ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Complexity in loop rules?

For discussion of other cellular automata.

Complexity in loop rules?

Postby pi_guy314 » February 27th, 2016, 5:43 pm

After getting some more free time and getting bored of my other hobbies, I got re-interested in loop rules. I can't seem think of new methods that would allow loops with complex functions to be favored over simpler loops. Loops would increase in complexity overtime just like in real life biology. Shapeloop nor foodshapeloop didn't really accomplish neither of this well. What do you guys think would be a good method?
pi_guy314
 
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: Complexity in loop rules?

Postby Sphenocorona » February 27th, 2016, 7:11 pm

It seems like having loops with simplistic code-simplifying properties (like being able to iterate a sequence of instructions in the code multiple times without actually adding it multiple times) might help, since in real life there's a lot of both code redundancy and code reusage that goes on. So, code interpretation start/end instructions, (not the same one for both, but a different one for each so that those instructions can go uninterpreted too) seems like a good option.
Sphenocorona
 
Posts: 480
Joined: April 9th, 2013, 11:03 pm

Re: Complexity in loop rules?

Postby pi_guy314 » February 28th, 2016, 1:21 pm

Sphenocorona wrote:It seems like having loops with simplistic code-simplifying properties (like being able to iterate a sequence of instructions in the code multiple times without actually adding it multiple times) might help,


Something like that kinda exist already in shapeloop.
x = 10, y = 10, rule = shapeloop3
3.2ABD$3.A2HF$3.A2HD2.G$4A2HCD2A$A3H2.3HA$A3H2.3HA$4A2H4A$3.A2HA$3.A
2HA$3.4A!

This could be useful for conserving space so there'll be room for genes other than loop construction. A loop large enough might be able to create complex circuitry.
pi_guy314
 
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: Complexity in loop rules?

Postby pi_guy314 » February 29th, 2016, 9:47 pm

Here's a very lengthy list of things that could be used:

Photons or Food Particles
Both can be used to give an advantage to larger loops at a certain point. The ideal loop size would depend on food/photon scarcity. I've already created a rule with food particles called foodshapeloops. I've also experimented with photons on a test rule a few months ago. Photons may be created from a single source or from other photons. Each one has it's pros and cons. Photons might be a better option as it is easier to work with.

Limited Arm Kill
In shapeloop, a loop arm will destroy any loops in it's path including its own offspring. If loops can only kill with a certain gene or gene combination, then it would give larger loops an advantage as they can have more space for multiple kill genes. It can also allow loops to spare its offspring.

Specialized Loop Arm Function
Loop arms could have specialized function that would help increase a loop's survival. These functions could include absorbing photons, branching, and killing at certain moments. This also give larger loops a bigger advantage as they can carry more genes to preform these function.

Single Unit Mutation
Currently how loops mutate in shapeloop is very similar to sexual reproduction. A loop would hijack another loops arm and both loop's "DNA" might merge in the offspring. The difference in size between the offspring and the hijacker loop would further rearrange the loops DNA. The DNA may continue changing after generations if the size difference are not stable. The entire outcome of this varies greatly, from no changes at all to a complete change of its DNA. Here's an example of a very complex loop mutation:
x = 56, y = 50, rule = shapeloop3
25.J$19.N2.2DBD19.N$22.C2HI$22.D19H$22.2DC2DBDC2DC2DB2DO7A$42.A2HO$
42.A2HD$42.A2HD$42.A2HB2DCD$42.AH.4HD$42.AH4.HC$42.AH4.HD$42.AH.4HB$
42.D2H2DC2D$42.C2HD$42.D2HC$42.DB2D$12.N25.N3$35.2DCD$35.C2HB$35.D2HD
$35.D2HD$35.B2HC3DC$35.DH.4HD$35.DH4.HD$35.EH4.HB$35.AH.4HD$35.A2H2AD
CD$35.A2HA$35.A2HA$35.4A6$5.N6$29.N!
A problem with this way of mutation in general is that getting small changes in the beginning or middle of the loop's DNA without changing other parts seems unlikely. A new and additional way of mutation might be needed, where only a single unit might get changed or added at a time.

What suggestion do you have?
pi_guy314
 
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: Complexity in loop rules?

Postby Tezcatlipoca » March 16th, 2016, 2:04 am

I thought for a while about this some months ago, and was able to come up with some potentially interesting ideas toward the goal you mention. I shared these ideas with fluffykitty as he was beginning to play with creating rulesets at the time. We didn't get very far down that road, but even as far as we got seemed very interesting to me. I will excerpt interesting portions of that previous conversation here:

We could set out to mimic life's precursors and hope and expect that a good analog will develop significant complexity in the system on its own over time with only a little guidance just as biological life did. Using your Shapeloop variations as can be seen in threads here, we have demonstrated with minimal guidance, over time and after many generations significant complexity can arise spontaneously with rulesets. This even using rules that incompletely approach the fundamental characteristics of biological life.

The "precursors" I refer to are self replicating macromolecules which in biological life probably came first, something like chains of amino acids/proteins/RNA shaped in such a way (shaped here being the configuration of their molecules as determined by the chemical properties of the composing atoms like snap together organic chemistry models used in education) that they are able to organize random configurations of the composing molecules into a shape identical to itself. Take the following where the symbols 'q' and 'b', 'p' and 'd', 'n' and 'u', '[' and ']', and '{' and '}' are the same shapes ("states" in a future realized CA version) but in different orientations:

. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . [ . } . . . . . . . 
. . . . . b u d . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 


Where:
  • shape 'b' and shape 'u' always have a tendency to arrange with 'b' on the left hand side of 'u' as it is oriented, when in within the proximity of two spaces in any direction, so that if in generation 1:
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . u . . . . . . . . 
. . . . . . . . b . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 

then in generation 2:
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . b u . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 


And similarly:
  • 'u' and 'd' always have a tendency to arrange with 'd' on the right hand side of 'u' as it is oriented when in proximity
  • 'd' and '}' always have a tendency to arrange with 'o' above '}' as it is oriented when in proximity
  • 'b' and '[' always have a tendency to arrange with 'c' above '[' as it is oriented when in proximity
  • Once any of these pairs get into their preferred orientations, they move together as a unit.

Also:
  • '[' and '}' always have a tendency to arrange such that '{' brackets '[' as it is oriented when in proximity, but this arrangement is not strongly preferred and so does not lock into place or persist if the arrangement is being pulled into a different orientation or location by another affinity
    [/list]
It would tend to form up like this:
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . p n q p n q . . . . . .
. . . { [ ] } [ ] . . . . . . 
. . . . b u d b u d . . . . .
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 


Well this is not all that interesting of a formation, but the complexity could get a lot greater when each shape is more complex, can rotate in four different orientations rather than two, and in the interplay between partially formed configurations being drawn in different directions by different rules. The point is that simple rules that about determine how different states are oriented relative to each other can form complexity.

Now these are shapes and and not states, but shapes could be formed by states that have affinities for other states in orientation when in proximity. Random distributions of states that organize according to rules like these may produce interesting enough results on their own--something "emergent".
User avatar
Tezcatlipoca
 
Posts: 81
Joined: September 9th, 2014, 11:40 am

Re: Complexity in loop rules?

Postby Tezcatlipoca » March 16th, 2016, 2:15 am

If anyone is interested in the deeper discussion over practical details subsequent to fluffykitty and I agreeing on this concept which he used to create the first working demo, let me know and I will post the rest of the conversation.
User avatar
Tezcatlipoca
 
Posts: 81
Joined: September 9th, 2014, 11:40 am

Re: Complexity in loop rules?

Postby fluffykitty » March 16th, 2016, 11:58 am

Actually I'd been making rules for a while when I joined and showed off my loop. My first rule was a simulation of 1-layer Minecraft water physics. I even have a loop rule where I've forgotten the loop itself... :? Well, we could start doing that again. If we do continue, I think I'm going to start with a new rule, the old version was really buggy. Though I'm a bit worried that an infinite configuration might be able to solve the halting problem in 1 step. (Also extra [/list] after the special brackets rule.)
I like making rules
fluffykitty
 
Posts: 604
Joined: June 14th, 2014, 5:03 pm

Re: Complexity in loop rules?

Postby muzik » March 16th, 2016, 12:08 pm

What exactly are loop rules?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik
 
Posts: 3413
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Complexity in loop rules?

Postby fluffykitty » March 16th, 2016, 12:47 pm

Rules with self replicating loops. In Golly, Patterns->Loops has a lot of loop rules.
I like making rules
fluffykitty
 
Posts: 604
Joined: June 14th, 2014, 5:03 pm

Re: Complexity in loop rules?

Postby pi_guy314 » March 16th, 2016, 6:32 pm

There's a few things that would be difficult to figure out or implement such as how to get DNA will replicate or how DNA would move on it's own. A chemistry-like rule might be better done in an extended-neighborhood rule where objects can interact with each other at a distance instantly.

I'm current working on a rule where randomly moving worm-like loop would be used instead of a stationary loops. Longer worms would have more advantages over shorter worms. The movements of worms are determined by their DNA which would probably allow competition between similar size worms. The result seems very promising although I'm not completely sure if it will increase in complexity like I wanted it to. It's almost complete and I'll release it once it's 100% finished without any bugs or need to update it later on. Maybe I'll release it just before if I need some feedback.
pi_guy314
 
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: Complexity in loop rules?

Postby Tezcatlipoca » March 20th, 2016, 5:05 pm

pi_guy314 wrote:
I'm current working on a rule where randomly moving worm-like loop would be used instead of a stationary loops... Maybe I'll release it just before if I need some feedback.



Excited to see it! Have you release it yet?
User avatar
Tezcatlipoca
 
Posts: 81
Joined: September 9th, 2014, 11:40 am

Re: Complexity in loop rules?

Postby pi_guy314 » March 21st, 2016, 5:03 pm

Tezcatlipoca wrote:Excited to see it! Have you release it yet?


Not yet. It's mostly done but I'm still doing some tweaks to it. I might still have to do some major changes to it later on. I don't want to release the entire rule too early as I don't want to have to update it later just to have posted patterns to change. If I need some help with the rule I could release it on a thread made solely for its development.

Here's a demo of the rule along with an example:
@RULE WormLoop-demo
1 empty wire
2 left turn
3 right turn
4 forward
5 random (changes signal behind randomly)
6 double forward (causes worm to increase in size during mutation)
7 charged (causes worm to split/replicate)
8 wire-back
9 wire-back 2
10 wire-head
11 wire-head 2
12 wire-end
13 misc
14 photon-back/misc 2
15 photon-head
16 indestructible-wall
@TABLE
n_states:17
neighborhood:Moore
symmetries:rotate4
var a1={00,01,02,03,04,05,06,07,08,09,10,11,12,13,13,14,15}
var b1={01,02,03,04,05,06,07}
var c1={02,03,04,05,06,07}
var d1={00}
var f1={00,13,14,15}
var g1={08,09}
var h1={04,05,06}
var i1={10,11}
var j1={04,07}
var B1={00,08,09,10,11,12,13,14,15}
var G1={00,01,02,03,04,05,06,07,10,11,12,13,14,15}
var F1={01,02,03,04,05,06,07,08,09,10,11,12}
var a2={a1}
var a3={a1}
var a4={a1}
var a5={a1}
var a6={a1}
var a7={a1}
var a8={a1}
var b2={b1}
var b3={b1}
var b4={b1}
var b5={b1}
var b6={b1}
var d2={d1}
var d3={d1}
var d4={d1}
var d5={d1}
var d6={d1}
var d7={d1}
var f2={f1}
var f3={f1}
var f4={f1}
var f5={f1}
var f6={f1}
var f7={f1}
var f8={f1}
var g2={g1}
var g3={g1}
var g4={g1}
var g5={g1}
var j2={j1}
var j3={j1}
var j4={j1}
var B2={B1}
var B3={B1}
var B4={B1}
var B5={B1}
var B6={B1}
var B7={B1}
var B8={B1}
var G2={G1}
var G3={G1}
var G4={G1}
var G5={G1}
var G6={G1}
###splitting
#top
f1,f2,f3,g1,07,f4,f5,f6,f7,01
f1,f2,f3,01,13,f4,f5,f6,f7,11
01,f2,f3,g1,b1,13,f5,f6,f7,04
11,f2,f3,h1,b1,f4,f5,f6,f7,00
#middle
f1,f2,g1,07,10,f3,f4,f5,f6,13
13,01,g1,b1,11,01,f4,f5,f6,b1
#lower
f1,f2,07,10,f3,f4,f5,f6,f7,01
10,07,b1,b2,f1,f2,f3,f4,f5,11
f1,f2,13,01,f3,f4,a1,a2,a3,09
01,13,b1,11,f3,f4,f5,f6,f7,04
11,b1,b2,b3,f1,f2,f3,h1,b4,04
###
#left turn
f1,a1,a2,g1,02,f2,f3,f4,a3,08
f1,f2,g1,02,10,f3,f4,f5,f6,01
f1,f2,02,10,f3,f4,f5,f6,f7,13
#
13,01,b1,10,f1,f2,f3,f4,f5,04
f1,f2,g1,01,13,f3,a1,a2,a3,08
f1,f2,01,13,f3,f4,a1,a2,a3,08
01,f1,02,10,f2,f3,f4,f5,f6,01
10,b1,b2,b3,f1,f2,f3,04,b4,02
#right turn
g1,f1,f2,g2,b1,03,f3,f4,f5,01
f1,f2,f3,g1,03,f4,f5,f6,f7,10
10,03,b1,b2,a1,a2,a3,a4,a5,03
#forward/random/double
f1,f2,f3,g1,h1,g2,f4,f5,f6,00
f1,a1,a2,g1,h1,f2,f3,f4,a3,08
f1,f2,g1,06,i1,f3,f4,f5,f6,04
f1,f2,g1,h1,i1,f3,f4,f5,f6,01
f1,f2,h1,i1,a1,f3,f4,f5,f6,10
10,06,b2,a1,a2,a3,f1,f2,f3,04
10,h1,b2,a1,a2,a3,f1,f2,f3,h1
#excess/unstable charged p.1
05,g1,g2,b1,a1,a2,10,07,g3,04
#random signal selection
05,09,09,b1,a1,a2,10,c1,g1,03
05,08,09,b1,a1,a2,10,c1,g1,02
05,09,08,b1,a1,a2,10,c1,g1,04
05,08,08,b1,a1,a2,10,c1,g1,04
#excess/unstable charged p.2
b1,b2,g1,07,11,b4,g2,B2,11,04
b1,b2,g1,07,b3,b4,g2,B2,11,04
b1,b2,g1,07,b3,b4,g2,B2,B3,04
02,g1,g2,07,b2,b3,b4,b5,g3,04
03,g1,g2,07,b2,b3,b4,b5,g3,04
07,g1,g2,07,b2,b3,b4,b5,g3,04
b1,g1,g2,07,b2,b3,b4,05,g3,04
#outside signal transfer
b1,b2,12,G1,G2,G3,G4,G5,b3,00
b1,b2,12,G1,G2,G3,G4,G5,00,00
b1,b2,b3,G1,G2,G3,G4,G5,G6,b1
b1,g1,g2,12,a1,b2,G2,b3,a2,b2
b1,b2,g1,12,00,b3,00,00,a1,b3
#floating junk/retract p.1
b1,a1,g1,b2,a2,g2,a3,a4,a5,12
b1,g1,a1,b2,a3,g2,a4,a5,a6,12
12,g1,a2,a3,a4,a5,a6,b1,b2,08
12,a1,a2,a3,a4,a5,a6,a7,a8,00
13,a1,a2,a3,a4,a5,a6,a7,a8,00
g1,B1,a1,B2,a3,B3,a4,B4,a5,00
10,B1,B2,B3,B4,B5,B6,B7,B8,00
11,B1,a1,B2,a3,B3,a4,B4,a5,00
#signal movement
b1,b2,a1,a2,a3,a4,a5,b3,g1,b2
b1,b2,a1,a2,a3,a4,a5,g1,a6,b2
b1,b2,a1,a2,a3,a4,a5,a6,g1,b2
#floating junk/retract p.2
b1,a1,a2,a3,a4,a5,a6,a7,a8,12
###random generator
#special wire end
08,a1,a2,08,12,a3,a4,08,a5,09
#W150
09,B1,a2,09,a3,b1,a4,09,a5,09
09,B1,a2,08,a3,b1,a4,09,a5,08
08,B1,a2,09,a3,b1,a4,09,a5,08
08,B1,a2,08,a3,b1,a4,09,a5,09
09,B1,a2,09,a3,b1,a4,08,a5,08
09,B1,a2,08,a3,b1,a4,08,a5,09
08,B1,a2,09,a3,b1,a4,08,a5,09
08,B1,a2,08,a3,b1,a4,08,a5,08
#
09,09,a1,09,a2,b1,a3,a4,a5,09
09,08,a1,09,a2,b1,a3,a4,a5,08
08,09,a1,09,a2,b1,a3,a4,a5,08
08,08,a1,09,a2,b1,a3,a4,a5,09
09,09,a1,08,a2,b1,a3,a4,a5,08
09,08,a1,08,a2,b1,a3,a4,a5,09
08,09,a1,08,a2,b1,a3,a4,a5,09
08,08,a1,08,a2,b1,a3,a4,a5,08
#
09,a1,a2,09,a3,b1,09,a4,a5,09
09,a1,a2,09,a3,b1,08,a4,a5,08
08,a1,a2,09,a3,b1,09,a4,a5,08
08,a1,a2,09,a3,b1,08,a4,a5,09
09,a1,a2,08,a3,b1,09,a4,a5,08
09,a1,a2,08,a3,b1,08,a4,a5,09
08,a1,a2,08,a3,b1,09,a4,a5,09
08,a1,a2,08,a3,b1,08,a4,a5,08
#
09,a1,09,b1,a2,09,a4,a5,a6,09
09,a1,09,b1,a2,08,a4,a5,a6,08
08,a1,09,b1,a2,09,a4,a5,a6,08
08,a1,09,b1,a2,08,a4,a5,a6,09
09,a1,08,b1,a2,09,a4,a5,a6,08
09,a1,08,b1,a2,08,a4,a5,a6,09
08,a1,08,b1,a2,09,a4,a5,a6,09
08,a1,08,b1,a2,08,a4,a5,a6,08
###
@COLORS
00 0 0 0
01 255 118 0
02 255 0 0
03 0 255 0
04 0 0 255
05 255 255 255
06 0 0 180
07 0 0 80
08 75 75 75
09 100 100 100
10 130 130 130
11 150 150 150
12 230 100 0
13 255 100 0
16 180 180 90


x = 18, y = 3, rule = WormLoop-demo
17HI$5DC10DBL$J5DE6DG3D!
pi_guy314
 
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: Complexity in loop rules?

