x = 3, y = 2, rule = B2ci3aik4w6ck/S012an3-jnry4-acenz5enqr7c
bo$3o!
x = 3, y = 2, rule = B2ci3aik4w6ck/S012an3-jnry4-acenz5enqr7c
bo$3o!
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
x = 4, y = 3, rule = B3-n4kq/S237
2bo$b3o$2obo!
x = 29, y = 8, rule = B3-n4kq6in7c/S234e7c
b3o21b3o$bobo21bobo$o3bo19bo3bo$bobo21bobo$b3o21b3o3$20b3o!
x = 55, y = 16, rule = B3-n4kq6in7c/S234e7c
51bo$50bobo$49b2ob2o$49bo3bo$6b2o2$6bo2bo10b2o31b2o$7b2o11b2o31b2o$7b
2o6$2o$2o!
#C [[ AUTOFIT ]]
x = 7, y = 9, rule = B34tw/S23
2o$2o$4b2o$6bo$3bo2bo$6bo$4b2o$2o$2o!
x = 5, y = 4, rule = B2ikn3aijn/S23-i4q
2bo$bobo$o3bo$4o!
x = 21, y = 7, rule = B2in3/S2-c3
2bo$2o$b2o2$3bo15bo$2b2o14b2o$2bobo13bobo!
x = 55, y = 8, rule = B3-cn/S234q
2bo14b2o14b2ob2o14b3o$2ob2o11bo15bo4bo14bo$17b2o14b2obo15bo$2ob2o13b2o
14b2o17b2o$bobo2$bobo$2bo!
x = 18, y = 11, rule = B36/S23
2b3o$bo2bo$o3bo$o2bo$3o2$15b3o$14bo2bo$13bo3bo$13bo2bo$13b3o!
#C [[ AUTOFIT ]]
x = 7, y = 9, rule = B34tw/S23
2o$2o$4b2o$6bo$3bo2bo$6bo$4b2o$2o$2o!
x = 7, y = 3, rule = B2in3-q4cint5cjk6cik/S2ace3-jqr4cejqrw5n6a7e8
o4b2o$2o3b2o$o!
x = 3, y = 6, rule = B2-ae3ajnqr4-cjkny5-aijr6ain78/S012-ak3aijkr4-acjtz5ejkqy6-ek7
o$bo$2bo$2bo$bo$o!
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
x = 47, y = 19, rule = B2c3ae4ai56c_S2-kn3-enq4
6bo15bo15bo2$b3o2bo2b3o5b3o2bo2b3o5b3o2bo2b3o$2bo7bo7bo7bo7bo7bo$2bo7b
o7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo$bobo5bobo6bo7bo7bo7bo$2bo7bo6bobo5bob
o6bo7bo$18bo7bo6bobo5bobo$34bo7bo5$3o3bobob3o3b3o3bobob3o3b3o3bob3ob3o
$2bo3bobo3bo5bo3bobobo7bo3bo3bobobo$3o2bo2bob3o3b3o2bo2bob3o3b3o2bo2b
3obobo$o3bo3bobo5bo3bo3bobobo3bo3bo3bo3bobo$3obo3bob3o3b3obo3bob3o3b3o
bo3b3ob3o!
x = 28, y = 30, rule = B2cek3cky4-anwy5-ny6-ak78/S123aeik4-aiqrw5-n6-ak78
27bo$27bo4$22b2o$24bo3$20b2o2$16bo$16bo3$12b2o$14bo3$10b2o3$5bo$5bo2$
2b2o$4bo3$2o!
wildmyron wrote:Adjustable speed diagonal ship: 2c/(12n+2) for n>3Code: Select allx = 28, y = 30, rule = B2cek3cky4-anwy5-ny6-ak78/S123aeik4-aiqrw5-n6-ak78
27bo$27bo4$22b2o$24bo3$20b2o2$16bo$16bo3$12b2o$14bo3$10b2o3$5bo$5bo2$
2b2o$4bo3$2o!
works in: B2cek4ejt5aj6c/S123a5i - B2cek3cky4-anwy5-ny6-ak78/S123aeik4-aiqrw5-n6-ak78
A for awesome wrote:Congratulations! The 2 full-diagonal translation is interesting, too — it disallows true-period ships, but allows odd-denominator reduced speeds.
x = 63, y = 49, rule = B2cek4ejt5aj6c/S123a5i
5bo$5bo2$2b2o$4bo3$2o9$62bo$62bo4$57b2o$59bo26$32b2o!
x = 28, y = 27, rule = B2cen4i6a/S12aen3r4a5c
27bo$27bo4$22bo$23bo$23bo$20b2o2$16bo$16bo3$12bo$13bo$13bo$10b2o3$5bo$
5bo2$2bo$3bo$3bo$2o!
muzik wrote:The answer is probably no for small searchable patterns, but could adjustable-slope spaceships exist?
