## Complexity in loop rules?

For discussion of other cellular automata.

### Complexity in loop rules?

After getting some more free time and getting bored of my other hobbies, I got re-interested in loop rules. I can't seem think of new methods that would allow loops with complex functions to be favored over simpler loops. Loops would increase in complexity overtime just like in real life biology. Shapeloop nor foodshapeloop didn't really accomplish neither of this well. What do you guys think would be a good method?
pi_guy314

Posts: 88
Joined: July 21st, 2014, 9:45 pm

### Re: Complexity in loop rules?

It seems like having loops with simplistic code-simplifying properties (like being able to iterate a sequence of instructions in the code multiple times without actually adding it multiple times) might help, since in real life there's a lot of both code redundancy and code reusage that goes on. So, code interpretation start/end instructions, (not the same one for both, but a different one for each so that those instructions can go uninterpreted too) seems like a good option.
Sphenocorona

Posts: 480
Joined: April 9th, 2013, 11:03 pm

### Re: Complexity in loop rules?

Sphenocorona wrote:It seems like having loops with simplistic code-simplifying properties (like being able to iterate a sequence of instructions in the code multiple times without actually adding it multiple times) might help,

Something like that kinda exist already in shapeloop.
`x = 10, y = 10, rule = shapeloop33.2ABD\$3.A2HF\$3.A2HD2.G\$4A2HCD2A\$A3H2.3HA\$A3H2.3HA\$4A2H4A\$3.A2HA\$3.A2HA\$3.4A!`

This could be useful for conserving space so there'll be room for genes other than loop construction. A loop large enough might be able to create complex circuitry.
pi_guy314

Posts: 88
Joined: July 21st, 2014, 9:45 pm

### Re: Complexity in loop rules?

Here's a very lengthy list of things that could be used:

Photons or Food Particles
Both can be used to give an advantage to larger loops at a certain point. The ideal loop size would depend on food/photon scarcity. I've already created a rule with food particles called foodshapeloops. I've also experimented with photons on a test rule a few months ago. Photons may be created from a single source or from other photons. Each one has it's pros and cons. Photons might be a better option as it is easier to work with.

Limited Arm Kill
In shapeloop, a loop arm will destroy any loops in it's path including its own offspring. If loops can only kill with a certain gene or gene combination, then it would give larger loops an advantage as they can have more space for multiple kill genes. It can also allow loops to spare its offspring.

Specialized Loop Arm Function
Loop arms could have specialized function that would help increase a loop's survival. These functions could include absorbing photons, branching, and killing at certain moments. This also give larger loops a bigger advantage as they can carry more genes to preform these function.

Single Unit Mutation
Currently how loops mutate in shapeloop is very similar to sexual reproduction. A loop would hijack another loops arm and both loop's "DNA" might merge in the offspring. The difference in size between the offspring and the hijacker loop would further rearrange the loops DNA. The DNA may continue changing after generations if the size difference are not stable. The entire outcome of this varies greatly, from no changes at all to a complete change of its DNA. Here's an example of a very complex loop mutation:
`x = 56, y = 50, rule = shapeloop325.J\$19.N2.2DBD19.N\$22.C2HI\$22.D19H\$22.2DC2DBDC2DC2DB2DO7A\$42.A2HO\$42.A2HD\$42.A2HD\$42.A2HB2DCD\$42.AH.4HD\$42.AH4.HC\$42.AH4.HD\$42.AH.4HB\$42.D2H2DC2D\$42.C2HD\$42.D2HC\$42.DB2D\$12.N25.N3\$35.2DCD\$35.C2HB\$35.D2HD\$35.D2HD\$35.B2HC3DC\$35.DH.4HD\$35.DH4.HD\$35.EH4.HB\$35.AH.4HD\$35.A2H2ADCD\$35.A2HA\$35.A2HA\$35.4A6\$5.N6\$29.N!`
A problem with this way of mutation in general is that getting small changes in the beginning or middle of the loop's DNA without changing other parts seems unlikely. A new and additional way of mutation might be needed, where only a single unit might get changed or added at a time.

What suggestion do you have?
pi_guy314

Posts: 88
Joined: July 21st, 2014, 9:45 pm

### Re: Complexity in loop rules?

I thought for a while about this some months ago, and was able to come up with some potentially interesting ideas toward the goal you mention. I shared these ideas with fluffykitty as he was beginning to play with creating rulesets at the time. We didn't get very far down that road, but even as far as we got seemed very interesting to me. I will excerpt interesting portions of that previous conversation here:

We could set out to mimic life's precursors and hope and expect that a good analog will develop significant complexity in the system on its own over time with only a little guidance just as biological life did. Using your Shapeloop variations as can be seen in threads here, we have demonstrated with minimal guidance, over time and after many generations significant complexity can arise spontaneously with rulesets. This even using rules that incompletely approach the fundamental characteristics of biological life.

The "precursors" I refer to are self replicating macromolecules which in biological life probably came first, something like chains of amino acids/proteins/RNA shaped in such a way (shaped here being the configuration of their molecules as determined by the chemical properties of the composing atoms like snap together organic chemistry models used in education) that they are able to organize random configurations of the composing molecules into a shape identical to itself. Take the following where the symbols 'q' and 'b', 'p' and 'd', 'n' and 'u', '[' and ']', and '{' and '}' are the same shapes ("states" in a future realized CA version) but in different orientations:

`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . [ . } . . . . . . .  . . . . . b u d . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  `

Where:
• shape 'b' and shape 'u' always have a tendency to arrange with 'b' on the left hand side of 'u' as it is oriented, when in within the proximity of two spaces in any direction, so that if in generation 1:
`. . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . u . . . . . . . .  . . . . . . . . b . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  `

then in generation 2:
`. . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . b u . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  `

And similarly:
• 'u' and 'd' always have a tendency to arrange with 'd' on the right hand side of 'u' as it is oriented when in proximity
• 'd' and '}' always have a tendency to arrange with 'o' above '}' as it is oriented when in proximity
• 'b' and '[' always have a tendency to arrange with 'c' above '[' as it is oriented when in proximity
• Once any of these pairs get into their preferred orientations, they move together as a unit.

Also:
• '[' and '}' always have a tendency to arrange such that '{' brackets '[' as it is oriented when in proximity, but this arrangement is not strongly preferred and so does not lock into place or persist if the arrangement is being pulled into a different orientation or location by another affinity
[/list]
It would tend to form up like this:
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . p n q p n q . . . . . . . . . { [ ] } [ ] . . . . . .  . . . . b u d b u d . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . .  `

Well this is not all that interesting of a formation, but the complexity could get a lot greater when each shape is more complex, can rotate in four different orientations rather than two, and in the interplay between partially formed configurations being drawn in different directions by different rules. The point is that simple rules that about determine how different states are oriented relative to each other can form complexity.

Now these are shapes and and not states, but shapes could be formed by states that have affinities for other states in orientation when in proximity. Random distributions of states that organize according to rules like these may produce interesting enough results on their own--something "emergent".

Tezcatlipoca

Posts: 81
Joined: September 9th, 2014, 11:40 am

### Re: Complexity in loop rules?

If anyone is interested in the deeper discussion over practical details subsequent to fluffykitty and I agreeing on this concept which he used to create the first working demo, let me know and I will post the rest of the conversation.

Tezcatlipoca

Posts: 81
Joined: September 9th, 2014, 11:40 am

### Re: Complexity in loop rules?

Actually I'd been making rules for a while when I joined and showed off my loop. My first rule was a simulation of 1-layer Minecraft water physics. I even have a loop rule where I've forgotten the loop itself... Well, we could start doing that again. If we do continue, I think I'm going to start with a new rule, the old version was really buggy. Though I'm a bit worried that an infinite configuration might be able to solve the halting problem in 1 step. (Also extra [/list] after the special brackets rule.)
I like making rules
fluffykitty

Posts: 604
Joined: June 14th, 2014, 5:03 pm

### Re: Complexity in loop rules?

What exactly are loop rules?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik

Posts: 3409
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

### Re: Complexity in loop rules?

Rules with self replicating loops. In Golly, Patterns->Loops has a lot of loop rules.
I like making rules
fluffykitty

Posts: 604
Joined: June 14th, 2014, 5:03 pm

### Re: Complexity in loop rules?

There's a few things that would be difficult to figure out or implement such as how to get DNA will replicate or how DNA would move on it's own. A chemistry-like rule might be better done in an extended-neighborhood rule where objects can interact with each other at a distance instantly.

I'm current working on a rule where randomly moving worm-like loop would be used instead of a stationary loops. Longer worms would have more advantages over shorter worms. The movements of worms are determined by their DNA which would probably allow competition between similar size worms. The result seems very promising although I'm not completely sure if it will increase in complexity like I wanted it to. It's almost complete and I'll release it once it's 100% finished without any bugs or need to update it later on. Maybe I'll release it just before if I need some feedback.
pi_guy314

Posts: 88
Joined: July 21st, 2014, 9:45 pm

### Re: Complexity in loop rules?

pi_guy314 wrote:
I'm current working on a rule where randomly moving worm-like loop would be used instead of a stationary loops... Maybe I'll release it just before if I need some feedback.

Excited to see it! Have you release it yet?

Tezcatlipoca

Posts: 81
Joined: September 9th, 2014, 11:40 am

### Re: Complexity in loop rules?

Tezcatlipoca wrote:Excited to see it! Have you release it yet?

Not yet. It's mostly done but I'm still doing some tweaks to it. I might still have to do some major changes to it later on. I don't want to release the entire rule too early as I don't want to have to update it later just to have posted patterns to change. If I need some help with the rule I could release it on a thread made solely for its development.

Here's a demo of the rule along with an example:
`@RULE WormLoop-demo1 empty wire2 left turn3 right turn4 forward5 random (changes signal behind randomly)6 double forward (causes worm to increase in size during mutation)7 charged (causes worm to split/replicate)8 wire-back9 wire-back 210 wire-head11 wire-head 212 wire-end13 misc14 photon-back/misc 215 photon-head16 indestructible-wall@TABLEn_states:17neighborhood:Mooresymmetries:rotate4var a1={00,01,02,03,04,05,06,07,08,09,10,11,12,13,13,14,15}var b1={01,02,03,04,05,06,07}var c1={02,03,04,05,06,07}var d1={00}var f1={00,13,14,15}var g1={08,09}var h1={04,05,06}var i1={10,11}var j1={04,07}var B1={00,08,09,10,11,12,13,14,15}var G1={00,01,02,03,04,05,06,07,10,11,12,13,14,15}var F1={01,02,03,04,05,06,07,08,09,10,11,12}var a2={a1}var a3={a1}var a4={a1}var a5={a1}var a6={a1}var a7={a1}var a8={a1}var b2={b1}var b3={b1}var b4={b1}var b5={b1}var b6={b1}var d2={d1}var d3={d1}var d4={d1}var d5={d1}var d6={d1}var d7={d1}var f2={f1}var f3={f1}var f4={f1}var f5={f1}var f6={f1}var f7={f1}var f8={f1}var g2={g1}var g3={g1}var g4={g1}var g5={g1}var j2={j1}var j3={j1}var j4={j1}var B2={B1}var B3={B1}var B4={B1}var B5={B1}var B6={B1}var B7={B1}var B8={B1}var G2={G1}var G3={G1}var G4={G1}var G5={G1}var G6={G1}###splitting#topf1,f2,f3,g1,07,f4,f5,f6,f7,01f1,f2,f3,01,13,f4,f5,f6,f7,1101,f2,f3,g1,b1,13,f5,f6,f7,0411,f2,f3,h1,b1,f4,f5,f6,f7,00#middlef1,f2,g1,07,10,f3,f4,f5,f6,1313,01,g1,b1,11,01,f4,f5,f6,b1#lowerf1,f2,07,10,f3,f4,f5,f6,f7,0110,07,b1,b2,f1,f2,f3,f4,f5,11f1,f2,13,01,f3,f4,a1,a2,a3,0901,13,b1,11,f3,f4,f5,f6,f7,0411,b1,b2,b3,f1,f2,f3,h1,b4,04####left turnf1,a1,a2,g1,02,f2,f3,f4,a3,08f1,f2,g1,02,10,f3,f4,f5,f6,01f1,f2,02,10,f3,f4,f5,f6,f7,13#13,01,b1,10,f1,f2,f3,f4,f5,04f1,f2,g1,01,13,f3,a1,a2,a3,08f1,f2,01,13,f3,f4,a1,a2,a3,0801,f1,02,10,f2,f3,f4,f5,f6,0110,b1,b2,b3,f1,f2,f3,04,b4,02#right turng1,f1,f2,g2,b1,03,f3,f4,f5,01f1,f2,f3,g1,03,f4,f5,f6,f7,1010,03,b1,b2,a1,a2,a3,a4,a5,03#forward/random/doublef1,f2,f3,g1,h1,g2,f4,f5,f6,00f1,a1,a2,g1,h1,f2,f3,f4,a3,08 f1,f2,g1,06,i1,f3,f4,f5,f6,04f1,f2,g1,h1,i1,f3,f4,f5,f6,01f1,f2,h1,i1,a1,f3,f4,f5,f6,10 10,06,b2,a1,a2,a3,f1,f2,f3,0410,h1,b2,a1,a2,a3,f1,f2,f3,h1#excess/unstable charged p.105,g1,g2,b1,a1,a2,10,07,g3,04 #random signal selection05,09,09,b1,a1,a2,10,c1,g1,0305,08,09,b1,a1,a2,10,c1,g1,0205,09,08,b1,a1,a2,10,c1,g1,0405,08,08,b1,a1,a2,10,c1,g1,04#excess/unstable charged p.2b1,b2,g1,07,11,b4,g2,B2,11,04b1,b2,g1,07,b3,b4,g2,B2,11,04b1,b2,g1,07,b3,b4,g2,B2,B3,0402,g1,g2,07,b2,b3,b4,b5,g3,0403,g1,g2,07,b2,b3,b4,b5,g3,0407,g1,g2,07,b2,b3,b4,b5,g3,04b1,g1,g2,07,b2,b3,b4,05,g3,04#outside signal transfer b1,b2,12,G1,G2,G3,G4,G5,b3,00b1,b2,12,G1,G2,G3,G4,G5,00,00b1,b2,b3,G1,G2,G3,G4,G5,G6,b1b1,g1,g2,12,a1,b2,G2,b3,a2,b2b1,b2,g1,12,00,b3,00,00,a1,b3#floating junk/retract p.1b1,a1,g1,b2,a2,g2,a3,a4,a5,12b1,g1,a1,b2,a3,g2,a4,a5,a6,1212,g1,a2,a3,a4,a5,a6,b1,b2,0812,a1,a2,a3,a4,a5,a6,a7,a8,0013,a1,a2,a3,a4,a5,a6,a7,a8,00g1,B1,a1,B2,a3,B3,a4,B4,a5,0010,B1,B2,B3,B4,B5,B6,B7,B8,0011,B1,a1,B2,a3,B3,a4,B4,a5,00#signal movementb1,b2,a1,a2,a3,a4,a5,b3,g1,b2b1,b2,a1,a2,a3,a4,a5,g1,a6,b2b1,b2,a1,a2,a3,a4,a5,a6,g1,b2#floating junk/retract p.2b1,a1,a2,a3,a4,a5,a6,a7,a8,12###random generator #special wire end08,a1,a2,08,12,a3,a4,08,a5,09#W15009,B1,a2,09,a3,b1,a4,09,a5,0909,B1,a2,08,a3,b1,a4,09,a5,0808,B1,a2,09,a3,b1,a4,09,a5,0808,B1,a2,08,a3,b1,a4,09,a5,0909,B1,a2,09,a3,b1,a4,08,a5,0809,B1,a2,08,a3,b1,a4,08,a5,0908,B1,a2,09,a3,b1,a4,08,a5,0908,B1,a2,08,a3,b1,a4,08,a5,08#09,09,a1,09,a2,b1,a3,a4,a5,0909,08,a1,09,a2,b1,a3,a4,a5,0808,09,a1,09,a2,b1,a3,a4,a5,0808,08,a1,09,a2,b1,a3,a4,a5,0909,09,a1,08,a2,b1,a3,a4,a5,0809,08,a1,08,a2,b1,a3,a4,a5,0908,09,a1,08,a2,b1,a3,a4,a5,0908,08,a1,08,a2,b1,a3,a4,a5,08#09,a1,a2,09,a3,b1,09,a4,a5,0909,a1,a2,09,a3,b1,08,a4,a5,0808,a1,a2,09,a3,b1,09,a4,a5,0808,a1,a2,09,a3,b1,08,a4,a5,0909,a1,a2,08,a3,b1,09,a4,a5,0809,a1,a2,08,a3,b1,08,a4,a5,0908,a1,a2,08,a3,b1,09,a4,a5,0908,a1,a2,08,a3,b1,08,a4,a5,08#09,a1,09,b1,a2,09,a4,a5,a6,0909,a1,09,b1,a2,08,a4,a5,a6,0808,a1,09,b1,a2,09,a4,a5,a6,0808,a1,09,b1,a2,08,a4,a5,a6,0909,a1,08,b1,a2,09,a4,a5,a6,0809,a1,08,b1,a2,08,a4,a5,a6,0908,a1,08,b1,a2,09,a4,a5,a6,0908,a1,08,b1,a2,08,a4,a5,a6,08###@COLORS00 0 0 001 255 118 002 255 0 003 0 255 004 0 0 25505 255 255 25506 0 0 18007 0 0 8008 75 75 7509 100 100 10010 130 130 13011 150 150 15012 230 100 0 13 255 100 016 180 180 90`