Postby fluffykitty » March 22nd, 2016, 3:51 pm

In the 'outside signal transfer' section, there are a few occurrences of 00 that should be d1. Also why does state 9 exist?
I like making rules
fluffykitty
 
Posts: 604
Joined: June 14th, 2014, 5:03 pm

Re: Complexity in loop rules?

Postby pi_guy314 » March 22nd, 2016, 5:17 pm

fluffykitty wrote:In the 'outside signal transfer' section, there are a few occurrences of 00 that should be d1.

d1 is just a variable that was no longer is in use. It'll be in use once I release the entire rule-table.

fluffykitty wrote: Also why does state 9 exist?

Its purpose was to influence what movement the random signal will take next. Also state 9's function will be different because state 5 is no longer used as a random signal. I did this change so that simpler worms with state 5 no longer have more advantages than complex worms without state 5.
pi_guy314
 
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: Complexity in loop rules?

Postby fluffykitty » March 25th, 2016, 11:58 pm

Any status updates? New demo?
I like making rules
fluffykitty
 
Posts: 604
Joined: June 14th, 2014, 5:03 pm

Re: Complexity in loop rules?

Postby pi_guy314 » March 26th, 2016, 2:38 pm

fluffykitty wrote:Any status updates? New demo?

I'm still working on it. I did a lot of major changes to the rule since the demo such as removing the random signal. It might take a few weeks for me to release the full version. I'm also trying to make the rule easy to understand so it wouldn't be hard for others to modify it.
pi_guy314
 
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: Complexity in loop rules?

Postby fluffykitty » March 27th, 2016, 2:19 pm

pi_guy314 wrote:It might take a few weeks for me to release the full version.

Wow. This is going to be the biggest rule ever made. (And it seems I'm the only one still waiting on it.)
pi_guy314 wrote: I'm also trying to make the rule easy to understand so it wouldn't be hard for others to modify it.

That would be good. Anyways, can't wait for the next demo!
I like making rules
fluffykitty
 
Posts: 604
Joined: June 14th, 2014, 5:03 pm

Re: Complexity in loop rules?

Postby TheoSwartz » March 27th, 2016, 2:37 pm

How does one create a "random" function in a rule file? I didn't think randomness was possible in this engine.
My simple pleasure is naming patterns.
User avatar
TheoSwartz
 
Posts: 72
Joined: March 8th, 2016, 3:24 am

Re: Complexity in loop rules?

Postby fluffykitty » March 27th, 2016, 3:32 pm

In the demo, it's based on the pattern of state 8 or 9 on the sheath.(which is controlled with rule 150)
I like making rules
fluffykitty
 
Posts: 604
Joined: June 14th, 2014, 5:03 pm

Re: Complexity in loop rules?

Postby TheoSwartz » March 27th, 2016, 4:36 pm

Interesting, so it's pseudo random essentially. I'd mess around with this rule but I really have no idea what to do in loop rules. Looking forward to seeing something demoed that I can just.. observe. :D
My simple pleasure is naming patterns.
User avatar
TheoSwartz
 
Posts: 72
Joined: March 8th, 2016, 3:24 am

Re: Complexity in loop rules?

Postby fluffykitty » March 27th, 2016, 5:52 pm

There actually is a demo higher up on this thread.
I like making rules
fluffykitty
 
Posts: 604
Joined: June 14th, 2014, 5:03 pm

Re: Complexity in loop rules?

Postby pi_guy314 » April 16th, 2016, 2:10 pm

Sorry it took a bit long. I wasn't able to do any changes for about a week due to school and other things. Here's a pre-release version of the rule table. I do need some feedback. There's a problem with the rule where it's hard to see if worms are becoming more complex or not over time. It might be because certain mutations are too rare or if more complex worms are less favored. Once all that gets fix, I'll post the official rule in a separate thread.

Here's the rule:

@RULE WormLoop-pre1
pre-release version 1
1 empty-wire
2 left-signal
3 right-signal
4 forward-signal
5 double-forward (causes worm to increase in size during mutation)
6 charged (causes worm to split/replicate)
7 decaying-wire/shealth
8 wire-sheath
9 wire-sheath-temp
09 wire-head
10 wire-head-special
11 misc/temp
12 photon-head
13 photon-tail
14 indestructible-wall
@TABLE
n_states:15
neighborhood:Moore
symmetries:rotate4
var a1={00,01,02,03,04,05,06,07,08,09,10,11,12,13}         #all modifiable states
var b1={01,02,03,04,05,06}                           #all wire states
var c1={04,05}                              
var d1={02,03,04,05,06}
var e1={00,01,02,03,04,05,06,11,12,13}                                    
var f1={00,11,12,13}
var h1={09,10}                                    #states that worms can pass through
var g1={08,07}            
var B1={00,08,07,09,10,11,12,13}                     
var F1={01,02,03,04,05,06,08,07,09,10,11}
var G1={00,01,02,03,04,05,06,09,10,11,12,13}
var H1={00,01,02,03,04,05,06,07,08,11,12,13}
var a2={a1}
var a3={a1}
var a4={a1}
var a5={a1}
var a6={a1}
var a7={a1}
var a8={a1}
var b2={b1}
var b3={b1}
var b4={b1}
var b5={b1}
var b6={b1}
var b7={b1}
var b8={b1}
var d2={d1}
var d3={d1}
var d4={d1}
var d5={d1}
var d6={d1}
var d7={d1}
var d8={d1}
var e2={e1}
var e3={e1}
var f2={f1}
var f3={f1}
var f4={f1}
var f5={f1}
var f6={f1}
var f7={f1}
var f8={f1}
var g2={g1}
var g3={g1}
var g4={g1}
var g5={g1}
var g6={g1}
var g7={g1}
var g8={g1}
var B2={B1}
var B3={B1}
var B4={B1}
var B5={B1}
var B6={B1}
var B7={B1}
var B8={B1}
var F2={F1}
var F3={F1}
var G2={G1}
var G3={G1}
var G4={G1}
var G5={G1}
var G6={G1}
var G7={G1}
var G8={G1}
#collision (releases state 11 during collision)
00,a1,a2,g1,d1,00,a3,a4,b1,11
00,a1,a2,g1,d1,00,a3,a4,h1,11
00,a1,a2,g1,d1,00,a3,F1,a4,11
00,00,g1,d1,h1,00,a1,F1,a2,11
00,00,d1,h1,a1,a2,a3,F1,a4,11
00,00,d1,h1,a1,a2,g1,a3,a4,11
###splitting
#top section
f1,f2,f3,08,06,f4,f5,f6,f7,01
f1,f2,f3,01,11,f4,G1,G2,G3,10
01,f2,f3,08,b1,11,f5,f6,f7,04
10,f2,f3,04,b1,f4,G1,G2,G3,01
#middle section
f1,f2,08,06,09,f3,f4,f5,f6,11
11,01,08,b1,09,01,f4,f5,f6,b1
b1,08,B1,B2,B3,B4,b2,b3,b2,00
#bottom section
f1,f2,06,09,f3,f4,f5,f6,f7,01
f1,f2,11,01,f3,f4,B1,B2,B3,08
01,11,b1,09,f3,f4,f5,f6,f7,04
###
###left turn
#first step
f1,B1,B2,08,02,f2,f3,f4,h1,01
f1,B1,B2,08,02,f2,f3,f4,B3,08
f1,f2,08,02,09,f3,f4,f5,f6,01
f1,f2,02,09,f3,f4,f5,f6,f7,11
09,02,b1,a1,a2,a3,f1,f2,f3,10
#second step
f1,f2,08,01,11,f3,B1,B2,a1,08
f1,f2,01,11,f3,f4,B1,B2,B3,08
01,g1,g2,b1,h1,11,f1,f2,f3,b1
11,01,b1,10,f1,f2,f3,f4,f5,04
10,b1,b2,a1,a2,f1,f2,04,b4,02
###
#right turn
f1,f2,f3,08,03,f4,B1,B2,B3,09
08,f1,f2,08,b1,03,f3,f4,f5,01
09,03,b1,a1,a2,a3,a4,a5,a6,03
#forward/random/double
f1,B1,B2,08,c1,f2,f3,f4,h1,11
f1,B1,B2,08,c1,f2,f3,f4,B3,08 
f1,f2,08,04,h1,f3,f4,f5,f6,01
f1,f2,08,05,h1,f3,f4,f5,f6,04
f1,f2,c1,h1,G1,G2,G3,f3,f4,09
09,c1,a1,G1,G2,G3,G4,f1,f2,04
#collision perma-disable (prevents worm from turning right after collision)
g1,a1,a2,g2,b1,f1,a3,a4,a5,08
b1,g1,g2,b2,b3,a1,f1,f2,11,00
b1,g1,g2,b2,b3,a1,f1,11,f2,00
b1,g1,g2,b2,b3,a1,11,f1,f2,00
#left signal mutation
00,b1,b2,00,g1,11,b3,b4,02,11
02,b1,b2,b3,11,b4,b5,b6,b7,03
04,b1,b2,b3,11,00,b4,02,b5,05
02,b1,b2,06,00,b3,b4,b5,b6,04
#right signal mutation
03,b1,b2,b3,00,00,11,B2,a1,05
03,b1,b2,b3,00,11,00,B2,a1,02
#forward signal mutation
04,04,07,04,11,11,11,04,07,01
04,03,04,04,11,11,11,04,04,02
04,02,04,04,11,11,11,04,04,03
04,07,04,04,11,11,11,04,04,05
#04,04,04,04,11,11,11,04,07,02
#04,04,07,04,11,11,11,04,04,03
#04,04,07,04,11,11,11,04,07,01
#04,07,04,04,11,11,11,04,b1,06
#photon movement
12,a1,a2,a3,a4,a5,a6,a7,a8,13
13,a1,a2,a3,a4,a5,a6,a7,a8,00
00,12,00,00,00,00,00,00,00,12
00,12,00,00,b1,b2,b3,00,00,12
#photon generator
00,13,00,13,00,00,00,00,00,12
00,13,00,00,14,14,14,00,00,12
12,00,00,00,14,14,14,00,00,00
#photon to charge
04,G1,G2,b1,a1,12,a2,b2,G3,06
04,g1,g2,04,b1,06,b2,b3,a1,06
06,b1,b2,b3,G1,G2,G3,b4,b5,04
#excess charge filter
b1,b2,g1,06,09,b4,g2,B2,10,04
b1,b2,g1,06,b3,b4,g2,B2,b5,04
06,g1,g2,06,b2,b3,b4,b5,g3,04
#test
#00,00,00,08,07,08,00,00,00,09
#08,00,00,00,00,07,08,00,00,04
#outside signal
b1,b2,07,G1,G2,G3,G4,G5,b3,00
b1,b2,07,G1,G2,G3,G4,G5,00,00
b1,b2,b3,G1,G2,G3,G4,G5,G6,b1
#signal backflow decay
b1,a1,g1,b2,a2,g2,a3,a4,a5,07
#b1,g1,a1,b2,g2,a2,a3,a4,a5,07
b1,g1,a1,b2,a3,g2,a4,a5,a6,07
#signal movement
b1,b2,a1,a2,a3,a4,a5,b3,g1,b2
b1,b2,a1,a2,a3,a4,a5,g1,a6,b2
b1,b2,a1,a2,a3,a4,a5,a6,g1,b2
#decay/worm retract
b1,08,a1,a2,a3,a4,a5,a6,a7,07
b1,a1,08,a2,a3,a4,a5,a6,a7,07
b1,a1,a2,a3,a4,a5,a6,a7,a8,00
07,a1,a2,a3,a4,a5,a6,a7,a8,00
g1,B1,a1,B2,a3,B3,a4,B4,a5,00
09,B1,B2,B3,B4,B5,B6,B7,B8,00
10,B1,a1,B2,a3,B3,a4,B4,a5,00
11,a1,a2,a3,a4,a5,a6,a7,a8,00
@COLORS
00 0 0 0
01 255 098 0
02 255 0 0
03 0 255 0
04 0 0 255
05 0 0 180
06 0 0 090
07 220 100 0
08 75 75 75
09 100 100 100
10 125 125 125
11 255 070 0
12 255 230 0
13 255 200 0
14 180 180 90

@ICONS

XPM

/* width height num_colors chars_per_pixel */
"7 49 2 1"
/* colors */
"o c #000000"
". c #FFFFFF"
/*state 1 */
"......."
".oooo.."
".o....."
".ooo..."
".o....."
".oooo.."
"......."
/*state 2 */
"......."
".o....."
".o....."
".o....."
".o....."
".oooo.."
"......."
/*state 3 */
"......."
".ooo..."
".o..o.."
".ooo..."
".o..o.."
".o..o.."
"......."
/* state 4 */
"......."
".oooo.."
".o....."
".ooo..."
".o....."
".o....."
"......."   
/* state 5 */
"......."
".ooo..."
".o..o.."
".o..o.."
".o..o.."
".ooo..."
"......."
/* state 6 */
"......."
"..ooo.."
".o....."
".o....."
".o....."
"..ooo.."
"......."
/* all other states */
"......."
"......."
"......."
"......."
"......."
"......."
"......."


Here's an example pattern. I may replace it if I find a more interesting pattern.

x = 999, y = 999, rule = WormLoop-pre1
994N2.3N$NA996.N$NA990.N3.L.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA208.80H708.N$NA208.9DB9DC9DC9DB9DC9DB9DC9DC708.N$NA208.I
787.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA991.N4.N$NA996.N$NA996.N$NA996.N$NA996.N$N
A996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.
N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA990.N3.L.N
$NA996.N$995N2.2N!


If you do post a pattern, please repost it in the offical thread once I create it.
pi_guy314
 
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: Complexity in loop rules?

