x = 56, y = 30, rule = x-rule-pre
47bo$47bo$45b2ob2o$47bo$47bo$45bo3bo$43bo7bo$45bo3bo$47bo$47bo$45b2ob
2o$47bo$47bo$39b2o13b2o$41bo$39b2o2$19bo$19bo$17b2ob2o$19bo$19bo$3ob3o
10bo3bo$15bo7bo$17bo3bo$19bo$19bo$17b2ob2o$19bo$19bo!
$19bo!
jmgomez wrote:wildmyron,
I think that in order to get Precursor X-Rule you obtain a variant of Precursor X-Rule that show the wonderful behavior that we see in the previous post.
# Birth
0,1,0,1,0,0,0,0,0,1
0,1,0,0,0,1,0,0,0,1
0,0,1,0,1,0,0,0,0,1
0,1,1,0,0,0,0,0,1,1
0,0,1,0,1,0,1,0,0,1
0,1,1,1,0,1,0,0,0,1
0,1,1,0,1,0,0,0,1,1
0,1,1,0,0,1,0,1,0,1
0,1,1,1,1,1,0,0,0,1
0,1,1,1,1,0,0,1,0,1
0,1,1,0,1,0,1,1,0,1
# Survival
1,1,0,0,0,0,0,0,0,1
1,0,1,0,0,0,0,0,0,1
1,1,1,0,0,0,0,0,0,1
1,1,0,1,0,0,0,0,0,1
1,1,0,0,0,1,0,0,0,1
1,0,1,0,0,0,1,0,0,1
1,1,1,1,0,0,1,0,0,1
1,1,1,0,1,1,0,0,0,1
1,1,1,0,1,0,1,0,0,1
1,1,1,0,1,0,0,0,1,1
1,1,0,1,0,1,0,1,0,1
1,1,1,0,1,1,1,0,0,1
1,1,1,0,1,0,1,0,1,1
1,1,1,1,1,1,1,0,0,1
1,1,1,1,1,0,1,0,1,1
1,1,1,0,1,1,1,0,1,1
1,1,1,1,1,1,1,1,1,1
# Death
1,a,b,c,d,e,f,g,h,0
@RULE pre-x-rule
This rule is B2eic3ic4rnj5ink/S12aein4qiyne5re6aei8.
It is an isotropic 'precursor' rule to a non-isotropic rule known as x-rule which has been shown to support logic universality by J.M. Gomez-Soto and A. Wuensche.
[1] Gomez-Soto,JM., and A.Wuensche,“The X-rule: universal computation in a
non-isotropic Life-like Cellular Automaton”
This is a two state, isotropic, non-totalistic rule on the Moore neighbourhood.
The notation used to define the rule was originally proposed by Alan Hensel.
See http://www.ibiblio.org/lifepatterns/neighbors2.html for details.
@TABLE
n_states:2
neighborhood:Moore
symmetries:rotate4reflect
var a={0,1}
var b={0,1}
var c={0,1}
var d={0,1}
var e={0,1}
var f={0,1}
var g={0,1}
var h={0,1}
# Birth
0,1,0,1,0,0,0,0,0,1
0,1,0,0,0,1,0,0,0,1
0,0,1,0,1,0,0,0,0,1
0,1,1,0,0,0,0,0,1,1
0,0,1,0,1,0,1,0,0,1
0,1,1,1,0,1,0,0,0,1
0,1,1,0,1,0,0,0,1,1
0,1,1,0,0,1,0,1,0,1
0,1,1,1,1,1,0,0,0,1
0,1,1,1,1,0,0,1,0,1
0,1,1,0,1,0,1,1,0,1
# Survival
1,1,0,0,0,0,0,0,0,1
1,0,1,0,0,0,0,0,0,1
1,1,1,0,0,0,0,0,0,1
1,1,0,1,0,0,0,0,0,1
1,1,0,0,0,1,0,0,0,1
1,0,1,0,0,0,1,0,0,1
1,1,1,1,0,0,1,0,0,1
1,1,1,0,1,1,0,0,0,1
1,1,1,0,1,0,1,0,0,1
1,1,1,0,1,0,0,0,1,1
1,1,0,1,0,1,0,1,0,1
1,1,1,0,1,1,1,0,0,1
1,1,1,0,1,0,1,0,1,1
1,1,1,1,1,1,1,0,0,1
1,1,1,1,1,0,1,0,1,1
1,1,1,0,1,1,1,0,1,1
1,1,1,1,1,1,1,1,1,1
# Death
1,a,b,c,d,e,f,g,h,0
gamer54657 wrote:God save us all.
