.C4.17B2.BC.C$.C.CB.18B4.C$2.
2CB.18B4.2C$4.19B$4.6BC10B.B2C$4.6B2C9B.BC.C$5.4BC2BC7B5.C$8.3BC7B6.
2C$8.10B$10.8B$11.7B$12.6B$13.4B$14.5B$17.2C$17.C$18.3C$20.C!
x = 295, y = 494, rule = B3/S2-i34q
24bo$22bo2bo$5b3o14bo2bo$5bob5o10b3o$7bobob2o23bo$9bobo12b2o7bob2obo$
3b2o4bobo11bo2bo2b2ob3obo2bo$9b2o12b3o11bobo$21b3o3bo7bo2bo21bo$21b2o
7bobo3bo2bo21bo$27bobo3b2ob2o22b4o$35bo27b2o$60bo$61bob2o$33b2o25bobo$
33b2o19b2o23b3o$54b2o23b2obo$28bo27b3o19bo3bo$28b2o26b3o3b2o7b2o6b3o$
28bo29b3ob2o7b2o6b3o$5bo55b3o$3b3o54b2o$6bo$bo6bo$bo6b2o37b3o$o7bo38b
3o$bobo44bo$bobo$4b2obo$6bo3$11b3o83bo$10bob2o81b4o$10bo3bo79bo3bo73bo
$11b3o80b5o71bo2b2o$11b3o84bo73bo$97b3o$99bo$98b2o$95bo$95bo3$30b2o$
30b2o34bo$65b3o$19bo25b3o51bo$17bo2b2o22bob2o49b2ob2o$19bo24bo3bo$6b3o
bo34b3o6b2o39bo4b2o$6b6o33b3o6b2o39bo6bo$6b2o2b3o81b2o6bo$9bo2bo70b2o
11bo6bo$9b4o70b2o17bo$3bobo2bob2o85b3o$4bo2b3o88bo$5b2ob2o28bo$6b3o27b
2ob2o$36b2ob2o$22bo12bo2b2obo$23bo12b2ob2o$20b3o13b4o$21bo16bo$77bo46b
o$75b2ob2o43b3o$75b2ob2o14bo27bo3bo$74bob2o2bo12b3o25bobob3o$75b2ob2o
12bo28bo2bob2o$76b4o13bo31b2o$77bo44b3o3$33bo$32b2o$32bobo$30bo2bo$29b
ob2o27bo$28b2ob2o4bo21b3o75bo$35bo2b2o97bo$37bo98bobo2$137bo3$93b3o$
93b3o$28b2o62bo3bo$26b2ob3obo58bob2o$26bo4bobo59b3o$25bo6bo$26bo3b2o$
26bo$28bobo203b2o$29bo204b2o$92b3o$91b2ob2o$90bo2b3o$89bobo2bob2o$95b
4o20bo$95bo2bo19bobo$92b2o2b3o$92b6o20b3o$92b3obo82bo$82bo95b3o$44bo
36bobo93b2o2bo$30bo12b3o34bo95b3o2bo$31bo10bo37b2obo92bo2b6o2bo$26b2o
2bobo10bo34b2obo4b2o88bobob3obo2b2o$28bobo47bo6bo92bobo2b2o2b2o$26b3o
49bobo4b3o19bo$107bo68b2o$82b2o22bobo66bo59bo$93b2o81bobo55b3o$82bobo
8b2o12bo69b3o$83bo8bo$91bob2o$89b3ob2o$20b3o32bo33bo2b2o3bo$19b2obobo
28b2ob2o32b2o5b2o$18b3o3bobo25bo3b2o39b2o74b3o$18b2o3bobo26bob2obo116b
o$18b2o4bo26bo2bo119bo$20bob3o27b2o3b2o24b2o9b2o126b3o$22bo29b2o29b2o
137b3o$22bo31bo168bo4$69b3o$70bo11bo$70bo10bobo10bo30bo$93bo30bobo$81b
3o7b2ob2o$91bobo30b3o56b3o$89b3o3b2o86b3o$18b2o76bo87bo$17bobo71bo2b3o
$17bob2o10b2o59b4o$18bo2bo9b2o59b3o$18b3ob2o234bo$13bo5b2ob2o232b2obo$
13bo242b5o$255bo2bob2o$16b3o222bo14b2ob2o16bo$16b2o222b3o13b2ob2o16b2o
13b2o$51bo206bo16bobo13bob2o$49b2o44bob2o177bo14bobo$49b2o29b2o14b2o
194bo$32b3o14b2o29b2o13bobo97bo$31bo48b2o12b2o99bo$31bo4b2o21bobo17bo
14bobo31b3o63bobo$30bo6b2o20bo2bo65b3o$22b2o7b2obo24bobo67bo65bo$21bo
2bo6b2o5bo179bo$20b2ob2o8b2ob2o178b2ob2o69bo$21bobo9b2ob2o178b2ob2o44b
o22b2ob2o$22bo12bo180bo2b2o43b2o22b2o3bo$217b2o46bo21bo2b2obo$78b3o
171bo38bo2bo$77bo173bobo38b2o$66bo10bo4b2o205bob3o$65bobob2o5bo6b2o