Postby fluffykitty » April 20th, 2016, 2:20 pm

Here's my modification of the rule, where worms keep their charged states
@RULE WormLoop-pre1mod
pre-release version 1
1 empty-wire
2 left-signal
3 right-signal
4 forward-signal
5 double-forward (causes worm to increase in size during mutation)
6 charged (causes worm to split/replicate)
7 decaying-wire/shealth
8 wire-sheath
9 wire-sheath-temp
09 wire-head
10 wire-head-special
11 misc/temp
12 photon-head
13 photon-tail
14 indestructible-wall
@TABLE
n_states:15
neighborhood:Moore
symmetries:rotate4
var a1={00,01,02,03,04,05,06,07,08,09,10,11,12,13}         #all modifiable states
var b1={01,02,03,04,05,06}                           #all wire states
var c1={04,05}                             
var d1={02,03,04,05,06}
var e1={00,01,02,03,04,05,06,11,12,13}                                   
var f1={00,11,12,13}
var h1={09,10}                                    #states that worms can pass through
var g1={08,07}           
var B1={00,08,07,09,10,11,12,13}                     
var F1={01,02,03,04,05,06,08,07,09,10,11}
var G1={00,01,02,03,04,05,06,09,10,11,12,13}
var H1={00,01,02,03,04,05,06,07,08,11,12,13}
var a2={a1}
var a3={a1}
var a4={a1}
var a5={a1}
var a6={a1}
var a7={a1}
var a8={a1}
var b2={b1}
var b3={b1}
var b4={b1}
var b5={b1}
var b6={b1}
var b7={b1}
var b8={b1}
var d2={d1}
var d3={d1}
var d4={d1}
var d5={d1}
var d6={d1}
var d7={d1}
var d8={d1}
var e2={e1}
var e3={e1}
var f2={f1}
var f3={f1}
var f4={f1}
var f5={f1}
var f6={f1}
var f7={f1}
var f8={f1}
var g2={g1}
var g3={g1}
var g4={g1}
var g5={g1}
var g6={g1}
var g7={g1}
var g8={g1}
var B2={B1}
var B3={B1}
var B4={B1}
var B5={B1}
var B6={B1}
var B7={B1}
var B8={B1}
var F2={F1}
var F3={F1}
var G2={G1}
var G3={G1}
var G4={G1}
var G5={G1}
var G6={G1}
var G7={G1}
var G8={G1}
#collision (releases state 11 during collision)
00,a1,a2,g1,d1,00,a3,a4,b1,11
00,a1,a2,g1,d1,00,a3,a4,h1,11
00,a1,a2,g1,d1,00,a3,F1,a4,11
00,00,g1,d1,h1,00,a1,F1,a2,11
00,00,d1,h1,a1,a2,a3,F1,a4,11
00,00,d1,h1,a1,a2,g1,a3,a4,11
###splitting
#top section
f1,f2,f3,08,06,f4,f5,f6,f7,01
f1,f2,f3,01,11,f4,G1,G2,G3,10
01,f2,f3,08,b1,11,f5,f6,f7,04
10,f2,f3,04,b1,f4,G1,G2,G3,00
#middle section
f1,f2,08,06,09,f3,f4,f5,f6,11
11,01,08,b1,09,01,f4,f5,f6,b1
b1,08,B1,B2,B3,B4,b2,b3,b2,00
#bottom section
f1,f2,06,09,f3,f4,f5,f6,f7,01
f1,f2,11,01,f3,f4,B1,B2,B3,08
01,11,b1,09,f3,f4,f5,f6,f7,04
###
###left turn
#first step
f1,B1,B2,08,02,f2,f3,f4,h1,01
f1,B1,B2,08,02,f2,f3,f4,B3,08
f1,f2,08,02,09,f3,f4,f5,f6,01
f1,f2,02,09,f3,f4,f5,f6,f7,11
09,02,b1,a1,a2,a3,f1,f2,f3,10
#second step
f1,f2,08,01,11,f3,B1,B2,a1,08
f1,f2,01,11,f3,f4,B1,B2,B3,08
01,g1,g2,b1,h1,11,f1,f2,f3,b1
11,01,b1,10,f1,f2,f3,f4,f5,04
10,b1,b2,a1,a2,f1,f2,04,b4,02
###
#right turn
f1,f2,f3,08,03,f4,B1,B2,B3,09
08,f1,f2,08,b1,03,f3,f4,f5,01
09,03,b1,a1,a2,a3,a4,a5,a6,03
#forward/random/double
f1,B1,B2,08,c1,f2,f3,f4,h1,11
f1,B1,B2,08,c1,f2,f3,f4,B3,08 
f1,f2,08,04,h1,f3,f4,f5,f6,01
f1,f2,08,05,h1,f3,f4,f5,f6,04
f1,f2,c1,h1,G1,G2,G3,f3,f4,09
09,c1,a1,G1,G2,G3,G4,f1,f2,04
#collision perma-disable (prevents worm from turning right after collision)
g1,a1,a2,g2,b1,f1,a3,a4,a5,08
b1,g1,g2,b2,b3,a1,f1,f2,11,00
b1,g1,g2,b2,b3,a1,f1,11,f2,00
b1,g1,g2,b2,b3,a1,11,f1,f2,00
#left signal mutation
00,b1,b2,00,g1,11,b3,b4,02,11
02,b1,b2,b3,11,b4,b5,b6,b7,03
04,b1,b2,b3,11,00,b4,02,b5,05
02,b1,b2,06,00,b3,b4,b5,b6,04
#right signal mutation
03,b1,b2,b3,00,00,11,B2,a1,05
03,b1,b2,b3,00,11,00,B2,a1,02
#forward signal mutation
04,04,07,04,11,11,11,04,07,01
04,03,04,04,11,11,11,04,04,02
04,02,04,04,11,11,11,04,04,03
04,07,04,04,11,11,11,04,04,05
#04,04,04,04,11,11,11,04,07,02
#04,04,07,04,11,11,11,04,04,03
#04,04,07,04,11,11,11,04,07,01
#04,07,04,04,11,11,11,04,b1,06
#photon movement
12,a1,a2,a3,a4,a5,a6,a7,a8,13
13,a1,a2,a3,a4,a5,a6,a7,a8,00
00,12,00,00,00,00,00,00,00,12
00,12,00,00,b1,b2,b3,00,00,12
#photon generator
00,13,00,13,00,00,00,00,00,12
00,13,00,00,14,14,14,00,00,12
12,00,00,00,14,14,14,00,00,00
#photon to charge
04,G1,G2,b1,a1,12,a2,b2,G3,06
04,g1,g2,04,b1,06,b2,b3,a1,06
06,b1,b2,b3,G1,G2,G3,b4,b5,04
#excess charge filter
b1,b2,g1,06,09,b4,g2,B2,10,04
b1,b2,g1,06,b3,b4,g2,B2,b5,04
06,g1,g2,06,b2,b3,b4,b5,g3,04
#test
#00,00,00,08,07,08,00,00,00,09
#08,00,00,00,00,07,08,00,00,04
#00,b1,b2,b3,b4,04,00,00,00,06
06,04,04,04,04,00,00,00,00,00
04,04,00,00,04,04,08,08,00,06
#outside signal
b1,b2,07,G1,G2,G3,G4,G5,b3,00
b1,b2,07,G1,G2,G3,G4,G5,00,00
b1,b2,b3,G1,G2,G3,G4,G5,G6,b1
#signal backflow decay
b1,a1,g1,b2,a2,g2,a3,a4,a5,07
#b1,g1,a1,b2,g2,a2,a3,a4,a5,07
b1,g1,a1,b2,a3,g2,a4,a5,a6,07
#signal movement
b1,b2,a1,a2,a3,a4,a5,b3,g1,b2
b1,b2,a1,a2,a3,a4,a5,g1,a6,b2
b1,b2,a1,a2,a3,a4,a5,a6,g1,b2
#decay/worm retract
b1,08,a1,a2,a3,a4,a5,a6,a7,07
b1,a1,08,a2,a3,a4,a5,a6,a7,07
b1,a1,a2,a3,a4,a5,a6,a7,a8,00
07,a1,a2,a3,a4,a5,a6,a7,a8,00
g1,B1,a1,B2,a3,B3,a4,B4,a5,00
09,B1,B2,B3,B4,B5,B6,B7,B8,00
10,B1,a1,B2,a3,B3,a4,B4,a5,00
11,a1,a2,a3,a4,a5,a6,a7,a8,00
@COLORS
00 0 0 0
01 255 098 0
02 255 0 0
03 0 255 0
04 0 0 255
05 0 0 180
06 0 0 090
07 220 100 0
08 75 75 75
09 100 100 100
10 125 125 125
11 255 070 0
12 255 230 0
13 255 200 0
14 180 180 90

@ICONS

XPM

/* width height num_colors chars_per_pixel */
"7 49 2 1"
/* colors */
"o c #000000"
". c #FFFFFF"
/*state 1 */
"......."
".oooo.."
".o....."
".ooo..."
".o....."
".oooo.."
"......."
/*state 2 */
"......."
".o....."
".o....."
".o....."
".o....."
".oooo.."
"......."
/*state 3 */
"......."
".ooo..."
".o..o.."
".ooo..."
".o..o.."
".o..o.."
"......."
/* state 4 */
"......."
".oooo.."
".o....."
".ooo..."
".o....."
".o....."
"......."   
/* state 5 */
"......."
".ooo..."
".o..o.."
".o..o.."
".o..o.."
".ooo..."
"......."
/* state 6 */
"......."
"..ooo.."
".o....."
".o....."
".o....."
"..ooo.."
"......."
/* all other states */
"......."
"......."
"......."
"......."
"......."
"......."
"......."

With replicators like
x = 62, y = 83, rule = WormLoop-pre1mod
57.5H$57.2DF2D$57.I38$.6H$.DF2DCD$.I38$5H$DFDBD$I!

and nothing else, sadly.
I like making rules
fluffykitty
 
Posts: 604
Joined: June 14th, 2014, 5:03 pm

Re: Complexity in loop rules?

Postby pi_guy314 » April 20th, 2016, 4:21 pm

Here's another pre-release with a lot of changes. It turns out that worms not getting bigger was due to a bug. This will probably be the last pre-release.

@RULE WormLoop-pre2
original version
pre-release version 2
1 empty-wire
2 left-signal
3 right-signal
4 forward-signal
5 double-forward (causes worm to increase in size during mutation)
6 charged (causes worm to split/replicate)
7 decaying-wire/shealth
8 wire-sheath
09 wire-head
10 wire-head-turns
11 misc/temp
12 photon-tail
13 photon-head
14 indestructible-wall
@TABLE
n_states:15
neighborhood:Moore
symmetries:rotate4
var a1={00,01,02,03,04,05,06,07,08,09,10,11,12,13}         #all modifiable states                                                         
var f1={00,11,12,13}                                        #states that worms can flow through
var h1={09,10}                                        #all head states 
var s1={08,07}                                            #all sheath states   
var w1={01,02,03,04,05,06}                                   #all wire states
var wm={02,03,04,05,06}                                       #all signals that causes movement                     
var wf={04,05}                                          #all signals that only moves forward
var W1={00,08,07,09,10,11,12,13}                     
var F1={01,02,03,04,05,06,08,07,09,10,11}
var S1={00,01,02,03,04,05,06,09,10,11,12,13}
var a2={a1}
var a3={a1}
var a4={a1}
var a5={a1}
var a6={a1}
var a7={a1}
var a8={a1}
var f2={f1}
var f3={f1}
var f4={f1}
var f5={f1}
var f6={f1}
var f7={f1}
var f8={f1}
var s2={s1}
var s3={s1}
var s4={s1}
var s5={s1}
var s6={s1}
var s7={s1}
var w2={w1}
var w3={w1}
var w4={w1}
var w5={w1}
var w6={w1}
var w7={w1}
var w8={w1}
var F2={F1}
var F3={F1}
var S2={S1}
var S3={S1}
var S4={S1}
var S5={S1}
var S6={S1}
var S7={S1}
var S8={S1}
var W2={W1}
var W3={W1}
var W4={W1}
var W5={W1}
var W6={W1}
var W7={W1}
var W8={W1}
#left turn collision
00,00,s1,11,01,00,a1,a2,h1,00
00,00,s1,11,01,00,a1,w1,a2,11
00,00,11,01,a1,a2,a3,w1,a4,11
#right turn collision
00,00,00,01,11,00,a1,s1,a3,11
#other collision (releases state 11 during collision)
00,a1,a2,s1,wm,00,a3,a4,w1,11
00,a1,a2,s1,wm,00,a3,a4,h1,11
00,a1,a2,s1,wm,00,a3,F1,a4,11
00,00,s1,wm,h1,00,a1,F1,a2,11
00,00,wm,h1,a1,a2,a3,F1,a4,11
00,00,wm,h1,a1,a2,s1,a3,a4,11
###splitting
#top section
f1,f2,f3,08,06,f4,f5,f6,f7,01
01,f2,f3,08,w1,11,f5,f6,f7,04
10,f2,f3,04,w1,f4,S1,S2,S3,00
#middle section
f1,f2,08,06,09,f3,f4,f5,f6,11
11,01,08,w1,09,01,f4,f5,f6,w1
w1,08,W1,W2,W3,W4,w2,w3,w2,00
#bottom section
f1,f2,06,09,f3,f4,f5,f6,f7,01
01,11,w1,09,f3,f4,f5,f6,f7,04
###
###left turn
#first step
f1,W1,W2,08,02,f2,f3,f4,h1,01
f1,W1,W2,08,02,f2,f3,f4,W3,08
f1,f2,08,02,09,f3,f4,f5,f6,11
f1,f2,02,09,f3,f4,f5,f6,f7,01
09,02,w1,a1,a2,a3,f1,f2,f3,10
#second step
f1,f2,08,11,01,f3,W1,W2,W3,08
f1,f2,11,01,f3,f4,W1,W2,W3,08
s1,W1,W2,s2,w1,11,f1,f2,f3,08
11,s1,s2,w1,h1,01,f1,f2,f3,w1
01,11,w1,10,f1,f2,f3,f4,f5,04
10,w1,w2,a1,a2,f1,f2,04,w4,02
###
#right turn
f1,W1,W2,08,03,f2,f3,f4,W3,01
f1,f2,08,03,h1,f3,f4,f5,f6,11
09,03,w1,a1,a2,a3,a4,f1,f2,03
11,01,s1,w1,w2,00,W1,W2,W3,w1
f1,f2,f3,01,11,f4,S1,S2,S3,10
#forward/random/double
f1,W1,W2,08,wf,f2,f3,f4,W3,08 
f1,f2,08,04,h1,f3,f4,f5,f6,01
f1,f2,08,05,h1,f3,f4,f5,f6,04
f1,f2,wf,h1,S1,S2,S3,f3,f4,09
09,wf,a1,S1,S2,S3,S4,f1,f2,04
#left signal mutation
00,w1,w2,00,s1,11,w3,w4,02,11
02,w1,w2,w3,11,w4,w5,w6,w7,03
04,w1,w2,w3,11,00,w4,02,w5,05
02,w1,w2,06,00,w3,w4,w5,w6,04
#right signal mutation
03,w1,w2,w3,00,00,11,W2,a1,05
03,w1,w2,w3,00,11,00,W2,a1,02
#forward signal mutation
04,04,06,04,11,11,11,04,04,01
04,03,04,04,11,11,11,04,04,02
04,02,04,04,11,11,11,04,04,03
04,06,04,04,11,11,11,04,04,05
04,04,04,06,11,11,11,04,04,05
04,06,04,06,11,11,11,04,04,05
#photon movement
13,a1,a2,a3,a4,a5,a6,a7,a8,12
12,a1,a2,a3,a4,a5,a6,a7,a8,00
00,13,00,00,00,00,00,00,00,13
00,13,00,00,w1,w2,w3,00,00,13
#photon generator
00,12,00,12,00,00,00,00,00,13
00,12,00,00,14,14,14,00,00,13
13,00,00,00,14,14,14,00,00,00
#collision perma-kill (prevents worm from moving right after collision)
w1,s1,s2,w2,w3,a1,f1,f2,11,00
w1,s1,s2,w2,w3,a1,f1,11,f2,00
w1,s1,s2,w2,w3,a1,11,f1,f2,00
#
w1,s1,w2,w3,00,a1,f1,f2,11,00
w1,s1,w2,w3,00,a1,f1,11,f2,00
w1,s1,w2,w3,00,a1,11,f1,f2,00
#photon to charge (how worms will absorb photons)
04,S1,S2,w1,a1,13,a2,w2,S3,06
04,s1,s2,04,w1,06,w2,w3,a1,06
06,w1,w2,w3,S1,S2,S3,w4,w5,04
#excess charge filter (prevents worms from "exploding")
w1,w2,s1,06,09,w4,s2,W2,10,04
w1,w2,s1,06,w3,w4,s2,W2,W3,04
06,s1,s2,06,w2,w3,w4,w5,s3,04
#outside signal (preserves gene from outside of stream)
w1,w2,07,S1,S2,S3,S4,S5,w3,00
w1,w2,07,S1,S2,S3,S4,S5,00,00
w1,w2,w3,S1,S2,S3,S4,S5,S6,w1
#signal backflow decay (prevents signal from moving back and forth)
w1,a1,s1,w2,a2,s2,a3,a4,a5,07
w1,s1,a1,w2,a3,s2,a4,a5,a6,07
#w1,s1,a1,w2,s2,a2,a3,a4,a5,07
#signal movement
w1,w2,a1,a2,a3,a4,a5,w3,s1,w2
w1,w2,a1,a2,a3,a4,a5,s1,a6,w2
w1,w2,a1,a2,a3,a4,a5,a6,s1,w2
#decay/worm retract
w1,08,a1,a2,a3,a4,a5,a6,a7,07
w1,a1,08,a2,a3,a4,a5,a6,a7,07
w1,a1,a2,a3,a4,a5,a6,a7,a8,00
07,a1,a2,a3,a4,a5,a6,a7,a8,00
s1,W1,a1,W2,a3,W3,a4,W4,a5,00
09,W1,W2,W3,W4,W5,W6,W7,W8,00
10,W1,a1,W2,a3,W3,a4,W4,a5,00
11,a1,a2,a3,a4,a5,a6,a7,a8,00
#test
#00,00,00,08,07,08,00,00,00,09
#08,00,00,00,00,07,08,00,00,04
@COLORS
00 0 0 0
01 255 098 0
02 255 0 0
03 0 255 0
04 0 0 255
05 0 0 180
06 0 0 090
07 220 100 0
08 75 75 75
09 100 100 100
10 125 125 125
11 255 070 0
12 255 200 0
13 255 230 0
14 180 180 90

@ICONS

XPM

/* width height num_colors chars_per_pixel */
"7 49 2 1"
/* colors */
"o c #000000"
". c #FFFFFF"
/*state 1 */
"......."
".oooo.."
".o....."
".ooo..."
".o....."
".oooo.."
"......."
/*state 2 */
"......."
".o....."
".o....."
".o....."
".o....."
".oooo.."
"......."
/*state 3 */
"......."
".ooo..."
".o..o.."
".ooo..."
".o..o.."
".o..o.."
"......."
/* state 4 */
"......."
".oooo.."
".o....."
".ooo..."
".o....."
".o....."
"......."   
/* state 5 */
"......."
".ooo..."
".o..o.."
".o..o.."
".o..o.."
".ooo..."
"......."
/* state 6 */
"......."
"..ooo.."
".o....."
".o....."
".o....."
"..ooo.."
"......."
/* all other states */
"......."
"......."
"......."
"......."
"......."
"......."
"......."