God save humanity.
hgkhjfgh
x = 21, y = 1, rule = pre-x-rule
21o!
x = 65, y = 168, rule = pre-x-rule
15bo9bo30b2o2bo3bo$34bo9bo9bo5bo3bo$3bobo7bobo7bobo29bo6bo$2bo3bo5bo3b
obo3bo3bobo5bobo3b2o2bobo5bo8bobo$31bobo9bo9bo$2bo3bo5bo3bo3bobo3bo15b
o7b2o8bo3bo$3bobo7bobo7bobo7bo10bo15bo3bo$44bo$23bo22$o5bo3bo8bobo$o5b
o3bo7bo$2bobo7bo8bo$bo3bo5bo10bobo$13bo$24bo$bo3bo7b2o8bo$2bobo8bo$o5b
o8bo$o5bo8bo21$o3bo7b3o$o3bo7b3o$2bo7b3o2b2o$bobo6b2o3b2o$10b2o2b3o$
12b3o$o3bo7b3o$o3bo23$obo$obo8b2o4b2o$obo12bo$obo12bo4bo$obo13bo3bo$ob
o14bo$obo15b2o$obo$obo$20bo$20bo20$obo13bo$obo7b2o4b2o$13bo$13bo$14b2o
$obo$obo7b2o4bo$11bo4bo23$bo3bo$bo3bo2$2bobo$3bo4$o5bo$o5bo4$3bo$2bobo
2$bo3bo$bo3bo!
x = 20, y = 33, rule = pre-x-rule
18b2o$17bo$18b2o8$18b2o$14b2obo$18b2o8$18b2o$17bo$3bo14b2o$3bo11bo$14b
2o$7b2obo7b2o$6b3o2bo5bo$7b2obo7b2o$14b2o$3bo11bo$3bo14b2o$17bo$18b2o!
x = 74, y = 10, rule = pre-x-rule
10bo$6bo5bo58b2o$4bo2bo5bo56bo$3bo8bo23bo34b2o$4bo5bo26b2o3bo$b2o40bo$
10bobo25bo3bo$13bo56bobo$2o8bobo60bo$70bobo!
x = 7, y = 9, rule = pre-x-rule
6bo$2o4bo$bo$4bo$2bo2bo$4bo$bo$2o4bo$6bo!
Scorbie wrote:Any hope for this into something like a gun? Probably not but just in case...Code: Select allx = 21, y = 1, rule = pre-x-rule
21o!
x = 18, y = 16, rule = pre-x-rule
b2o$o$b2o$16b2o$15bo$bo14b2o$bo11bo$12b2o$5b2obo7b2o$4b3o2bo5bo$5b2obo
7b2o$12b2o$bo11bo$bo14b2o$15bo$16b2o!
x = 23, y = 6, rule = pre-x-rule
obo$3bo$obo$21bo$10bo10bo$8b2o12bo!
Scorbie wrote:Whoa! Did you find all these with a dedicated apgsearch? It's really amazing.
thunk wrote:2Ga+Gb synthesis of Myron's p20 side rake (the left Gb can be made similarly to the right one.)Code: Select allx = 23, y = 6, rule = pre-x-rule
obo$3bo$obo$21bo$10bo10bo$8b2o12bo!
I would try and make a breeder, but I haven't the time.
x = 22, y = 63, rule = pre-x-rule
18bobo$21bo$18bobo2$17bo$18bobo$21bo$18bobo$13b2o$14bobo$13bo4bobo$21b
o$18bobo18$14bobo$17bo$14bobo7$17b2obo$11bo3bo5bo$14bo5bo$12bo2bo2bo$
15b2o3$13bo$15bo$11bo4bo$15bo$13bo$8bo3b3o$8bo$obobo10b2o$obobo9bo$15b
2o$7bobo$6bo2bo$7bobo3bo$15bo$11bo4bo$15bo$13bo!
x = 19, y = 19, rule = pre-x-rule
9bo2$4b2o3bo3b2o2$2bo6bo6bo$2bo13bo4$obobo9bobobo4$2bo13bo$2bo6bo6bo2$
4b2o3bo3b2o2$9bo!
x = 25, y = 24, rule = pre-x-rule
24bo$22bobo$20bo$19bobo$18bo$19bo$17bo2$16b2o7$8bo$8bo$7bo$5bo$4bobo$
3bo$4bo$2bo$2o!
wildmyron wrote:Seems quite tricky to all the gliders in the right place for this synth.
