ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Complexity in loop rules?

For discussion of other cellular automata.

Re: Complexity in loop rules?

Postby pi_guy314 » April 23rd, 2016, 3:58 pm

dvgrn wrote:Any plans to write a "zookeeper" script to collect specimens of new worm species, as they make an appearance? Looks like this rule would produce quite a menagerie, fairly quickly!


I don't know how to write scripts in golly. I only started learning programming a few weeks ago. I could still see how a script can be done: track down whenever a mutation transition is being run in the pattern. It could create a nice family tree.

dvgrn wrote:The asteroid hits around 14,945,000, it turns out, and by 14,963,000 the last worm is heading for extinction. No particular reason that I can see, but there seems to be a weakness in that evolved design...:

RLE


It's mostly because of the limited amount of space it has. This happens to every loop with limited space.

The fact that worms continued to increase in turning signals and size really surprised me. I thought worms would stop getting bigger at a certain point. I really hope this didn't only happen because certain mutations were more common than others. If that's not the case, then this rule would pretty much accomplish what I was first looking for in this thread.
pi_guy314
 
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: Complexity in loop rules?

Postby Sphenocorona » May 13th, 2016, 11:56 am

I had a thought a while back that I was just reminded of by a post in another thread.

The 'food' states in this rule can explode into a chaotic mess if just randomly inserted into the grid. This made me think, maybe it's possible to make an artificial 'multi-cellular' worm with this; multiple individual worms that work together to contain and carry exploding food in order to proliferate without an external food source.

But an artificial multi-wormic 'organism' isn't as interesting as one that arises naturally. My thoughts on possible improvements:
  • Food should be able to bounce off of things if it isn't absorbed, like worm spines and also other food particles.
  • Worms that die should produce a small number of food particles.
I don't know that complicated replicating patterns would arise naturally with those additions, but at least it would be possible.
Sphenocorona
 
Posts: 480
Joined: April 9th, 2013, 11:03 pm

Re: Complexity in loop rules?

Postby pi_guy314 » May 14th, 2016, 1:14 pm

Sphenocorona wrote: multiple individual worms that work together to contain and carry exploding food in order to proliferate without an external food source.

Getting worms to work together and reflect photons back and forth seems like an interesting concept if that's what you mean. I'm not how sure how one could implement this though. It probably can't be explosive because it can form between worms that are far away from each other.

If someone does find a way, then it'll get added in a different rule. It's because photons moving only in a single direction and not being able reflect gave worms special properties. It made certain species have a directional preference. It also act as a selective pressure on the shape of worms.

On a different topic, the reason why I wasn't working on the ruleset was because of both school and that I got frustrated on a problem with the rule. I was fixing mutations so that certain mutations have the same probability as each other. I couldn't get inverting mutations have the same probability rate as each other without it becoming way too common. It'll go try again to see what I can get.
pi_guy314
 
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: Complexity in loop rules?

Postby Sphenocorona » May 14th, 2016, 11:00 pm

Here's my thoughts on that:
I don't think having deliberately explosive food added to a rule is a good idea. My only suggestions for a new rule were the bulleted items at the bottom.

As for influence on selective pressure, I don't think reflection would be that bad if there were some limitations put in place; for example, not allowing food to bounce off normal walls and maybe only letting food bounce off a worm's back when certain conditions are met. Thus the bouncing would only introduce a secondary pressure somewhat weaker than the primary directional selective pressure. It might even promote longer worms - a worm that can feed off food bounced off a smaller, generally slower worm might be able to then replicate and kill the smaller one. But the big fast one would also run the risk of running off too far in one direction.

With an arena with a central stream of food and then a top and bottom area only fed by (doubly?) reflected food, it might occur that different regions end up with very different but successful types of worms.
Sphenocorona
 
Posts: 480
Joined: April 9th, 2013, 11:03 pm

Re: Complexity in loop rules?

Postby pi_guy314 » May 15th, 2016, 8:19 pm

Sphenocorona wrote:Here's my thoughts on that:
I don't think having deliberately explosive food added to a rule is a good idea.

It's only explosive in a contained bounding grid where there's reflective material. It also has to be explosive so that it can produce an endless and pseudorandom supply of photons.