Changes:
-made the rule table more easier to modify
-swapped the photon states as it felt more natural
-fixed some collision bugs
-fixed a bug where some mutations did not occur
-fixed worms from losing a lot of their DNA at once


Here's a very interesting pattern I found:
x = 999, y = 999, rule = WormLoop-pre2
995N.3N$NA996.N$NA990.N3.L.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$
NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA387.60H549.N$NA387.9DB9DC9DB9DC9DB
10D549.N$NA387.J608.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA990.N3.L.N$NA996.N
$995N.3N!
pi_guy314
 
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: Complexity in loop rules?

Postby dvgrn » April 20th, 2016, 5:44 pm

pi_guy314 wrote:Here's another pre-release with a lot of changes. It turns out that worms not getting bigger was due to a bug. This will probably be the last pre-release.

This is looking really good! The pseudorandom photon delivery system is really clever. I guess I shouldn't call it "food". It's more like a replication pheromone -- seems to take just one hit with a photon to put a worm in replication mode.

pi_guy314 wrote:Here's a very interesting pattern I found...

Hmm, you have to be a little bit patient with this one. Before T=130K you could almost miss the new species, because every worm seemed to be a variant of the original stationary slow looper. At least at first glance, the new species that appeared seemed to be just self-destructive straight-line mutants that mostly wandered off and hit one edge or the other of the frame before reproducing.

That all changed when the tight-loop slow drifter showed up:

x = 36, y = 31, rule = WormLoop-pre2
6$11.IAH$11.2DH$11.2DH$11.2DH$11.2DH$11.2DH$11.2DH$11.DCH$11.2DH$11.
2DH$11.2DH17.HD$11.2DH17.H2D$12.D19HDC$12.4DC9DC5DB$13.C17D!

It moves slowly enough that it's pretty well guaranteed to replicate several times before it hits a frame edge. And it loops at a different enough rate that it really changes the look of the board very quickly once it makes an appearance.

How far have you run this? So far I've only gotten to the first phase change around T=135,000. But I expect I'm a long way from having seen all of the novelty that this pattern has to offer...!

Update: Yup, at T=400K there are a couple of descendant species fighting for dominance. I don't know how many transitional species I missed in between. At T=900K it's different again -- looks like just one dominant species right then, but it's changed again by T=1 million, and so on.

Any plans to write a "zookeeper" script to collect specimens of new worm species, as they make an appearance? Looks like this rule would produce quite a menagerie, fairly quickly!

EDIT: At around 5.2M ticks, the dominant species are different again. Here's one of the two:

x = 35, y = 49, rule = WormLoop-pre2
21.13DI$19.14DBA$18.CD15H$18.2DH$18.2DH$18.2DH$18.2DH$18.2DH$18.2DH$
3.15DBDH$.9DC6DB2DH$CB18H$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH
$2DH$2DH$2DH$2DH$DBH$2DH$2DH$2DH$DCH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$
2DH$2DH$2DH$2DH$DCH$2DH$2DH$2DH$.GH!

Oddly enough, this creature isn't a loop at all, it's a straight-line orthogonal traveler, doomed to die on the edge of the frame if it doesn't reproduce -- but it's slow, so enough of its cousins seem to reproduce (and turn 90 degrees, sending out descendants in all directions) and so copies stick around for a while.

I guess it's also possible that this orthogonal slow-traveler is really just a very common mutation of the huge-loop worm, which is the other species present at 5.2 million ticks:

x = 33, y = 45, rule = WormLoop-pre2
27.2DI$25.B3DA$24.CD4H$24.2DH$24.2DH$24.2DH$24.2DH$24.2DH$24.2DH$24.
2DH$24.2DH$24.2DH$24.2DH$24.2DH$24.2DH$25.D6H$25.7DH$26.C3DBDH$30.2DH
$30.2DH$30.2DH$30.2DH$30.2DH$30.2DH$30.2DH$30.2DH$30.2DH$30.2DH$30.2D
H$30.DCH$30.2DH$30.2DH$30.2DH$21.9DBDH$19.DB11DH$18.CD12H$18.2DH$18.
2DH$18.2DH$18.2DH$18.DCH$18.2DH$.17DBDH$G7DB11DH$20H!

However, I ran a quick test, and the orthogonal slow-traveler survives and reproduces (and mutates) quite well as long as there's a good food source, even when the huge-loop worm isn't present.

EDIT2: At 10M ticks I don't see any loops offhand, only slow oblique travelers:

x = 47, y = 48, rule = WormLoop-pre2
IDH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$.D39H$.16DC9DB13DH$2.C36DBDH$
39.2DH$39.DBH2.HD$39.2DH2.HBD$39.2DH2.H2D$39.2DH2.H2D$39.2DH2.H2D$39.
DCH2.H2D$39.2DH2.H2D$39.2DH2.H2D$39.2DH2.H2D$39.2DH2.H2D$39.2DH2.H2D$
39.2DH2.HCD$39.2DH2.H2D$39.2DH2.HBD$39.DBH2.H2D$39.2DH2.H2D$39.2DH2.H
2D$39.2DH2.H2D$39.2DH2.H2D$39.2DH2.H2D$39.2DH2.H2D$39.2DH2.H2D$39.2DH
2.H2D$39.2DH2.H2D$39.2DH2.H2D$39.2DH2.H2D$39.2DH2.H2D$39.2DH2.H2D$39.
2DH2.H2D$39.2DH2.H2D$39.2DH2.H2D$40.D4HDC$40.6D$41.C2D!

Drop into the lower right corner of an empty frame, so that it gets fed before it hits the other edge, and it will do quite well I expect.

EDIT3: The asteroid hits around 14,945,000, it turns out, and by 14,963,000 the last worm is heading for extinction. No particular reason that I can see, but there seems to be a weakness in that evolved design...

I tried copying the last worm back toward the middle, and it happily re-filled the board for a while with no apparent problems. But it still went extinct within the next quarter million ticks.

Of course your mileage may vary, unless you choose the exact same location:

[M2] (golly 2.7)
#R WormLoop-pre2
#G 14963104
1 0 0 14 14
2 0 0 1 1
3 0 0 2 2
4 0 0 3 3
5 0 0 4 4
6 0 0 5 5
7 0 0 6 6
8 0 0 7 7
9 0 0 8 8
1 0 0 14 0
2 0 0 1 10
3 0 0 11 11
4 0 0 12 0
5 0 0 13 0
6 0 0 5 14
7 0 0 6 15
8 0 0 7 16
9 0 0 8 17
10 0 0 9 18
1 14 1 14 1
2 20 0 20 0
1 0 0 9 0
2 20 0 20 22
3 21 0 23 0
3 21 0 21 0
4 24 0 25 0
1 3 0 0 0
2 20 0 20 27
3 28 0 21 0
4 25 0 29 0
5 26 0 30 0
3 23 0 21 0
4 25 0 32 0
4 25 0 25 0
5 33 0 34 0
6 31 0 35 0
1 9 0 0 0
2 20 0 20 37
3 21 0 38 0
4 39 0 24 0
2 20 37 20 0
3 21 0 41 0
4 25 0 42 0
5 40 0 43 0
3 41 0 21 0
4 25 0 45 0
3 23 0 38 0
4 25 0 47 0
5 46 0 48 0
6 44 0 49 0
7 36 0 50 0
1 0 13 0 0
1 12 0 0 0
2 0 0 52 53
3 0 0 0 54
4 0 0 0 55
5 0 0 0 56
6 0 0 0 57
2 52 53 0 0
3 0 54 0 59
3 0 59 0 0
4 60 61 0 0
5 0 56 0 62
1 0 0 13 12
2 52 53 64 0
1 13 12 0 0
2 0 0 66 0
2 64 0 0 0
3 0 65 67 68
4 0 55 60 69
1 0 0 0 13
2 0 71 0 71
1 0 0 12 0
2 73 0 73 0
3 0 59 72 74
2 0 0 0 66
2 0 64 0 0
3 76 59 77 0
4 60 75 78 0
2 0 52 0 0
2 53 0 0 0
3 80 81 0 0
4 82 0 0 0
3 0 0 67 0
2 52 53 52 53
3 0 85 0 0
2 66 0 0 66
2 0 66 0 0
3 0 85 87 88
4 0 84 86 89
5 70 79 83 90
6 0 57 63 91
2 0 52 0 66
3 0 59 93 81
4 0 55 60 94
3 0 54 0 65
3 0 59 76 59
3 67 68 0 0
3 77 0 0 0
4 96 97 98 99
5 0 56 95 100
3 0 59 0 54
4 0 55 60 102
2 0 66 0 52
2 0 0 53 0
3 93 81 104 105
4 60 69 106 0
3 72 74 0 0
2 71 73 71 73
2 0 52 0 71
3 109 110 0 0
2 0 0 0 64
2 0 0 71 73
3 0 112 113 68
4 108 111 0 114
2 53 0 73 0
3 116 0 0 112
3 0 77 77 0
4 117 0 118 0
5 103 107 115 119
3 0 54 109 110
3 104 105 116 0
2 0 52 0 52
3 0 0 0 123
4 121 122 0 124
2 0 71 64 0
2 0 64 0 64
3 0 126 127 0
2 53 0 53 0
3 0 0 129 127
2 71 73 0 0
2 64 0 64 0
3 0 131 0 132
4 0 128 130 133
2 0 52 52 53
2 0 66 0 66
3 0 135 136 0
2 53 0 0 71
2 0 64 73 0
2 0 71 0 0
3 138 139 131 140
4 137 141 84 0
2 73 0 0 0
3 88 0 143 0
4 144 0 0 0
5 125 134 142 145
2 0 0 64 0
3 143 147 0 68
2 71 73 0 64
2 0 64 71 73
3 149 0 150 0
3 0 0 127 0
3 131 0 132 127
4 148 151 152 153
2 66 0 0 0
3 0 67 0 155
2 0 64 64 0
3 0 0 157 0
3 113 0 0 85
3 140 143 123 129
4 156 158 159 160
3 0 0 0 136
3 0 136 0 0
4 0 0 162 163
3 0 0 0 109
3 0 67 123 129
2 66 0 66 0
3 59 76 0 167
4 162 165 166 168
5 154 161 164 169
6 101 120 146 170
7 0 58 92 171
2 20 22 20 0
3 21 0 173 0
4 45 0 174 0
5 175 0 34 0
3 173 0 21 0
4 42 0 177 0
2 0 0 0 52
3 179 105 80 138
4 0 0 0 180
5 178 0 33 181
3 0 0 109 0
3 0 0 67 76
4 0 0 183 184
2 0 0 0 71
3 109 186 0 127
2 71 73 73 0
3 54 0 188 186
2 0 0 73 0
3 109 0 190 68
4 183 187 189 191
3 190 68 0 0
3 155 88 0 0
3 67 155 167 0
4 193 194 195 0
5 0 185 192 196
6 176 0 182 197
3 0 0 54 0
4 0 0 0 199
3 54 0 59 67
3 147 112 77 186
4 0 0 201 202
5 0 0 200 203
3 0 0 190 0
4 0 0 205 163
3 0 155 0 0
4 0 0 207 55
5 0 0 206 208
3 0 123 0 0
3 129 80 0 123
3 0 0 0 67
3 0 0 76 0
4 210 211 212 213
2 53 71 0 0
2 73 0 71 73
3 215 216 129 0
3 59 67 0 0
3 0 123 67 76
2 0 52 66 0
3 129 0 0 220
4 217 218 219 221
3 88 0 0 0
4 207 223 0 0
4 194 207 55 60
5 214 222 224 225
3 112 0 68 150
3 147 0 0 0
2 53 71 0 71
3 0 131 229 74
3 147 112 109 0
4 227 228 230 231
3 136 0 0 0
3 0 147 131 140
3 112 0 143 131
4 0 233 234 235
4 55 0 69 78
5 232 236 237 0
6 204 209 226 238
3 0 0 0 85
2 20 0 20 52
3 21 85 241 105
2 64 0 0 64
2 66 0 52 53
3 0 243 244 0
4 25 240 242 245
3 0 0 113 186
3 88 54 0 0
3 131 140 0 0
4 55 247 248 249
2 20 52 20 37
2 53 0 64 0
3 251 252 21 68
3 131 147 0 147
3 0 68 0 0
4 253 254 25 255
3 0 0 136 0
2 0 66 0 64
3 0 0 167 258
3 0 147 0 68
3 0 68 0 147
4 257 259 260 261
5 246 250 256 262
3 77 0 190 113
3 0 132 0 0
3 143 131 132 0
3 147 167 0 109
4 264 265 266 267
3 258 0 0 0
4 269 0 269 0
3 132 127 0 0
3 150 0 149 0
4 0 271 272 0
5 268 270 273 0
4 177 0 25 0
4 0 255 0 0
1 0 0 3 0
2 20 0 20 277
3 21 167 278 0
4 279 233 42 0
3 167 136 0 0
3 0 167 0 0
3 0 0 132 0
4 281 282 0 283
5 275 276 280 284
3 0 126 0 68
2 73 0 0 52
3 287 105 80 252
4 286 288 0 255
3 54 0 131 147
3 136 0 77 0
4 290 0 260 291
3 167 88 132 179
3 132 112 0 109
2 73 52 0 0
3 140 295 0 0
4 233 293 294 296
3 0 0 105 54
3 72 74 179 105
3 81 59 0 0
4 298 299 300 82
5 289 292 297 301
6 263 274 285 302
3 186 190 140 143
3 113 0 186 139
4 0 60 304 305
3 0 0 186 190
4 61 82 307 0
2 73 0 0 64
3 140 309 0 0
4 0 310 0 0
2 73 0 64 0
3 140 312 68 0
4 313 0 0 0
5 306 308 311 314
3 0 0 0 126
3 0 0 287 105
4 0 0 316 317
3 80 252 0 68
4 255 319 0 0
5 0 318 0 320
3 155 112 72 74
4 0 0 322 257
3 0 0 167 136
3 0 0 0 167
4 0 0 324 325
3 59 0 0 0
4 0 0 327 0
5 323 326 328 0
4 0 0 257 324
4 0 0 325 257
5 330 331 0 0
6 315 321 329 332
7 198 239 303 333
4 0 0 247 205
5 0 0 335 0
3 131 179 136 0
3 105 0 88 0
3 147 112 140 143
3 88 67 131 0
4 337 338 339 340
3 0 0 132 179
4 342 298 296 300
5 341 343 0 0
3 0 0 179 105
3 0 0 54 179
3 59 80 0 0
4 345 346 82 347
4 298 345 300 82
2 0 66 53 0
3 0 0 179 350
4 0 0 0 351
3 0 0 0 72
3 0 72 127 0
3 74 0 132 0
4 0 353 354 355
5 348 349 352 356
6 336 0 344 357
4 0 163 0 0
3 0 155 0 136
2 0 66 71 73
3 54 361 0 131
4 360 362 0 163
5 359 363 0 0
3 81 59 0 72
4 346 298 347 365
3 80 138 74 186
3 188 0 190 85
4 345 199 367 368
3 0 72 74 113
3 74 76 77 88
4 370 371 0 0
3 0 68 0 155
4 373 0 0 0
5 366 369 372 374
3 67 147 0 68
3 112 0 77 0
4 0 0 376 377
3 147 112 68 77
4 0 0 379 260
5 378 380 0 0
6 0 364 375 381
3 220 81 244 0
4 0 0 383 0
3 0 0 0 147
3 0 243 0 0
3 0 68 0 127
4 385 260 386 387
4 254 257 255 260
4 259 0 261 272
5 384 388 389 390
3 80 81 113 0
2 66 0 71 73
3 393 77 0 135
2 53 0 0 52
3 0 67 395 105
4 213 392 394 396
3 0 67 85 0
2 53 0 0 66
3 80 399 0 0
4 0 398 0 400
2 52 53 66 0
2 66 0 0 52
3 402 0 403 105
4 345 199 82 404
5 397 0 401 405
4 255 286 257 324
5 326 407 0 0
3 0 68 0 167
4 288 290 409 213
5 410 0 0 0
6 391 406 408 411
3 67 0 155 0
4 0 0 413 0
5 414 0 0 0
6 415 0 0 0
7 358 382 412 416
8 51 172 334 417
4 0 55 60 75
4 60 94 121 122
5 0 56 419 420
4 0 55 96 97
3 109 110 112 0
4 60 102 108 423
3 77 0 0 67
3 0 179 0 80
2 52 53 53 0
3 427 0 81 0
4 98 425 426 428
3 0 113 147 149
3 68 77 0 0
4 430 431 431 0
5 422 424 429 432
6 0 57 421 433
3 0 0 0 220
4 60 75 78 435
5 0 56 70 436
3 0 0 0 65
3 0 112 76 77
3 67 68 0 179
3 77 0 350 127
4 438 439 440 441
3 0 54 109 80
3 104 105 81 59
3 54 0 81 59
4 443 444 445 0
4 86 0 0 0
5 95 442 446 447
3 0 0 0 127
3 116 0 77 0
4 106 449 450 0
3 126 287 0 80
3 105 244 81 59
3 0 0 0 155
4 452 453 162 454
3 0 112 0 77
3 167 136 0 85
4 0 456 0 457
3 0 147 0 0
3 0 109 0 0
4 459 0 0 460
5 451 455 458 461
3 140 143 0 109
4 0 0 460 463
3 0 0 132 127
3 140 143 0 0
4 0 465 466 0
3 0 0 0 132
4 468 152 0 0
5 0 464 467 469
6 437 448 462 470
4 78 0 351 354
3 0 0 112 68
3 0 132 147 0
4 473 474 355 0
3 85 0 0 0
3 131 0 0 0
4 476 247 0 477
3 113 68 131 0
3 67 76 155 88
4 205 0 479 480
5 472 475 478 481
3 0 72 0 0
3 0 123 109 0
3 129 85 67 0
4 0 483 484 485
3 74 131 0 0
3 0 0 220 81
3 0 243 403 105
3 88 54 0 179
4 487 488 489 490
2 0 66 52 53
3 155 492 0 59
3 76 0 88 0
4 255 493 156 494
3 76 80 88 0
2 52 53 0 66
3 67 497 155 88
4 55 496 498 0
5 486 491 495 499
3 0 0 132 77
4 501 0 199 0
3 0 0 140 143
4 503 0 82 257
3 0 0 109 72
3 0 0 74 109
4 0 0 505 506
5 502 0 504 507
3 0 0 123 129
3 0 0 59 76
4 0 0 509 510
3 0 132 112 140
3 179 105 312 59
4 0 468 512 513
3 123 129 0 0
4 0 515 0 0
3 68 0 0 0
4 99 517 0 0
5 511 514 516 518
6 482 500 508 519
3 131 179 350 0
3 105 0 155 88
4 247 205 521 522
4 86 82 0 0
2 53 0 66 0
3 525 0 155 0
3 0 0 0 179
3 0 0 105 0
4 526 0 527 528
4 468 0 0 265
5 523 524 529 530
3 179 350 80 81
3 127 0 67 77
4 0 0 532 533
3 155 0 0 0
4 0 535 99 0
5 534 0 536 0
3 0 80 0 147
3 138 188 0 77
3 131 147 0 0
4 538 539 540 281
3 0 67 0 0
4 108 477 542 385
3 0 0 0 112
3 0 77 0 0
4 0 544 0 545
3 0 147 131 179
3 0 68 105 112
2 52 53 0 64
3 0 549 0 77
3 140 309 0 112
4 547 548 550 551
5 541 543 546 552
3 0 0 112 0
4 0 0 554 0
3 136 0 88 67
4 0 0 556 304
3 113 0 54 0
4 0 0 558 0
5 555 0 557 559
6 531 537 553 560
7 434 471 520 561
3 0 167 0 132
3 88 0 112 0
4 0 0 563 564
4 379 0 0 0
4 0 0 0 353
3 0 72 74 76
3 74 186 0 68
4 0 0 568 569
5 565 566 567 570
3 190 0 0 0
4 0 0 572 0
5 0 0 573 0
3 147 0 0 167
3 0 0 258 0
4 0 0 575 576
3 77 88 0 0
4 578 207 0 0
3 0 109 132 127
4 580 0 0 0
5 577 579 581 0
6 571 574 582 0
5 0 0 0 567
3 0 72 74 0
3 74 113 0 0
4 0 353 585 586
3 0 155 186 139
4 568 569 578 588
5 0 567 587 589
6 0 0 584 590
4 0 0 0 183
4 0 0 184 212
5 0 0 592 593
4 0 183 0 0
5 0 595 0 0
3 109 186 0 0
4 597 193 0 0
4 194 207 0 0
5 598 599 0 0
6 0 594 596 600
3 129 0 0 123
4 0 0 210 602
3 0 0 129 59
3 0 0 76 112
4 0 0 604 605
4 0 0 213 184
3 129 77 0 123
4 210 608 212 213
5 603 606 607 609
4 0 0 385 0
3 0 67 129 80
3 0 0 81 109
4 612 613 219 221
3 0 0 72 74
3 0 0 229 74
3 132 0 109 0
4 615 183 616 617
5 611 311 614 618
4 223 194 0 0
5 620 224 0 0
5 599 0 0 0
6 610 619 621 622
7 583 591 601 623
2 0 0 53 71
2 0 71 53 71
3 179 625 179 626
3 190 59 74 72
3 0 140 59 220
3 143 0 81 179
4 627 628 629 630
3 0 0 74 113
3 0 0 625 190
3 127 0 113 0
4 632 265 633 634
4 0 282 0 0
3 140 143 0 167
3 54 0 0 155
4 637 638 0 282
5 631 635 636 639
2 0 66 66 0
3 0 0 641 0
3 68 113 127 0
3 0 76 127 0
4 642 0 643 644
3 0 67 155 88
3 76 0 0 155
4 0 0 646 647
2 71 73 0 71
3 0 649 127 0
2 0 71 73 0
3 651 143 132 0
3 0 641 0 0
4 650 652 325 653
3 147 0 68 147
3 76 0 85 0
3 186 190 140 216
4 655 0 656 657
5 645 648 654 658
4 0 0 377 379
4 0 0 260 377
5 660 661 0 0
4 0 282 379 260
3 88 179 0 167
3 625 190 140 143
3 147 87 68 77
4 664 665 377 666
5 663 667 0 0
6 640 659 662 668
3 67 76 88 0
4 0 0 670 646
3 76 0 112 68
3 67 76 104 105
4 0 545 672 673
3 127 0 147 131
4 152 675 212 213
3 54 140 59 80
3 295 81 81 0
3 0 54 67 497
4 677 678 679 535
5 671 674 676 680
3 0 80 0 67
3 88 0 85 123
4 456 682 509 683
3 81 0 0 0
3 179 105 85 186
3 76 155 129 77
3 126 143 0 68
4 685 686 687 688
5 684 689 0 0
2 64 0 71 73
3 691 88 54 113
3 0 131 0 0
4 692 207 693 466
3 258 0 77 0
3 0 0 68 0
4 695 696 0 0
5 694 697 0 0
6 681 690 698 0
7 669 699 0 0
2 52 53 73 0
3 54 0 701 54
4 702 0 477 535
5 703 0 0 0
6 704 0 0 0
1 0 8 0 8
2 0 706 0 706
1 7 0 4 4
1 4 4 4 4
2 708 0 709 0
3 0 0 707 710
2 709 0 709 0
3 707 712 707 712
4 0 711 0 713
5 0 0 714 0
6 0 0 715 0
7 705 0 0 716
8 562 624 700 717
3 23 179 173 295
3 105 131 81 59
4 25 283 719 720
3 132 0 147 136
4 722 325 0 0
2 20 0 20 71
3 21 0 724 190
2 20 71 20 0
3 726 312 21 68
4 725 0 727 0
5 721 723 728 0
3 243 77 76 0
4 730 0 0 0
5 731 0 0 0
5 43 0 34 0
6 729 732 733 0
4 174 0 25 0
4 42 0 32 0
5 735 0 736 0
5 46 0 33 0
6 737 0 738 0
7 734 0 739 0
4 42 0 25 0
2 20 27 20 0
3 742 0 21 0
4 743 0 25 0
5 741 0 744 0
3 38 0 173 0
4 39 0 746 0
3 38 0 21 0
4 25 0 748 0
5 747 0 749 0
6 745 0 750 0
4 42 0 748 0
5 34 0 752 0
4 25 0 174 0
5 754 0 34 0
6 753 0 755 0
4 0 212 0 207
5 0 0 0 757
4 0 0 55 345
3 0 59 76 0
4 760 679 223 194
4 535 0 0 0
5 759 0 761 762
6 0 0 758 763
7 751 0 756 764
4 0 0 0 212
4 0 0 213 0
4 0 207 0 0
3 157 112 0 0
4 769 0 0 0
5 766 767 768 770
3 167 0 0 0
4 772 0 0 0
5 773 0 0 0
6 771 0 0 774
3 54 0 59 80
4 0 0 199 776
5 0 0 0 777
4 327 0 0 0
5 0 779 0 0
6 0 778 0 780
7 0 0 775 781
8 740 0 765 782
1 2 4 4 4
2 784 0 709 0
3 707 712 707 785
4 0 786 0 713
1 0 0 8 8
1 0 0 0 9
1 4 4 9 4
2 0 788 789 790
3 0 0 0 791
1 0 8 8 8
1 4 3 4 4
1 4 4 4 0
2 788 793 794 795
1 4 4 4 3
1 4 0 0 0
2 797 0 798 0
3 707 712 796 799
1 0 4 0 4
1 4 0 4 8
1 0 4 0 0
1 4 8 3 8
2 801 802 803 804
1 4 4 0 3
2 0 806 0 0
3 0 805 0 807
2 0 0 788 788
2 709 709 0 0
3 809 809 810 810
4 792 800 808 811
2 709 784 0 0
3 809 809 813 810
4 0 0 811 814