Here are a few more rakes which provide some additional options though:
x = 26, y = 27, rule = pre-x-rule
2$2b2o$bo$2b2o$17b2o$16bo$8bo8b2o$8bo5bo$2bo3bo7bo$3o2b2o10b2o$3b2o11b
o$3o2b2o10b2o$2bo3bo7bo$8bo5bo$8bo8b2o$16bo$17b2o$2b2o$bo$2b2o!
x = 61, y = 41, rule = pre-x-rule
36bo$35b3o$35b3o2$34b5o$36bo7b2o$34b5o4bo$44b2o$35b3o21b2o$35b3o20bo$
36bo13bo8b2o$o49bo5bo$o6bo12bo23bo3bo7bo$9bo8b3o21b3o2b2o10b2o$5bo4bo
10b2o22b2o11bo$9bo8b3o21b3o2b2o10b2o$o6bo12bo23bo3bo7bo$o49bo5bo$36bo
13bo8b2o$35b3o20bo$35b3o21b2o$44b2o$34b5o4bo$36bo7b2o$34b5o2$35b3o$35b
3o$36bo2$22bo$22bo$22bo$22bo$21b3o$20bobobo$21b3o$22bo$22bo$22bo$22bo!
x = 210, y = 132, rule = pre-x-rule
166b2o9$185bo$184b3o$184b3o2$183b5o$185bo7b2o$183b5o4bo$193b2o$184b3o
21b2o$184b3o20bo$185bo13bo8b2o$149bo49bo5bo$77bobo69bo6bo12bo23bo3bo7b
o$74b2obobob2o75bo8b3o21b3o2b2o10b2o$73b3ob3ob3o70bo4bo10b2o22b2o11bo$
74b2obobob2o75bo8b3o21b3o2b2o10b2o$77bobo69bo6bo12bo23bo3bo7bo$149bo
49bo5bo$185bo13bo8b2o$184b3o20bo$184b3o21b2o$193b2o$183b5o4bo$64bo120b
o7b2o$63bobo117b5o$18bo110bo$16bo47bo64bo54b3o$15bo4bo109bo53b3o$3bo
12bo46bobo119bo$bo16bo45bo$o5b2o163bo$bo4b2o6bo156bo$4bo2bo6bo85bo70bo
$4bo2bo65b2o25bo70bo$bo5b2o14bobo21bobo21bo3bo94b3o$o5b2obo16bo23bo23b
3ob3o88bobobo$bo5b2o14bobo21bobo21bo3bo94b3o$4bo2bo65b2o25bo70bo$4bo2b
o6bo85bo70bo$bo4b2o6bo156bo$o5b2o163bo$bo16bo45bo$3bo12bo46bobo$15bo4b
o$16bo47bo$18bo$63bobo$64bo18$84bobo2$84bobo$85bo5$81bo$81bo$82bo2$
122bo3bo$121bo2bo2bo$122bo3bo7$82b2o$81bo2$135b2o3b2o4bo$146b3o$135b2o
3b2o2b2o$146b3o12bo$146bo14b3o$159b2o$152bo8b3o$102bo49bo5bo2bo$102bo
47bo7bo2bo$110bobo6b2o22b2o16b3o$113bo7bo23bo3bo9b2o$110bobo6b2o22b2o
16b3o$102bo47bo7bo2bo$102bo49bo5bo2bo$152bo8b3o$159b2o$146bo14b3o$146b
3o12bo$135b2o3b2o2b2o$146b3o$135b2o3b2o4bo13$119b2o!
thunk wrote:wildmyron wrote:Seems quite tricky to all the gliders in the right place for this synth.
Here are a few more rakes which provide some additional options though:
Got it! My approach was a bit indirect though.
First, danieldb's forward rake was modified to produce this p24 Gb backrake:Code: Select allx = 26, y = 27, rule = pre-x-rule
2$2b2o$bo$2b2o$17b2o$16bo$8bo8b2o$8bo5bo$2bo3bo7bo$3o2b2o10b2o$3b2o11b
o$3o2b2o10b2o$2bo3bo7bo$8bo5bo$8bo8b2o$16bo$17b2o$2b2o$bo$2b2o!