Sphenocorona wrote:As for influence on selective pressure, I don't think reflection would be that bad if there were some limitations put in place; for example, not allowing food to bounce off normal walls and maybe only letting food bounce off a worm's back when certain conditions are met.

The current photon generator doesn't allow reflective sheath. A photon going the wrong direction can cause an explosion. That's why the wall opposite from the photon source is covered. I'm not sure if I could find a new way of generating photons. It took a lot of trial and error to find this one.
pi_guy314
 
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: Complexity in loop rules?

Postby Sphenocorona » May 16th, 2016, 12:02 am

I'm sure there is some way; however, I don't know if there's any way that isn't hideously complicated. Spending 20 states on the food alone sounds like total overkill...!

I think the easiest approach would be to add maybe 3/4 more states, and have the food generator states be different from the photon states that can bounce around off worms and other things. The photons would then be able to bounce around without causing an explosion. The food generator would still explode, but that would not be the purpose of it.

I don't know though, rules like this get pretty complicated and I've never succeeded and making anything similar.
Sphenocorona
 
Posts: 480
Joined: April 9th, 2013, 11:03 pm

Re: Complexity in loop rules?

Postby pi_guy314 » May 27th, 2016, 6:15 pm

Sphenocorona wrote:I think the easiest approach would be to add maybe 3/4 more states, and have the food generator states be different from the photon states that can bounce around off worms and other things.

Yeah just two extra photon states should be enough to prevent explosion. I'm not sure why I haven't replied to you much sooner. Sorry about that.

There's a lot of problems that I was facing while developing the rule. I noticed that many of the loops I was experimenting on kept going extinct too quickly. I think that it's because the current photon generator has a very uneven distribution of photons. When I tried to make one with an even distribution but a lower density, the worms for some reason stopped evolving. It's kinda frustrating to work on the rule table right now. I'm going to postpone the project until further notice.

There is another project that I was working on that is much simpler but equally as interesting as this one. I'll probably release it after some time.

On another note, I'm getting the feeling that this thread is kind of derailed. Originally this thread was about methods to allow loops to continuously getting complex. Now its about the development of one rule.
pi_guy314
 
Posts: 88
Joined: July 21st, 2014, 9:45 pm

Re: Complexity in loop rules?

Postby blah » December 29th, 2017, 6:37 pm

I've been playing with WormLoop-pre2. It's obviously incomplete, but I find it interesting and I'd like to share some of my results. I looked at this pattern:
pi_guy314 wrote:Here's a very interesting pattern I found:
x = 999, y = 999, rule = WormLoop-pre2
995N.3N$NA996.N$NA990.N3.L.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$
NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA387.60H549.N$NA387.9DB9DC9DB9DC9DB
10D549.N$NA387.J608.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA
996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N
$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA996.N$NA990.N3.L.N$NA996.N
$995N.3N!

I took this kind of thing, but made it bigger. Namely 111,444 by 5,992. I then let it run for >57,000,000 generations. I was hoping to see evolutionary divergence with creatures adapting to two main environnments: The dense 'hot springs' to the right, where food is produced, and 'The Wastes' to the left, where food is sparse, and creatures must travel slowly lest they crash into the wall. After 57 million generations, I have yet to see The Wastes be inhabited. All I see are stragglers from the hot springs, which only get about half way to the left, and I haven't seen any real divergence:
gen57465280.png
gen57465280.png (2.51 KiB) Viewed 3267 times

I've noticed that worms have seemed to get much bigger over time, which is weird, but no worms that truly prosper and thrive in The Wastes have shown up. I'm still not entirely sure why this is; I'm assuming it's probably some small detail of how the rule itself works, like maybe mutation can't happen in a less active environment or something. If anybody wants me to provide files (I have the pattern saved at multiple points throughout its history) or simulate some pattern in particular, I'd be happy to.

Anyway, my friend Dan caused the random-food-generator system to explode a few times, and at some point I noticed that organisms could exhibit complex dynamics in an environment with food exploding everywhere:
wormflesh.png
wormflesh.png (5.15 KiB) Viewed 3267 times

I believe what you get would be called an excitable medium. You get waves of worm heads which are growing and splitting on one end, and the tails of the worms retracting on the other side. I believe that worms with certain traits could survive better in this environment than others. Since I have no idea how mutation works in this rule, I'm still not sure whether or not you could see evolution occur in this environment, but I think natural selection could be observed with general patterns of DNA in colonies.