5 787 0 812 815
2 0 0 788 0
1 0 0 4 4
2 0 0 818 818
1 4 4 4 8
1 4 8 4 8
2 709 820 801 821
1 4 4 8 8
2 823 823 0 0
3 817 819 822 824
1 2 4 8 8
2 823 826 0 0
3 819 819 827 824
4 0 0 825 828
3 819 819 824 824
1 0 0 4 3
2 0 0 831 0
1 4 0 3 0
2 823 833 706 709
3 819 832 824 834
4 0 0 830 835
5 0 0 829 836
2 801 821 801 821
1 7 8 0 0
2 0 839 0 0
3 838 0 840 0
4 841 0 0 0
2 706 709 706 709
1 4 4 3 4
2 706 844 706 709
3 0 843 0 845
3 0 843 0 843
4 0 846 0 847
2 706 784 706 709
3 0 843 0 849
4 0 850 0 847
5 842 848 0 851
6 816 837 0 852
4 0 847 0 847
1 3 4 4 4
2 706 855 706 709
3 0 843 0 856
4 0 857 0 847
5 0 854 0 858
1 4 4 4 2
2 706 709 706 860
1 0 8 0 0
2 862 823 0 0
3 0 861 0 863
4 0 847 0 864
5 0 865 0 0
6 0 859 0 866
7 0 853 0 867
3 0 0 113 0
4 0 0 0 869
4 0 0 615 0
2 64 0 0 71
3 0 157 0 872
3 0 127 190 0
3 0 0 81 0
4 873 874 875 0
4 265 0 0 0
5 870 871 876 877
3 0 0 167 88
4 772 879 0 0
5 0 0 0 880
3 0 0 179 625
3 0 0 190 113
3 167 140 0 0
3 143 54 167 0
4 882 883 884 885
3 0 0 155 127
4 0 0 887 468
5 0 0 886 888
6 878 0 881 889
3 93 81 88 147
4 60 69 891 696
5 0 56 103 892
3 0 136 0 109
4 78 0 162 894
3 0 0 135 395
3 123 129 105 0
3 0 72 110 116
3 74 0 0 0
4 896 897 898 899
5 419 420 895 900
4 0 61 0 0
3 67 77 88 0
3 113 0 76 59
4 903 904 0 223
3 0 0 77 0
4 0 0 906 0
5 902 905 907 0
3 59 0 74 109
3 147 0 0 186
4 505 909 165 910
3 127 0 72 74
3 0 67 0 403
3 0 147 190 691
4 912 913 914 0
3 0 140 0 0
3 309 140 0 0
4 916 917 0 0
2 71 73 64 0
3 143 919 0 872
3 0 123 190 113
4 920 921 0 477
5 911 915 918 922
6 893 901 908 923
7 0 58 890 924
3 0 0 0 76
3 127 0 0 0
4 0 926 0 927
3 179 350 80 525
3 155 88 127 0
3 112 68 0 72
4 510 929 930 931
5 0 0 928 932
4 0 0 0 926
4 0 0 212 213
3 0 88 0 0
4 0 936 385 554
3 0 0 147 112
4 207 223 938 0
5 934 935 937 939
4 0 927 213 184
5 593 941 599 620
6 0 933 940 942
4 0 0 213 84
3 88 0 0 112
3 147 0 74 0
4 207 945 946 545
3 155 258 0 77
2 64 0 73 0
3 0 0 186 949
3 147 179 140 295
3 105 131 81 402
4 948 950 951 952
5 593 944 947 953
3 109 72 0 0
3 74 109 0 0
4 955 956 0 0
4 108 955 0 0
5 0 0 957 958
3 0 0 85 110
3 127 0 76 0
4 643 960 212 961
3 0 0 116 0
3 0 403 0 0
4 963 964 99 0
5 962 965 224 762
3 105 0 0 0
4 967 0 0 0
4 0 0 0 449
3 0 76 0 88
4 165 503 0 970
5 968 969 0 971
6 954 959 966 972
3 77 0 126 287
3 0 127 0 0
3 0 80 0 0
4 98 974 975 976
3 68 76 105 244
4 978 0 300 0
4 0 0 0 509
3 0 0 131 0
4 615 981 510 554
5 977 979 980 982
4 0 0 938 385
4 0 0 554 938
5 0 0 984 985
2 0 71 53 0
3 186 190 987 143
3 113 186 131 0
3 59 109 0 0
4 988 989 970 990
2 0 52 73 52
3 992 129 0 0
3 186 190 0 0
4 993 99 994 0
3 129 59 0 0
3 113 0 131 0
4 996 0 997 0
5 991 995 998 0
4 431 255 0 0
4 99 431 0 615
3 147 0 68 77
4 0 0 1002 0
3 113 77 0 0
4 108 1004 0 0
5 1000 1001 1003 1005
6 983 986 999 1006
4 0 0 385 554
3 0 0 147 0
4 0 0 1009 0
5 0 0 1008 1010
3 77 0 72 74
3 72 74 76 0
3 186 190 68 0
4 255 1012 1013 1014
3 872 992 0 0
3 129 85 0 167
3 85 123 0 0
3 129 85 0 0
4 1016 1017 1018 1019
3 155 0 0 147
3 109 0 0 0
4 223 1021 0 1022
3 641 76 0 0
4 240 1024 457 0
5 1015 1020 1023 1025
3 0 0 129 179
3 59 0 155 0
4 124 1027 257 1028
4 528 0 0 213
3 68 76 0 155
4 1009 0 1031 0
2 66 0 64 0
3 0 1033 0 0
4 271 1034 0 0
5 1029 1030 1032 1035
6 1011 0 1026 1036
7 943 973 1007 1037
8 0 868 925 1038
9 418 718 783 1039
3 0 72 74 186
3 74 0 190 85
4 0 353 1041 1042
3 74 113 0 132
3 0 140 123 129
3 216 131 54 0
4 585 1044 1045 1046
5 0 567 1043 1047
3 74 0 0 140
4 0 353 585 1049
3 0 132 216 131
4 370 371 1051 0
3 190 85 0 0
3 123 129 0 113
3 126 143 68 80
4 1053 1054 307 1055
3 54 113 0 131
3 0 0 147 167
3 54 155 81 59
4 1057 1058 1059 0
5 1050 1052 1056 1060
3 76 59 167 0
3 76 80 88 179
4 373 527 1062 1063
3 0 67 350 0
3 0 155 155 0
2 66 0 53 0
3 525 0 1067 0
3 127 0 0 76
4 1065 1066 1068 1069
3 80 81 136 0
3 0 80 167 136
4 1071 1072 0 0
3 81 179 0 167
4 1074 665 0 527
5 1064 1070 1073 1075
6 584 1048 1061 1076
4 0 353 568 569
3 0 186 74 0
2 0 71 71 73
2 73 0 0 71
3 123 129 1080 1081
4 1079 572 1053 1082
3 0 155 76 59
3 167 0 0 179
4 578 1084 0 1085
3 0 127 109 72
3 0 0 74 0
4 1087 1088 298 0
5 1078 1083 1086 1089
3 59 186 190 140
3 190 0 143 131
4 997 0 1091 1092
3 0 0 129 54
3 0 186 0 140
4 124 1094 0 1095
4 124 130 0 223
4 468 0 108 615
5 1093 1096 1097 1098
3 0 0 155 136
4 0 976 1100 454
3 81 179 0 80
3 350 127 81 0
4 1102 1103 0 0
2 52 53 71 73
3 1105 0 131 140
3 0 0 143 0
3 0 0 105 112
4 1106 1107 1108 385
5 1101 1104 1109 0
4 265 927 0 0
4 271 265 0 0
4 213 0 0 0
5 1111 1112 757 1113
6 1090 1099 1110 1114
3 0 1080 147 149
4 313 1116 0 431
3 143 0 0 0
4 1118 0 0 0
4 0 0 108 955
4 0 0 956 108
5 1117 1119 1120 1121
4 0 527 0 976
3 0 179 105 80
3 105 80 81 402
3 105 244 81 179
4 1124 1125 1102 1126
4 0 0 955 956
4 0 976 108 955
5 1123 1127 1128 1129
6 1122 1130 0 0
3 399 77 0 135
3 0 67 81 0
2 52 53 0 52
3 0 1134 350 127
3 105 0 0 155
4 1132 1133 1135 1136
3 80 399 243 77
4 345 554 1138 99
3 105 403 81 179
4 1102 1140 956 108
3 105 113 105 131
3 1134 105 147 167
3 1105 0 0 0
4 1142 1143 1144 0
5 1137 1139 1141 1145
3 112 131 77 186
4 1009 0 1147 702
3 143 131 0 0
4 916 1149 0 0
5 1148 0 1150 0
6 1146 1151 0 0
7 1077 1115 1131 1152
4 0 0 1092 0
3 147 0 68 0
4 1155 1095 0 0
3 105 0 81 59
4 426 1157 0 0
5 1154 1156 1158 0
3 190 0 143 0
4 1160 0 0 0
5 1161 0 0 0
6 1159 1162 0 0
7 1163 0 0 0
8 1153 1164 0 0
2 10 73 0 0
1 0 0 13 0
1 14 0 14 0
2 1167 1168 73 1168
1 13 0 0 0
2 1170 1168 0 1168
3 1166 1169 0 1171
2 73 1168 1170 1168
2 0 1168 73 1168
3 0 1173 0 1174
4 1172 0 1175 0
3 0 1171 0 1173
3 0 1174 0 1171
4 1177 0 1178 0
5 1176 0 1179 0
4 1175 0 1177 0
4 1178 0 1175 0
5 1181 0 1182 0
6 0 1180 0 1183
5 1179 0 1181 0
5 1182 0 1179 0
6 0 1185 0 1186
7 0 1184 0 1187
6 0 1183 0 1185
4 0 124 0 0
5 0 0 0 1190
4 0 0 0 124
3 0 123 129 127
3 129 179 0 1033
4 0 124 1193 1194
3 0 123 129 0
3 129 54 0 0
4 1196 1197 0 0
4 223 0 304 346
5 1192 1195 1198 1199
6 0 0 1191 1200
3 0 123 129 54
3 129 127 88 0
4 0 124 1202 1203
5 0 0 1192 1204
1 13 0 12 0
2 1170 1168 1206 1168
3 0 1207 129 1173
2 1170 1168 1167 1168
2 0 1168 0 1168
3 0 1209 0 1210
4 1208 0 1211 0
5 1182 0 1212 0
3 0 123 129 113
2 0 52 73 0
3 129 0 186 1215
3 105 131 0 0
3 140 143 0 112
4 1214 1216 1217 1218
2 53 0 52 53
3 0 167 1220 59
3 131 112 0 77
3 0 0 113 85
4 1221 0 1222 1223
3 131 0 105 0
4 869 479 1225 615
3 76 59 155 88
3 132 0 131 112
4 1227 0 1228 0
5 1219 1224 1226 1229
2 53 1168 53 1168
3 179 1231 85 1210
1 12 0 13 0
2 53 1168 1233 1168
3 0 1209 123 1234
4 1232 0 1235 0
2 1233 1168 1167 1168
3 0 1210 0 1237
2 1167 1168 0 1168
2 1206 1168 0 1168
3 0 1239 0 1240
4 1238 0 1241 0
5 1236 0 1242 0
6 1205 1213 1230 1243
7 0 1189 1201 1244
8 0 1188 0 1245
1 3 4 8 8
2 823 1247 0 0
3 819 819 1248 824
4 0 0 1249 830
2 0 0 818 831
2 823 823 0 706
1 4 0 4 0
2 1253 0 709 0
3 1251 0 1252 1254
4 0 0 1255 0
1 4 2 4 4
2 784 0 1257 709
3 707 712 707 1258
2 0 0 709 844
2 0 0 709 709
3 0 0 1260 1261
4 713 0 1259 1262
5 1250 1256 0 1263
3 0 0 1261 1261
4 0 0 1265 1265
2 0 0 797 709
1 4 9 4 4
2 0 0 1268 0
3 0 0 1267 1269
4 0 0 1265 1270
5 0 0 1266 1271
6 0 0 1264 1272
4 0 0 0 554
5 0 0 0 1274
6 0 0 0 1275
7 0 0 1273 1276
4 0 0 0 385
5 0 0 0 1278
6 0 0 0 1279
3 0 0 54 113
2 0 64 0 71
3 112 0 1282 190
4 0 0 1281 1283
5 0 0 0 1284
5 0 0 1010 0
3 0 131 0 136
3 179 105 0 88
4 1287 1288 0 163
5 359 1289 0 0
6 0 1285 1286 1290
4 0 0 554 377
3 112 0 77 113
3 68 0 109 0
4 554 1293 99 1294
3 77 186 85 179
3 139 0 105 0
4 1296 1297 869 970
5 0 1292 1295 1298
3 147 0 67 0
4 0 0 1300 0
3 0 872 77 0
4 260 1302 0 0
4 194 554 454 99
3 68 0 0 136
4 0 0 1305 325
5 1301 1303 1304 1306
3 140 143 127 0
3 0 76 0 0
4 468 1308 162 1309
3 186 139 68 0
3 155 67 123 129
4 1311 0 1312 0
4 360 1057 0 163
5 1310 1313 359 1314
3 167 0 88 54
3 113 186 131 140
4 426 1157 1316 1317
3 190 113 143 0
4 0 456 1319 0
3 186 190 179 625
3 0 140 59 186
3 143 919 190 68
4 1321 921 1322 1323
3 129 0 0 0
4 1325 554 213 99
5 1318 1320 1324 1326
6 1299 1307 1315 1327
7 0 1280 1291 1328
1 8 8 0 0
2 1330 1330 0 0
3 0 1331 0 0
3 1331 1331 0 0
4 1332 1333 0 0
4 956 108 0 0
4 955 956 0 449
5 0 1334 1335 1336
4 1333 1333 0 55
2 1330 0 0 0
3 1331 1339 0 0
4 1333 1340 0 0
3 109 110 0 127
3 0 0 0 77
4 108 1342 975 1343
3 116 0 0 0
3 72 74 147 68
4 1345 0 1346 0
5 1338 1341 1344 1347
4 0 449 975 459
3 0 127 0 54
3 0 112 140 143
3 131 59 0 0
3 80 81 0 76
4 1350 1351 1352 1353
4 0 0 990 108
3 109 72 0 127
4 0 515 1356 899
5 1349 1354 1355 1357
3 136 0 0 147
3 0 186 112 140
3 139 0 312 0
4 282 1359 1360 1361
3 0 127 67 76
4 376 0 517 1363
3 68 0 76 112
3 0 123 109 72
3 129 77 74 113
4 99 1365 1366 1367
3 155 0 112 0
3 76 0 155 88
4 385 1369 255 1370
5 1362 1364 1368 1371
6 1337 1348 1358 1372
4 0 324 772 0
3 77 0 136 0
4 325 1375 0 240
3 0 132 155 0
4 86 1377 0 0
5 1374 1376 0 1378
4 0 0 255 0
3 220 229 155 0
3 74 131 67 59
4 1381 1382 0 535
4 84 0 0 0
5 1380 0 1383 1384
6 0 1379 1385 0
3 76 59 88 0
4 0 1387 0 0
4 955 899 0 240
5 1388 1389 0 0
3 0 0 85 179
4 0 1391 0 0
3 85 0 105 155
4 1393 271 0 0
5 1392 1394 0 0
4 0 0 84 0
5 1396 0 0 0
6 1390 1395 1397 0
5 1111 1112 0 0
4 927 271 0 0
3 0 0 0 186
4 0 0 0 1401
3 0 186 190 140
3 190 140 143 126
4 0 1401 1403 1404
5 1400 1111 1402 1405
3 0 155 54 0
4 0 212 345 1407
4 0 1401 0 916
3 179 350 80 399
4 82 1410 0 0
3 179 105 80 81
3 54 179 59 80
4 1412 1413 0 0
5 1408 1409 1411 1414
3 190 140 143 919
3 143 186 0 140
3 190 691 143 186
4 1403 1416 1417 1418
3 309 136 0 1080
3 0 147 143 0
3 0 649 139 186
2 0 0 73 52
3 190 0 1423 427
4 1420 1421 1422 1424
3 105 54 81 59
4 1426 1412 869 997
3 131 0 1105 0
3 113 68 131 147
4 1428 1429 249 1118
5 1419 1425 1427 1430
6 1399 1406 1415 1431
7 1373 1386 1398 1432
3 0 85 0 54
3 110 116 140 143
4 84 0 1434 1435
4 0 0 346 298
3 258 0 76 0
3 76 59 88 179
4 1438 1439 223 496
3 1080 143 105 131
3 525 0 76 59
3 0 0 109 140
4 1441 347 1442 1443
5 1436 1437 1440 1444
4 0 0 345 346
4 0 0 298 345
4 300 82 1107 0
3 59 80 72 74
3 138 188 186 1423
3 0 113 0 131
4 1449 1450 693 1451
5 1446 1447 1448 1452
4 223 496 0 0
5 0 1454 0 0
3 399 0 76 0
4 1456 379 223 494
3 0 147 0 67
3 88 179 76 80
3 1067 0 525 0
4 1458 0 1459 1460
3 186 139 140 143
4 223 1462 0 0
5 1457 1461 0 1463
6 1445 1453 1455 1464
4 0 0 346 633
3 80 525 427 113
3 140 1081 85 0
3 59 0 88 0
4 1467 1468 1031 1469
3 190 0 132 0
4 1471 0 0 0
5 1466 0 1470 1472
3 309 136 0 0
4 916 1474 0 0
3 0 68 0 186
4 544 385 545 1476
4 0 916 0 0
5 1475 1477 0 1478
4 0 1381 0 0
3 74 109 0 54
4 1481 466 61 60
4 494 480 0 0
4 156 494 0 0
5 1480 1482 1483 1484
3 179 105 0 54
3 0 0 155 0
4 0 0 1486 1487
4 498 0 0 0
5 1488 0 1489 0
6 1473 1479 1485 1490
4 271 265 0 1401
3 132 127 0 186
3 190 140 309 136
4 927 1493 1403 1494
3 190 140 143 186
3 143 54 143 59
3 179 987 1080 143
4 1403 1496 1497 1498
3 143 919 190 691
3 0 1080 0 131
3 143 0 76 0
3 0 147 67 77
4 1500 1501 1502 1503
5 1492 1495 1499 1504
3 0 132 190 140
2 73 52 0 52
3 179 105 1507 129
3 143 126 0 147
3 143 59 136 0
4 1506 1508 1509 1510
3 1080 1081 0 0
4 468 385 1512 193
3 143 140 0 0
3 112 0 0 0
4 1514 1118 1515 0
4 0 1503 0 194
5 1511 1513 1516 1517
3 641 112 109 0
3 131 147 72 74
3 140 143 113 68
4 1519 1520 1521 0
3 54 179 59 0
2 66 0 0 71
3 105 0 54 1524
4 223 194 1523 1525
3 150 0 131 0
4 1527 233 0 0
4 281 693 0 0
5 1522 1526 1528 1529
3 0 85 179 105
4 240 1531 205 233
4 1377 927 0 0
4 466 0 0 0
5 1532 1533 1534 0
6 1505 1518 1530 1535
4 554 938 99 431
3 77 0 0 113
4 385 554 255 1538
3 0 131 0 113