It looks like the rule AforAmpere made uses two different types of cell to move the stationary cells at each side, with one moving the edges orthogonally and the other diagonally, and these can be mixed and matched to give a desired slope.
x = 3, y = 55, rule = B2cek3n4eijwy5j6i/S02e3ny4n6c
bo4$bo$bo2$obo5$o8$bo4$bo$bo2$obo6$o7$bo4$bo$bo2$obo7$o!
x = 37, y = 25, rule = B2cek3aer4i5k7e/S01c3y4iz5k8
34b2o$27bo4b2o2bo$29bo3bobo$27bo4b2o2bo$34b2o6$34b2o$20bo6bo4b2o2bo$
29bo3bobo$27bo4b2o2bo$34b2o6$34b2o$o26bo4b2o2bo$29bo3bobo$27bo4b2o2bo$
34b2o!
x = 7, y = 3, rule = B2e3inq4aej5k6k/S1c23aeiqy4-cirw5ceiy6an
2o$bo3b2o$2o3b2o!
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
x = 6, y = 3, rule = B3-k4nt5q6ce/S02ack3-cjk4knrtwy5ry6ek8
o$2o2b2o$o3b2o!
x = 3, y = 49, rule = B2e3-ceny4ain6k/S01c2cek3ijnq4an
o2$bo$obo3$bo14$o3$bo$obo3$bo13$o4$bo$obo3$bo!
x = 3, y = 51, rule = B2-ak3ejny4kz/S01c2ae3r5k
o2$bo$obo5$bo12$o3$bo$obo5$bo11$o4$bo$obo5$bo!
x = 5, y = 49, rule = B2ik3ai4ae5ay6i/S01e2ck4r5aq6k
bo2$2bo$o3bo3$2bo14$bo3$2bo$o3bo3$2bo13$bo4$2bo$o3bo3$2bo!
x = 6, y = 3, rule = B2ek3ciy4aeqtw5-ciny6aik/S01c2-in4q5aceiq6-in7c
2o3bo$bo$2o!
x = 8, y = 3, rule = B2ek3aeir4-acint5aejkq6i7/S01c2-in3ceijk4qrtw5ejy6ekn7e
2o5bo$bo$2o!
x = 4, y = 3, rule = B2cen3ae4eikqz5ceir6ek/S03kqr4qr5c7c
o2bo2$o!
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
@RULE B2SEN8
@TABLE
n_states:33
neighborhood:vonNeumann
symmetries:none
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32}
var aa=a
var ab=a
var ac=a
var ad=a
var lon={18,20,22,24,26,28,30,32}
var loff={17,19,21,23,25,27,29,31}
var nlon={2,4,6,8,10,12,14,16}
var nloff={0,3,5,7,9,11,13,15}
var ron={6,8,14,16,22,24,30,32}
var roff={5,7,13,15,21,23,29,31}
var nron={2,4,10,12,18,20,26,28}
var nroff={0,3,9,11,17,19,25,27}
var uon={4,8,12,16,20,24,28,32}
var uoff={3,7,11,15,19,23,27,31}
var nuon={2,6,10,14,18,22,26,30}
var nuoff={0,5,9,13,17,21,25,29}
var don={10,12,14,16,26,28,30,32}
var doff={9,11,13,15,25,27,29,31}
var ndon={2,4,6,8,18,20,22,24}
var ndoff={0,3,5,7,17,19,21,23}
var off={loff,nloff}
var on={lon,nlon}
0,0,0,0,0,0
1,0,0,0,0,2
0,1,0,0,0,3
1,1,0,0,0,4
0,0,1,0,0,5
1,0,1,0,0,6
0,1,1,0,0,7
1,1,1,0,0,8
0,0,0,1,0,9
1,0,0,1,0,10
0,1,0,1,0,11
1,1,0,1,0,12
0,0,1,1,0,13
1,0,1,1,0,14
0,1,1,1,0,15
1,1,1,1,0,16
0,0,0,0,1,17
1,0,0,0,1,18
0,1,0,0,1,19
1,1,0,0,1,20
0,0,1,0,1,21
1,0,1,0,1,22
0,1,1,0,1,23
1,1,1,0,1,24
0,0,0,1,1,25
1,0,0,1,1,26
0,1,0,1,1,27
1,1,0,1,1,28
0,0,1,1,1,29
1,0,1,1,1,30
0,1,1,1,1,31
1,1,1,1,1,32
off,nuoff,nroff,ndoff,lon,1
off,nuoff,nroff,doff,loff,1
off,nuoff,nroff,ndon,loff,1
off,nuoff,roff,ndoff,loff,1
off,nuoff,nron,ndoff,loff,1