166b3o35bo$52bob2o9bo3bob2o4b2obo38bo$53b2o11b2o4bo4b2o5bo33bobo$52bob
o16bo7b2ob2o$51b2o15b2obo7b2ob2o34b3o56b3o$51bobo15b2o10bo95b3o$178bo
4$286bo$285bo2bo$107bo176bo3b2o$94bobo10bo177bo4b2o$78bo15bobo9bobo57b
o68bo49b2obo$76b2ob2o14bo69bobo66b3o53b2o$75bo3bo2bo24bo$78bo2bo14bobo
b2o63b3o117bo$67bo6bo5bobo13bobob2o182bobo$67b3o5b3obo2bo12bo3b2o$66bo
9bob2obo13bob2o$64bo6bo7bo15bo171b2o$63b2o6bo24b2o169b2o$64bo7bo$69bob
o130bobo17b2o50bo$69bobo129b2o2b2o14bo2bo47b2o2bo$65bob2o132bo3b2o14bo
bo50bo$66bo140bo11bo68b2o$199bo3bob2o11b2o2b2o67b2o$199bo5b2o11bo4bo
65bo2bo$199bo3b2o14b2obo42bo10b2o$79bobo29bobo24b3obo57b2ob2o16b2o42bo
9b3o$79bo2bo28bo2bo23b6o58bo61bobo7bo$65b2o12bobo29bobo11bo12b2o2b3o
126b2o$64b2obo56bobo14bo2bo120bo5b3o5b2o$64b3o74b4o115bo2bo7b2o5b3o$
64bobo57b3o8bobo2bob2o39b3o30bo43bo17b3o$66b2o68bo2b3o41b3o30bo43bo14b
2o$64b4o2b2o65b2ob2o42bo30b3o42bo14b3o$65b2o71b3o118bo3bo12bo$263bo$
204b2o54b3o$204b5o3$151bo$149b2ob2o87bo$92bo147b3o29b3o$68bob3o18b3o
55b2o4bo116b3o$67b6o75bo6bo117bo$66b3o2b2o75bo6b2o118bo$66bo2bo77bo6bo
40bo73b2o5bo$66b4o78bo46bo72b3o5b2o$67b2obo2bobo75b3o40bobo35b2o22b2o
11bo6b2o$69b3o2bo77bo55bo22b3o20b3o14b2o$69b2ob2o121bo10b2ob2o21b2o18b
2ob2o14b3o$70b3o133b2ob2o60b3o$206b2o2bo$208b2o2$68b3o$67b2ob2o$66bob
2obo$66b2o2b2o30bob3o24bobo$66b3o2bo29b6o23bo2bo$68bobo29b3o2b2o12bo
11bobo$69bo2bo27bo2bo14bobo32b3obo$70b2o28b4o48b3o2b2o115bo$101b2obo2b
obo8b3o31bob5o18b3o92bo2b4o$103b3o2bo44bo2b2o19b3o82b2o8bo$81bo21b2ob
2o70bo83b2o8bo$79b2ob2o6b2o12b3o166b2o3bo$79b2ob2o5b3o4bo60bo$78bo2b2o
bo3b3o5b2o59bo$79b2ob2o4b2o3b2o$79b4o5b2o3b2o$81bo11b2o113b2o$207bo$
97bo44b2o22bo40b2o26bo$93b4o40bo4b3o20bobo39bobo24b3o$93b3o40b2o5b3o
116bobo$139b2o3b2o6bo12b3o88b2o7bo$139b2o3b2o5b4o101b3o3bo$139b2o9b2ob
2o103b3o5bo4b2o$149bob2o2bo102bo2bo2b2o4bo3bo$136bo13b2ob2o104b2o13b2o
$137b4o9b2ob2o114bo5bo$90bobo45b3o11bo104b3o9bo3b3o$90b2o165bo2bo9b2ob
2o$91bobo163bo2bo10b3o$92b2o111bo53bo$91bob2o109bobo$122bo80b2o2bo$
122b2o28b3o48bo3bo$122bo28b2ob2o47b2ob2o12bo$151b3o2bo47bobo11b2ob2o8b
o$149b2obo2bobo47bo12bo12bo$148b4o65bo5bo6bobo26b2obo$148bo2bo65b2o5bo
35b2o$148b3o2b2o63bo2bobo7bo$149b6o28b3o32b2obo33b2o15b2o$131b2o17bob
3o28b3o34bo24bobo9bo4b2ob2o7bo3b3o$100bo29b2o52bo33b2o26b2o14b2obo6b2o
2b2o3bo$89bo10bo31bo111bobo14bo2bo14bobo$89b2o8bobo142b2o14bobo13b2obo
$88bobo152b2obo14b2o15bo$89bo2bo7bo160bo14b3o$90b2obo182b2o$85bo4b2ob
2o49b2o$83b2o59b2o2$88b2o159b3o$87b2obo159bo2$156b2o$155bo2bo36bo28b2o
28bobo$154bobo38bo27bobo4b2o5b2o14bo2bo22bo$152b3o2bo36bobo26bobo11b2o
15bobo22bo$152b2o2b2o64b2obobo50bo$152bob2obo37bo14bo12b5obo48b2o$102b