4 1451 1540 0 693
5 1537 1539 0 1541
3 68 150 0 131
4 938 0 1543 1009
2 0 71 0 64
3 1545 143 1282 190
3 186 188 140 216
3 68 67 0 393
4 1546 1547 1451 1548
3 0 0 74 186
3 77 76 77 136
3 0 691 0 131
4 353 1550 1551 1552
5 1544 0 1549 1553
5 1112 1400 0 0
3 135 395 0 0
4 1556 967 0 0
5 1111 1557 0 0
6 1542 1554 1555 1558
7 1465 1491 1536 1559
8 1277 1329 1433 1560
3 0 68 113 68
4 0 385 260 1562
3 76 0 88 147
3 67 68 68 0
4 260 261 1564 1565
5 0 1278 1563 1566
3 0 147 0 872
3 0 0 992 129
4 0 0 1568 1569
3 0 0 85 0
4 0 0 1571 199
3 0 54 123 129
3 0 88 76 0
4 272 1573 1012 1574
3 54 155 67 0
4 493 0 1576 0
5 1570 1572 1575 1577
6 0 0 1567 1578
3 0 136 0 67
4 0 0 162 1580
3 0 109 59 0
4 0 0 1582 108
5 0 0 1581 1583
3 0 0 113 68
4 0 0 1585 0
5 0 0 1586 0
5 516 0 0 0
6 0 1584 1587 1588
3 992 129 0 54
3 54 0 155 492
4 1590 1591 1342 1345
3 0 68 179 1067
4 1593 1281 1451 693
3 0 0 1033 0
4 0 975 257 1595
3 113 0 0 127
4 387 1597 0 477
5 1592 1594 1596 1598
3 0 77 186 190
3 88 179 113 110
4 1600 1601 466 249
3 1067 0 116 0
4 1603 975 1149 0
4 465 468 212 156
5 1602 1604 469 1605
3 0 77 0 68
4 1607 1004 0 213
3 68 77 109 0
3 113 85 0 127
4 938 223 1609 1610
3 113 0 0 0
3 110 116 0 0
4 304 1612 1613 0
5 1608 0 1611 1614
3 0 67 132 258
4 0 1616 0 0
3 0 87 0 0
4 1618 282 0 926
4 0 0 0 1009
3 0 361 54 131
4 970 1621 0 0
5 1617 1619 1620 1622
6 1599 1606 1615 1623
3 0 135 0 0
3 395 105 0 0
3 67 76 155 0
4 1625 1626 0 1627
3 167 88 68 0
4 906 0 152 1629
4 210 1019 0 0
5 1628 0 1630 1631
3 0 109 0 67
4 515 1018 165 1633
3 129 85 0 109
3 0 113 77 0
4 1635 82 1636 515
5 0 0 1634 1637
3 76 0 0 0
3 112 0 0 68
3 77 147 76 77
4 1639 554 1640 1641
3 0 0 76 59
4 0 1643 260 695
3 179 350 1545 143
4 1645 0 99 55
3 140 143 54 179
4 0 307 345 1647
5 1642 1644 1646 1648
3 68 155 74 109
4 505 1650 696 0
3 492 0 110 116
4 1652 385 260 1302
3 0 0 919 0
3 186 190 105 131
3 691 0 0 0
4 304 1654 1655 1656
5 1651 1653 1657 0
6 1632 1638 1649 1658
7 1579 1589 1624 1659
3 67 186 403 987
3 190 113 143 919
4 0 0 1661 1662
4 0 255 955 956
3 112 0 0 126
3 109 0 0 179
4 260 1665 108 1666
5 1663 0 1664 1667
3 81 402 0 155
4 976 1669 0 0
3 641 0 105 112
3 186 190 131 179
4 1107 0 1671 1672
3 0 0 350 0
4 0 0 1674 0
5 0 1670 1673 1675
2 0 66 0 71
3 76 80 1677 190
4 0 527 1462 1678
3 105 80 81 59
3 525 0 872 190
4 1124 1680 1681 163
4 0 466 0 0
4 304 1018 0 0
5 1679 1682 1683 1684
3 399 77 0 0
3 0 76 155 0
2 53 0 0 64
3 0 0 220 1688
4 1686 61 1687 1689
3 80 81 0 167
4 1691 213 0 476
4 1019 255 0 0
4 99 0 0 0
5 1690 1692 1693 1694
6 1668 1676 1685 1695
3 136 0 0 123
3 80 138 74 76
3 188 0 0 68
4 299 1697 1698 1699
5 366 1700 0 579
2 1233 1168 0 1168
3 167 1702 129 1240
2 1167 1168 53 1168
2 53 1168 73 1168
3 67 1704 155 1705
4 1703 0 1706 0
3 0 1171 0 1174
4 1708 0 1177 0
5 1707 0 1709 0
2 0 1168 1233 1168
3 0 1711 0 1210
3 0 1210 0 1210
4 1712 0 1713 0
4 1713 0 1713 0
5 1714 0 1715 0
6 1701 1710 0 1716
3 85 179 0 0
3 105 0 0 167
4 989 572 1718 1719
3 0 0 140 216
3 0 0 649 651
4 0 0 1721 1722
5 0 0 1720 1723
4 0 0 1107 0
5 0 0 1725 0
3 76 155 88 0
3 76 80 0 59
3 54 0 0 0
4 1727 1728 993 1729
3 525 112 67 68
4 1731 118 0 0
5 1730 1732 0 0
6 1724 1726 1733 0
3 0 1173 0 1210
4 1735 0 1713 0
5 1715 0 1736 0
5 1715 0 1715 0
6 0 1737 0 1738
7 1696 1717 1734 1739
3 109 140 147 0
3 77 186 190 140
3 949 0 143 186
4 554 1741 1742 1743
3 179 105 110 116
4 1118 0 883 1745
3 143 54 80 81
3 179 105 59 80
4 1747 1748 0 0
3 131 179 81 59
3 105 131 80 81
4 1750 1751 84 1661
5 1744 1746 1749 1752
3 54 0 0 136
4 460 282 1754 926
3 0 85 0 67
4 233 457 1756 1643
3 179 105 402 0
2 66 0 73 0
3 1759 54 143 131
4 1758 194 1760 0
5 1755 1757 1761 224
4 194 199 0 347
5 0 1763 0 0
4 0 0 685 0
5 1765 0 0 0
6 1753 1762 1764 1766
3 136 0 109 110
3 76 0 116 0
4 0 61 1768 1769
4 82 347 0 0
5 1770 1771 0 0
4 300 0 0 0
5 1773 0 0 0
6 1772 1774 0 0
4 205 0 0 0
5 0 0 1776 0
6 1777 0 0 0
3 179 105 0 0
4 0 0 60 1779
5 0 1780 0 0
4 0 0 0 210
4 0 1002 1325 0
4 460 463 0 0
3 0 131 0 109
4 575 576 460 1785
5 1782 1783 1784 1786
6 1781 1787 0 0
7 1767 1775 1778 1788
3 0 0 126 143
4 0 0 1790 938
3 76 0 88 179
3 88 0 0 147
3 76 80 258 0
4 213 1792 1793 1794
5 0 0 1791 1795
4 0 0 1451 1058
3 0 76 123 129
4 0 1798 257 324
3 0 0 1067 0
3 87 0 109 110
4 1800 84 1442 1801
3 76 80 116 0
4 527 1124 1803 300
5 1797 1799 1802 1804
6 0 0 1796 1805
4 0 0 632 0
5 0 0 567 1807
2 0 1168 1167 1168
2 53 1168 0 1168
3 0 1809 0 1810
4 1713 0 1811 0
3 0 1240 0 1210
4 1813 0 1713 0
5 1812 0 1814 0
3 123 129 0 167
4 377 1300 1816 0
2 0 52 0 64
3 105 1818 399 77
3 81 402 0 68
4 1819 1820 0 0
4 82 0 353 585
5 1817 0 1821 1822
3 0 1210 0 1240
2 71 1168 71 1168
3 74 1825 0 1174
4 1824 0 1826 0
5 1715 0 1827 0
6 1808 1815 1823 1828
3 872 190 0 0
3 0 132 0 140
4 1830 431 0 1831
3 0 68 67 0
3 104 105 216 59
3 0 123 67 147
4 1833 1370 1834 1835
3 54 179 59 1080
4 0 0 1412 1837
3 105 0 1081 190
4 0 1022 1839 0
5 1832 1836 1838 1840
3 129 77 88 54
3 147 243 0 76
4 223 0 1842 1843
4 0 0 99 377
3 167 136 0 179
3 0 88 105 0
3 0 167 0 88
3 0 76 54 88
4 1846 1847 1848 1849
3 0 155 0 85
3 0 67 179 1067
4 1851 0 1852 0
5 1844 1845 1850 1853
4 460 165 0 0
3 127 0 140 143
3 0 167 0 109
4 1856 1009 460 1857
5 1855 1858 0 0
3 258 0 0 131
4 0 0 1860 345
3 0 67 155 0
4 400 1862 346 528
3 80 81 0 109
4 460 1864 0 0
3 59 1080 0 0
3 1081 190 127 0
4 1866 1867 460 463
5 1861 1863 1865 1868
6 1841 1854 1859 1869
3 0 67 136 0
3 0 0 88 77
3 88 67 0 68
4 1871 1872 379 1873
3 0 0 147 68
4 1875 0 466 0
4 0 615 152 501
3 113 0 132 0
4 108 1878 108 1022
5 1874 1876 1877 1879
3 0 1171 0 1210
1 12 0 12 0
2 1882 1168 0 1168
3 0 1883 0 1210
4 1881 0 1884 0
3 0 1210 76 1240
3 88 1173 0 1240
4 1886 0 1887 0
5 1885 0 1888 0
3 67 0 155 88
4 84 1890 535 615
3 132 112 0 76
4 0 1831 1892 0
4 0 693 575 576
3 147 167 0 0
3 0 87 85 0
4 1895 1896 0 1618
5 1891 1893 1894 1897
3 179 1704 295 1702
2 0 1168 1206 1168
3 0 1240 0 1900
4 1899 0 1901 0
2 0 1168 71 1168
3 88 1809 243 1903
2 71 1168 0 1168
3 0 1905 0 1809
4 1904 0 1906 0
5 1902 0 1907 0
6 1880 1889 1898 1908
7 1806 1829 1870 1909
8 1660 1740 1789 1910
9 1165 1246 1561 1911
4 45 0 42 0
4 748 0 25 0
4 0 0 0 165
5 1913 0 1914 1915
4 0 0 0 975
3 0 109 186 190
3 0 67 68 155
4 0 0 1918 1919
3 67 76 155 492
4 0 0 494 1921
5 0 1917 1920 1922
3 21 109 21 67
4 32 165 1924 1636
3 0 0 0 649
3 85 179 76 0
4 460 1926 515 1927
3 21 155 21 0
3 492 0 59 0
3 28 0 23 0
4 1929 1930 1931 0
3 167 0 105 0
3 112 131 77 0
4 346 1933 327 1934
5 1925 1928 1932 1935
3 127 0 651 143
3 105 0 88 54
4 1937 353 1938 0
3 113 68 74 0
4 1940 498 124 604
4 535 162 1413 1426
3 112 68 0 0
4 454 199 532 1943
5 1939 1941 1942 1944
6 1916 1923 1936 1945
3 0 0 0 68
4 0 515 449 1947
3 85 0 167 0
4 1949 0 0 0
4 0 0 0 184
3 0 113 127 0
4 1952 960 212 961
5 1948 1950 1951 1953
4 0 260 0 0
4 963 0 99 0
5 0 1955 1956 0
4 0 194 0 0
3 88 0 0 54
3 0 59 80 81
4 207 1959 60 1960
4 0 0 228 0
5 1958 1961 1962 0
3 155 54 0 65
4 1964 1643 98 99
5 1965 0 0 0
6 1954 1957 1963 1966
2 20 27 20 37
3 1968 0 21 0
4 25 0 1969 0
3 21 87 21 131
3 88 0 59 0
3 21 59 21 0
4 1971 1972 1973 0
5 1970 0 1974 0
2 20 37 20 277
3 21 0 1976 0
4 1977 0 25 0
3 278 0 21 0
4 25 0 1979 0
5 1978 0 1980 0
6 1975 0 1981 0
4 0 0 926 1360
3 190 0 312 0
3 155 88 0 123
4 0 84 1984 1985
5 0 0 1983 1986
4 0 1095 0 0
3 190 0 309 136
4 1989 325 0 0
4 0 0 1094 0
5 1988 1990 1991 0
3 77 0 123 129
4 515 1993 0 0
3 67 0 80 81
4 1995 0 0 0
5 1994 1996 0 0
6 1987 1992 1997 0
7 1946 1967 1982 1998
3 112 0 150 0
4 2000 0 477 0
5 2001 0 0 0
4 0 0 0 544
5 0 0 2003 611
6 2002 0 2004 0
4 0 1443 0 0
4 1107 0 0 0
5 2006 2007 0 0
6 2008 0 0 0
3 0 77 167 136
4 257 2010 0 0
4 212 0 0 0
3 123 129 54 88
4 509 2013 0 494
5 2011 2012 0 2014
4 927 271 1487 0
5 0 0 2016 1111
6 2015 2017 0 0
5 0 0 1112 1400
5 0 0 1111 1112
4 0 0 353 370
4 353 1041 371 373
5 0 0 2021 2022
6 2019 2020 0 2023
7 2005 2009 2018 2024
3 173 0 278 0
4 25 0 2026 0
5 2027 0 735 0
4 24 0 748 0
2 20 37 20 37
3 21 0 2030 0
4 25 0 2031 0
5 2029 0 2032 0
6 2028 0 2033 0
3 21 113 21 54
4 25 0 2035 0
2 20 52 20 0
3 2037 525 21 68
2 20 73 20 0
2 20 53 20 0
3 2039 0 2040 0
4 2038 84 2041 194
5 2036 0 2042 0
3 38 127 21 0
3 0 132 0 113
4 2044 2045 32 0
3 127 0 0 131
2 0 52 64 0
3 54 179 2048 81
4 2047 2049 0 0
5 2046 2050 741 0
5 968 0 0 0
6 2043 0 2051 2052
7 2034 0 2053 0
4 0 483 0 0
5 0 2055 0 0
4 899 0 0 0
4 0 0 265 468
5 2057 2058 0 0
6 2056 2059 0 0
7 0 2060 0 0
8 1999 2025 2054 2061
3 0 0 167 0
4 772 2063 0 0
5 0 2064 0 0
6 0 2065 0 0
3 641 76 0 85
3 167 88 0 0
3 179 625 167 140
4 2067 0 2068 2069
3 190 113 143 54
4 0 0 2071 0
3 155 127 167 0
4 772 2073 0 0
5 2070 2072 0 2074
3 77 0 641 76
3 0 85 167 88
4 265 2076 772 2077
5 0 0 2078 0
4 1462 494 0 0
5 0 2080 0 0
6 2075 2079 0 2081
5 0 0 1400 1111
4 271 265 353 585
3 127 0 0 72
3 132 0 74 0
4 2085 2086 1049 1051
5 0 0 2084 2087
4 0 0 353 585
4 353 568 1044 578
4 1042 1045 0 0
3 0 0 0 113
4 1046 0 0 2092
5 2089 2090 2091 2093
4 569 1053 207 0
4 515 1729 0 212
3 167 0 80 81
4 0 1643 0 2097
3 0 179 76 80
3 350 0 525 0
4 2099 2100 223 535
5 2095 2096 2098 2101
6 2083 2088 2094 2102
4 0 0 156 0
4 0 0 0 257
5 2104 0 762 2105
4 0 0 1487 0
5 0 0 2107 0
6 0 0 2106 2108
7 2066 2082 2103 2109
4 0 156 0 0
3 67 0 1067 0
4 1792 2112 976 1102
5 2111 2113 0 0
3 105 54 81 179
3 0 0 350 127
4 0 413 2115 2116
4 0 0 1947 0
4 976 1102 0 0
4 1140 1142 976 1102
5 2117 2118 2119 2120
4 480 156 0 0
5 2122 1483 0 0
5 1484 2122 0 0
6 2114 2121 2123 2124
4 0 86 0 0
3 105 80 81 179
3 81 402 105 155
4 304 558 2127 2128
5 0 2126 2129 0
5 83 0 0 0
4 496 526 0 0
4 0 0 0 240
5 2132 0 0 2133
3 140 295 127 0
4 0 342 468 2135
3 81 402 132 258
4 298 0 2137 0
5 0 0 2136 2138
6 2130 2131 2134 2139
4 260 1515 0 0
5 0 2141 0 0
4 0 316 0 255
3 0 85 287 105
4 2144 245 82 327
5 0 2133 2143 2145
6 2142 2146 0 0
3 186 190 109 0
4 0 240 1434 2148
3 179 105 72 74
3 0 77 136 0
3 147 68 76 88
4 86 2150 2151 2152
3 131 112 126 143
3 68 80 67 76
4 248 2154 183 2155
4 1407 1930 300 0
5 2149 2153 2156 2157
4 535 165 345 346
3 0 109 105 54
4 460 152 2160 463
4 82 1449 60 1412
3 138 188 0 0
3 0 0 59 0
4 2163 1612 2164 0
5 2159 2161 2162 2165
3 0 872 0 0
2 0 66 73 0
3 2168 0 0 72
4 2167 2169 0 0
3 74 109 0 132
3 74 131 0 72
4 585 2171 483 2172
5 2170 2173 0 0
3 112 0 74 136
3 403 105 0 1033
4 162 1401 2175 2176
4 883 307 249 1149
3 74 140 0 72
4 483 2179 0 0
3 143 54 74 59
4 2181 1412 0 413
5 2177 2178 2180 2182
6 2158 2166 2174 2183
7 2125 2140 2147 2184
3 0 0 77 186
4 0 0 2186 205
3 0 113 126 143
3 0 131 919 0
3 68 113 0 131
4 2188 2189 1830 2190
4 265 515 0 0
4 1018 1019 0 0
5 2187 2191 2192 2193
3 1545 143 77 147
4 2195 0 994 0
4 1779 0 0 0
4 0 346 505 909
5 2196 0 2197 2198
4 0 55 0 61
5 0 2200 0 0
3 0 0 155 132
3 109 0 127 0
4 2202 2203 0 0
5 2204 0 0 0
6 2194 2199 2201 2205
3 0 179 113 110
3 105 0 116 0
4 0 0 2207 2208
3 54 155 110 116
4 1225 0 2210 1729
4 0 0 0 527
5 2209 1111 2211 2212
4 228 0 0 0
3 0 0 109 186
4 0 2215 1108 385
3 136 0 147 0
4 191 1921 554 2217
5 2214 0 2216 2218
4 0 0 385 260
3 0 80 287 105
3 93 81 88 112
4 316 2221 1562 2222
3 1215 1220 131 0
4 2167 2224 0 0
3 0 135 393 68
3 81 54 167 72
3 155 0 0 220
4 2226 2227 477 2228
5 2220 2223 2225 2229
3 0 68 0 76
3 0 0 68 127
3 0 88 0 68
4 1686 2231 2232 2233
3 77 0 0 88
3 67 0 0 155
4 2235 2236 0 2099
3 109 0 74 0
3 67 155 155 0
4 2238 2239 875 210
4 0 223 996 1401
5 2234 2237 2240 2241
6 2213 2219 2230 2242
4 0 1618 0 0
5 0 2244 0 0
3 0 136 59 0