`x = 18, y = 3, rule = WormLoop-demo17HI\$5DC10DBL\$J5DE6DG3D!`
pi_guy314

Posts: 88
Joined: July 21st, 2014, 9:45 pm

### Re: Complexity in loop rules?

In the 'outside signal transfer' section, there are a few occurrences of 00 that should be d1. Also why does state 9 exist?
I like making rules
fluffykitty

Posts: 604
Joined: June 14th, 2014, 5:03 pm

### Re: Complexity in loop rules?

fluffykitty wrote:In the 'outside signal transfer' section, there are a few occurrences of 00 that should be d1.

d1 is just a variable that was no longer is in use. It'll be in use once I release the entire rule-table.

fluffykitty wrote: Also why does state 9 exist?

Its purpose was to influence what movement the random signal will take next. Also state 9's function will be different because state 5 is no longer used as a random signal. I did this change so that simpler worms with state 5 no longer have more advantages than complex worms without state 5.
pi_guy314

Posts: 88
Joined: July 21st, 2014, 9:45 pm

### Re: Complexity in loop rules?

I like making rules
fluffykitty

Posts: 604
Joined: June 14th, 2014, 5:03 pm

### Re: Complexity in loop rules?

fluffykitty wrote:Any status updates? New demo?

I'm still working on it. I did a lot of major changes to the rule since the demo such as removing the random signal. It might take a few weeks for me to release the full version. I'm also trying to make the rule easy to understand so it wouldn't be hard for others to modify it.
pi_guy314

Posts: 88
Joined: July 21st, 2014, 9:45 pm

### Re: Complexity in loop rules?

pi_guy314 wrote:It might take a few weeks for me to release the full version.

Wow. This is going to be the biggest rule ever made. (And it seems I'm the only one still waiting on it.)
pi_guy314 wrote: I'm also trying to make the rule easy to understand so it wouldn't be hard for others to modify it.

That would be good. Anyways, can't wait for the next demo!
I like making rules
fluffykitty

Posts: 604
Joined: June 14th, 2014, 5:03 pm

### Re: Complexity in loop rules?

How does one create a "random" function in a rule file? I didn't think randomness was possible in this engine.
My simple pleasure is naming patterns.

TheoSwartz

Posts: 72
Joined: March 8th, 2016, 3:24 am

### Re: Complexity in loop rules?

In the demo, it's based on the pattern of state 8 or 9 on the sheath.(which is controlled with rule 150)
I like making rules
fluffykitty

Posts: 604
Joined: June 14th, 2014, 5:03 pm

### Re: Complexity in loop rules?

Interesting, so it's pseudo random essentially. I'd mess around with this rule but I really have no idea what to do in loop rules. Looking forward to seeing something demoed that I can just.. observe.
My simple pleasure is naming patterns.

TheoSwartz

Posts: 72
Joined: March 8th, 2016, 3:24 am

### Re: Complexity in loop rules?

There actually is a demo higher up on this thread.
I like making rules
fluffykitty

Posts: 604
Joined: June 14th, 2014, 5:03 pm

### Re: Complexity in loop rules?

Sorry it took a bit long. I wasn't able to do any changes for about a week due to school and other things. Here's a pre-release version of the rule table. I do need some feedback. There's a problem with the rule where it's hard to see if worms are becoming more complex or not over time. It might be because certain mutations are too rare or if more complex worms are less favored. Once all that gets fix, I'll post the official rule in a separate thread.

Here's the rule:

`@RULE WormLoop-pre1pre-release version 11 empty-wire2 left-signal3 right-signal4 forward-signal5 double-forward (causes worm to increase in size during mutation)6 charged (causes worm to split/replicate)7 decaying-wire/shealth8 wire-sheath9 wire-sheath-temp09 wire-head10 wire-head-special11 misc/temp12 photon-head13 photon-tail14 indestructible-wall@TABLEn_states:15neighborhood:Mooresymmetries:rotate4var a1={00,01,02,03,04,05,06,07,08,09,10,11,12,13}         #all modifiable statesvar b1={01,02,03,04,05,06}                           #all wire statesvar c1={04,05}                              var d1={02,03,04,05,06}var e1={00,01,02,03,04,05,06,11,12,13}                                    var f1={00,11,12,13}var h1={09,10}                                    #states that worms can pass throughvar g1={08,07}            var B1={00,08,07,09,10,11,12,13}                     var F1={01,02,03,04,05,06,08,07,09,10,11}var G1={00,01,02,03,04,05,06,09,10,11,12,13}var H1={00,01,02,03,04,05,06,07,08,11,12,13}var a2={a1}var a3={a1}var a4={a1}var a5={a1}var a6={a1}var a7={a1}var a8={a1}var b2={b1}var b3={b1}var b4={b1}var b5={b1}var b6={b1}var b7={b1}var b8={b1}var d2={d1}var d3={d1}var d4={d1}var d5={d1}var d6={d1}var d7={d1}var d8={d1}var e2={e1}var e3={e1}var f2={f1}var f3={f1}var f4={f1}var f5={f1}var f6={f1}var f7={f1}var f8={f1}var g2={g1}var g3={g1}var g4={g1}var g5={g1}var g6={g1}var g7={g1}var g8={g1}var B2={B1}var B3={B1}var B4={B1}var B5={B1}var B6={B1}var B7={B1}var B8={B1}var F2={F1}var F3={F1}var G2={G1}var G3={G1}var G4={G1}var G5={G1}var G6={G1}var G7={G1}var G8={G1}#collision (releases state 11 during collision)00,a1,a2,g1,d1,00,a3,a4,b1,1100,a1,a2,g1,d1,00,a3,a4,h1,1100,a1,a2,g1,d1,00,a3,F1,a4,1100,00,g1,d1,h1,00,a1,F1,a2,1100,00,d1,h1,a1,a2,a3,F1,a4,1100,00,d1,h1,a1,a2,g1,a3,a4,11###splitting#top sectionf1,f2,f3,08,06,f4,f5,f6,f7,01f1,f2,f3,01,11,f4,G1,G2,G3,1001,f2,f3,08,b1,11,f5,f6,f7,0410,f2,f3,04,b1,f4,G1,G2,G3,01#middle sectionf1,f2,08,06,09,f3,f4,f5,f6,1111,01,08,b1,09,01,f4,f5,f6,b1b1,08,B1,B2,B3,B4,b2,b3,b2,00#bottom sectionf1,f2,06,09,f3,f4,f5,f6,f7,01f1,f2,11,01,f3,f4,B1,B2,B3,0801,11,b1,09,f3,f4,f5,f6,f7,04######left turn#first stepf1,B1,B2,08,02,f2,f3,f4,h1,01f1,B1,B2,08,02,f2,f3,f4,B3,08f1,f2,08,02,09,f3,f4,f5,f6,01f1,f2,02,09,f3,f4,f5,f6,f7,1109,02,b1,a1,a2,a3,f1,f2,f3,10#second stepf1,f2,08,01,11,f3,B1,B2,a1,08f1,f2,01,11,f3,f4,B1,B2,B3,0801,g1,g2,b1,h1,11,f1,f2,f3,b111,01,b1,10,f1,f2,f3,f4,f5,0410,b1,b2,a1,a2,f1,f2,04,b4,02####right turnf1,f2,f3,08,03,f4,B1,B2,B3,0908,f1,f2,08,b1,03,f3,f4,f5,0109,03,b1,a1,a2,a3,a4,a5,a6,03#forward/random/doublef1,B1,B2,08,c1,f2,f3,f4,h1,11f1,B1,B2,08,c1,f2,f3,f4,B3,08  f1,f2,08,04,h1,f3,f4,f5,f6,01f1,f2,08,05,h1,f3,f4,f5,f6,04f1,f2,c1,h1,G1,G2,G3,f3,f4,09 09,c1,a1,G1,G2,G3,G4,f1,f2,04#collision perma-disable (prevents worm from turning right after collision)g1,a1,a2,g2,b1,f1,a3,a4,a5,08b1,g1,g2,b2,b3,a1,f1,f2,11,00b1,g1,g2,b2,b3,a1,f1,11,f2,00b1,g1,g2,b2,b3,a1,11,f1,f2,00#left signal mutation00,b1,b2,00,g1,11,b3,b4,02,1102,b1,b2,b3,11,b4,b5,b6,b7,0304,b1,b2,b3,11,00,b4,02,b5,0502,b1,b2,06,00,b3,b4,b5,b6,04#right signal mutation 03,b1,b2,b3,00,00,11,B2,a1,0503,b1,b2,b3,00,11,00,B2,a1,02#forward signal mutation04,04,07,04,11,11,11,04,07,0104,03,04,04,11,11,11,04,04,0204,02,04,04,11,11,11,04,04,0304,07,04,04,11,11,11,04,04,05#04,04,04,04,11,11,11,04,07,02#04,04,07,04,11,11,11,04,04,03#04,04,07,04,11,11,11,04,07,01#04,07,04,04,11,11,11,04,b1,06#photon movement12,a1,a2,a3,a4,a5,a6,a7,a8,1313,a1,a2,a3,a4,a5,a6,a7,a8,0000,12,00,00,00,00,00,00,00,1200,12,00,00,b1,b2,b3,00,00,12#photon generator00,13,00,13,00,00,00,00,00,1200,13,00,00,14,14,14,00,00,1212,00,00,00,14,14,14,00,00,00#photon to charge04,G1,G2,b1,a1,12,a2,b2,G3,0604,g1,g2,04,b1,06,b2,b3,a1,0606,b1,b2,b3,G1,G2,G3,b4,b5,04#excess charge filterb1,b2,g1,06,09,b4,g2,B2,10,04b1,b2,g1,06,b3,b4,g2,B2,b5,0406,g1,g2,06,b2,b3,b4,b5,g3,04#test#00,00,00,08,07,08,00,00,00,09#08,00,00,00,00,07,08,00,00,04#outside signal b1,b2,07,G1,G2,G3,G4,G5,b3,00b1,b2,07,G1,G2,G3,G4,G5,00,00b1,b2,b3,G1,G2,G3,G4,G5,G6,b1#signal backflow decayb1,a1,g1,b2,a2,g2,a3,a4,a5,07#b1,g1,a1,b2,g2,a2,a3,a4,a5,07b1,g1,a1,b2,a3,g2,a4,a5,a6,07#signal movementb1,b2,a1,a2,a3,a4,a5,b3,g1,b2b1,b2,a1,a2,a3,a4,a5,g1,a6,b2b1,b2,a1,a2,a3,a4,a5,a6,g1,b2#decay/worm retract b1,08,a1,a2,a3,a4,a5,a6,a7,07b1,a1,08,a2,a3,a4,a5,a6,a7,07 b1,a1,a2,a3,a4,a5,a6,a7,a8,0007,a1,a2,a3,a4,a5,a6,a7,a8,00g1,B1,a1,B2,a3,B3,a4,B4,a5,0009,B1,B2,B3,B4,B5,B6,B7,B8,0010,B1,a1,B2,a3,B3,a4,B4,a5,0011,a1,a2,a3,a4,a5,a6,a7,a8,00@COLORS00 0 0 001 255 098 002 255 0 003 0 255 004 0 0 25505 0 0 18006 0 0 09007 220 100 008 75 75 7509 100 100 10010 125 125 12511 255 070 012 255 230 013 255 200 014 180 180 90@ICONSXPM/* width height num_colors chars_per_pixel */"7 49 2 1"/* colors */"o c #000000"". c #FFFFFF"/*state 1 */"......."".oooo.."".o....."".ooo..."".o....."".oooo..""......."/*state 2 */"......."".o....."".o....."".o....."".o....."".oooo..""......."/*state 3 */"......."".ooo..."".o..o.."".ooo..."".o..o.."".o..o..""......."/* state 4 */"......."".oooo.."".o....."".ooo..."".o....."".o.....""......."   /* state 5 */"......."".ooo..."".o..o.."".o..o.."".o..o.."".ooo...""......."/* state 6 */".......""..ooo.."".o....."".o....."".o.....""..ooo..""......."/* all other states */"......."".......""......."".......""......."".......""......."`

Here's an example pattern. I may replace it if I find a more interesting pattern.