o34bo15b2ob2o50b2ob2o14b3o47b3o$86bo14b4o31bo17b3o49bo2bo3bo35b3o25bo$
85bo14b2ob2o30bobo2b2o65bo2bo38b3o$86b3o10bob2o2bo31bobo66bobo5bo35bo$
87bo12b2ob2o34b3o64bo2bob3o$100b2ob2o102bob2obo$102bo106bo$114b2o103bo
$217bo2b2o$112bo106bo11b2o$148b3o80b2o$114b2o34b2o122bo$114bob2ob2o56b
3o93bo2bo$116bobobo5b2o22bobo24b3o56bo35bo3b2o$82b2o28bo2bo2bobo5b3o
23bo25bo55b2o37bo4b2o$81bobo34b2o6b2o80bo25b2o3b2o32b2obo$81bob2o27b2o
5bo86bo2bo23bo2bo31b2o8b2o$82bo2bo120bo2bo14b2o8bob2obo28b3o$82b3ob2o
118b3o14bo2bo7bo3b2o28b2o$77bo5b2ob2o135b3o9b2ob2o$77bo130b2o14bo12bo$
207bo2bo2b2o$80b3o124b3o5bo$80b2o66b2o55b3o3bo$148b2o55b2o7bo65b3o$
114b2o34bo60bobo65b2ob2o$113bo2bo31b2obo113b3o10bobob2o$114b2o32b2ob3o
110b2ob2o8b4o$94b2o49bo3b2o2bo109bobob2o8bob6o$93b3o48b2o5b2o109b4o11b
o2bob3o$79bo14b2o48b2o27b3o72bo13bob6o10bo2b2o$79bo94bo71bo2bo12bo2bob
3o9b3o$76bob2o60b3o31bo70b2o3bo14bo2b2o$78bo62bo5b2o94b2o4bo14b3o$75b
2o64bo104bob2o$216b3o16bo7b2o$216bo2b2o10b2obobo$217b3o9b2obo3bo12bo$
112b2o90b3o9bo12bo4b2o12bobo$110bo3bo90bo2b2o6b2o12bo$109bo4b2o38bo47b
o2bob3o5bo2bo11bob2o$109bo5bo19b3o17b2o45bob5o6b2o14b2o$113b3o18b2ob2o
16b2o45b4o14bo$110b2ob2o18b3o19b2o46bobob2o4bo4bobo$78bo32b3o19bo5bo
43b3o18b2ob2o$76b2ob2o52b2o4bo43b3o19b3o$76b2ob2o17b2o34bo3bo45bo$74b
2o5bo15b2obo24b2o8b2o$74b2obo22bo24b2o80b2o$73bo6b2o13b2o4bo105b2o$74b
o4b2o13bo3bob2o$74bo19bobob2o65bo46b2o$75b3o17bo68bo47b3o$162b2ob2o45b
2o$162bobo71bo$160b3o3b2o67b3o$111bo32b2o21bo68b2o$112b2o29b2obo15bo2b
3o64b3o$112b2o13bo18bo16b4o65b3o5b2o$112b2o12b3o12b2o4bo15b3o29bo36b2o
5b3o$127b2o11bo3bob2o47bo44b2o$123b3o14bobob2o48bobo41bo$123b3o5b2o8bo
93b3o$123b2o5b3o62bo39b2o$131b2o$129bo99bo$126b3o99bobo$126b2o99b2o2bo
$227bo3bo$227b2ob2o$228bobo$229bo5$147bob2o26b3o$148b2o27b3o$178bo$
153b2o$143b2ob2o4bo9bobo$144bob2o14b2o$145bo2bo14bobo$147bobo14b2o68bo
$147b2o14bob2o63b2o3bo$148bo80bo6bo$229bo5bo$228bo3b2o$229bo3bo$229bo
4bo2bo$158b3o76bo$147b3o9bo42b3o31bo$146b4o51b2ob2o26b2ob2o$145b3o52bo
3b3o27bo$145b2o53bo5bo$205b2o11bo$148b3o2b2o46bo3bo13b3o$148b3o2b2o47b
2o15b3o$153b2o$146b2o5bo$147bo4bo8$183b3o26bo$183b3o24b2o$169bobo12bo
11b3obo9b2o$169bo2bo23b6o8b2o$169bobo24b2o2b3o$147bo51bo2bo$148bo50b4o
$146b2ob2o42bobo2bob2o$148bobo43bo2b3o$145b2o3b3o42b2ob2o$145bo50b3o$
145b3o2bo$146b4o$147b3o$219b2o$217bo3bo$216bo4b2o$216bo5bo$205b2o13b3o
$205b2o10b2ob2o$218b3o3$156bobo$150b2o7bo$150b3o3bo$152b3o5bo56bo$152b
o2bo2b2o56bob2o$153b2o65bobo$220bobo$151b3o61bo7bo$151bo2bo45b2o12b2o
6bo$151bo2bo22b3o19bob2o12bo6bo$153bo23b3o20b3o14bo$178bo21bobo15b3o$