3 0 167 123 129
4 2246 2247 0 936
3 67 155 0 0
4 0 265 2249 2063
5 2248 2250 0 0
6 2245 2251 0 0
7 2206 2243 0 2252
3 350 127 88 0
4 307 0 337 2254
4 0 0 265 927
5 0 0 2255 2256
4 0 0 271 265
4 0 0 927 271
5 0 0 2258 2259
3 105 0 525 0
4 0 0 2261 0
4 0 0 205 0
5 2262 0 2263 0
4 0 0 0 307
3 140 143 126 1507
4 0 307 304 2266
3 140 295 113 0
4 340 2268 0 477
5 2265 2267 311 2269
6 2257 2260 2264 2270
3 127 0 186 190
4 0 0 265 2272
3 132 179 140 309
3 105 54 59 0
4 0 0 2274 2275
5 0 0 2273 2276
3 54 0 129 0
4 304 466 2278 666
3 131 0 85 0
4 2280 0 223 0
3 190 0 113 68
4 685 0 989 2282
3 190 0 143 54
3 80 81 190 113
4 1095 2284 247 2285
5 2279 2281 2283 2286
3 179 427 110 116
4 0 0 2288 515
3 85 123 76 0
4 0 0 2290 1842
5 0 0 2289 2291
6 2277 0 2287 2292
3 123 129 76 0
3 59 76 220 138
3 155 0 127 0
4 2294 2295 223 2296
3 0 0 188 0
3 0 0 67 147
3 179 427 147 88
4 2298 2299 2300 255
3 68 155 0 0
4 657 212 0 2302
3 492 0 59 67
4 213 0 2304 213
5 2297 2301 2303 2305
3 76 0 403 105
4 385 554 1833 2307
3 67 0 244 0
4 345 2309 82 1106
3 0 0 132 112
4 194 2311 1107 0
5 1537 2308 2310 2312
4 936 970 0 0
5 0 2314 0 0
4 776 875 0 0
5 0 2316 0 0
6 2306 2313 2315 2317
4 0 540 1487 0
4 249 1149 0 515
5 2319 2320 1120 1121
3 167 0 59 76
4 160 199 509 2322
3 85 0 1818 81
4 223 535 2324 488
3 109 0 132 0
4 0 515 2326 0
4 99 517 0 213
5 2323 2325 2327 2328
3 132 179 140 295
4 2311 2330 0 0
5 0 2331 0 0
4 720 0 0 0
4 0 223 0 0
5 2333 2334 0 0
6 2321 2329 2332 2335
7 2271 2293 2318 2336
8 2110 2185 2253 2337
4 32 0 32 0
5 43 0 2339 0
5 26 0 741 0
6 2340 0 2341 0
4 32 0 45 0
4 39 0 32 0
5 2343 0 2344 0
5 34 0 34 0
6 2345 0 2346 0
7 2342 0 2347 0
4 25 0 24 0
1 3 10 0 0
2 20 2350 20 22
3 21 0 2351 0
4 2352 0 25 0
5 2349 0 2353 0
5 34 0 26 0
6 2354 0 2355 0
4 174 0 174 0
5 2357 0 34 0
1 14 1 14 14
2 2359 1 0 0
2 1 1 0 0
3 21 0 2360 2361
3 0 0 2361 2361
4 2362 2363 0 0
4 2363 2363 0 0
5 2364 2365 0 0
5 2365 2365 0 0
6 2358 0 2366 2367
6 0 0 2367 2367
7 2356 0 2368 2369
7 0 0 2369 2369
8 2348 0 2370 2371
4 926 1947 936 970
5 0 0 0 2373
3 0 88 0 76
3 179 1067 80 525
4 906 84 2375 2376
5 0 0 2377 0
3 59 109 0 76
3 140 143 80 399
4 2379 2380 936 970
5 2314 2381 0 0
6 2374 2378 0 2382
4 385 554 2231 2235
3 67 0 179 1067
4 1009 0 2385 0
3 80 525 0 76
3 0 0 59 109
4 2387 2388 936 970
5 2384 2386 2314 2389
3 80 399 0 76
4 503 0 2391 260
4 0 0 377 1300
5 0 0 2392 2393
6 0 0 2390 2394
4 2375 2376 936 970
5 2314 2396 0 0
6 0 2397 2367 2367
7 2383 2395 2369 2398
4 0 0 2379 2380
4 2231 2235 936 970
5 2400 1008 2314 2401
4 2385 0 2387 2388
4 0 0 615 183
5 1010 0 2403 2404
3 0 88 2361 2361
4 2406 2363 0 0
3 0 68 2361 2361
4 2363 2408 0 0
5 2407 2409 0 0
6 2402 2405 2367 2410
4 0 0 184 0
5 0 0 2412 0
3 155 77 2361 2361
4 2414 2363 0 0
5 2415 2365 0 0
6 2413 0 2416 2367
7 0 0 2411 2417
8 0 0 2399 2418
9 2062 2338 2372 2419
3 0 0 167 76
4 0 0 257 2421
3 0 167 72 74
4 325 2423 976 685
5 0 0 2422 2424
4 0 0 325 576
3 0 67 1105 0
4 2427 99 0 0
3 0 0 188 113
4 517 0 1401 2429
5 2426 0 2428 2430
3 112 0 74 72
4 353 2432 0 99
3 0 132 74 109
4 2434 124 265 468
5 2433 2435 0 0
6 2425 2431 0 2436
3 131 179 0 59
4 2438 967 0 0
3 112 68 77 0
4 0 679 2440 269
5 2439 2441 0 0
3 0 0 129 113
3 140 143 77 186
4 2443 0 2444 205
4 0 0 2063 0
4 476 0 0 0
5 2445 2446 2192 2447
6 0 2442 2448 0
4 0 0 575 257
3 0 167 0 68
4 0 527 449 2451
3 147 0 691 0
3 140 143 113 0
4 633 2453 2454 477
5 2450 326 2452 2455
4 0 0 576 0
4 431 0 0 233
5 2457 0 2458 0
3 0 127 190 113
4 247 2460 466 249
3 0 85 186 139
3 110 116 186 949
4 2462 2463 1149 466
3 54 0 402 0
4 2465 0 535 0
5 2461 2464 2466 0
6 2456 2459 2467 0
4 0 0 282 0
5 0 0 0 2469
6 0 2470 0 0
7 2437 2449 2468 2471
4 0 325 0 0
5 0 0 0 2473
4 0 0 298 0
4 257 1072 0 0
3 350 113 140 143
4 1074 2477 0 0
5 2212 2475 2476 2478
6 0 0 2474 2479
3 190 68 0 72
3 109 140 0 0
3 143 147 109 0
4 187 2481 2482 2483
5 0 592 595 2484
3 0 123 0 147
4 449 2486 0 108
4 1203 265 0 0
4 981 0 0 0
5 2487 2488 2489 0
5 1400 1111 0 0
6 0 2485 2490 2491
4 0 431 0 0
5 0 1620 0 2493
4 165 615 0 0
5 0 2495 0 0
6 2494 0 0 2496
7 2480 2492 0 2497
3 123 129 0 155
4 162 2499 0 483
5 0 0 0 2500
3 74 136 0 0
4 554 0 2502 282
4 0 0 233 281
5 0 603 2503 2504
3 147 68 0 0
4 0 0 2506 0
5 0 0 2507 0
6 2501 2505 2508 0
4 210 608 282 233
3 0 67 129 0
4 2511 0 772 0
5 606 611 2510 2512
4 0 0 0 426
3 0 179 105 1818
4 527 2515 1680 1686
5 0 0 2514 2516
4 0 0 527 298
3 105 80 81 220
3 81 109 81 0
4 2519 2520 255 0
4 994 0 0 0
5 2518 0 2521 2522
6 2513 0 2517 2523
3 0 132 74 131
3 147 112 77 0
4 353 2525 2526 527
5 0 0 593 2527
3 0 54 350 112
4 0 0 2529 696
5 0 0 2530 0
3 0 155 0 179
3 105 80 81 1105
4 194 2532 426 2533
3 88 179 105 1818
4 2535 2519 1686 255
4 0 693 0 0
3 140 143 0 54
4 2538 0 61 82
5 2534 2536 2537 2539
3 179 427 167 140
4 2520 0 0 2541
3 113 68 143 131
4 0 0 2543 0
3 123 129 72 74
4 0 0 86 2545
5 2542 2544 0 2546
6 2528 2531 2540 2547
4 163 542 0 0
5 0 2549 0 0
3 59 0 113 0
4 0 0 2551 0
5 0 0 2552 0
6 2550 0 2553 0
7 2509 2524 2548 2554
3 0 179 76 59
3 105 112 1080 1081
4 0 0 2556 2557
4 223 0 0 426
3 105 54 81 1105
4 0 0 2560 1779
5 2558 2263 2559 2561
4 693 2538 0 61
5 0 2563 0 0
4 0 0 82 0
5 2565 0 0 0
6 2562 0 2564 2566
7 0 0 2567 0
8 2472 2498 2555 2568
3 109 0 67 77
3 113 123 0 67
4 0 183 2570 2571
3 129 1105 72 74
3 0 0 140 1081
4 233 257 2573 2574
3 393 77 74 0
3 1677 190 140 143
4 2576 2577 477 0
3 872 1423 0 0
3 427 54 0 0
4 2579 2580 0 0
5 2572 2575 2578 2581
3 0 123 188 0
4 1487 0 2583 485
4 0 0 515 1018
3 179 427 0 0
4 2586 1729 0 0
5 2584 2585 2587 0
6 2582 2588 0 0
4 0 0 1019 515
4 0 0 1018 1019
5 2590 2591 0 0
5 2585 2590 0 0
6 2592 2593 0 0
4 0 0 0 501
5 0 2595 0 0
4 505 506 0 0
4 615 505 0 0
3 0 123 129 179
4 124 2599 1203 1034
5 2597 2598 1782 2600
3 0 179 129 0
4 506 615 124 2602
3 427 54 0 167
4 981 0 2604 0
3 129 113 105 131
3 186 1215 140 143
4 2606 2607 0 544
3 1220 59 131 0
3 0 0 68 147
3 132 0 0 0
4 2609 0 2610 2611
5 2603 2605 2608 2612
6 0 2596 2601 2613
4 0 0 307 0
3 72 74 0 77
4 615 108 0 2616
3 132 123 0 0
3 129 1105 132 0
4 2618 2619 0 0
4 696 0 0 0
5 2615 2617 2620 2621
3 76 88 88 0
4 2326 0 2623 0
5 2624 0 0 661
4 615 981 0 0
4 0 1451 0 0
5 2626 2627 0 0
6 2622 2625 0 2628
7 2589 2594 2614 2629
5 2591 2585 0 0
3 0 167 112 0
4 0 0 325 2632
3 0 167 76 80
3 85 0 88 0
4 325 2634 1058 2635
5 0 0 2633 2636
6 2631 2592 0 2637
3 0 131 0 649
4 460 2639 515 1718
3 179 105 1215 399
4 2641 377 967 0
5 2640 2642 0 0
2 73 1168 0 1168
3 147 1705 68 2644
3 0 1702 0 1711
4 2645 0 2646 0
2 1170 1168 1170 1168
3 0 1702 0 2648
4 1178 0 2649 0
5 2647 0 2650 0
3 0 167 0 67
4 0 0 325 2652
3 147 167 67 0
4 325 282 377 2654
3 72 74 81 67
3 59 72 59 67
4 2656 2657 233 0
3 74 88 0 0
4 2659 207 0 0
5 2653 2655 2658 2660
3 76 1240 85 1210
3 88 1173 0 2648
4 2662 0 2663 0
3 0 1210 0 1174
4 2665 0 1177 0
5 2664 0 2666 0
6 2643 2651 2661 2667
4 0 0 325 282
3 76 80 85 0
3 81 67 136 0
4 325 2423 2670 2671
3 147 112 68 150
4 0 282 2673 0
4 223 882 0 884
5 2669 2672 2674 2675
3 0 67 59 72
3 77 0 74 88
4 2677 2678 218 354
3 74 59 68 113
4 2385 0 2680 0
4 883 307 1149 466
3 127 0 113 186
3 85 110 139 0
3 143 88 0 0
4 2683 2684 249 2685
5 2679 2681 2682 2686
4 693 509 0 0
3 77 0 0 112
4 510 554 515 2689
4 0 545 0 0
5 2688 2690 0 2691
3 68 77 131 0
3 0 68 0 109
4 938 385 2693 2694
3 77 113 0 0
3 85 123 0 126
4 554 0 2696 2697
3 147 0 140 143
3 132 127 0 109
4 2699 2700 0 0
3 67 77 155 0
3 243 77 0 0
4 0 2702 2703 152
5 2695 2698 2701 2704
6 2676 2687 2692 2705
3 116 0 220 81
4 2707 0 207 0
5 0 0 2708 0
3 0 1210 0 1702
3 0 1704 0 1210
4 2710 0 2711 0
3 0 1210 0 1809
3 0 1810 0 1210
4 2713 0 2714 0
5 2712 0 2715 0
3 129 59 143 147
4 0 0 2717 0
4 255 99 0 165
5 2718 0 2719 1920
3 0 1900 0 1210
4 1713 0 2721 0
3 76 1240 88 1173
4 2721 0 2723 0
5 2722 0 2724 0
6 2709 2716 2720 2725
7 2638 2668 2706 2726
5 0 1123 0 0
3 72 74 0 132
4 2116 2729 685 0
5 2730 0 0 0
6 2728 2731 0 0
4 60 1486 0 61
3 88 54 0 54
4 2202 906 60 2734
5 2733 2735 0 902
3 113 186 131 179
4 0 0 304 2737
3 190 0 105 0
4 0 0 2739 0
4 60 102 0 61
3 155 132 0 54
4 106 0 60 2742
5 2738 2740 2741 2743
5 0 902 0 0
6 2736 2744 0 2745
7 2732 2746 0 0
3 77 0 88 54
4 0 0 2748 307
5 0 0 2749 335
4 60 2538 0 61
3 105 0 93 81
3 104 105 0 54
4 2438 2752 60 2753
5 2751 2754 0 902
4 0 0 2202 906
4 60 2734 0 61
4 304 2737 60 102
5 2756 0 2757 2758
6 2750 0 2755 2759
4 240 544 976 1686
3 186 949 140 309
4 385 0 2762 385
4 0 517 0 0
5 2761 2763 0 2764
2 1170 1168 71 1168
3 0 1174 0 2766
3 0 1905 0 1210
4 2767 0 2768 0
3 147 1900 68 1173
4 2770 0 1713 0
5 2769 0 2771 0
4 2739 0 106 0
5 0 0 2773 0
3 0 1240 0 1240
3 0 1704 0 1809
4 2775 0 2776 0
3 0 1810 0 1704
3 0 1900 0 1900
4 2778 0 2779 0
5 2777 0 2780 0
6 2765 2772 2774 2781
6 0 2745 0 0
4 60 2742 0 61
4 2748 307 60 2538
5 2784 2785 0 902
2 1206 1168 1167 1168
3 0 1210 113 2787
2 1167 1168 52 1168
2 52 1168 0 1168
3 131 2789 0 2790
4 2788 0 2791 0
2 0 1168 52 1168
3 0 2793 0 2790
4 2794 0 1901 0
5 2792 0 2795 0
4 1824 0 2721 0
4 1901 0 1824 0
5 2797 0 2798 0
6 2786 2796 0 2799
7 2760 2782 2783 2800
8 2630 2727 2747 2801
4 509 199 0 0
5 2803 0 0 0
6 2804 0 0 0
7 0 2805 0 0
1 8 7 8 4
2 0 0 0 2807
1 0 0 4 0
2 0 0 2809 0
3 0 0 2808 2810
1 8 4 8 4
2 0 2812 0 2812
2 1253 0 1253 0
3 2813 2814 2813 2814
4 0 2811 0 2815
1 8 2 8 4
2 0 2812 0 2817
3 2813 2814 2818 2814
4 0 2819 0 2815
5 0 2816 0 2820
6 0 0 2821 0
1 0 0 0 8
2 0 0 2823 788
3 0 0 0 2824
2 0 2812 788 2812
2 1253 0 833 0
3 2813 2814 2826 2827
1 0 4 9 9
1 0 0 8 0
2 2829 709 709 2830
1 8 0 8 8
2 806 2832 803 844
3 0 2831 0 2833
1 4 4 0 0
2 855 2835 0 0
2 788 788 709 709
3 2836 0 2837 2837
4 2825 2828 2834 2838
5 0 2839 0 0
3 0 0 2837 2837
2 788 788 1257 709
3 0 0 2842 2837
4 0 0 2841 2843
1 0 0 0 4
2 2830 2845 709 823
2 818 818 823 823
3 0 0 2846 2847
1 4 2 8 8
2 818 818 2849 823
3 0 0 2850 2847
4 0 0 2848 2851
1 8 0 8 0
2 709 2853 709 2853
1 0 7 0 0
1 8 0 0 0
2 709 2853 2855 2856
3 2854 0 2857 0
4 2858 0 0 0
5 2844 2852 0 2859
6 2840 2860 0 0
3 0 0 2847 2847
1 4 4 8 3
2 277 0 2863 0
3 0 0 2847 2864
4 0 0 2862 2865
2 2812 1253 2812 1253
1 8 4 8 3
2 2812 1253 2868 1253
3 0 2867 0 2869
3 0 2867 0 2867
4 0 2870 0 2871
5 2866 0 2872 0
2 2812 1253 2817 1253
3 0 2867 0 2874
4 0 2875 0 2871
4 0 2871 0 2871
5 2876 0 2877 0
6 2873 0 2878 0
7 2822 0 2861 2879
1 8 3 8 4
2 2812 1253 2881 1253
3 0 2867 0 2882
4 0 2883 0 2871
1 4 0 2 4
1 8 4 0 8
2 2812 2885 2886 823
3 0 2867 0 2887
4 0 2871 0 2888
1 4 3 8 8
2 818 818 2890 823
3 0 0 2891 2847
4 0 0 2892 2862
5 2884 0 2889 2893
1 4 4 8 4
2 818 277 823 2895
3 0 0 2896 0
4 0 0 2897 0
5 0 0 2898 0
4 2815 0 2819 0
2 0 2812 0 862
2 784 709 1330 1330
3 2901 2902 0 0
2 797 709 1330 1330
2 709 709 1330 1330
3 2904 2905 0 0
4 2903 2906 0 0
3 2905 2905 0 0
4 2908 2908 0 0
5 2900 0 2907 2909
6 2894 2899 0 2910
7 0 2911 2369 2369
8 2806 2880 2371 2912
4 2721 0 1901 0
5 2914 0 2797 0
5 2798 0 2914 0
6 0 2915 0 2916
6 0 2799 0 2915
7 0 2917 0 2918
2 844 709 1330 1330
1 9 0 4 0
2 2921 0 2856 0
3 2920 2922 0 0
4 2908 2923 0 0
5 0 0 2924 0
6 0 0 2925 0
7 2926 0 2369 2369
6 0 2916 0 2799
2 0 0 10 73
2 1 10 0 0
2 1 1168 0 0
3 2929 2787 2930 2931
4 2932 0 0 0
5 2933 0 0 0
6 0 2915 2367 2934
7 0 2928 2369 2935
8 0 2919 2927 2936
9 2569 2802 2913 2937
10 1040 1912 2420 2938
11 0 19 0 2939
User avatar
dvgrn
Moderator
 
Posts: 5750
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Next

Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 4 guests