Then, the bi-domino glider reflector allowed for a period-quadrupling reaction that creates tethered rakes:Code: Select allx = 61, y = 41, rule = pre-x-rule
36bo$35b3o$35b3o2$34b5o$36bo7b2o$34b5o4bo$44b2o$35b3o21b2o$35b3o20bo$
36bo13bo8b2o$o49bo5bo$o6bo12bo23bo3bo7bo$9bo8b3o21b3o2b2o10b2o$5bo4bo
10b2o22b2o11bo$9bo8b3o21b3o2b2o10b2o$o6bo12bo23bo3bo7bo$o49bo5bo$36bo
13bo8b2o$35b3o20bo$35b3o21b2o$44b2o$34b5o4bo$36bo7b2o$34b5o2$35b3o$35b
3o$36bo2$22bo$22bo$22bo$22bo$21b3o$20bobobo$21b3o$22bo$22bo$22bo$22bo!
The resulting period of the glider streams is 192: 24*4*2(magnitude of the doppler effect at c/2).
Note that p12s are used to eat the stray gliders--I couldn't find stable eaters for some reason.
p192 is now large enough to allow the synthesis to take place:Code: Select allx = 210, y = 132, rule = pre-x-rule
166b2o9$185bo$184b3o$184b3o2$183b5o$185bo7b2o$183b5o4bo$193b2o$184b3o
21b2o$184b3o20bo$185bo13bo8b2o$149bo49bo5bo$77bobo69bo6bo12bo23bo3bo7b
o$74b2obobob2o75bo8b3o21b3o2b2o10b2o$73b3ob3ob3o70bo4bo10b2o22b2o11bo$
74b2obobob2o75bo8b3o21b3o2b2o10b2o$77bobo69bo6bo12bo23bo3bo7bo$149bo
49bo5bo$185bo13bo8b2o$184b3o20bo$184b3o21b2o$193b2o$183b5o4bo$64bo120b
o7b2o$63bobo117b5o$18bo110bo$16bo47bo64bo54b3o$15bo4bo109bo53b3o$3bo
12bo46bobo119bo$bo16bo45bo$o5b2o163bo$bo4b2o6bo156bo$4bo2bo6bo85bo70bo
$4bo2bo65b2o25bo70bo$bo5b2o14bobo21bobo21bo3bo94b3o$o5b2obo16bo23bo23b
3ob3o88bobobo$bo5b2o14bobo21bobo21bo3bo94b3o$4bo2bo65b2o25bo70bo$4bo2b
o6bo85bo70bo$bo4b2o6bo156bo$o5b2o163bo$bo16bo45bo$3bo12bo46bobo$15bo4b
o$16bo47bo$18bo$63bobo$64bo18$84bobo2$84bobo$85bo5$81bo$81bo$82bo2$
122bo3bo$121bo2bo2bo$122bo3bo7$82b2o$81bo2$135b2o3b2o4bo$146b3o$135b2o
3b2o2b2o$146b3o12bo$146bo14b3o$159b2o$152bo8b3o$102bo49bo5bo2bo$102bo
47bo7bo2bo$110bobo6b2o22b2o16b3o$113bo7bo23bo3bo9b2o$110bobo6b2o22b2o
16b3o$102bo47bo7bo2bo$102bo49bo5bo2bo$152bo8b3o$159b2o$146bo14b3o$146b
3o12bo$135b2o3b2o2b2o$146b3o$135b2o3b2o4bo13$119b2o!
There is undoubtedly a lot of optimization to be done.
x = 48, y = 9, rule = pre-x-rule
2o21b2o20b2o$2bo22bo21bo$2o21b2o20b2o2$41bo$2o39bo$2bo20b2o$2o23bo$23b
2o!
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
x = 35, y = 26, rule = pre-x-rule
26b2o$25bo$26b2o$23bo9b2o$23bo8bo$33b2o$o29bo$o8bo8bo11bo$11bo4b3o14b
2o$7bo4bo6b2o11bo$11bo4b3o14b2o$o8bo8bo11bo$o29bo$33b2o$23bo8bo$23bo9b
2o$26b2o$25bo$26b2o7$12b2o!
x = 35, y = 23, rule = pre-x-rule
13bo$13bo5bo6b2o$19bo5bo$26b2o$23bo9b2o$23bo8bo$33b2o$o29bo$o8bo8bo11b
o$11bo4b3o14b2o$7bo4bo6b2o11bo$11bo4b3o14b2o$o8bo8bo11bo$o29bo$33b2o$
23bo8bo$23bo9b2o$26b2o$25bo$26b2o3$12b2o!