off,uoff,nroff,ndoff,loff,1
off,nuon,nroff,ndoff,loff,1
off,nuoff,nroff,doff,nlon,1
off,nuoff,nroff,ndon,nlon,1
off,nuoff,roff,ndoff,nlon,1
off,nuoff,nron,ndoff,nlon,1
off,uoff,nroff,ndoff,nlon,1
off,nuon,nroff,ndoff,nlon,1
off,nuoff,nroff,don,nloff,1
off,nuoff,roff,doff,nloff,1
off,nuoff,nron,doff,nloff,1
off,uoff,nroff,doff,nloff,1
off,nuon,nroff,doff,nloff,1
off,nuoff,roff,ndon,nloff,1
off,nuoff,nron,ndon,nloff,1
off,uoff,nroff,ndon,nloff,1
off,nuon,nroff,ndon,nloff,1
off,nuoff,ron,ndoff,nloff,1
off,uoff,roff,ndoff,nloff,1
off,nuon,roff,ndoff,nloff,1
off,uoff,nron,ndoff,nloff,1
off,nuon,nron,ndoff,nloff,1
off,uon,nroff,ndoff,nloff,1
a,aa,ab,ac,ad,0
@COLORS
0 30 30 30
1 225 225 225
2 100 100 100
3 100 100 100
4 100 100 100
5 100 100 100
6 100 100 100
7 100 100 100
8 100 100 100
9 100 100 100
10 100 100 100
11 100 100 100
12 100 100 100
13 100 100 100
14 100 100 100
15 100 100 100
16 100 100 100
17 100 100 100
18 100 100 100
19 100 100 100
20 100 100 100
21 100 100 100
22 100 100 100
23 100 100 100
24 100 100 100
25 100 100 100
26 100 100 100
27 100 100 100
28 100 100 100
29 100 100 100
30 100 100 100
31 100 100 100
32 100 100 100
@RULE B2S0EN8
@TABLE
n_states:33
neighborhood:vonNeumann
symmetries:none
var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32}
var aa=a
var ab=a
var ac=a
var ad=a
var lon={18,20,22,24,26,28,30,32}
var loff={17,19,21,23,25,27,29,31}
var nlon={2,4,6,8,10,12,14,16}
var nloff={0,3,5,7,9,11,13,15}
var ron={6,8,14,16,22,24,30,32}
var roff={5,7,13,15,21,23,29,31}
var nron={2,4,10,12,18,20,26,28}
var nroff={0,3,9,11,17,19,25,27}
var uon={4,8,12,16,20,24,28,32}
var uoff={3,7,11,15,19,23,27,31}
var nuon={2,6,10,14,18,22,26,30}
var nuoff={0,5,9,13,17,21,25,29}
var don={10,12,14,16,26,28,30,32}
var doff={9,11,13,15,25,27,29,31}
var ndon={2,4,6,8,18,20,22,24}
var ndoff={0,3,5,7,17,19,21,23}
var off={loff,nloff}
var on={lon,nlon}
0,0,0,0,0,0
1,0,0,0,0,2
0,1,0,0,0,3
1,1,0,0,0,4
0,0,1,0,0,5
1,0,1,0,0,6
0,1,1,0,0,7
1,1,1,0,0,8
0,0,0,1,0,9
1,0,0,1,0,10
0,1,0,1,0,11
1,1,0,1,0,12
0,0,1,1,0,13
1,0,1,1,0,14
0,1,1,1,0,15
1,1,1,1,0,16
0,0,0,0,1,17
1,0,0,0,1,18
0,1,0,0,1,19
1,1,0,0,1,20
0,0,1,0,1,21
1,0,1,0,1,22
0,1,1,0,1,23
1,1,1,0,1,24
0,0,0,1,1,25
1,0,0,1,1,26
0,1,0,1,1,27
1,1,0,1,1,28
0,0,1,1,1,29
1,0,1,1,1,30
0,1,1,1,1,31
1,1,1,1,1,32
off,nuoff,nroff,ndoff,lon,1
off,nuoff,nroff,doff,loff,1
off,nuoff,nroff,ndon,loff,1
off,nuoff,roff,ndoff,loff,1
off,nuoff,nron,ndoff,loff,1
off,uoff,nroff,ndoff,loff,1
off,nuon,nroff,ndoff,loff,1
off,nuoff,nroff,doff,nlon,1
off,nuoff,nroff,ndon,nlon,1
off,nuoff,roff,ndoff,nlon,1
off,nuoff,nron,ndoff,nlon,1
off,uoff,nroff,ndoff,nlon,1