For example, higher-frequency waves overtake lower-frequency waves in systems like this, so maybe smaller worms would dominate larger ones, since their waves would be shorter. The so-inclined reader could test that themselves.

In conclusion, a result which I first dismissed as being a mistake turned out to be an environment in which natural selection could occur, at least in theory. Maybe rules could be designed specifically to emulate this kind of advancing-wave lifeform.
dan.jpeg
Life, in the style of Mondrian. Credit for the simulation of this picture goes to Dan.
dan.jpeg (203.55 KiB) Viewed 3267 times
succ
User avatar
blah
 
Posts: 244
Joined: April 9th, 2016, 7:22 pm

Re: Complexity in loop rules?

Postby KittyTac » December 30th, 2017, 8:09 am

So, you've basically created giant superorganisms? Neat.
User avatar
KittyTac
 
Posts: 533
Joined: December 21st, 2017, 9:58 am

Re: Complexity in loop rules?

Postby dvgrn » December 30th, 2017, 9:51 am

It's great to hear that you're tinkering with these loop-rules-plus-random-food systems again -- seems like there's a lot of fascinating space to explore here.

Can you post a WormLoop-pre3 (or whatever) rule with the "exploding random-food-generator system" you mention? When you post amazing screenshots but no way to play around and make more of them, it just doesn't seem fair --!
User avatar
dvgrn
Moderator
 
Posts: 5751
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Complexity in loop rules?

Postby blah » December 30th, 2017, 12:02 pm

dvgrn wrote:Can you post a WormLoop-pre3 (or whatever) rule with the "exploding random-food-generator system" you mention? When you post amazing screenshots but no way to play around and make more of them, it just doesn't seem fair --!

Well, what I mean by "exploding random-food-generator system" is that the food generation system in WormLoop-pre2 can be easily broken. I have not made any other rules, I've just been playing with WormLoop-pre2 (provided here, for those who do not have it).

All you need to do is put photons around randomly:
x = 128, y = 128, rule = WormLoop-pre2
128N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N
126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$
N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N
$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.
N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N
126.N$N126.N$N126.N$N126.N$N50.M75.N$N50.M.2M72.N$N50.2M2.M71.N$N50.
2M2.M71.N$N51.4M71.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N
$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.
N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N
126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$
N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N
$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.
N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N
126.N$N126.N$N126.N$N126.N$128N!

And then you can put worms in:
x = 128, y = 128, rule = WormLoop-pre2
128N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N
126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$
N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N
$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.
N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N
126.N$N126.N$N126.N$N126.N$N50.M75.N$N50.M.2M72.N$N50.2M2.M71.N$N50.
2M2.M71.N$N51.4M71.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N
$N126.N$N126.N$N126.N$N3.3DB3DC3DC12DI98.N$N2.C3DB3DC3DB3DC3DB4DA98.N
$N2.26H98.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N
126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$
N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N
$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.
N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N
126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$N126.N$128N!

That example is too small to see anything really interesting, and the worms look like they're probably too small to form colonies (Maybe they would dominate over worms that do. I'll leave that open for the reader to explore), but that should be enough for people to do this themselves. Note that to get results like what I posted, I think you kind of have to accept that there's no easy way to simulate a very large and complex environment; you just need to make something big and leave it running for a while.