`x = 999, y = 999, rule = WormLoop-pre1994N2.3N\$NA996.N\$NA990.N3.L.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA208.80H708.N\$NA208.9DB9DC9DC9DB9DC9DB9DC9DC708.N\$NA208.I787.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA991.N4.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA990.N3.L.N\$NA996.N\$995N2.2N!`

If you do post a pattern, please repost it in the offical thread once I create it.
pi_guy314

Posts: 88
Joined: July 21st, 2014, 9:45 pm

### Re: Complexity in loop rules?

Here's my modification of the rule, where worms keep their charged states
`@RULE WormLoop-pre1modpre-release version 11 empty-wire2 left-signal3 right-signal4 forward-signal5 double-forward (causes worm to increase in size during mutation)6 charged (causes worm to split/replicate)7 decaying-wire/shealth8 wire-sheath9 wire-sheath-temp09 wire-head10 wire-head-special11 misc/temp12 photon-head13 photon-tail14 indestructible-wall@TABLEn_states:15neighborhood:Mooresymmetries:rotate4var a1={00,01,02,03,04,05,06,07,08,09,10,11,12,13}         #all modifiable statesvar b1={01,02,03,04,05,06}                           #all wire statesvar c1={04,05}                              var d1={02,03,04,05,06}var e1={00,01,02,03,04,05,06,11,12,13}                                    var f1={00,11,12,13}var h1={09,10}                                    #states that worms can pass throughvar g1={08,07}            var B1={00,08,07,09,10,11,12,13}                     var F1={01,02,03,04,05,06,08,07,09,10,11}var G1={00,01,02,03,04,05,06,09,10,11,12,13}var H1={00,01,02,03,04,05,06,07,08,11,12,13}var a2={a1}var a3={a1}var a4={a1}var a5={a1}var a6={a1}var a7={a1}var a8={a1}var b2={b1}var b3={b1}var b4={b1}var b5={b1}var b6={b1}var b7={b1}var b8={b1}var d2={d1}var d3={d1}var d4={d1}var d5={d1}var d6={d1}var d7={d1}var d8={d1}var e2={e1}var e3={e1}var f2={f1}var f3={f1}var f4={f1}var f5={f1}var f6={f1}var f7={f1}var f8={f1}var g2={g1}var g3={g1}var g4={g1}var g5={g1}var g6={g1}var g7={g1}var g8={g1}var B2={B1}var B3={B1}var B4={B1}var B5={B1}var B6={B1}var B7={B1}var B8={B1}var F2={F1}var F3={F1}var G2={G1}var G3={G1}var G4={G1}var G5={G1}var G6={G1}var G7={G1}var G8={G1}#collision (releases state 11 during collision)00,a1,a2,g1,d1,00,a3,a4,b1,1100,a1,a2,g1,d1,00,a3,a4,h1,1100,a1,a2,g1,d1,00,a3,F1,a4,1100,00,g1,d1,h1,00,a1,F1,a2,1100,00,d1,h1,a1,a2,a3,F1,a4,1100,00,d1,h1,a1,a2,g1,a3,a4,11###splitting#top sectionf1,f2,f3,08,06,f4,f5,f6,f7,01f1,f2,f3,01,11,f4,G1,G2,G3,1001,f2,f3,08,b1,11,f5,f6,f7,0410,f2,f3,04,b1,f4,G1,G2,G3,00#middle sectionf1,f2,08,06,09,f3,f4,f5,f6,1111,01,08,b1,09,01,f4,f5,f6,b1b1,08,B1,B2,B3,B4,b2,b3,b2,00#bottom sectionf1,f2,06,09,f3,f4,f5,f6,f7,01f1,f2,11,01,f3,f4,B1,B2,B3,0801,11,b1,09,f3,f4,f5,f6,f7,04######left turn#first stepf1,B1,B2,08,02,f2,f3,f4,h1,01f1,B1,B2,08,02,f2,f3,f4,B3,08f1,f2,08,02,09,f3,f4,f5,f6,01f1,f2,02,09,f3,f4,f5,f6,f7,1109,02,b1,a1,a2,a3,f1,f2,f3,10#second stepf1,f2,08,01,11,f3,B1,B2,a1,08f1,f2,01,11,f3,f4,B1,B2,B3,0801,g1,g2,b1,h1,11,f1,f2,f3,b111,01,b1,10,f1,f2,f3,f4,f5,0410,b1,b2,a1,a2,f1,f2,04,b4,02####right turnf1,f2,f3,08,03,f4,B1,B2,B3,0908,f1,f2,08,b1,03,f3,f4,f5,0109,03,b1,a1,a2,a3,a4,a5,a6,03#forward/random/doublef1,B1,B2,08,c1,f2,f3,f4,h1,11f1,B1,B2,08,c1,f2,f3,f4,B3,08  f1,f2,08,04,h1,f3,f4,f5,f6,01f1,f2,08,05,h1,f3,f4,f5,f6,04f1,f2,c1,h1,G1,G2,G3,f3,f4,09 09,c1,a1,G1,G2,G3,G4,f1,f2,04#collision perma-disable (prevents worm from turning right after collision)g1,a1,a2,g2,b1,f1,a3,a4,a5,08b1,g1,g2,b2,b3,a1,f1,f2,11,00b1,g1,g2,b2,b3,a1,f1,11,f2,00b1,g1,g2,b2,b3,a1,11,f1,f2,00#left signal mutation00,b1,b2,00,g1,11,b3,b4,02,1102,b1,b2,b3,11,b4,b5,b6,b7,0304,b1,b2,b3,11,00,b4,02,b5,0502,b1,b2,06,00,b3,b4,b5,b6,04#right signal mutation 03,b1,b2,b3,00,00,11,B2,a1,0503,b1,b2,b3,00,11,00,B2,a1,02#forward signal mutation04,04,07,04,11,11,11,04,07,0104,03,04,04,11,11,11,04,04,0204,02,04,04,11,11,11,04,04,0304,07,04,04,11,11,11,04,04,05#04,04,04,04,11,11,11,04,07,02#04,04,07,04,11,11,11,04,04,03#04,04,07,04,11,11,11,04,07,01#04,07,04,04,11,11,11,04,b1,06#photon movement12,a1,a2,a3,a4,a5,a6,a7,a8,1313,a1,a2,a3,a4,a5,a6,a7,a8,0000,12,00,00,00,00,00,00,00,1200,12,00,00,b1,b2,b3,00,00,12#photon generator00,13,00,13,00,00,00,00,00,1200,13,00,00,14,14,14,00,00,1212,00,00,00,14,14,14,00,00,00#photon to charge04,G1,G2,b1,a1,12,a2,b2,G3,0604,g1,g2,04,b1,06,b2,b3,a1,0606,b1,b2,b3,G1,G2,G3,b4,b5,04#excess charge filterb1,b2,g1,06,09,b4,g2,B2,10,04b1,b2,g1,06,b3,b4,g2,B2,b5,0406,g1,g2,06,b2,b3,b4,b5,g3,04#test#00,00,00,08,07,08,00,00,00,09#08,00,00,00,00,07,08,00,00,04#00,b1,b2,b3,b4,04,00,00,00,0606,04,04,04,04,00,00,00,00,0004,04,00,00,04,04,08,08,00,06#outside signal b1,b2,07,G1,G2,G3,G4,G5,b3,00b1,b2,07,G1,G2,G3,G4,G5,00,00b1,b2,b3,G1,G2,G3,G4,G5,G6,b1#signal backflow decayb1,a1,g1,b2,a2,g2,a3,a4,a5,07#b1,g1,a1,b2,g2,a2,a3,a4,a5,07b1,g1,a1,b2,a3,g2,a4,a5,a6,07#signal movementb1,b2,a1,a2,a3,a4,a5,b3,g1,b2b1,b2,a1,a2,a3,a4,a5,g1,a6,b2b1,b2,a1,a2,a3,a4,a5,a6,g1,b2#decay/worm retract b1,08,a1,a2,a3,a4,a5,a6,a7,07b1,a1,08,a2,a3,a4,a5,a6,a7,07 b1,a1,a2,a3,a4,a5,a6,a7,a8,0007,a1,a2,a3,a4,a5,a6,a7,a8,00g1,B1,a1,B2,a3,B3,a4,B4,a5,0009,B1,B2,B3,B4,B5,B6,B7,B8,0010,B1,a1,B2,a3,B3,a4,B4,a5,0011,a1,a2,a3,a4,a5,a6,a7,a8,00@COLORS00 0 0 001 255 098 002 255 0 003 0 255 004 0 0 25505 0 0 18006 0 0 09007 220 100 008 75 75 7509 100 100 10010 125 125 12511 255 070 012 255 230 013 255 200 014 180 180 90@ICONSXPM/* width height num_colors chars_per_pixel */"7 49 2 1"/* colors */"o c #000000"". c #FFFFFF"/*state 1 */"......."".oooo.."".o....."".ooo..."".o....."".oooo..""......."/*state 2 */"......."".o....."".o....."".o....."".o....."".oooo..""......."/*state 3 */"......."".ooo..."".o..o.."".ooo..."".o..o.."".o..o..""......."/* state 4 */"......."".oooo.."".o....."".ooo..."".o....."".o.....""......."   /* state 5 */"......."".ooo..."".o..o.."".o..o.."".o..o.."".ooo...""......."/* state 6 */".......""..ooo.."".o....."".o....."".o.....""..ooo..""......."/* all other states */"......."".......""......."".......""......."".......""......."`

With replicators like
`x = 62, y = 83, rule = WormLoop-pre1mod57.5H\$57.2DF2D\$57.I38\$.6H\$.DF2DCD\$.I38\$5H\$DFDBD\$I!`

I like making rules
fluffykitty

Posts: 604
Joined: June 14th, 2014, 5:03 pm

### Re: Complexity in loop rules?

Here's another pre-release with a lot of changes. It turns out that worms not getting bigger was due to a bug. This will probably be the last pre-release.

`@RULE WormLoop-pre2original versionpre-release version 21 empty-wire2 left-signal3 right-signal4 forward-signal5 double-forward (causes worm to increase in size during mutation)6 charged (causes worm to split/replicate)7 decaying-wire/shealth8 wire-sheath09 wire-head10 wire-head-turns11 misc/temp12 photon-tail13 photon-head14 indestructible-wall@TABLEn_states:15neighborhood:Mooresymmetries:rotate4var a1={00,01,02,03,04,05,06,07,08,09,10,11,12,13}         #all modifiable states                                                         var f1={00,11,12,13}                                        #states that worms can flow throughvar h1={09,10}                                        #all head states  var s1={08,07}                                            #all sheath states   var w1={01,02,03,04,05,06}                                   #all wire statesvar wm={02,03,04,05,06}                                       #all signals that causes movement                     var wf={04,05}                                          #all signals that only moves forwardvar W1={00,08,07,09,10,11,12,13}                     var F1={01,02,03,04,05,06,08,07,09,10,11}var S1={00,01,02,03,04,05,06,09,10,11,12,13}var a2={a1}var a3={a1}var a4={a1}var a5={a1}var a6={a1}var a7={a1}var a8={a1}var f2={f1}var f3={f1}var f4={f1}var f5={f1}var f6={f1}var f7={f1}var f8={f1}var s2={s1}var s3={s1}var s4={s1}var s5={s1}var s6={s1}var s7={s1}var w2={w1}var w3={w1}var w4={w1}var w5={w1}var w6={w1}var w7={w1}var w8={w1}var F2={F1}var F3={F1}var S2={S1}var S3={S1}var S4={S1}var S5={S1}var S6={S1}var S7={S1}var S8={S1}var W2={W1}var W3={W1}var W4={W1}var W5={W1}var W6={W1}var W7={W1}var W8={W1}#left turn collision00,00,s1,11,01,00,a1,a2,h1,0000,00,s1,11,01,00,a1,w1,a2,1100,00,11,01,a1,a2,a3,w1,a4,11#right turn collision00,00,00,01,11,00,a1,s1,a3,11#other collision (releases state 11 during collision)00,a1,a2,s1,wm,00,a3,a4,w1,1100,a1,a2,s1,wm,00,a3,a4,h1,1100,a1,a2,s1,wm,00,a3,F1,a4,1100,00,s1,wm,h1,00,a1,F1,a2,1100,00,wm,h1,a1,a2,a3,F1,a4,1100,00,wm,h1,a1,a2,s1,a3,a4,11###splitting#top sectionf1,f2,f3,08,06,f4,f5,f6,f7,0101,f2,f3,08,w1,11,f5,f6,f7,0410,f2,f3,04,w1,f4,S1,S2,S3,00#middle sectionf1,f2,08,06,09,f3,f4,f5,f6,1111,01,08,w1,09,01,f4,f5,f6,w1w1,08,W1,W2,W3,W4,w2,w3,w2,00#bottom sectionf1,f2,06,09,f3,f4,f5,f6,f7,0101,11,w1,09,f3,f4,f5,f6,f7,04######left turn#first stepf1,W1,W2,08,02,f2,f3,f4,h1,01f1,W1,W2,08,02,f2,f3,f4,W3,08f1,f2,08,02,09,f3,f4,f5,f6,11f1,f2,02,09,f3,f4,f5,f6,f7,0109,02,w1,a1,a2,a3,f1,f2,f3,10#second stepf1,f2,08,11,01,f3,W1,W2,W3,08f1,f2,11,01,f3,f4,W1,W2,W3,08s1,W1,W2,s2,w1,11,f1,f2,f3,0811,s1,s2,w1,h1,01,f1,f2,f3,w101,11,w1,10,f1,f2,f3,f4,f5,0410,w1,w2,a1,a2,f1,f2,04,w4,02####right turnf1,W1,W2,08,03,f2,f3,f4,W3,01f1,f2,08,03,h1,f3,f4,f5,f6,1109,03,w1,a1,a2,a3,a4,f1,f2,0311,01,s1,w1,w2,00,W1,W2,W3,w1f1,f2,f3,01,11,f4,S1,S2,S3,10#forward/random/doublef1,W1,W2,08,wf,f2,f3,f4,W3,08  f1,f2,08,04,h1,f3,f4,f5,f6,01f1,f2,08,05,h1,f3,f4,f5,f6,04f1,f2,wf,h1,S1,S2,S3,f3,f4,09 09,wf,a1,S1,S2,S3,S4,f1,f2,04#left signal mutation00,w1,w2,00,s1,11,w3,w4,02,1102,w1,w2,w3,11,w4,w5,w6,w7,0304,w1,w2,w3,11,00,w4,02,w5,0502,w1,w2,06,00,w3,w4,w5,w6,04#right signal mutation 03,w1,w2,w3,00,00,11,W2,a1,0503,w1,w2,w3,00,11,00,W2,a1,02#forward signal mutation04,04,06,04,11,11,11,04,04,0104,03,04,04,11,11,11,04,04,0204,02,04,04,11,11,11,04,04,0304,06,04,04,11,11,11,04,04,0504,04,04,06,11,11,11,04,04,0504,06,04,06,11,11,11,04,04,05#photon movement13,a1,a2,a3,a4,a5,a6,a7,a8,1212,a1,a2,a3,a4,a5,a6,a7,a8,0000,13,00,00,00,00,00,00,00,1300,13,00,00,w1,w2,w3,00,00,13#photon generator00,12,00,12,00,00,00,00,00,1300,12,00,00,14,14,14,00,00,1313,00,00,00,14,14,14,00,00,00#collision perma-kill (prevents worm from moving right after collision)w1,s1,s2,w2,w3,a1,f1,f2,11,00w1,s1,s2,w2,w3,a1,f1,11,f2,00w1,s1,s2,w2,w3,a1,11,f1,f2,00#w1,s1,w2,w3,00,a1,f1,f2,11,00w1,s1,w2,w3,00,a1,f1,11,f2,00w1,s1,w2,w3,00,a1,11,f1,f2,00#photon to charge (how worms will absorb photons)04,S1,S2,w1,a1,13,a2,w2,S3,0604,s1,s2,04,w1,06,w2,w3,a1,0606,w1,w2,w3,S1,S2,S3,w4,w5,04#excess charge filter (prevents worms from "exploding")w1,w2,s1,06,09,w4,s2,W2,10,04w1,w2,s1,06,w3,w4,s2,W2,W3,0406,s1,s2,06,w2,w3,w4,w5,s3,04#outside signal (preserves gene from outside of stream)w1,w2,07,S1,S2,S3,S4,S5,w3,00w1,w2,07,S1,S2,S3,S4,S5,00,00w1,w2,w3,S1,S2,S3,S4,S5,S6,w1#signal backflow decay (prevents signal from moving back and forth)w1,a1,s1,w2,a2,s2,a3,a4,a5,07w1,s1,a1,w2,a3,s2,a4,a5,a6,07#w1,s1,a1,w2,s2,a2,a3,a4,a5,07#signal movementw1,w2,a1,a2,a3,a4,a5,w3,s1,w2w1,w2,a1,a2,a3,a4,a5,s1,a6,w2w1,w2,a1,a2,a3,a4,a5,a6,s1,w2#decay/worm retract w1,08,a1,a2,a3,a4,a5,a6,a7,07w1,a1,08,a2,a3,a4,a5,a6,a7,07 w1,a1,a2,a3,a4,a5,a6,a7,a8,0007,a1,a2,a3,a4,a5,a6,a7,a8,00s1,W1,a1,W2,a3,W3,a4,W4,a5,0009,W1,W2,W3,W4,W5,W6,W7,W8,0010,W1,a1,W2,a3,W3,a4,W4,a5,0011,a1,a2,a3,a4,a5,a6,a7,a8,00#test#00,00,00,08,07,08,00,00,00,09#08,00,00,00,00,07,08,00,00,04@COLORS00 0 0 001 255 098 002 255 0 003 0 255 004 0 0 25505 0 0 18006 0 0 09007 220 100 008 75 75 7509 100 100 10010 125 125 12511 255 070 012 255 200 013 255 230 014 180 180 90@ICONSXPM/* width height num_colors chars_per_pixel */"7 49 2 1"/* colors */"o c #000000"". c #FFFFFF"/*state 1 */"......."".oooo.."".o....."".ooo..."".o....."".oooo..""......."/*state 2 */"......."".o....."".o....."".o....."".o....."".oooo..""......."/*state 3 */"......."".ooo..."".o..o.."".ooo..."".o..o.."".o..o..""......."/* state 4 */"......."".oooo.."".o....."".ooo..."".o....."".o.....""......."   /* state 5 */"......."".ooo..."".o..o.."".o..o.."".o..o.."".ooo...""......."/* state 6 */".......""..ooo.."".o....."".o....."".o.....""..ooo..""......."/* all other states */"......."".......""......."".......""......."".......""......."`