off,nuon,nroff,ndoff,nlon,1
off,nuoff,nroff,don,nloff,1
off,nuoff,roff,doff,nloff,1
off,nuoff,nron,doff,nloff,1
off,uoff,nroff,doff,nloff,1
off,nuon,nroff,doff,nloff,1
off,nuoff,roff,ndon,nloff,1
off,nuoff,nron,ndon,nloff,1
off,uoff,nroff,ndon,nloff,1
off,nuon,nroff,ndon,nloff,1
off,nuoff,ron,ndoff,nloff,1
off,uoff,roff,ndoff,nloff,1
off,nuon,roff,ndoff,nloff,1
off,uoff,nron,ndoff,nloff,1
off,nuon,nron,ndoff,nloff,1
off,uon,nroff,ndoff,nloff,1
on,nuoff,nroff,ndoff,nloff,1
a,aa,ab,ac,ad,0
@COLORS
0 30 30 30
1 225 225 225
2 100 100 100
3 100 100 100
4 100 100 100
5 100 100 100
6 100 100 100
7 100 100 100
8 100 100 100
9 100 100 100
10 100 100 100
11 100 100 100
12 100 100 100
13 100 100 100
14 100 100 100
15 100 100 100
16 100 100 100
17 100 100 100
18 100 100 100
19 100 100 100
20 100 100 100
21 100 100 100
22 100 100 100
23 100 100 100
24 100 100 100
25 100 100 100
26 100 100 100
27 100 100 100
28 100 100 100
29 100 100 100
30 100 100 100
31 100 100 100
32 100 100 100
x = 6, y = 5, rule = B2SEN8
3.A2$2A2.2A2$2.A!
Saka wrote:c/28dCode: Select allx = 6, y = 3, rule = B2ek3ciy4aeqtw5-ciny6aik/S01c2-in4q5aceiq6-in7c
2o3bo$bo$2o!
2c/96Code: Select allx = 8, y = 3, rule = B2ek3aeir4-acint5aejkq6i7/S01c2-in3ceijk4qrtw5ejy6ekn7e
2o5bo$bo$2o!
c/8Code: Select allx = 4, y = 3, rule = B2cen3ae4eikqz5ceir6ek/S03kqr4qr5c7c
o2bo2$o!
#C [[ AUTOFIT ]]
x = 7, y = 9, rule = B34tw/S23
2o$2o$4b2o$6bo$3bo2bo$6bo$4b2o$2o$2o!
A for awesome wrote:In the 8-cell extended von Neumann neighborhood, all non-exploding outer-totalistic rules that can contain spaceships must necessarily have B2 and neither of B01.
x = 2, y = 3, rule = B2i3-y5e6ci/S2-i3-e
o$2o$o!
x = 4, y = 3, rule = B2i3-y5e6ci/S2-i3-e
2o$ob2o$2bo!
toroidalet wrote:What's the neighborhood for the 8-cell extended von Neumann neighborhood? Is it the cross-shape neighborhood that I exhaustively enumerated, thinking it was the extended von Neumann neighborhood?
x = 31, y = 16, rule = Omnipotens
14.2A$6.2B5.A.A$5.B.B5.A$4.B8.3A$3.B25.B$3.2B23.B.B$29.B$2B11.3A$2B
11.A$13.A.A$14.2A$9.2B$9.2B$2.B$2.B$2.B!
M. I. Wright wrote:P92 HWSS gun in Rhombic's Omnipotens rule:Could be bumped down to p46 with some way to edgeshoot the bi-blocks from the left (w/o the leftmost state-2 block)Code: Select allx = 31, y = 16, rule = Omnipotens
14.2A$6.2B5.A.A$5.B.B5.A$4.B8.3A$3.B25.B$3.2B23.B.B$29.B$2B11.3A$2B
11.A$13.A.A$14.2A$9.2B$9.2B$2.B$2.B$2.B!
x = 31, y = 16, rule = Omnipotens
14.2A$5.B.B5.A.A$4.B.2B5.A$4.B8.3A$3.2B24.B$28.B.B$29.B$2B11.3A$2B11.
A$13.A.A$14.2A$9.2B$9.2B2$2.2B$2.2B!
Return to Other Cellular Automata
Users browsing this forum: danny, M. I. Wright and 3 guests