By the way, after >111 million generations, worms are huge for some reason:
x = 136, y = 62, rule = WormLoop-pre2
IAH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$2DH$
2DH$2DH$2DH$DBH$2DH$2DH101.HD$2DH101.H2D$2DH101.H2D$2DH101.H2D$2DH
101.H2D$2DH101.H2D$2DH101.H2D$2DH101.H2D$2DH101.H2D$2DH101.H2D$2DH
101.H2D$2DH101.H2D$2DH101.H2D$2DH101.H2D$2DH101.H2D$2DH101.H2D$2DH
101.H2D$2DH101.H2D$2DH101.H2D$2DH101.H2D$2DH101.H2D$2DH101.HDB26DC$2D
H101.H30D$2DH102.29HD$2DH130.H2D$2DH130.H2D$2DH130.H2D$2DH130.H2D$2DH
130.H2D$2DH130.H2D$2DH130.H2D$2DH130.H2D$2DH130.H2D$2DH130.H2D$2DH
130.H2D$2DH130.H2D$2DH130.H2D$.D132HDC$.85DB30DC8DB8D$2.C130D!
succ
User avatar
blah
 
Posts: 244
Joined: April 9th, 2016, 7:22 pm

Re: Complexity in loop rules?

Postby blah » January 5th, 2018, 7:13 am

At around half a billion generations, really weird sudden evolutionary breakthroughs happen. Not really sure what's going on here, but the worms are massive and squiggly; I think they're scrunched up so they can use space more efficiently to travel slowly or something. That way thery're less likely to hit the edge (or each other?).
x = 276, y = 388, rule = WormLoop-pre2
7$207.31DI$205.33DA$204.CD33H$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH
$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.
2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$
204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.
2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$
204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.2DH$204.
2DH$204.2DH$204.2DH$143.61DBDH$141.4DB18DC26DB14DH$140.CD64H$140.2DH$
140.2DH$140.2DH$140.2DH$140.2DH$140.2DH$140.2DH$140.2DH$140.2DH$140.
2DH$140.2DH$140.2DH$140.2DH$140.2DH$140.2DH$140.DCH$140.2DH$140.2DH$
140.2DH$140.2DH$140.2DH$140.DBH$140.2DH$140.2DH$140.2DH$140.2DH$140.
2DH$140.2DH$140.2DH$140.2DH$140.2DH$140.2DH$56.84DBDH$54.40DB20DC23DC
2DH$53.CD87H$53.2DH$53.2DH$53.2DH$53.2DH$53.2DH$53.2DH$53.2DH$53.2DH$
53.2DH$53.2DH$53.2DH$53.2DH$53.DCH$53.2DH$53.2DH$53.2DH$53.2DH$53.2DH
$53.2DH$53.2DH$53.2DH$54.D26H$54.17DB9DH$55.C23DBDH$79.2DH$79.2DH$79.
2DH$79.2DH$79.2DH$79.2DH$79.2DH$79.2DH$79.2DH$79.2DH$79.2DH$79.DCH$
79.2DH$79.2DH$79.2DH$79.2DH$79.2DH$79.2DH$79.2DH$79.2DH$79.2DH$80.D
52H$80.22DB30DH$81.C49DBDH$131.2DH$131.2DH$131.2DH$131.2DH$131.2DH$
131.2DH$131.2DH$131.2DH$132.D15H$132.16DH$133.C12DBDH$146.2DH$146.2DH
$146.2DH$146.2DH$146.2DH$146.2DH$146.2DH$146.2DH$146.2DH$146.2DH$146.
2DH$147.D37H$147.5DB9DC10DC7DC3DH$148.C34DBDH$183.2DH$183.2DH$183.2DH
$183.DBH$183.2DH$183.DBH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.
2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$
183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.
2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$
183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.DCH$183.2DH$183.
2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.DBH$183.2DH$183.2DH$
183.2DH$183.2DH$183.DCH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.
2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$
183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.2DH$183.
2DH$162.21DBDH$160.23DBDH$159.CD24H$159.2DH$159.2DH$159.2DH$159.2DH$
159.DCH$159.2DH$159.2DH$159.2DH$159.2DH$159.2DH$159.2DH$159.2DH$159.
2DH$159.2DH$159.2DH$159.2DH$159.2DH$159.2DH$159.2DH$159.2DH$159.2DH$
159.2DH$159.2DH$159.2DH$159.2DH$159.DCH$159.2DH$159.2DH$159.2DH$159.
2DH$159.2DH$159.DCH$159.2DH$159.2DH$159.2DH$159.DBH$159.2DH$159.2DH$
159.2DH$159.2DH$159.2DH$159.2DH$159.2DH$159.2DH$127.32DBDH$125.15DB
20DH$124.CD35H$124.2DH$124.2DH$124.2DH$124.2DH$124.2DH$124.2DH$124.2D
H$124.2DH$124.2DH$124.2DH$124.DBH$124.2DH$124.2DH$124.2DH$124.DCH$
124.2DH$125.D20H$125.10DB10DH$126.C17DBDH$144.2DH$144.2DH$144.2DH$
144.2DH$144.2DH$144.2DH$144.2DH$144.2DH$144.2DH$144.2DH$144.2DH$144.
2DH$144.DCH$137.7DBDH$135.11DH$134.CD10H$134.2DH$134.2DH$134.2DH$134.
2DH$134.2DH$134.2DH$134.2DH$134.2DH$134.2DH$134.2DH$134.2DH$134.2DH$
134.2DH$134.2DH$134.2DH$135.GH!