Changes:
-made the rule table more easier to modify
-swapped the photon states as it felt more natural
-fixed some collision bugs
-fixed a bug where some mutations did not occur
-fixed worms from losing a lot of their DNA at once

Here's a very interesting pattern I found:
`x = 999, y = 999, rule = WormLoop-pre2995N.3N\$NA996.N\$NA990.N3.L.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA387.60H549.N\$NA387.9DB9DC9DB9DC9DB10D549.N\$NA387.J608.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA996.N\$NA990.N3.L.N\$NA996.N\$995N.3N!`
pi_guy314

Posts: 88
Joined: July 21st, 2014, 9:45 pm

### Re: Complexity in loop rules?

pi_guy314 wrote:Here's another pre-release with a lot of changes. It turns out that worms not getting bigger was due to a bug. This will probably be the last pre-release.

This is looking really good! The pseudorandom photon delivery system is really clever. I guess I shouldn't call it "food". It's more like a replication pheromone -- seems to take just one hit with a photon to put a worm in replication mode.

pi_guy314 wrote:Here's a very interesting pattern I found...

Hmm, you have to be a little bit patient with this one. Before T=130K you could almost miss the new species, because every worm seemed to be a variant of the original stationary slow looper. At least at first glance, the new species that appeared seemed to be just self-destructive straight-line mutants that mostly wandered off and hit one edge or the other of the frame before reproducing.

That all changed when the tight-loop slow drifter showed up:

`x = 36, y = 31, rule = WormLoop-pre26\$11.IAH\$11.2DH\$11.2DH\$11.2DH\$11.2DH\$11.2DH\$11.2DH\$11.DCH\$11.2DH\$11.2DH\$11.2DH17.HD\$11.2DH17.H2D\$12.D19HDC\$12.4DC9DC5DB\$13.C17D!`

It moves slowly enough that it's pretty well guaranteed to replicate several times before it hits a frame edge. And it loops at a different enough rate that it really changes the look of the board very quickly once it makes an appearance.

How far have you run this? So far I've only gotten to the first phase change around T=135,000. But I expect I'm a long way from having seen all of the novelty that this pattern has to offer...!

Update: Yup, at T=400K there are a couple of descendant species fighting for dominance. I don't know how many transitional species I missed in between. At T=900K it's different again -- looks like just one dominant species right then, but it's changed again by T=1 million, and so on.

Any plans to write a "zookeeper" script to collect specimens of new worm species, as they make an appearance? Looks like this rule would produce quite a menagerie, fairly quickly!

EDIT: At around 5.2M ticks, the dominant species are different again. Here's one of the two:

`x = 35, y = 49, rule = WormLoop-pre221.13DI\$19.14DBA\$18.CD15H\$18.2DH\$18.2DH\$18.2DH\$18.2DH\$18.2DH\$18.2DH\$3.15DBDH\$.9DC6DB2DH\$CB18H\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$DBH\$2DH\$2DH\$2DH\$DCH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$DCH\$2DH\$2DH\$2DH\$.GH!`

Oddly enough, this creature isn't a loop at all, it's a straight-line orthogonal traveler, doomed to die on the edge of the frame if it doesn't reproduce -- but it's slow, so enough of its cousins seem to reproduce (and turn 90 degrees, sending out descendants in all directions) and so copies stick around for a while.

I guess it's also possible that this orthogonal slow-traveler is really just a very common mutation of the huge-loop worm, which is the other species present at 5.2 million ticks:

`x = 33, y = 45, rule = WormLoop-pre227.2DI\$25.B3DA\$24.CD4H\$24.2DH\$24.2DH\$24.2DH\$24.2DH\$24.2DH\$24.2DH\$24.2DH\$24.2DH\$24.2DH\$24.2DH\$24.2DH\$24.2DH\$25.D6H\$25.7DH\$26.C3DBDH\$30.2DH\$30.2DH\$30.2DH\$30.2DH\$30.2DH\$30.2DH\$30.2DH\$30.2DH\$30.2DH\$30.2DH\$30.2DH\$30.DCH\$30.2DH\$30.2DH\$30.2DH\$21.9DBDH\$19.DB11DH\$18.CD12H\$18.2DH\$18.2DH\$18.2DH\$18.2DH\$18.DCH\$18.2DH\$.17DBDH\$G7DB11DH\$20H!`

However, I ran a quick test, and the orthogonal slow-traveler survives and reproduces (and mutates) quite well as long as there's a good food source, even when the huge-loop worm isn't present.

EDIT2: At 10M ticks I don't see any loops offhand, only slow oblique travelers:

`x = 47, y = 48, rule = WormLoop-pre2IDH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$2DH\$.D39H\$.16DC9DB13DH\$2.C36DBDH\$39.2DH\$39.DBH2.HD\$39.2DH2.HBD\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.DCH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.HCD\$39.2DH2.H2D\$39.2DH2.HBD\$39.DBH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$39.2DH2.H2D\$40.D4HDC\$40.6D\$41.C2D!`

Drop into the lower right corner of an empty frame, so that it gets fed before it hits the other edge, and it will do quite well I expect.

EDIT3: The asteroid hits around 14,945,000, it turns out, and by 14,963,000 the last worm is heading for extinction. No particular reason that I can see, but there seems to be a weakness in that evolved design...

I tried copying the last worm back toward the middle, and it happily re-filled the board for a while with no apparent problems. But it still went extinct within the next quarter million ticks.

Of course your mileage may vary, unless you choose the exact same location:

`[M2] (golly 2.7)#R WormLoop-pre2#G 149631041 0 0 14 142 0 0 1 13 0 0 2 24 0 0 3 35 0 0 4 46 0 0 5 57 0 0 6 68 0 0 7 79 0 0 8 81 0 0 14 02 0 0 1 103 0 0 11 114 0 0 12 05 0 0 13 06 0 0 5 147 0 0 6 158 0 0 7 169 0 0 8 1710 0 0 9 181 14 1 14 12 20 0 20 01 0 0 9 02 20 0 20 223 21 0 23 03 21 0 21 04 24 0 25 01 3 0 0 02 20 0 20 273 28 0 21 04 25 0 29 05 26 0 30 03 23 0 21 04 25 0 32 04 25 0 25 05 33 0 34 06 31 0 35 01 9 0 0 02 20 0 20 373 21 0 38 04 39 0 24 02 20 37 20 03 21 0 41 04 25 0 42 05 40 0 43 03 41 0 21 04 25 0 45 03 23 0 38 04 25 0 47 05 46 0 48 06 44 0 49 07 36 0 50 01 0 13 0 01 12 0 0 02 0 0 52 533 0 0 0 544 0 0 0 555 0 0 0 566 0 0 0 572 52 53 0 03 0 54 0 593 0 59 0 04 60 61 0 05 0 56 0 621 0 0 13 122 52 53 64 01 13 12 0 02 0 0 66 02 64 0 0 03 0 65 67 684 0 55 60 691 0 0 0 132 0 71 0 711 0 0 12 02 73 0 73 03 0 59 72 742 0 0 0 662 0 64 0 03 76 59 77 04 60 75 78 02 0 52 0 02 53 0 0 03 80 81 0 04 82 0 0 03 0 0 67 02 52 53 52 533 0 85 0 02 66 0 0 662 0 66 0 03 0 85 87 884 0 84 86 895 70 79 83 906 0 57 63 912 0 52 0 663 0 59 93 814 0 55 60 943 0 54 0 653 0 59 76 593 67 68 0 03 77 0 0 04 96 97 98 995 0 56 95 1003 0 59 0 544 0 55 60 1022 0 66 0 522 0 0 53 03 93 81 104 1054 60 69 106 03 72 74 0 02 71 73 71 732 0 52 0 713 109 110 0 02 0 0 0 642 0 0 71 733 0 112 113 684 108 111 0 1142 53 0 73 03 116 0 0 1123 0 77 77 04 117 0 118 05 103 107 115 1193 0 54 109 1103 104 105 116 02 0 52 0 523 0 0 0 1234 121 122 0 1242 0 71 64 02 0 64 0 643 0 126 127 02 53 0 53 03 0 0 129 1272 71 73 0 02 64 0 64 03 0 131 0 1324 0 128 130 1332 0 52 52 532 0 66 0 663 0 135 136 02 53 0 0 712 0 64 73 02 0 71 0 03 138 139 131 1404 137 141 84 02 73 0 0 03 88 0 143 04 144 0 0 05 125 134 142 1452 0 0 64 03 143 147 0 682 71 73 0 642 0 64 71 733 149 0 150 03 0 0 127 03 131 0 132 1274 148 151 152 1532 66 0 0 03 0 67 0 1552 0 64 64 03 0 0 157 03 113 0 0 853 140 143 123 1294 156 158 159 1603 0 0 0 1363 0 136 0 04 0 0 162 1633 0 0 0 1093 0 67 123 1292 66 0 66 03 59 76 0 1674 162 165 166 1685 154 161 164 1696 101 120 146 1707 0 58 92 1712 20 22 20 03 21 0 173 04 45 0 174 05 175 0 34 03 173 0 21 04 42 0 177 02 0 0 0 523 179 105 80 1384 0 0 0 1805 178 0 33 1813 0 0 109 03 0 0 67 764 0 0 183 1842 0 0 0 713 109 186 0 1272 71 73 73 03 54 0 188 1862 0 0 73 03 109 0 190 684 183 187 189 1913 190 68 0 03 155 88 0 03 67 155 167 04 193 194 195 05 0 185 192 1966 176 0 182 1973 0 0 54 04 0 0 0 1993 54 0 59 673 147 112 77 1864 0 0 201 2025 0 0 200 2033 0 0 190 04 0 0 205 1633 0 155 0 04 0 0 207 555 0 0 206 2083 0 123 0 03 129 80 0 1233 0 0 0 673 0 0 76 04 210 211 212 2132 53 71 0 02 73 0 71 733 215 216 129 03 59 67 0 03 0 123 67 762 0 52 66 03 129 0 0 2204 217 218 219 2213 88 0 0 04 207 223 0 04 194 207 55 605 214 222 224 2253 112 0 68 1503 147 0 0 02 53 71 0 713 0 131 229 743 147 112 109 04 227 228 230 2313 136 0 0 03 0 147 131 1403 112 0 143 1314 0 233 234 2354 55 0 69 785 232 236 237 06 204 209 226 2383 0 0 0 852 20 0 20 523 21 85 241 1052 64 0 0 642 66 0 52 533 0 243 244 04 25 240 242 2453 0 0 113 1863 88 54 0 03 131 140 0 04 55 247 248 2492 20 52 20 372 53 0 64 03 251 252 21 683 131 147 0 1473 0 68 0 04 253 254 25 2553 0 0 136 02 0 66 0 643 0 0 167 2583 0 147 0 683 0 68 0 1474 257 259 260 2615 246 250 256 2623 77 0 190 1133 0 132 0 03 143 131 132 03 147 167 0 1094 264 265 266 2673 258 0 0 04 269 0 269 03 132 127 0 03 150 0 149 04 0 271 272 05 268 270 273 04 177 0 25 04 0 255 0 01 0 0 3 02 20 0 20 2773 21 167 278 04 279 233 42 03 167 136 0 03 0 167 0 03 0 0 132 04 281 282 0 2835 275 276 280 2843 0 126 0 682 73 0 0 523 287 105 80 2524 286 288 0 2553 54 0 131 1473 136 0 77 04 290 0 260 2913 167 88 132 1793 132 112 0 1092 73 52 0 03 140 295 0 04 233 293 294 2963 0 0 105 543 72 74 179 1053 81 59 0 04 298 299 300 825 289 292 297 3016 263 274 285 3023 186 190 140 1433 113 0 186 1394 0 60 304 3053 0 0 186 1904 61 82 307 02 73 0 0 643 140 309 0 04 0 310 0 02 73 0 64 03 140 312 68 04 313 0 0 05 306 308 311 3143 0 0 0 1263 0 0 287 1054 0 0 316 3173 80 252 0 684 255 319 0 05 0 318 0 3203 155 112 72 744 0 0 322 2573 0 0 167 1363 0 0 0 1674 0 0 324 3253 59 0 0 04 0 0 327 05 323 326 328 04 0 0 257 3244 0 0 325 2575 330 331 0 06 315 321 329 3327 198 239 303 3334 0 0 247 2055 0 0 335 03 131 179 136 03 105 0 88 03 147 112 140 1433 88 67 131 04 337 338 339 3403 0 0 132 1794 342 298 296 3005 341 343 0 03 0 0 179 1053 0 0 54 1793 59 80 0 04 345 346 82 3474 298 345 300 822 0 66 53 03 0 0 179 3504 0 0 0 3513 0 0 0 723 0 72 127 03 74 0 132 04 0 353 354 3555 348 349 352 3566 336 0 344 3574 0 163 0 03 0 155 0 1362 0 66 71 733 54 361 0 1314 360 362 0 1635 359 363 0 03 81 59 0 724 346 298 347 3653 80 138 74 1863 188 0 190 854 345 199 367 3683 0 72 74 1133 74 76 77 884 370 371 0 03 0 68 0 1554 373 0 0 05 366 369 372 3743 67 147 0 683 112 0 77 04 0 0 376 3773 147 112 68 774 0 0 379 2605 378 380 0 06 0 364 375 3813 220 81 244 04 0 0 383 03 0 0 0 1473 0 243 0 03 0 68 0 1274 385 260 386 3874 254 257 255 2604 259 0 261 2725 384 388 389 3903 80 81 113 02 66 0 71 733 393 77 0 1352 53 0 0 523 0 67 395 1054 213 392 394 3963 0 67 85 02 53 0 0 663 80 399 0 04 0 398 0 4002 52 53 66 02 66 0 0 523 402 0 403 1054 345 199 82 4045 397 0 401 4054 255 286 257 3245 326 407 0 03 0 68 0 1674 288 290 409 2135 410 0 0 06 391 406 408 4113 67 0 155 04 0 0 413 05 414 0 0 06 415 0 0 07 358 382 412 4168 51 172 334 4174 0 55 60 754 60 94 121 1225 0 56 419 4204 0 55 96 973 109 110 112 04 60 102 108 4233 77 0 0 673 0 179 0 802 52 53 53 03 427 0 81 04 98 425 426 4283 0 113 147 1493 68 77 0 04 430 431 431 05 422 424 429 4326 0 57 421 4333 0 0 0 2204 60 75 78 4355 0 56 70 4363 0 0 0 653 0 112 76 773 67 68 0 1793 77 0 350 1274 438 439 440 4413 0 54 109 803 104 105 81 593 54 0 81 594 443 444 445 04 86 0 0 05 95 442 446 4473 0 0 0 1273 116 0 77 04 106 449 450 03 126 287 0 803 105 244 81 593 0 0 0 1554 452 453 162 4543 0 112 0 773 167 136 0 854 0 456 0 4573 0 147 0 03 0 109 0 04 459 0 0 4605 451 455 458 4613 140 143 0 1094 0 0 460 4633 0 0 132 1273 140 143 0 04 0 465 466 03 0 0 0 1324 468 152 0 05 0 464 467 4696 437 448 462 4704 78 0 351 3543 0 0 112 683 0 132 147 04 473 474 355 03 85 0 0 03 131 0 0 04 476 247 0 4773 113 68 131 03 67 76 155 884 205 0 479 4805 472 475 478 4813 0 72 0 03 0 123 109 03 129 85 67 04 0 483 484 4853 74 131 0 03 0 0 220 813 0 243 403 1053 88 54 0 1794 487 488 489 4902 0 66 52 533 155 492 0 593 76 0 88 04 255 493 156 4943 76 80 88 02 52 53 0 663 67 497 155 884 55 496 498 05 486 491 495 4993 0 0 132 774 501 0 199 03 0 0 140 1434 503 0 82 2573 0 0 109 723 0 0 74 1094 0 0 505 5065 502 0 504 5073 0 0 123 1293 0 0 59 764 0 0 509 5103 0 132 112 1403 179 105 312 594 0 468 512 5133 123 129 0 04 0 515 0 03 68 0 0 04 99 517 0 05 511 514 516 5186 482 500 508 5193 131 179 350 03 105 0 155 884 247 205 521 5224 86 82 0 02 53 0 66 03 525 0 155 03 0 0 0 1793 0 0 105 04 526 0 527 5284 468 0 0 2655 523 524 529 5303 179 350 80 813 127 0 67 774 0 0 532 5333 155 0 0 04 0 535 99 05 534 0 536 03 0 80 0 1473 138 188 0 773 131 147 0 04 538 539 540 2813 0 67 0 04 108 477 542 3853 0 0 0 1123 0 77 0 04 0 544 0 5453 0 147 131 1793 0 68 105 1122 52 53 0 643 0 549 0 773 140 309 0 1124 547 548 550 5515 541 543 546 5523 0 0 112 04 0 0 554 03 136 0 88 674 0 0 556 3043 113 0 54 04 0 0 558 05 555 0 557 5596 531 537 553 5607 434 471 520 5613 0 167 0 1323 88 0 112 04 0 0 563 5644 379 0 0 04 0 0 0 3533 0 72 74 763 74 186 0 684 0 0 568 5695 565 566 567 5703 190 0 0 04 0 0 572 05 0 0 573 03 147 0 0 1673 0 0 258 04 0 0 575 5763 77 88 0 04 578 207 0 03 0 109 132 1274 580 0 0 05 577 579 581 06 571 574 582 05 0 0 0 5673 0 72 74 03 74 113 0 04 0 353 585 5863 0 155 186 1394 568 569 578 5885 0 567 587 5896 0 0 584 5904 0 0 0 1834 0 0 184 2125 0 0 592 5934 0 183 0 05 0 595 0 03 109 186 0 04 597 193 0 04 194 207 0 05 598 599 0 06 0 594 596 6003 129 0 0 1234 0 0 210 6023 0 0 129 593 0 0 76 1124 0 0 604 6054 0 0 213 1843 129 77 0 1234 210 608 212 2135 603 606 607 6094 0 0 385 03 0 67 129 803 0 0 81 1094 612 613 219 2213 0 0 72 743 0 0 229 743 132 0 109 04 615 183 616 6175 611 311 614 6184 223 194 0 05 620 224 0 05 599 0 0 06 610 619 621 6227 583 591 601 6232 0 0 53 712 0 71 53 713 179 625 179 6263 190 59 74 723 0 140 59 2203 143 0 81 1794 627 628 629 6303 0 0 74 1133 0 0 625 1903 127 0 113 04 632 265 633 6344 0 282 0 03 140 143 0 1673 54 0 0 1554 637 638 0 2825 631 635 636 6392 0 66 66 03 0 0 641 03 68 113 127 03 0 76 127 04 642 0 643 6443 0 67 155 883 76 0 0 1554 0 0 646 6472 71 73 0 713 0 649 127 02 0 71 73 03 651 143 132 03 0 641 0 04 650 652 325 6533 147 0 68 1473 76 0 85 03 186 190 140 2164 655 0 656 6575 645 648 654 6584 0 0 377 3794 0 0 260 3775 660 661 0 04 0 282 379 2603 88 179 0 1673 625 190 140 1433 147 87 68 774 664 665 377 6665 663 667 0 06 640 659 662 6683 67 76 88 04 0 0 670 6463 76 0 112 683 67 76 104 1054 0 545 672 6733 127 0 147 1314 152 675 212 2133 54 140 59 803 295 81 81 03 0 54 67 4974 677 678 679 5355 671 674 676 6803 0 80 0 673 88 0 85 1234 456 682 509 6833 81 0 0 03 179 105 85 1863 76 155 129 773 126 143 0 684 685 686 687 6885 684 689 0 02 64 0 71 733 691 88 54 1133 0 131 0 04 692 207 693 4663 258 0 77 03 0 0 68 04 695 696 0 05 694 697 0 06 681 690 698 07 669 699 0 02 52 53 73 03 54 0 701 544 702 0 477 5355 703 0 0 06 704 0 0 01 0 8 0 82 0 706 0 7061 7 0 4 41 4 4 4 42 708 0 709 03 0 0 707 7102 709 0 709 03 707 712 707 7124 0 711 0 7135 0 0 714 06 0 0 715 07 705 0 0 7168 562 624 700 7173 23 179 173 2953 105 131 81 594 25 283 719 7203 132 0 147 1364 722 325 0 02 20 0 20 713 21 0 724 1902 20 71 20 03 726 312 21 684 725 0 727 05 721 723 728 03 243 77 76 04 730 0 0 05 731 0 0 05 43 0 34 06 729 732 733 04 174 0 25 04 42 0 32 05 735 0 736 05 46 0 33 06 737 0 738 07 734 0 739 04 42 0 25 02 20 27 20 03 742 0 21 04 743 0 25 05 741 0 744 03 38 0 173 04 39 0 746 03 38 0 21 04 25 0 748 05 747 0 749 06 745 0 750 04 42 0 748 05 34 0 752 04 25 0 174 05 754 0 34 06 753 0 755 04 0 212 0 2075 0 0 0 7574 0 0 55 3453 0 59 76 04 760 679 223 1944 535 0 0 05 759 0 761 7626 0 0 758 7637 751 0 756 7644 0 0 0 2124 0 0 213 04 0 207 0 03 157 112 0 04 769 0 0 05 766 767 768 7703 167 0 0 04 772 0 0 05 773 0 0 06 771 0 0 7743 54 0 59 804 0 0 199 7765 0 0 0 7774 327 0 0 05 0 779 0 06 0 778 0 7807 0 0 775 7818 740 0 765 7821 2 4 4 42 784 0 709 03 707 712 707 7854 0 786 0 7131 0 0 8 81 0 0 0 91 4 4 9 42 0 788 789 7903 0 0 0 7911 0 8 8 81 4 3 4 41 4 4 4 02 788 793 794 7951 4 4 4 31 4 0 0 02 797 0 798 03 707 712 796 7991 0 4 0 41 4 0 4 81 0 4 0 01 4 8 3 82 801 802 803 8041 4 4 0 32 0 806 0 03 0 805 0 8072 0 0 788 7882 709 709 0 03 809 809 810 8104 792 800 808 8112 709 784 0 03 809 809 813 8104 0 0 811 8145 787 0 812 8152 0 0 788 01 0 0 4 42 0 0 818 8181 4 4 4 81 