199b2o17bo$195b2o2b4o$200b2o5$152bo$150bob2obo$149bo2bob3o$149bobo5bo$
150bo2bo$149bo2bo3bo$151b2ob2o$153bo7b2ob2o57bo$163b3o55b2ob2o$165b2o
21bobo30b2ob2o$188b2obo29b2o2bo$188bo2b2o10b3o17b2o$188b2o2bo10bo2bo$
186b4ob2o10b2obo$185b3o3bo13bo$186b2ob2o$187b3o5$225bo$172bo30bo22bo$
173bo27b2o2bo19bobo$168b2o2bobo28bo16b3o4b2o$170bobo47b3o3bobo$168b3o
49b2o3b4o$221bob2ob2o$220b3ob2o$149b2o70b2ob2o$149b2o71b3o$149bo$149bo
$149bo$158bo$156b3o$158bo15b2o41bo$174b2o40bobo$215b2o2bo$163b2o50bo3b
o$163bob2o28b2o18b2ob2o$162bo4bo27b2o19bobo$162b2o2b2o15b3o31bo$166bo
16b3o$149b2o11bobo18b2o$144b2o2b4o9bo2bo16bo6b2o$148b2o12b2o16b3o5b2o$
149bobo29b2o5bo$149b3o35bo$148bob2o33bo$149b2o33b3o$184b3o3$220b2o$
191bo27bo$190bobo12b2o12b2o$189bo2b2o10bo14bobo$189bo3bo10b2o$189b2ob
2o10bobo$190bobo$191bo!
x = 12, y = 6, rule = B3/S2-i34q
5bo4bo$4bo4bo$4b3o2b3o$2o$obo$o!
x = 19, y = 15, rule = B3/S2-i34q
13bo$12bo$12b3o$17bo$16bo$16b3o7$3o$2bo$bo!
x = 16, y = 23, rule = B3/S2-i34q
13bo$12bo$12b3o6$3o$2bo$bo$7b2o$6b2o$8bo7$13b3o$13bo$14bo!
x = 17, y = 17, rule = B3/S2-i34q
15bo$13b2o$14b2o8$bo$b2o$obo2$15b2o$14b2o$16bo!
x = 13, y = 16, rule = B3/S2-i34q
10bobo$10b2o$11bo9$bo$b2o$obo7bo$9b2o$9bobo!
x = 20, y = 18, rule = B3/S2-i34q
13bo$11b2o$12b2o5$b2o$obo$2bo6$18bo$17b2o$17bobo!
x = 18, y = 17, rule = B3/S2-i34q
16bo$15bo$15b3o11$bo$b2o10b2o$obo9b2o$14bo!
x = 22, y = 18, rule = B3/S2-i34q
20bo$19bo$19b3o8$bo$b2o$obo3$10b2o$9b2o$11bo!
x = 16, y = 18, rule = B3/S2-i34q
15bo$13b2o$14b2o8$b2o$obo$2bo3$13b3o$13bo$14bo!
x = 12, y = 7, rule = B3/S2-i34q
9bobo$9b2o$10bo$6b2o$b2o2b2o$obo4bo$2bo!
x = 17, y = 15, rule = B3/S2-i34q
5bobo$5b2o$6bo6$b2o$obo$2bo2$14b2o$14bobo$14bo!
x = 6, y = 21, rule = B3/S2-i34q
5bo$3b2o$4b2o3$3bo$2bo$2b3o11$2o$obo$o!
x = 13, y = 10, rule = B3/S2-i34q
10bo$10bobo$10b2o$2o$b2o$o2$10b2o$9b2o$11bo!
x = 16, y = 15, rule = B3/S2-i34q
15bo$13b2o$14b2o8$b2o$obo$2bo10b2o$12b2o$14bo!
x = 11, y = 11, rule = tlife
5b3o3$o3b3o$o2bo3bo$o2bo3bo2bo$3bo3bo2bo$4b3o3bo3$3b3o!
x = 28, y = 21, rule = B3/S2-i34q
o$b2o$2o$21bo$20bo$20b3o10$26bo$25b2o$25bobo$b2o$obo$2bo!
x = 30, y = 18, rule = B3/S2-i34q
27bo$26bo$obo11bo11b3o$b2o9b2o$bo11b2o11$27b2o$27bobo$27bo!
x = 18, y = 28, rule = B3/S2-i34q
13bo$13bobo$13b2o5$bo$2bo8bobo$3o8b2o$12bo15$16b2o$15b2o$17bo!
x = 12, y = 24, rule = B3/S2-i34q
9bobo$5bo3b2o$3b2o5bo$4b2o4$obo$2o$bo12$3o$o$bo!
x = 19, y = 11, rule = B3/S2-i34q
$5bo6bo$3b2o6bo$4b2o5b3o4$3o$o$bo!
x = 36, y = 22, rule = B3/S2-i34q
33bobo$33b2o$34bo2$bo$2bo$3o4$24bo$24bobo$24b2o7$21b2o$21bobo$21bo!