x = 88, y = 88, rule = x-rule
85bobo$84b2o$83bo$82bo$81b2o$80bo$79bo$78b2o$77bo$76bo$75b2o$74bo$73bo
$72b2o$71bo$70bo$69b2o$68bo$67bo$66b2o$65bo$64bo$63b2o$62bo$61bo$60b2o
$59bo$58bo$57b2o$56bo$55bo$54b2o$53bo$52bo$51b2o$12bobo35bo$11b2o36bo$
48b2o$11bo35bo$46bo$45b2o$17b2o25bo$43bo$17bo24b2o$41bo15bobo$40bo15b
2o$28bobo8b2o14bo$27b2o9bo15bo$26bo10bo15b2o$25bo10b2o14bo$24b2o9bo15b
o$23bo10bo15b2o$22bo10b2o$21b2o9bo17bo$31bo$21bo8b2o$29bo29bobo$28bo
29b2o$27b2o28bo$26bo29bo$25bo29b2o$24b2o$23bo31bo$22bo$21b2o$20bo$19bo
$18b2o$17bo$16bo$15b2o$14bo$13bo$12b2o$11bo$10bo$9b2o$8bo$7bo$6b2o$5bo
$4bo$3b2o$2bo$bo$2o2$o!
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
#CXRLE Pos=-30,-20 Gen=2271
x = 106, y = 41, rule = x-rule-pre
104b2o10$38bo3bo$39bobo$36b2o5b2o$37b2obob2o$39bobo$40bo4$30bo$29bobo
28b2o$28b2o2bo$28bo2bo$28b2o2bo$29bobo$30bo3$41bo$39bo3bo$38b2o3b2o$
39bo3bo$38bo2bo2bo$41bo$41bo6$2o!
x = 23, y = 34, rule = pre-x-rule
4b2o5b2o$4bo7bo$6bo3bo$5b2o3b2o$21b2o$22bo$2b2o9b2o$bo13bo$2b2o9b2o$
22bo$21b2o$5b2o3b2o$6bo3bo$4bo7bo$4b2o5b2o7$4bo7bo$3b2o7b2o4$b2o11b2o$
o15bo$b2o11b2o4$3b2o7b2o$4bo7bo!
x = 71, y = 15, rule = pre-x-rule
4bo15b2o18b2o20b2o3b2o$4bo15bo19bo3bo$22bo4bo14bo17b2o7b2o$3b3o15b2obo
2bo13bo3bo$2o40bo3bo$6b2o16bo20bo$2b3o38bo3bo15bo3bo$21b2obo2bo18b2o$
3bo18bo4bo35bo3bo$3bo16bo$20b2o2$60b2o7b2o2$62b2o3b2o!
Saka wrote:Aha! I found a way to extend the c4 Diagonal ship: (works in all x-rule variants)
scorbie wrote: Nice contraption! It's breeding is pretty unusual, I would say, but I'm pretty sure most will agree that this is a breeder.
Component optimized: (EDIT: even more)
x = 100, y = 92, rule = pre-x-rule
49b2o6$10bo$8bo$7bo4bo67b2o$3bo4bo$bo8bo28bo3bo$o5b2o31bo4b2o$bo4b2o$
4bo2bo54bo$4bo2bo54bo$bo5b2o14bobo$o5b2obo16bo$bo5b2o14bobo$4bo2bo54bo
$4bo2bo54bo$bo4b2o$o5b2o31bo4b2o$bo8bo28bo3bo45b2o$3bo4bo79bo$7bo4bo
76b2o$8bo77bo9b2o$10bo75bo8bo$96b2o$63bo29bo$63bo8bo8bo11bo$74bo4b3o
14b2o$70bo4bo6b2o11bo$74bo4b3o14b2o$63bo8bo8bo11bo$63bo29bo$96b2o$46bo
bo37bo8bo$86bo9b2o$46bobo40b2o$47bo40bo$89b2o4$43bo$43bo$44bo$75b2o5$
76b2o5$44b2o$43bo46bo$90b3o$88b2o$90b3o4bo$87bo2bo6b3o$87bo7b2o$97b3o$
64bo29bo2bo$64bo29bo2bo$74bobo2b2o16b3o$77bo3bo13b2o$74bobo2b2o16b3o$
64bo29bo2bo$64bo29bo2bo$97b3o$87bo7b2o$87bo2bo6b3o$90b3o4bo$88b2o$90b
3o$90bo13$81b2o!
x = 26, y = 34, rule = pre-x-rule
7b2o5b2o$7bo7bo$9bo3bo$8b2o3b2o$25bo$25bo$5b2o9b2o$4bo13bo$5b2o9b2o3$
8b2o3b2o$9bo3bo$7bo7bo$7b2o5b2o7$7bo7bo$6b2o7b2o3$2bo17bo$2b3o13b3o$2o
19b2o$2b3o13b3o$2bo17bo3$6b2o7b2o$7bo7bo!