4 8 4 82 709 820 801 8211 4 4 8 82 823 823 0 03 817 819 822 8241 2 4 8 82 823 826 0 03 819 819 827 8244 0 0 825 8283 819 819 824 8241 0 0 4 32 0 0 831 01 4 0 3 02 823 833 706 7093 819 832 824 8344 0 0 830 8355 0 0 829 8362 801 821 801 8211 7 8 0 02 0 839 0 03 838 0 840 04 841 0 0 02 706 709 706 7091 4 4 3 42 706 844 706 7093 0 843 0 8453 0 843 0 8434 0 846 0 8472 706 784 706 7093 0 843 0 8494 0 850 0 8475 842 848 0 8516 816 837 0 8524 0 847 0 8471 3 4 4 42 706 855 706 7093 0 843 0 8564 0 857 0 8475 0 854 0 8581 4 4 4 22 706 709 706 8601 0 8 0 02 862 823 0 03 0 861 0 8634 0 847 0 8645 0 865 0 06 0 859 0 8667 0 853 0 8673 0 0 113 04 0 0 0 8694 0 0 615 02 64 0 0 713 0 157 0 8723 0 127 190 03 0 0 81 04 873 874 875 04 265 0 0 05 870 871 876 8773 0 0 167 884 772 879 0 05 0 0 0 8803 0 0 179 6253 0 0 190 1133 167 140 0 03 143 54 167 04 882 883 884 8853 0 0 155 1274 0 0 887 4685 0 0 886 8886 878 0 881 8893 93 81 88 1474 60 69 891 6965 0 56 103 8923 0 136 0 1094 78 0 162 8943 0 0 135 3953 123 129 105 03 0 72 110 1163 74 0 0 04 896 897 898 8995 419 420 895 9004 0 61 0 03 67 77 88 03 113 0 76 594 903 904 0 2233 0 0 77 04 0 0 906 05 902 905 907 03 59 0 74 1093 147 0 0 1864 505 909 165 9103 127 0 72 743 0 67 0 4033 0 147 190 6914 912 913 914 03 0 140 0 03 309 140 0 04 916 917 0 02 71 73 64 03 143 919 0 8723 0 123 190 1134 920 921 0 4775 911 915 918 9226 893 901 908 9237 0 58 890 9243 0 0 0 763 127 0 0 04 0 926 0 9273 179 350 80 5253 155 88 127 03 112 68 0 724 510 929 930 9315 0 0 928 9324 0 0 0 9264 0 0 212 2133 0 88 0 04 0 936 385 5543 0 0 147 1124 207 223 938 05 934 935 937 9394 0 927 213 1845 593 941 599 6206 0 933 940 9424 0 0 213 843 88 0 0 1123 147 0 74 04 207 945 946 5453 155 258 0 772 64 0 73 03 0 0 186 9493 147 179 140 2953 105 131 81 4024 948 950 951 9525 593 944 947 9533 109 72 0 03 74 109 0 04 955 956 0 04 108 955 0 05 0 0 957 9583 0 0 85 1103 127 0 76 04 643 960 212 9613 0 0 116 03 0 403 0 04 963 964 99 05 962 965 224 7623 105 0 0 04 967 0 0 04 0 0 0 4493 0 76 0 884 165 503 0 9705 968 969 0 9716 954 959 966 9723 77 0 126 2873 0 127 0 03 0 80 0 04 98 974 975 9763 68 76 105 2444 978 0 300 04 0 0 0 5093 0 0 131 04 615 981 510 5545 977 979 980 9824 0 0 938 3854 0 0 554 9385 0 0 984 9852 0 71 53 03 186 190 987 1433 113 186 131 03 59 109 0 04 988 989 970 9902 0 52 73 523 992 129 0 03 186 190 0 04 993 99 994 03 129 59 0 03 113 0 131 04 996 0 997 05 991 995 998 04 431 255 0 04 99 431 0 6153 147 0 68 774 0 0 1002 03 113 77 0 04 108 1004 0 05 1000 1001 1003 10056 983 986 999 10064 0 0 385 5543 0 0 147 04 0 0 1009 05 0 0 1008 10103 77 0 72 743 72 74 76 03 186 190 68 04 255 1012 1013 10143 872 992 0 03 129 85 0 1673 85 123 0 03 129 85 0 04 1016 1017 1018 10193 155 0 0 1473 109 0 0 04 223 1021 0 10223 641 76 0 04 240 1024 457 05 1015 1020 1023 10253 0 0 129 1793 59 0 155 04 124 1027 257 10284 528 0 0 2133 68 76 0 1554 1009 0 1031 02 66 0 64 03 0 1033 0 04 271 1034 0 05 1029 1030 1032 10356 1011 0 1026 10367 943 973 1007 10378 0 868 925 10389 418 718 783 10393 0 72 74 1863 74 0 190 854 0 353 1041 10423 74 113 0 1323 0 140 123 1293 216 131 54 04 585 1044 1045 10465 0 567 1043 10473 74 0 0 1404 0 353 585 10493 0 132 216 1314 370 371 1051 03 190 85 0 03 123 129 0 1133 126 143 68 804 1053 1054 307 10553 54 113 0 1313 0 0 147 1673 54 155 81 594 1057 1058 1059 05 1050 1052 1056 10603 76 59 167 03 76 80 88 1794 373 527 1062 10633 0 67 350 03 0 155 155 02 66 0 53 03 525 0 1067 03 127 0 0 764 1065 1066 1068 10693 80 81 136 03 0 80 167 1364 1071 1072 0 03 81 179 0 1674 1074 665 0 5275 1064 1070 1073 10756 584 1048 1061 10764 0 353 568 5693 0 186 74 02 0 71 71 732 73 0 0 713 123 129 1080 10814 1079 572 1053 10823 0 155 76 593 167 0 0 1794 578 1084 0 10853 0 127 109 723 0 0 74 04 1087 1088 298 05 1078 1083 1086 10893 59 186 190 1403 190 0 143 1314 997 0 1091 10923 0 0 129 543 0 186 0 1404 124 1094 0 10954 124 130 0 2234 468 0 108 6155 1093 1096 1097 10983 0 0 155 1364 0 976 1100 4543 81 179 0 803 350 127 81 04 1102 1103 0 02 52 53 71 733 1105 0 131 1403 0 0 143 03 0 0 105 1124 1106 1107 1108 3855 1101 1104 1109 04 265 927 0 04 271 265 0 04 213 0 0 05 1111 1112 757 11136 1090 1099 1110 11143 0 1080 147 1494 313 1116 0 4313 143 0 0 04 1118 0 0 04 0 0 108 9554 0 0 956 1085 1117 1119 1120 11214 0 527 0 9763 0 179 105 803 105 80 81 4023 105 244 81 1794 1124 1125 1102 11264 0 0 955 9564 0 976 108 9555 1123 1127 1128 11296 1122 1130 0 03 399 77 0 1353 0 67 81 02 52 53 0 523 0 1134 350 1273 105 0 0 1554 1132 1133 1135 11363 80 399 243 774 345 554 1138 993 105 403 81 1794 1102 1140 956 1083 105 113 105 1313 1134 105 147 1673 1105 0 0 04 1142 1143 1144 05 1137 1139 1141 11453 112 131 77 1864 1009 0 1147 7023 143 131 0 04 916 1149 0 05 1148 0 1150 06 1146 1151 0 07 1077 1115 1131 11524 0 0 1092 03 147 0 68 04 1155 1095 0 03 105 0 81 594 426 1157 0 05 1154 1156 1158 03 190 0 143 04 1160 0 0 05 1161 0 0 06 1159 1162 0 07 1163 0 0 08 1153 1164 0 02 10 73 0 01 0 0 13 01 14 0 14 02 1167 1168 73 11681 13 0 0 02 1170 1168 0 11683 1166 1169 0 11712 73 1168 1170 11682 0 1168 73 11683 0 1173 0 11744 1172 0 1175 03 0 1171 0 11733 0 1174 0 11714 1177 0 1178 05 1176 0 1179 04 1175 0 1177 04 1178 0 1175 05 1181 0 1182 06 0 1180 0 11835 1179 0 1181 05 1182 0 1179 06 0 1185 0 11867 0 1184 0 11876 0 1183 0 11854 0 124 0 05 0 0 0 11904 0 0 0 1243 0 123 129 1273 129 179 0 10334 0 124 1193 11943 0 123 129 03 129 54 0 04 1196 1197 0 04 223 0 304 3465 1192 1195 1198 11996 0 0 1191 12003 0 123 129 543 129 127 88 04 0 124 1202 12035 0 0 1192 12041 13 0 12 02 1170 1168 1206 11683 0 1207 129 11732 1170 1168 1167 11682 0 1168 0 11683 0 1209 0 12104 1208 0 1211 05 1182 0 1212 03 0 123 129 1132 0 52 73 03 129 0 186 12153 105 131 0 03 140 143 0 1124 1214 1216 1217 12182 53 0 52 533 0 167 1220 593 131 112 0 773 0 0 113 854 1221 0 1222 12233 131 0 105 04 869 479 1225 6153 76 59 155 883 132 0 131 1124 1227 0 1228 05 1219 1224 1226 12292 53 1168 53 11683 179 1231 85 12101 12 0 13 02 53 1168 1233 11683 0 1209 123 12344 1232 0 1235 02 1233 1168 1167 11683 0 1210 0 12372 1167 1168 0 11682 1206 1168 0 11683 0 1239 0 12404 1238 0 1241 05 1236 0 1242 06 1205 1213 1230 12437 0 1189 1201 12448 0 1188 0 12451 3 4 8 82 823 1247 0 03 819 819 1248 8244 0 0 1249 8302 0 0 818 8312 823 823 0 7061 4 0 4 02 1253 0 709 03 1251 0 1252 12544 0 0 1255 01 4 2 4 42 784 0 1257 7093 707 712 707 12582 0 0 709 8442 0 0 709 7093 0 0 1260 12614 713 0 1259 12625 1250 1256 0 12633 0 0 1261 12614 0 0 1265 12652 0 0 797 7091 4 9 4 42 0 0 1268 03 0 0 1267 12694 0 0 1265 12705 0 0 1266 12716 0 0 1264 12724 0 0 0 5545 0 0 0 12746 0 0 0 12757 0 0 1273 12764 0 0 0 3855 0 0 0 12786 0 0 0 12793 0 0 54 1132 0 64 0 713 112 0 1282 1904 0 0 1281 12835 0 0 0 12845 0 0 1010 03 0 131 0 1363 179 105 0 884 1287 1288 0 1635 359 1289 0 06 0 1285 1286 12904 0 0 554 3773 112 0 77 1133 68 0 109 04 554 1293 99 12943 77 186 85 1793 139 0 105 04 1296 1297 869 9705 0 1292 1295 12983 147 0 67 04 0 0 1300 03 0 872 77 04 260 1302 0 04 194 554 454 993 68 0 0 1364 0 0 1305 3255 1301 1303 1304 13063 140 143 127 03 0 76 0 04 468 1308 162 13093 186 139 68 03 155 67 123 1294 1311 0 1312 04 360 1057 0 1635 1310 1313 359 13143 167 0 88 543 113 186 131 1404 426 1157 1316 13173 190 113 143 04 0 456 1319 03 186 190 179 6253 0 140 59 1863 143 919 190 684 1321 921 1322 13233 129 0 0 04 1325 554 213 995 1318 1320 1324 13266 1299 1307 1315 13277 0 1280 1291 13281 8 8 0 02 1330 1330 0 03 0 1331 0 03 1331 1331 0 04 1332 1333 0 04 956 108 0 04 955 956 0 4495 0 1334 1335 13364 1333 1333 0 552 1330 0 0 03 1331 1339 0 04 1333 1340 0 03 109 110 0 1273 0 0 0 774 108 1342 975 13433 116 0 0 03 72 74 147 684 1345 0 1346 05 1338 1341 1344 13474 0 449 975 4593 0 127 0 543 0 112 140 1433 131 59 0 03 80 81 0 764 1350 1351 1352 13534 0 0 990 1083 109 72 0 1274 0 515 1356 8995 1349 1354 1355 13573 136 0 0 1473 0 186 112 1403 139 0 312 04 282 1359 1360 13613 0 127 67 764 376 0 517 13633 68 0 76 1123 0 123 109 723 129 77 74 1134 99 1365 1366 13673 155 0 112 03 76 0 155 884 385 1369 255 13705 1362 1364 1368 13716 1337 1348 1358 13724 0 324 772 03 77 0 136 04 325 1375 0 2403 0 132 155 04 86 1377 0 05 1374 1376 0 13784 0 0 255 03 220 229 155 03 74 131 67 594 1381 1382 0 5354 84 0 0 05 1380 0 1383 13846 0 1379 1385 03 76 59 88 04 0 1387 0 04 955 899 0 2405 1388 1389 0 03 0 0 85 1794 0 1391 0 03 85 0 105 1554 1393 271 0 05 1392 1394 0 04 0 0 84 05 1396 0 0 06 1390 1395 1397 05 1111 1112 0 04 927 271 0 03 0 0 0 1864 0 0 0 14013 0 186 190 1403 190 140 143 1264 0 1401 1403 14045 1400 1111 1402 14053 0 155 54 04 0 212 345 14074 0 1401 0 9163 179 350 80 3994 82 1410 0 03 179 105 80 813 54 179 59 804 1412 1413 0 05 1408 1409 1411 14143 190 140 143 9193 143 186 0 1403 190 691 143 1864 1403 1416 1417 14183 309 136 0 10803 0 147 143 03 0 649 139 1862 0 0 73 523 190 0 1423 4274 1420 1421 1422 14243 105 54 81 594 1426 1412 869 9973 131 0 1105 03 113 68 131 1474 1428 1429 249 11185 1419 1425 1427 14306 1399 1406 1415 14317 1373 1386 1398 14323 0 85 0 543 110 116 140 1434 84 0 1434 14354 0 0 346 2983 258 0 76 03 76 59 88 1794 1438 1439 223 4963 1080 143 105 1313 525 0 76 593 0 0 109 1404 1441 347 1442 14435 1436 1437 1440 14444 0 0 345 3464 0 0 298 3454 300 82 1107 03 59 80 72 743 138 188 186 14233 0 113 0 1314 1449 1450 693 14515 1446 1447 1448 14524 223 496 0 05 0 1454 0 03 399 0 76 04 1456 379 223 4943 0 147 0 673 88 179 76 803 1067 0 525 04 1458 0 1459 14603 186 139 140 1434 223 1462 0 05 1457 1461 0 14636 1445 1453 1455 14644 0 0 346 6333 80 525 427 1133 140 1081 85 03 59 0 88 04 1467 1468 1031 14693 190 0 132 04 1471 0 0 05 1466 0 1470 14723 309 136 0 04 916 1474 0 03 0 68 0 1864 544 385 545 14764 0 916 0 05 1475 1477 0 14784 0 1381 0 03 74 109 0 544 1481 466 61 604 494 480 0 04 156 494 0 05 1480 1482 1483 14843 179 105 0 543 0 0 155 04 0 0 1486 14874 498 0 0 05 1488 0 1489 06 1473 1479 1485 14904 271 265 0 14013 132 127 0 1863 190 140 309 1364 927 1493 1403 14943 190 140 143 1863 143 54 143 593 179 987 1080 1434 1403 1496 1497 14983 143 919 190 6913 0 1080 0 1313 143 0 76 03 0 147 67 774 1500 1501 1502 15035 1492 1495 1499 15043 0 132 190 1402 73 52 0 523 179 105 1507 1293 143 126 0 1473 143 59 136 04 1506 1508 1509 15103 1080 1081 0 04 468 385 1512 1933 143 140 0 03 112 0 0 04 1514 1118 1515 04 0 1503 0 1945 1511 1513 1516 15173 641 112 109 03 131 147 72 743 140 143 113 684 1519 1520 1521 03 54 179 59 02 66 0 0 713 105 0 54 15244 223 194 1523 15253 150 0 131 04 1527 233 0 04 281 693 0 05 1522 1526 1528 15293 0 85 179 1054 240 1531 205 2334 1377 927 0 04 466 0 0 05 1532 1533 1534 06 1505 1518 1530 15354 554 938 99 4313 77 0 0 1134 385 554 255 15383 0 131 0 1134 1451 1540 0 6935 