x = 24, y = 27, rule = B3/S2-i34q
22bo$21bo$21b3o$16bo$16bobo$16b2o19$bo17b3o$b2o16bo$obo17bo!
x = 12, y = 33, rule = B3/S2-i34q
8bo$6b2o$7b2o12$5bo$4bo4bobo$4b3o2b2o$10bo13$bo$2o$obo!
x = 36, y = 16, rule = B3/S2-i34q
34bo$o32bo$b2o19bo10b3o$2o19bo$21b3o9$26b2o$26bobo$26bo!
x = 13, y = 19, rule = B3/S2-i34q
11bo$10bo$5bo4b3o$5bobo$5b2o12$b2o6b2o$2o7bobo$2bo6bo!
x = 33, y = 30, rule = B3/S2-i34q
30bo$28b2o$29b2o3$31bo$30bo$30b3o16$22b2o$21b2o$23bo2$3o$2bo$bo!
x = 12, y = 31, rule = B3/S2-i34q
3bobo$3b2o$4bo$10bo$9bo$9b3o13$2o$obo$o8$3b2o$3bobo$3bo!
x = 28, y = 25, rule = B3/S2-i34q
bo$2bo$3o3$27bo$25b2o$26b2o14$4b2o$3bobo16b2o$5bo16bobo$22bo!
x = 13, y = 29, rule = B3/S2-i34q
12bo$10b2o$11b2o10$4bo$4bobo$4b2o6$b2o$2o$2bo4$5b2o$4b2o$6bo!
x = 26, y = 32, rule = B3/S2-i34q
22bo$21bo$21b3o3$25bo$23b2o$24b2o15$2o$b2o$o5$22b3o$22bo$23bo!
x = 17, y = 22, rule = B3/S2-i34q
14bo$14bobo$14b2o5$7bo$5b2o$6b2o10$3o2b3o$o4bo$bo4bo!
x = 20, y = 17, rule = B3/S2-i34q
15bo$14bo$14b3o$2bo$obo$b2o9$7bo9b2o$7b2o8bobo$6bobo8bo!
x = 23, y = 31, rule = B3/S2-i34q
4bo16bo$2bobo14b2o$3b2o15b2o17$b2o$obo$2bo7$20b2o$20bobo$20bo!
x = 26, y = 25, rule = B3/S2-i34q
23bo$18bo4bobo$16b2o5b2o$17b2o19$2o20bo$b2o18b2o$o20bobo!
x = 28, y = 31, rule = B3/S2-i34q
19bo$19bobo$19b2o2$o24bo$b2o21bo$2o22b3o22$25b2o$25bobo$25bo!
x = 16, y = 23, rule = B3/S2-i34q
14bo$13bo$13b3o9$12bobo$12b2o$13bo2$5bo$4bo$4b3o3$3o$o$bo!
x = 28, y = 26, rule = B3/S2-i34q
25bobo$25b2o$26bo2$6bo$7b2o$6b2o13$19bo$18b2o$18bobo2$bo$b2o$obo!
x = 17, y = 26, rule = B3/S2-i34q
14bo$14bobo$14b2o4$2bo$2bobo$2b2o5$2o$obo$o8$13bo$12b2o$12bobo!
x = 24, y = 23, rule = B3/S2-i34q
23bo$21b2o$22b2o$18bo$16b2o$17b2o13$2o$b2o$o19b2o$19b2o$21bo!
x = 24, y = 21, rule = B3/S2-i34q
21bo$21bobo$21b2o4$obo$b2o$bo8$20bo$19b2o$4bo14bobo$4b2o$3bobo!
x = 26, y = 26, rule = B3/S2-i34q
7bobo$8b2o$8bo5$23bo$22bo$22b3o3$23b3o$23bo$24bo9$b2o$obo$2bo!
x = 11, y = 13, rule = B3/S2-i34q
obo$b2o5bobo$o8b2o$8bo$b2o$9b2o$2bo$2bo4bo2bo$2bo4bo2bo$obo7bo$
2b2o2b4o$3bo2bo$4bo!
x = 18, y = 17, rule = B3/S2-i34q
b3o2bob2obo2b3o$b2ob3o4b3ob2o$b2o2bobo2bobo2b2o$2bo12bo$4bo2bo2b
o2bo$2bo3bo4bo3bo$4bo2bo2bo2bo$4b3o4b3o$6bob2obo$8b2o$5bob4obo$5b
obo2bobo2$obo2b2o4b2o2bobo$3ob2o6b2ob3o$b2ob2o6b2ob2o$2b3o8b3o!
x = 20, y = 26, rule = B3/S2-i34q
3b2o10b2o$3b2o10b2o$5bo2bo2bo2bo$7b2o2b2o$8b4o$9b2o2$3b2o10b2o$
2b5ob4ob5o$7b6o$2b2ob2o6b2ob2o$3b2obo6bob2o$4bobobo2bobobo$3b2ob
3o2b3ob2o$4bo10bo$4b2obob2obob2o$9b2o$7bob2obo$7b2o2b2o$7bo4bo$4b
obo6bobo$2bo2b3o4b3o2bo$o3b3o6b3o3bo$bo16bo$2b4o8b4o$3b3o8b3o!