I've noticed that that worm is ultimately looping. It looks like most of the worms are doing that at this point.
succ
User avatar
blah
 
Posts: 244
Joined: April 9th, 2016, 7:22 pm

Re: Complexity in loop rules?

Postby calcyman » March 31st, 2018, 10:34 pm

Here's a variant where the food follows a 2-state isotropic rule:

@RULE WormLoop-pre3
original version
pre-release version 3
1 empty-wire
2 left-signal
3 right-signal
4 forward-signal
5 double-forward (causes worm to increase in size during mutation)
6 charged (causes worm to split/replicate)
7 decaying-wire/shealth
8 wire-sheath
09 wire-head
10 wire-head-turns
11 misc/temp
12 photon-tail
13 photon-head
14 indestructible-wall
@TABLE
n_states:15
neighborhood:Moore
symmetries:rotate4
var a1={00,01,02,03,04,05,06,07,08,09,10,11,12,13}         #all modifiable
var x1={00,01,02,03,04,05,06,07,08,09,10,11,12,14}         #all modifiable
var f1={00,11,12,13}                                        #states that worms can flow through
var h1={09,10}                                        #all head states 
var s1={08,07}                                            #all sheath states   
var w1={01,02,03,04,05,06}                                   #all wire states
var wm={02,03,04,05,06}                                       #all signals that causes movement                     
var wf={04,05}                                          #all signals that only moves forward
var W1={00,08,07,09,10,11,12,13}                     
var F1={01,02,03,04,05,06,08,07,09,10,11}
var S1={00,01,02,03,04,05,06,09,10,11,12,13}
var a2={a1}
var a3={a1}
var a4={a1}
var a5={a1}
var a6={a1}
var a7={a1}
var a8={a1}
var x2={x1}
var x3={x1}
var x4={x1}
var x5={x1}
var x6={x1}
var x7={x1}
var x8={x1}
var f2={f1}
var f3={f1}
var f4={f1}
var f5={f1}
var f6={f1}
var f7={f1}
var f8={f1}
var s2={s1}
var s3={s1}
var s4={s1}
var s5={s1}
var s6={s1}
var s7={s1}
var w2={w1}
var w3={w1}
var w4={w1}
var w5={w1}
var w6={w1}
var w7={w1}
var w8={w1}
var F2={F1}
var F3={F1}
var S2={S1}
var S3={S1}
var S4={S1}
var S5={S1}
var S6={S1}
var S7={S1}
var S8={S1}
var W2={W1}
var W3={W1}
var W4={W1}
var W5={W1}
var W6={W1}
var W7={W1}
var W8={W1}
#left turn collision
00,00,s1,11,01,00,a1,a2,h1,00
00,00,s1,11,01,00,a1,w1,a2,11
00,00,11,01,a1,a2,a3,w1,a4,11
#right turn collision
00,00,00,01,11,00,a1,s1,a3,11
#other collision (releases state 11 during collision)
00,a1,a2,s1,wm,00,a3,a4,w1,11
00,a1,a2,s1,wm,00,a3,a4,h1,11
00,a1,a2,s1,wm,00,a3,F1,a4,11
00,00,s1,wm,h1,00,a1,F1,a2,11
00,00,wm,h1,a1,a2,a3,F1,a4,11
00,00,wm,h1,a1,a2,s1,a3,a4,11
###splitting
#top section
f1,f2,f3,08,06,f4,f5,f6,f7,01
01,f2,f3,08,w1,11,f5,f6,f7,04
10,f2,f3,04,w1,f4,S1,S2,S3,00
#middle section
f1,f2,08,06,09,f3,f4,f5,f6,11
11,01,08,w1,09,01,f4,f5,f6,w1
w1,08,W1,W2,W3,W4,w2,w3,w2,00
#bottom section
f1,f2,06,09,f3,f4,f5,f6,f7,01
01,11,w1,09,f3,f4,f5,f6,f7,04
###
###left turn
#first step
f1,W1,W2,08,02,f2,f3,f4,h1,01
f1,W1,W2,08,02,f2,f3,f4,W3,08
f1,f2,08,02,09,f3,f4,f5,f6,11
f1,f2,02,09,f3,f4,f5,f6,f7,01
09,02,w1,a1,a2,a3,f1,f2,f3,10
#second step
f1,f2,08,11,01,f3,W1,W2,W3,08
f1,f2,11,01,f3,f4,W1,W2,W3,08
s1,W1,W2,s2,w1,11,f1,f2,f3,08
11,s1,s2,w1,h1,01,f1,f2,f3,w1
01,11,w1,10,f1,f2,f3,f4,f5,04
10,w1,w2,a1,a2,f1,f2,04,w4,02
###
#right turn
f1,W1,W2,08,03,f2,f3,f4,W3,01
f1,f2,08,03,h1,f3,f4,f5,f6,11
09,03,w1,a1,a2,a3,a4,f1,f2,03
11,01,s1,w1,w2,00,W1,W2,W3,w1
f1,f2,f3,01,11,f4,S1,S2,S3,10
#forward/random/double
f1,W1,W2,08,wf,f2,f3,f4,W3,08 
f1,f2,08,04,h1,f3,f4,f5,f6,01
f1,f2,08,05,h1,f3,f4,f5,f6,04
f1,f2,wf,h1,S1,S2,S3,f3,f4,09
09,wf,a1,S1,S2,S3,S4,f1,f2,04
#left signal mutation
00,w1,w2,00,s1,11,w3,w4,02,11
02,w1,w2,w3,11,w4,w5,w6,w7,03
04,w1,w2,w3,11,00,w4,02,w5,05
02,w1,w2,06,00,w3,w4,w5,w6,04
#right signal mutation
03,w1,w2,w3,00,00,11,W2,a1,05
03,w1,w2,w3,00,11,00,W2,a1,02
#forward signal mutation
04,04,06,04,11,11,11,04,04,01
04,03,04,04,11,11,11,04,04,02
04,02,04,04,11,11,11,04,04,03
04,06,04,04,11,11,11,04,04,05
04,04,04,06,11,11,11,04,04,05
04,06,04,06,11,11,11,04,04,05
#photon movement