1537 1539 0 15413 68 150 0 1314 938 0 1543 10092 0 71 0 643 1545 143 1282 1903 186 188 140 2163 68 67 0 3934 1546 1547 1451 15483 0 0 74 1863 77 76 77 1363 0 691 0 1314 353 1550 1551 15525 1544 0 1549 15535 1112 1400 0 03 135 395 0 04 1556 967 0 05 1111 1557 0 06 1542 1554 1555 15587 1465 1491 1536 15598 1277 1329 1433 15603 0 68 113 684 0 385 260 15623 76 0 88 1473 67 68 68 04 260 261 1564 15655 0 1278 1563 15663 0 147 0 8723 0 0 992 1294 0 0 1568 15693 0 0 85 04 0 0 1571 1993 0 54 123 1293 0 88 76 04 272 1573 1012 15743 54 155 67 04 493 0 1576 05 1570 1572 1575 15776 0 0 1567 15783 0 136 0 674 0 0 162 15803 0 109 59 04 0 0 1582 1085 0 0 1581 15833 0 0 113 684 0 0 1585 05 0 0 1586 05 516 0 0 06 0 1584 1587 15883 992 129 0 543 54 0 155 4924 1590 1591 1342 13453 0 68 179 10674 1593 1281 1451 6933 0 0 1033 04 0 975 257 15953 113 0 0 1274 387 1597 0 4775 1592 1594 1596 15983 0 77 186 1903 88 179 113 1104 1600 1601 466 2493 1067 0 116 04 1603 975 1149 04 465 468 212 1565 1602 1604 469 16053 0 77 0 684 1607 1004 0 2133 68 77 109 03 113 85 0 1274 938 223 1609 16103 113 0 0 03 110 116 0 04 304 1612 1613 05 1608 0 1611 16143 0 67 132 2584 0 1616 0 03 0 87 0 04 1618 282 0 9264 0 0 0 10093 0 361 54 1314 970 1621 0 05 1617 1619 1620 16226 1599 1606 1615 16233 0 135 0 03 395 105 0 03 67 76 155 04 1625 1626 0 16273 167 88 68 04 906 0 152 16294 210 1019 0 05 1628 0 1630 16313 0 109 0 674 515 1018 165 16333 129 85 0 1093 0 113 77 04 1635 82 1636 5155 0 0 1634 16373 76 0 0 03 112 0 0 683 77 147 76 774 1639 554 1640 16413 0 0 76 594 0 1643 260 6953 179 350 1545 1434 1645 0 99 553 140 143 54 1794 0 307 345 16475 1642 1644 1646 16483 68 155 74 1094 505 1650 696 03 492 0 110 1164 1652 385 260 13023 0 0 919 03 186 190 105 1313 691 0 0 04 304 1654 1655 16565 1651 1653 1657 06 1632 1638 1649 16587 1579 1589 1624 16593 67 186 403 9873 190 113 143 9194 0 0 1661 16624 0 255 955 9563 112 0 0 1263 109 0 0 1794 260 1665 108 16665 1663 0 1664 16673 81 402 0 1554 976 1669 0 03 641 0 105 1123 186 190 131 1794 1107 0 1671 16723 0 0 350 04 0 0 1674 05 0 1670 1673 16752 0 66 0 713 76 80 1677 1904 0 527 1462 16783 105 80 81 593 525 0 872 1904 1124 1680 1681 1634 0 466 0 04 304 1018 0 05 1679 1682 1683 16843 399 77 0 03 0 76 155 02 53 0 0 643 0 0 220 16884 1686 61 1687 16893 80 81 0 1674 1691 213 0 4764 1019 255 0 04 99 0 0 05 1690 1692 1693 16946 1668 1676 1685 16953 136 0 0 1233 80 138 74 763 188 0 0 684 299 1697 1698 16995 366 1700 0 5792 1233 1168 0 11683 167 1702 129 12402 1167 1168 53 11682 53 1168 73 11683 67 1704 155 17054 1703 0 1706 03 0 1171 0 11744 1708 0 1177 05 1707 0 1709 02 0 1168 1233 11683 0 1711 0 12103 0 1210 0 12104 1712 0 1713 04 1713 0 1713 05 1714 0 1715 06 1701 1710 0 17163 85 179 0 03 105 0 0 1674 989 572 1718 17193 0 0 140 2163 0 0 649 6514 0 0 1721 17225 0 0 1720 17234 0 0 1107 05 0 0 1725 03 76 155 88 03 76 80 0 593 54 0 0 04 1727 1728 993 17293 525 112 67 684 1731 118 0 05 1730 1732 0 06 1724 1726 1733 03 0 1173 0 12104 1735 0 1713 05 1715 0 1736 05 1715 0 1715 06 0 1737 0 17387 1696 1717 1734 17393 109 140 147 03 77 186 190 1403 949 0 143 1864 554 1741 1742 17433 179 105 110 1164 1118 0 883 17453 143 54 80 813 179 105 59 804 1747 1748 0 03 131 179 81 593 105 131 80 814 1750 1751 84 16615 1744 1746 1749 17523 54 0 0 1364 460 282 1754 9263 0 85 0 674 233 457 1756 16433 179 105 402 02 66 0 73 03 1759 54 143 1314 1758 194 1760 05 1755 1757 1761 2244 194 199 0 3475 0 1763 0 04 0 0 685 05 1765 0 0 06 1753 1762 1764 17663 136 0 109 1103 76 0 116 04 0 61 1768 17694 82 347 0 05 1770 1771 0 04 300 0 0 05 1773 0 0 06 1772 1774 0 04 205 0 0 05 0 0 1776 06 1777 0 0 03 179 105 0 04 0 0 60 17795 0 1780 0 04 0 0 0 2104 0 1002 1325 04 460 463 0 03 0 131 0 1094 575 576 460 17855 1782 1783 1784 17866 1781 1787 0 07 1767 1775 1778 17883 0 0 126 1434 0 0 1790 9383 76 0 88 1793 88 0 0 1473 76 80 258 04 213 1792 1793 17945 0 0 1791 17954 0 0 1451 10583 0 76 123 1294 0 1798 257 3243 0 0 1067 03 87 0 109 1104 1800 84 1442 18013 76 80 116 04 527 1124 1803 3005 1797 1799 1802 18046 0 0 1796 18054 0 0 632 05 0 0 567 18072 0 1168 1167 11682 53 1168 0 11683 0 1809 0 18104 1713 0 1811 03 0 1240 0 12104 1813 0 1713 05 1812 0 1814 03 123 129 0 1674 377 1300 1816 02 0 52 0 643 105 1818 399 773 81 402 0 684 1819 1820 0 04 82 0 353 5855 1817 0 1821 18223 0 1210 0 12402 71 1168 71 11683 74 1825 0 11744 1824 0 1826 05 1715 0 1827 06 1808 1815 1823 18283 872 190 0 03 0 132 0 1404 1830 431 0 18313 0 68 67 03 104 105 216 593 0 123 67 1474 1833 1370 1834 18353 54 179 59 10804 0 0 1412 18373 105 0 1081 1904 0 1022 1839 05 1832 1836 1838 18403 129 77 88 543 147 243 0 764 223 0 1842 18434 0 0 99 3773 167 136 0 1793 0 88 105 03 0 167 0 883 0 76 54 884 1846 1847 1848 18493 0 155 0 853 0 67 179 10674 1851 0 1852 05 1844 1845 1850 18534 460 165 0 03 127 0 140 1433 0 167 0 1094 1856 1009 460 18575 1855 1858 0 03 258 0 0 1314 0 0 1860 3453 0 67 155 04 400 1862 346 5283 80 81 0 1094 460 1864 0 03 59 1080 0 03 1081 190 127 04 1866 1867 460 4635 1861 1863 1865 18686 1841 1854 1859 18693 0 67 136 03 0 0 88 773 88 67 0 684 1871 1872 379 18733 0 0 147 684 1875 0 466 04 0 615 152 5013 113 0 132 04 108 1878 108 10225 1874 1876 1877 18793 0 1171 0 12101 12 0 12 02 1882 1168 0 11683 0 1883 0 12104 1881 0 1884 03 0 1210 76 12403 88 1173 0 12404 1886 0 1887 05 1885 0 1888 03 67 0 155 884 84 1890 535 6153 132 112 0 764 0 1831 1892 04 0 693 575 5763 147 167 0 03 0 87 85 04 1895 1896 0 16185 1891 1893 1894 18973 179 1704 295 17022 0 1168 1206 11683 0 1240 0 19004 1899 0 1901 02 0 1168 71 11683 88 1809 243 19032 71 1168 0 11683 0 1905 0 18094 1904 0 1906 05 1902 0 1907 06 1880 1889 1898 19087 1806 1829 1870 19098 1660 1740 1789 19109 1165 1246 1561 19114 45 0 42 04 748 0 25 04 0 0 0 1655 1913 0 1914 19154 0 0 0 9753 0 109 186 1903 0 67 68 1554 0 0 1918 19193 67 76 155 4924 0 0 494 19215 0 1917 1920 19223 21 109 21 674 32 165 1924 16363 0 0 0 6493 85 179 76 04 460 1926 515 19273 21 155 21 03 492 0 59 03 28 0 23 04 1929 1930 1931 03 167 0 105 03 112 131 77 04 346 1933 327 19345 1925 1928 1932 19353 127 0 651 1433 105 0 88 544 1937 353 1938 03 113 68 74 04 1940 498 124 6044 535 162 1413 14263 112 68 0 04 454 199 532 19435 1939 1941 1942 19446 1916 1923 1936 19453 0 0 0 684 0 515 449 19473 85 0 167 04 1949 0 0 04 0 0 0 1843 0 113 127 04 1952 960 212 9615 1948 1950 1951 19534 0 260 0 04 963 0 99 05 0 1955 1956 04 0 194 0 03 88 0 0 543 0 59 80 814 207 1959 60 19604 0 0 228 05 1958 1961 1962 03 155 54 0 654 1964 1643 98 995 1965 0 0 06 1954 1957 1963 19662 20 27 20 373 1968 0 21 04 25 0 1969 03 21 87 21 1313 88 0 59 03 21 59 21 04 1971 1972 1973 05 1970 0 1974 02 20 37 20 2773 21 0 1976 04 1977 0 25 03 278 0 21 04 25 0 1979 05 1978 0 1980 06 1975 0 1981 04 0 0 926 13603 190 0 312 03 155 88 0 1234 0 84 1984 19855 0 0 1983 19864 0 1095 0 03 190 0 309 1364 1989 325 0 04 0 0 1094 05 1988 1990 1991 03 77 0 123 1294 515 1993 0 03 67 0 80 814 1995 0 0 05 1994 1996 0 06 1987 1992 1997 07 1946 1967 1982 19983 112 0 150 04 2000 0 477 05 2001 0 0 04 0 0 0 5445 0 0 2003 6116 2002 0 2004 04 0 1443 0 04 1107 0 0 05 2006 2007 0 06 2008 0 0 03 0 77 167 1364 257 2010 0 04 212 0 0 03 123 129 54 884 509 2013 0 4945 2011 2012 0 20144 927 271 1487 05 0 0 2016 11116 2015 2017 0 05 0 0 1112 14005 0 0 1111 11124 0 0 353 3704 353 1041 371 3735 0 0 2021 20226 2019 2020 0 20237 2005 2009 2018 20243 173 0 278 04 25 0 2026 05 2027 0 735 04 24 0 748 02 20 37 20 373 21 0 2030 04 25 0 2031 05 2029 0 2032 06 2028 0 2033 03 21 113 21 544 25 0 2035 02 20 52 20 03 2037 525 21 682 20 73 20 02 20 53 20 03 2039 0 2040 04 2038 84 2041 1945 2036 0 2042 03 38 127 21 03 0 132 0 1134 2044 2045 32 03 127 0 0 1312 0 52 64 03 54 179 2048 814 2047 2049 0 05 2046 2050 741 05 968 0 0 06 2043 0 2051 20527 2034 0 2053 04 0 483 0 05 0 2055 0 04 899 0 0 04 0 0 265 4685 2057 2058 0 06 2056 2059 0 07 0 2060 0 08 1999 2025 2054 20613 0 0 167 04 772 2063 0 05 0 2064 0 06 0 2065 0 03 641 76 0 853 167 88 0 03 179 625 167 1404 2067 0 2068 20693 190 113 143 544 0 0 2071 03 155 127 167 04 772 2073 0 05 2070 2072 0 20743 77 0 641 763 0 85 167 884 265 2076 772 20775 0 0 2078 04 1462 494 0 05 0 2080 0 06 2075 2079 0 20815 0 0 1400 11114 271 265 353 5853 127 0 0 723 132 0 74 04 2085 2086 1049 10515 0 0 2084 20874 0 0 353 5854 353 568 1044 5784 1042 1045 0 03 0 0 0 1134 1046 0 0 20925 2089 2090 2091 20934 569 1053 207 04 515 1729 0 2123 167 0 80 814 0 1643 0 20973 0 179 76 803 350 0 525 04 2099 2100 223 5355 2095 2096 2098 21016 2083 2088 2094 21024 0 0 156 04 0 0 0 2575 2104 0 762 21054 0 0 1487 05 0 0 2107 06 0 0 2106 21087 2066 2082 2103 21094 0 156 0 03 67 0 1067 04 1792 2112 976 11025 2111 2113 0 03 105 54 81 1793 0 0 350 1274 0 413 2115 21164 0 0 1947 04 976 1102 0 04 1140 1142 976 11025 2117 2118 2119 21204 480 156 0 05 2122 1483 0 05 1484 2122 0 06 2114 2121 2123 21244 0 86 0 03 105 80 81 1793 81 402 105 1554 304 558 2127 21285 0 2126 2129 05 83 0 0 04 496 526 0 04 0 0 0 2405 2132 0 0 21333 140 295 127 04 0 342 468 21353 81 402 132 2584 298 0 2137 05 0 0 2136 21386 2130 2131 2134 21394 260 1515 0 05 0 2141 0 04 0 316 0 2553 0 85 287 1054 2144 245 82 3275 0 2133 2143 21456 2142 2146 0 03 186 190 109 04 0 240 1434 21483 179 105 72 743 0 77 136 03 147 68 76 884 86 2150 2151 21523 131 112 126 1433 68 80 67 764 248 2154 183 21554 1407 1930 300 05 2149 2153 2156 21574 535 165 345 3463 0 109 105 544 460 152 2160 4634 82 1449 60 14123 138 188 0 03 0 0 59 04 2163 1612 2164 05 2159 2161 2162 21653 0 872 0 02 0 66 73 03 2168 0 0 724 2167 2169 0 03 74 109 0 1323 74 131 0 724 585 2171 483 21725 2170 2173 0 03 112 0 74 1363 403 105 0 10334 162 1401 2175 21764 883 307 249 11493 74 140 0 724 483 2179 0 03 143 54 74 594 2181 1412 0 4135 2177 2178 2180 21826 2158 2166 2174 21837 2125 2140 2147 21843 0 0 77 1864 0 0 2186 2053 0 113 126 1433 0 131 919 03 68 113 0 1314 2188 2189 1830 21904 265 515 0 04 1018 1019 0 05 2187 2191 2192 21933 1545 143 77 1474 2195 0 994 04 1779 0 0 04 0 346 505 9095 2196 0 2197 21984 0 55 0 615 0 2200 0 03 0 0 155 1323 109 0 127 04 2202 2203 0 05 2204 0 0 06 2194 2199 2201 22053 0 179 113 1103 105 0 116 04 0 0 2207 22083 54 155 110 1164 1225 0 2210 17294 0 0 0 5275 2209 1111 2211 22124 228 0 0 03 0 0 109 1864 0 2215 1108 3853 136 0 147 04 191 1921 554 22175 2214 0 2216 22184 0 0 385 2603 0 80 287 1053 93 81 88 1124 316 2221 1562 22223 1215 1220 131 04 2167 2224 0 03 0 135 393 683 81 54 167 723 155 0 0 2204 2226 2227 477 22285 2220 2223 2225 22293 0 68 0 763 0 0 68 1273 0 88 0 684 1686 2231 2232 22333 77 0 0 883 67 0 0 1554 2235 2236 0 20993 109 0 74 03 67 155 155 04 2238 2239 875 2104 0 223 996 14015 2234 2237 2240 22416 2213 2219 2230 