x = 18, y = 29, rule = B3/S2-i34q
2bo12bo$3bob2o4b2obo$3bo10bo$3b2obo4bob2o$5bo6bo$bo14bo$2bo12bo
$o3bo8bo3bo$bob2o8b2obo$bobo10bobo3$b3o2bob2obo2b3o$b2ob3o4b3ob2o
$b2o2bobo2bobo2b2o$2bo12bo$4bo2bo2bo2bo$2bo3bo4bo3bo$4bo2bo2bo2b
o$4b3o4b3o$6bob2obo$8b2o$5bob4obo$5bobo2bobo2$obo2b2o4b2o2bobo$3o
b2o6b2ob3o$b2ob2o6b2ob2o$2b3o8b3o!
x = 18, y = 45, rule = B3/S2-i34q
2b2o2bo4bo2b2o$b4obo4bob4o$bo14bo$5bo6bo$2bo2bo6bo2bo$b3o10b3o$
bo14bo$bo14bo$b2o12b2o$3o12b3o$o3bo8bo3bo$o16bo$3bobo6bobo$3bobo
6bobo$2o2bo8bo2b2o$o3bo8bo3bo$4bo2bo2bo2bo$4bo3b2o3bo$o3bo8bo3bo
$4b3o4b3o$2bo2bo6bo2bo$2bo2bobo2bobo2bo$3b5o2b5o$6b2o2b2o2$8b2o3$
b3o2bob2obo2b3o$b2ob3o4b3ob2o$b2o2bobo2bobo2b2o$2bo12bo$4bo2bo2b
o2bo$2bo3bo4bo3bo$4bo2bo2bo2bo$4b3o4b3o$6bob2obo$8b2o$5bob4obo$5b
obo2bobo2$obo2b2o4b2o2bobo$3ob2o6b2ob3o$b2ob2o6b2ob2o$2b3o8b3o!
x = 10, y = 23, rule = B3/S2-i34q
b2o3b2o$b2o3b2o$b3obo2$3bobo$5bo$3bo2b2o$4b2ob2o$4bob3o3$7b2o$7b
o$7bo2$5bo3bo$6bobo$5bobo$ob5o$o$o$b2ob2o$3bo!
x = 10, y = 34, rule = B3/S2-i34q
obo2b2o$2bo2b2o$5obo$3b3o$3bob2o$2obo$3bobo$2o2bo$bobo$3b3o$3bo
bo2$3o$3b2ob2o$2o4b2o$b2o3bo$bob2o3bo$4bobo2bo$2bobo3bo$2b2o3bo$
7b2o$6b3o$6b3o3$6b2o$6b3o$8bo$2bo3bo$o2bo2bo$2o3bo$bo2bo$bo2bo$3b
o!
x = 19, y = 34, rule = B3/S2-i34q
4b3o5b3o$5bobo3bobo$7bo3bo$2bo2bo7bo2bo$4bo2bo3bo2bo$bo3bo2bobo
2bo3bo$b2o4b2ob2o4b2o$bo3bob2ob2obo3bo$5bo7bo$2bobo9bobo$2bo2bo7b
o2bo$6bobobobo$3bobob2ob2obobo$5bobo3bobo$5bobo3bobo$2b2ob2o5b2o
b2o$2b3o9b3o$3bobo7bobo$5bo7bo$3bo2bob3obo2bo$5bob5obo$3bo3bobob
o3bo$bo3bob2ob2obo3bo$3bo2bo5bo2bo$3b2o9b2o$3b2o9b2o$3b2o9b2o$4o
11b4o$2o15b2o$5bo7bo$2obo4b3o4bob2o$2b2o2bob3obo2b2o$3b2o4bo4b2o
$4bo9bo!
x = 13, y = 11, rule = B3/S2-i34q
3bobobobo$4b2ob2o2$3bobobobo$3bobobobo$2b3o3b3o$6bo$bo9bo$bo3bo
bo3bo$3o3bo3b3o$6bo!
x = 9, y = 12, rule = B3/S2-i34q
3b3ob3o2$2bo2bobo2bo$3bob3obo$3b2o3b2o$2b2o5b2o2$4bo3bo2$3bobobo
bo$4bo3bo$4bo3bo!
A for awesome wrote:By the way, @BlinkerSpawn, would you be willing to update the synthesis collection with my new discoveries?
x = 11, y = 11, rule = B3_S2-i34q
6b2ob2o$6b2ob2o$5bobo$4bobo$3bobo$2bobo$2obo$3o2$2o$2o!
BlinkerSpawn wrote:A for awesome wrote:By the way, @BlinkerSpawn, would you be willing to update the synthesis collection with my new discoveries?
Freshly updated, reorganized, and just as messy as ever.
How did you find these? Has Bob Shemyakin's glider-bombarding script been adapted to other rules?
(If it's not Python, can I have it?)
A for awesome wrote:<snip>Lots of new ships</snip>
I have negative results with gfind for width-11 3c/7 orthogonal (all symmetries) and width-11 c/5 diagonal (all symmetries), as well as width-12 asymmetric c/5 diagonal. I am currently running both width-12 searches over all symmetries.