Here: two ways. Supporting from the front and supporting from the back.wildmyron wrote:This is described in the paper linked to from the first post and a few smaller examples have been posted. I would be really interested in seeing the other diagonal ship I posted just above being extended in a similar way.Saka wrote:Aha! I found a way to extend the c4 Diagonal ship: (works in all x-rule variants)
x = 86, y = 86, rule = pre-x-rule
85bo$83bobo$81bo$80bobo$79bo$76bo3bo$75b2obo$77bo$72bo3bo$71bob2o$72bo
bo$67bo4b2o$69b2o$68bo$68bobo$66bo$65bobo$64bo$61bo3bo$60b2obo$62bo$
57bo3bo$56bob2o$57bobo$52bo4b2o$54b2o$53bo$53bobo$51bo$50bobo$49bo$46b
o3bo$45b2obo$47bo$42bo3bo$41bob2o$42bobo$37bo4b2o$39b2o$38bo$38bobo$
35bo$34bob2o$35bobo$35b2o$32bo$31b2obo$33bo$32bo$30bo$29bobo$28bo$24bo
4bo$26b2o$25bo$25bobo$22bo$21bob2o$22bobo$22b2o$19bo$18b2obo$20bo$19bo
$17bo$16bobo$15bo$11bo4bo$13b2o$12bo$12bobo$9bo$8bob2o$9bobo$9b2o$6bo$
5b2obo$7bo$6bo$4bo$3bobo$2bo$3bo$bo2$2o!
#CXRLE Pos=-30,-20 Gen=2271
x = 106, y = 41, rule = x-rule-pre
104b2o10$38bo3bo$39bobo$36b2o5b2o$37b2obob2o$39bobo$40bo4$30bo$29bobo
28b2o$28b2o2bo$28bo2bo$28b2o2bo$29bobo$30bo3$41bo$39bo3bo$38b2o3b2o$
39bo3bo$38bo2bo2bo$41bo$41bo6$2o!
#CXRLE Pos=-25,-8
x = 5, y = 5, rule = pre-x-rule
bobo2$o3bo2$bobo!
jmgomez wrote:Basic P15 oscillator.
#CXRLE Pos=-53,26
x = 175, y = 107, rule = pre-x-rule
84b2o3b2o$84bo5bo35$84bo5bo$84b2o3b2o16$12bo7bo133bo7bo$11b2o7b2o131b
2o7b2o2$2o171b2o$o6bo17bo123bo17bo6bo$7b3o13b3o123b3o13b3o$5b2o19b2o
120bo19bo$7b3o13b3o123b3o13b3o$o6bo17bo123bo17bo6bo$2o171b2o2$11b2o7b
2o131b2o7b2o$12bo7bo133bo7bo14$127bo$47bo79bo$45b2ob2o75b2ob2o$46bobo
77bobo$46bobo77bobo2$42bo9bo69bo9bo$41b2o9b2o67b2o9b2o8$41b2o9b2o67b2o
9b2o$42bo9bo69bo9bo2$46bobo77bobo$46bobo77bobo$45b2ob2o75b2ob2o$47bo
79bo$127bo4$44bo5bo73bo5bo$44b2o3b2o73b2o3b2o!
x = 61, y = 25, rule = pre-x-rule
3bo17bobo13bobo17bo$3bo19b2o11b2o19bo2$2o9bobo10bo11bo10bobo9b2o$9b2ob
ob2o29b2obob2o$12bo35bo$9b2obob2o29b2obob2o$11bobo33bobo$32b2o$4bobo
11bobo19bobo11bobo$4bobo11bobo19bobo11bobo$3bo3bo9bo3bo17bo3bo9bo3bo$
4b3o11b3o19b3o11b3o$3bo3bo9bo3bo17bo3bo9bo3bo$4bobo11bobo19bobo11bobo$
4bobo11bobo19bobo11bobo2$11bobo33bobo$9b2obob2o29b2obob2o$12bo35bo$9b
2obob2o29b2obob2o$2o9bobo9b2o11b2o9bobo9b2o2$3bo17bo17bo17bo$3bo17bo
17bo17bo!
Return to Other Cellular Automata
Users browsing this forum: Ian07 and 2 guests