22424 0 1618 0 05 0 2244 0 03 0 136 59 03 0 167 123 1294 2246 2247 0 9363 67 155 0 04 0 265 2249 20635 2248 2250 0 06 2245 2251 0 07 2206 2243 0 22523 350 127 88 04 307 0 337 22544 0 0 265 9275 0 0 2255 22564 0 0 271 2654 0 0 927 2715 0 0 2258 22593 105 0 525 04 0 0 2261 04 0 0 205 05 2262 0 2263 04 0 0 0 3073 140 143 126 15074 0 307 304 22663 140 295 113 04 340 2268 0 4775 2265 2267 311 22696 2257 2260 2264 22703 127 0 186 1904 0 0 265 22723 132 179 140 3093 105 54 59 04 0 0 2274 22755 0 0 2273 22763 54 0 129 04 304 466 2278 6663 131 0 85 04 2280 0 223 03 190 0 113 684 685 0 989 22823 190 0 143 543 80 81 190 1134 1095 2284 247 22855 2279 2281 2283 22863 179 427 110 1164 0 0 2288 5153 85 123 76 04 0 0 2290 18425 0 0 2289 22916 2277 0 2287 22923 123 129 76 03 59 76 220 1383 155 0 127 04 2294 2295 223 22963 0 0 188 03 0 0 67 1473 179 427 147 884 2298 2299 2300 2553 68 155 0 04 657 212 0 23023 492 0 59 674 213 0 2304 2135 2297 2301 2303 23053 76 0 403 1054 385 554 1833 23073 67 0 244 04 345 2309 82 11063 0 0 132 1124 194 2311 1107 05 1537 2308 2310 23124 936 970 0 05 0 2314 0 04 776 875 0 05 0 2316 0 06 2306 2313 2315 23174 0 540 1487 04 249 1149 0 5155 2319 2320 1120 11213 167 0 59 764 160 199 509 23223 85 0 1818 814 223 535 2324 4883 109 0 132 04 0 515 2326 04 99 517 0 2135 2323 2325 2327 23283 132 179 140 2954 2311 2330 0 05 0 2331 0 04 720 0 0 04 0 223 0 05 2333 2334 0 06 2321 2329 2332 23357 2271 2293 2318 23368 2110 2185 2253 23374 32 0 32 05 43 0 2339 05 26 0 741 06 2340 0 2341 04 32 0 45 04 39 0 32 05 2343 0 2344 05 34 0 34 06 2345 0 2346 07 2342 0 2347 04 25 0 24 01 3 10 0 02 20 2350 20 223 21 0 2351 04 2352 0 25 05 2349 0 2353 05 34 0 26 06 2354 0 2355 04 174 0 174 05 2357 0 34 01 14 1 14 142 2359 1 0 02 1 1 0 03 21 0 2360 23613 0 0 2361 23614 2362 2363 0 04 2363 2363 0 05 2364 2365 0 05 2365 2365 0 06 2358 0 2366 23676 0 0 2367 23677 2356 0 2368 23697 0 0 2369 23698 2348 0 2370 23714 926 1947 936 9705 0 0 0 23733 0 88 0 763 179 1067 80 5254 906 84 2375 23765 0 0 2377 03 59 109 0 763 140 143 80 3994 2379 2380 936 9705 2314 2381 0 06 2374 2378 0 23824 385 554 2231 22353 67 0 179 10674 1009 0 2385 03 80 525 0 763 0 0 59 1094 2387 2388 936 9705 2384 2386 2314 23893 80 399 0 764 503 0 2391 2604 0 0 377 13005 0 0 2392 23936 0 0 2390 23944 2375 2376 936 9705 2314 2396 0 06 0 2397 2367 23677 2383 2395 2369 23984 0 0 2379 23804 2231 2235 936 9705 2400 1008 2314 24014 2385 0 2387 23884 0 0 615 1835 1010 0 2403 24043 0 88 2361 23614 2406 2363 0 03 0 68 2361 23614 2363 2408 0 05 2407 2409 0 06 2402 2405 2367 24104 0 0 184 05 0 0 2412 03 155 77 2361 23614 2414 2363 0 05 2415 2365 0 06 2413 0 2416 23677 0 0 2411 24178 0 0 2399 24189 2062 2338 2372 24193 0 0 167 764 0 0 257 24213 0 167 72 744 325 2423 976 6855 0 0 2422 24244 0 0 325 5763 0 67 1105 04 2427 99 0 03 0 0 188 1134 517 0 1401 24295 2426 0 2428 24303 112 0 74 724 353 2432 0 993 0 132 74 1094 2434 124 265 4685 2433 2435 0 06 2425 2431 0 24363 131 179 0 594 2438 967 0 03 112 68 77 04 0 679 2440 2695 2439 2441 0 03 0 0 129 1133 140 143 77 1864 2443 0 2444 2054 0 0 2063 04 476 0 0 05 2445 2446 2192 24476 0 2442 2448 04 0 0 575 2573 0 167 0 684 0 527 449 24513 147 0 691 03 140 143 113 04 633 2453 2454 4775 2450 326 2452 24554 0 0 576 04 431 0 0 2335 2457 0 2458 03 0 127 190 1134 247 2460 466 2493 0 85 186 1393 110 116 186 9494 2462 2463 1149 4663 54 0 402 04 2465 0 535 05 2461 2464 2466 06 2456 2459 2467 04 0 0 282 05 0 0 0 24696 0 2470 0 07 2437 2449 2468 24714 0 325 0 05 0 0 0 24734 0 0 298 04 257 1072 0 03 350 113 140 1434 1074 2477 0 05 2212 2475 2476 24786 0 0 2474 24793 190 68 0 723 109 140 0 03 143 147 109 04 187 2481 2482 24835 0 592 595 24843 0 123 0 1474 449 2486 0 1084 1203 265 0 04 981 0 0 05 2487 2488 2489 05 1400 1111 0 06 0 2485 2490 24914 0 431 0 05 0 1620 0 24934 165 615 0 05 0 2495 0 06 2494 0 0 24967 2480 2492 0 24973 123 129 0 1554 162 2499 0 4835 0 0 0 25003 74 136 0 04 554 0 2502 2824 0 0 233 2815 0 603 2503 25043 147 68 0 04 0 0 2506 05 0 0 2507 06 2501 2505 2508 04 210 608 282 2333 0 67 129 04 2511 0 772 05 606 611 2510 25124 0 0 0 4263 0 179 105 18184 527 2515 1680 16865 0 0 2514 25164 0 0 527 2983 105 80 81 2203 81 109 81 04 2519 2520 255 04 994 0 0 05 2518 0 2521 25226 2513 0 2517 25233 0 132 74 1313 147 112 77 04 353 2525 2526 5275 0 0 593 25273 0 54 350 1124 0 0 2529 6965 0 0 2530 03 0 155 0 1793 105 80 81 11054 194 2532 426 25333 88 179 105 18184 2535 2519 1686 2554 0 693 0 03 140 143 0 544 2538 0 61 825 2534 2536 2537 25393 179 427 167 1404 2520 0 0 25413 113 68 143 1314 0 0 2543 03 123 129 72 744 0 0 86 25455 2542 2544 0 25466 2528 2531 2540 25474 163 542 0 05 0 2549 0 03 59 0 113 04 0 0 2551 05 0 0 2552 06 2550 0 2553 07 2509 2524 2548 25543 0 179 76 593 105 112 1080 10814 0 0 2556 25574 223 0 0 4263 105 54 81 11054 0 0 2560 17795 2558 2263 2559 25614 693 2538 0 615 0 2563 0 04 0 0 82 05 2565 0 0 06 2562 0 2564 25667 0 0 2567 08 2472 2498 2555 25683 109 0 67 773 113 123 0 674 0 183 2570 25713 129 1105 72 743 0 0 140 10814 233 257 2573 25743 393 77 74 03 1677 190 140 1434 2576 2577 477 03 872 1423 0 03 427 54 0 04 2579 2580 0 05 2572 2575 2578 25813 0 123 188 04 1487 0 2583 4854 0 0 515 10183 179 427 0 04 2586 1729 0 05 2584 2585 2587 06 2582 2588 0 04 0 0 1019 5154 0 0 1018 10195 2590 2591 0 05 2585 2590 0 06 2592 2593 0 04 0 0 0 5015 0 2595 0 04 505 506 0 04 615 505 0 03 0 123 129 1794 124 2599 1203 10345 2597 2598 1782 26003 0 179 129 04 506 615 124 26023 427 54 0 1674 981 0 2604 03 129 113 105 1313 186 1215 140 1434 2606 2607 0 5443 1220 59 131 03 0 0 68 1473 132 0 0 04 2609 0 2610 26115 2603 2605 2608 26126 0 2596 2601 26134 0 0 307 03 72 74 0 774 615 108 0 26163 132 123 0 03 129 1105 132 04 2618 2619 0 04 696 0 0 05 2615 2617 2620 26213 76 88 88 04 2326 0 2623 05 2624 0 0 6614 615 981 0 04 0 1451 0 05 2626 2627 0 06 2622 2625 0 26287 2589 2594 2614 26295 2591 2585 0 03 0 167 112 04 0 0 325 26323 0 167 76 803 85 0 88 04 325 2634 1058 26355 0 0 2633 26366 2631 2592 0 26373 0 131 0 6494 460 2639 515 17183 179 105 1215 3994 2641 377 967 05 2640 2642 0 02 73 1168 0 11683 147 1705 68 26443 0 1702 0 17114 2645 0 2646 02 1170 1168 1170 11683 0 1702 0 26484 1178 0 2649 05 2647 0 2650 03 0 167 0 674 0 0 325 26523 147 167 67 04 325 282 377 26543 72 74 81 673 59 72 59 674 2656 2657 233 03 74 88 0 04 2659 207 0 05 2653 2655 2658 26603 76 1240 85 12103 88 1173 0 26484 2662 0 2663 03 0 1210 0 11744 2665 0 1177 05 2664 0 2666 06 2643 2651 2661 26674 0 0 325 2823 76 80 85 03 81 67 136 04 325 2423 2670 26713 147 112 68 1504 0 282 2673 04 223 882 0 8845 2669 2672 2674 26753 0 67 59 723 77 0 74 884 2677 2678 218 3543 74 59 68 1134 2385 0 2680 04 883 307 1149 4663 127 0 113 1863 85 110 139 03 143 88 0 04 2683 2684 249 26855 2679 2681 2682 26864 693 509 0 03 77 0 0 1124 510 554 515 26894 0 545 0 05 2688 2690 0 26913 68 77 131 03 0 68 0 1094 938 385 2693 26943 77 113 0 03 85 123 0 1264 554 0 2696 26973 147 0 140 1433 132 127 0 1094 2699 2700 0 03 67 77 155 03 243 77 0 04 0 2702 2703 1525 2695 2698 2701 27046 2676 2687 2692 27053 116 0 220 814 2707 0 207 05 0 0 2708 03 0 1210 0 17023 0 1704 0 12104 2710 0 2711 03 0 1210 0 18093 0 1810 0 12104 2713 0 2714 05 2712 0 2715 03 129 59 143 1474 0 0 2717 04 255 99 0 1655 2718 0 2719 19203 0 1900 0 12104 1713 0 2721 03 76 1240 88 11734 2721 0 2723 05 2722 0 2724 06 2709 2716 2720 27257 2638 2668 2706 27265 0 1123 0 03 72 74 0 1324 2116 2729 685 05 2730 0 0 06 2728 2731 0 04 60 1486 0 613 88 54 0 544 2202 906 60 27345 2733 2735 0 9023 113 186 131 1794 0 0 304 27373 190 0 105 04 0 0 2739 04 60 102 0 613 155 132 0 544 106 0 60 27425 2738 2740 2741 27435 0 902 0 06 2736 2744 0 27457 2732 2746 0 03 77 0 88 544 0 0 2748 3075 0 0 2749 3354 60 2538 0 613 105 0 93 813 104 105 0 544 2438 2752 60 27535 2751 2754 0 9024 0 0 2202 9064 60 2734 0 614 304 2737 60 1025 2756 0 2757 27586 2750 0 2755 27594 240 544 976 16863 186 949 140 3094 385 0 2762 3854 0 517 0 05 2761 2763 0 27642 1170 1168 71 11683 0 1174 0 27663 0 1905 0 12104 2767 0 2768 03 147 1900 68 11734 2770 0 1713 05 2769 0 2771 04 2739 0 106 05 0 0 2773 03 0 1240 0 12403 0 1704 0 18094 2775 0 2776 03 0 1810 0 17043 0 1900 0 19004 2778 0 2779 05 2777 0 2780 06 2765 2772 2774 27816 0 2745 0 04 60 2742 0 614 2748 307 60 25385 2784 2785 0 9022 1206 1168 1167 11683 0 1210 113 27872 1167 1168 52 11682 52 1168 0 11683 131 2789 0 27904 2788 0 2791 02 0 1168 52 11683 0 2793 0 27904 2794 0 1901 05 2792 0 2795 04 1824 0 2721 04 1901 0 1824 05 2797 0 2798 06 2786 2796 0 27997 2760 2782 2783 28008 2630 2727 2747 28014 509 199 0 05 2803 0 0 06 2804 0 0 07 0 2805 0 01 8 7 8 42 0 0 0 28071 0 0 4 02 0 0 2809 03 0 0 2808 28101 8 4 8 42 0 2812 0 28122 1253 0 1253 03 2813 2814 2813 28144 0 2811 0 28151 8 2 8 42 0 2812 0 28173 2813 2814 2818 28144 0 2819 0 28155 0 2816 0 28206 0 0 2821 01 0 0 0 82 0 0 2823 7883 0 0 0 28242 0 2812 788 28122 1253 0 833 03 2813 2814 2826 28271 0 4 9 91 0 0 8 02 2829 709 709 28301 8 0 8 82 806 2832 803 8443 0 2831 0 28331 4 4 0 02 855 2835 0 02 788 788 709 7093 2836 0 2837 28374 2825 2828 2834 28385 0 2839 0 03 0 0 2837 28372 788 788 1257 7093 0 0 2842 28374 0 0 2841 28431 0 0 0 42 2830 2845 709 8232 818 818 823 8233 0 0 2846 28471 4 2 8 82 818 818 2849 8233 0 0 2850 28474 0 0 2848 28511 8 0 8 02 709 2853 709 28531 0 7 0 01 8 0 0 02 709 2853 2855 28563 2854 0 2857 04 2858 0 0 05 2844 2852 0 28596 2840 2860 0 03 0 0 2847 28471 4 4 8 32 277 0 2863 03 0 0 2847 28644 0 0 2862 28652 2812 1253 2812 12531 8 4 8 32 2812 1253 2868 12533 0 2867 0 28693 0 2867 0 28674 0 2870 0 28715 2866 0 2872 02 2812 1253 2817 12533 0 2867 0 28744 0 2875 0 28714 0 2871 0 28715 2876 0 2877 06 2873 0 2878 07 2822 0 2861 28791 8 3 8 42 2812 1253 2881 12533 0 2867 0 28824 0 2883 0 28711 4 0 2 41 8 4 0 82 2812 2885 2886 8233 0 2867 0 28874 0 2871 0 28881 4 3 8 82 818 818 2890 8233 0 0 2891 28474 0 0 2892 28625 2884 0 2889 28931 4 4 8 42 818 277 823 28953 0 0 2896 04 0 0 2897 05 0 0 2898 04 2815 0 2819 02 0 2812 0 8622 784 709 1330 13303 2901 2902 0 02 797 709 1330 13302 709 709 1330 13303 2904 2905 0 04 2903 2906 0 03 2905 2905 0 04 2908 2908 0 05 2900 0 2907 29096 2894 2899 0 29107 0 2911 2369 23698 2806 2880 2371 29124 2721 0 1901 05 2914 0 2797 05 2798 0 2914 06 0 2915 0 29166 0 2799 0 29157 0 2917 0 29182 844 709 1330 13301 9 0 4 02 2921 0 2856 03 2920 2922 0 04 2908 2923 0 05 0 0 2924 06 0 0 2925 07 2926 0 2369 23696 0 2916 0 27992 0 0 10 732 1 10 0 02 1 1168 0 03 2929 2787 2930 29314 2932 0 0 05 2933 0 0 06 0 2915 2367 29347 0 2928 2369 29358 0 2919 2927 29369 2569 2802 2913 293710 1040 1912 2420 293811 0 19 0 2939`

dvgrn
Moderator

Posts: 5746
Joined: May 17th, 2009, 11:00 pm