A for awesome wrote:By the way, @BlinkerSpawn, would you be willing to update the synthesis collection with my new discoveries, and @wildmyron, would you be willing to update the spaceship stamp collection with all of the new discoveries since October 27th of last year (I think each of us have some, and there are some others as well)?
x = 17, y = 17, rule = B3_S2-i34q
16bo$12b2o$12b2obo$12b2ob2o$14bo4$11bo$10bobo$9bobo$8bobo$b3o5bo$b3o$
4bo$2b2o$o2bo!
x = 12, y = 14, rule = B3_S2-i34q
4bo2bo$4bo2bo$4bo2bo$5b2o$4bo2bo$obo2b2o2bobo$obo6bobo$obo6bobo$obo2b
2o2bobo$4bo2bo$5b2o$4bo2bo$4bo2bo$4bo2bo!
Bullet51 wrote:Statorless P5:Code: Select allrle
wildmyron wrote:A for awesome wrote:By the way, @BlinkerSpawn, would you be willing to update the synthesis collection with my new discoveries, and @wildmyron, would you be willing to update the spaceship stamp collection with all of the new discoveries since October 27th of last year (I think each of us have some, and there are some others as well)?
Working on it now...
A for awesome wrote:Two small c/5 ships; I think one of them is new, but I'm not sure which:
wildmyron wrote:... Done.
A for awesome wrote:EDIT: I noticed two minor omission in the spaceship collection: the 2c/6 ships I posted here, and the two-disemiMWSS cleanup of the 4c/8 puffer. Apart from that, looks great!
x = 44, y = 71, rule = B3/S2-i34q
14bo$14bo$bobo10bo$bo2bo9bo$o2b2o7b2o$bob2obo4bo6b4o$2bob3o4bo6bo$11b
5obob3o3$32bo2bo3bo2bo$35bo3bo$31bo3bo3bo3bo$4b2o29bo3bo$4b2o26bo2bo3b
o2bo$26bo6b3o3b3o$18bo7b2o$4b2o10bo2bo5bobo$4b2o$15bo5bo$14b3o$4b2o9b
2o6bo$4b2o10b3o5bo$18bo$18b3o2bo$4b2o13b3o$4b2o14bo3$4b2o15b2o$4b2o14b
o2bo$21b2o2$4b2o$4b2o$17bo$15bo3b2o$4b2o11b3ob2o$4b2o13b2o2bo$21b2o2$
4b2o$4b2o2$19bo$4b2o4bo2bo4bobo$4b2o4bo2bo4bobo$9b2o2b2o4bo3b2o5b2o$
22b4o3b4o$7bobo4bobo5b2o7b2o$7b3o4b3o5b2o2bobo2b2o$4b3o2bo4bo2b3o3b3o
3b3o$4bo2b2o6b2o2bo4bo5bo$5b3o8b3o$6bo10bo$11b2o2$8b3o2b3o$6b12o$6b2o
8b2o$6b3o6b3o$7bobo4bobo$6bo10bo$9bo4bo$7b3o4b3o3$6b2o8b2o$6bo2b2o2b2o
2bo$7b3o4b3o$8bo6bo!
x = 43, y = 71, rule = B3/S2-i34q
14bo$14bo$bobo10bo$bo2bo9bo$o2b2o7b2o$bob2obo4bo6b4o$2bob3o4bo6bo$11b
5obob3o3$33b2o5b2o$32b4o3b4o$32b2o7b2o$4b2o26b2o2bobo2b2o$4b2o27b3o3b
3o$26bo7bo5bo$18bo7b2o$4b2o10bo2bo5bobo$4b2o$15bo5bo$14b3o$4b2o9b2o6bo
$4b2o10b3o5bo$18bo$18b3o2bo$4b2o13b3o$4b2o14bo3$4b2o15b2o$4b2o14bo2bo$
21b2o2$4b2o$4b2o$17bo$15bo3b2o$4b2o11b3ob2o$4b2o13b2o2bo$21b2o2$4b2o$
4b2o2$19bo$4b2o4bo2bo4bobo$4b2o4bo2bo4bobo$9b2o2b2o4bo3b2o5b2o$22b4o3b
4o$7bobo4bobo5b2o7b2o$7b3o4b3o5b2o2bobo2b2o$4b3o2bo4bo2b3o3b3o3b3o$4bo
2b2o6b2o2bo4bo5bo$5b3o8b3o$6bo10bo$11b2o2$8b3o2b3o$6b12o$6b2o8b2o$6b3o
6b3o$7bobo4bobo$6bo10bo$9bo4bo$7b3o4b3o3$6b2o8b2o$6bo2b2o2b2o2bo$7b3o
4b3o$8bo6bo!
x = 70, y = 348, rule = B3/S2-i34q
48b3o2b3o$46b2ob6ob2o$46b2o3b2o3b2o$47bo2b4o2bo$46bo10bo$48b3o2b3o$48b
o6bo2$41b2o7bo2bo$bobobobo33b2o3b2o2bo2bo2b2o$bobobobo39b3o4b3o$bobobo
bo40bo6bo$ob2ob2obo$3o3b3o$bo5bo5$16bobo$15bo2bo$16bobo2$36b2o$36b3o$
36b2obo2$41b2o$41b2o12$41b2o$41b2o10$30bo$28b2o2bo$30bo$43b2o$41b2o3bo
$39b3ob4o$38b2o3b3obo$38b2ob2o3b2o$39b3o3$39bo2bo$38bo3bo$39bobo$40bo
7$38b3o$37b4o$36bo4bo$36bobo$35b2o$36bo$36b2obo$38bo7$34b2o$35b2obo$
34bo2bo$36b3o$38bo17$40bo$39bobo$39bobo$40bo8$36bo$35bobo$35bobo$36bo
6$45bo$44b2o$44bobo7$50b3o2b3o$48b2ob6ob2o$48b2o3b2o3b2o$40bo8bo2b4o2b
o$39bobo6bo10bo$39bobo8b3o2b3o$40bo9bo6bo2$52bo2bo$48b2o2bo2bo2b2o$49b
3o4b3o$50bo6bo3$36bo$35bobo$35bobo$36bo18bo2bo3bo2bo$58bo3bo$54bo3bo3b
o3bo$58bo3bo$55bo2bo3bo2bo$56b3o3b3o3$43b2o$43b2o13bo2bo3bo2bo$61bo3bo
$57bo3bo3bo3bo$61bo3bo$58bo2bo3bo2bo$59b3o3b3o$51b2o$51b2o2$40bo$39bob
o$39bobo10bo2bo$40bo11bo2bo$51bo$51bo4bo$51bo4bo$52b2ob2o$53b2o2$55bo$
36bo17bobo$35bobo16bobo$35bobo17bo$36bo8$43b2o$43b2o9$40bo$39bobo$39bo
bo$40bo3$48b2o$47b2obo$47b2o2b2o$49bob2o$48bo3b2o$36bo7bo4bo2bo$35bobo
5b3o4b2o$35bobo4bo3bo$36bo4b2o3b2o$42bo3bo$43b3o$44bo6$45bo$43bob2o$
42b2o2bobo$46b2o$46bobo$46b2o3$44b2o$40bo3b2o$39bobo$39bobo$40bo8$36bo
$35bobo$35bobo$36bo7$37b2o$37b2o$48bo$47b3o$39b3o4b2o2bo$37b3ob2o6b3o$
37bo3b2ob2o4bo$33bo3b6o6bo$29bo9bo2bo$30bo6bobobo$38b3o$37b3o4$38b2o$
38b2o2$34b2o$36bo$33bo$22bo$22bo$9bobo10bo12b2o$9bo2bo9bo13b2o$8bo2b2o
7b2o$9bob2obo4bo6b4o$10bob3o4bo6bo$19b5obob3o3$41b2o5b2o$40b4o3b4o$40b
2o7b2o$12b2o26b2o2bobo2b2o$12b2o27b3o3b3o$34bo7bo5bo$26bo7b2o$12b2o10b
o2bo5bobo$12b2o$23bo5bo$22b3o$12b2o9b2o6bo$12b2o10b3o5bo$26bo$26b3o2bo
$12b2o13b3o$12b2o14bo3$12b2o15b2o$12b2o14bo2bo$29b2o2$12b2o$12b2o$25bo
$23bo3b2o$12b2o11b3ob2o$12b2o13b2o2bo$29b2o2$12b2o$12b2o2$27bo$12b2o4b
o2bo4bobo$12b2o4bo2bo4bobo$17b2o2b2o4bo3b2o5b2o$30b4o3b4o$15bobo4bobo
5b2o7b2o$15b3o4b3o5b2o2bobo2b2o$12b3o2bo4bo2b3o3b3o3b3o$12bo2b2o6b2o2b
o4bo5bo$13b3o8b3o$14bo10bo$19b2o2$16b3o2b3o$14b12o$14b2o8b2o$14b3o6b3o
$15bobo4bobo$14bo10bo$17bo4bo$15b3o4b3o3$14b2o8b2o$14bo2b2o2b2o2bo$15b
3o4b3o$16bo6bo!
A for awesome wrote:I have to ask, how exactly are you finding all of these things?
x = 11, y = 11, rule = B3_S2-i34q
5bo$4bobo$2bo5bo$bo2bobo2bo$4b3o$o2bo3bo2bo$4b3o$bo2bobo2bo$2bo5bo$4bo
bo$5bo!
Bullet51 wrote:...And a new p8 sparker:Code: Select allx = 11, y = 11, rule = B3_S2-i34q
5bo$4bobo$2bo5bo$bo2bobo2bo$4b3o$o2bo3bo2bo$4b3o$bo2bobo2bo$2bo5bo$4bo
bo$5bo!
wildmyron wrote:I've included the 4c/8 puffer/ship but was a bit reluctant to do so, as I'm sure the collection could become overwhelmed if every such ship was included.
Return to Other Cellular Automata
Users browsing this forum: No registered users and 7 guests