00,x1,x2,x3,x4,x5,x6,x7,x8,00
00,x1,x2,x3,x4,x5,x6,x7,13,00
00,13,x2,x3,x4,x5,x6,x7,x8,00
00,13,x2,x3,x4,x5,x6,x7,13,00
00,x1,13,x3,x4,x5,x6,x7,x8,00
00,x1,13,x3,x4,x5,x6,x7,13,13
00,13,13,x3,x4,x5,x6,x7,x8,00
00,13,13,x3,x4,x5,x6,x7,13,00
00,x1,x2,x3,x4,x5,x6,13,x8,00
00,x1,x2,x3,x4,x5,x6,13,13,00
00,13,x2,x3,x4,x5,x6,13,x8,13
00,13,x2,x3,x4,x5,x6,13,13,00
00,x1,13,x3,x4,x5,x6,13,x8,13
00,x1,13,x3,x4,x5,x6,13,13,00
00,13,13,x3,x4,x5,x6,13,x8,00
00,13,13,x3,x4,x5,x6,13,13,13
13,x1,x2,x3,x4,x5,x6,x7,x8,00
13,x1,x2,x3,x4,x5,x6,x7,13,13
13,13,x2,x3,x4,x5,x6,x7,x8,13
13,13,x2,x3,x4,x5,x6,x7,13,00
13,x1,13,x3,x4,x5,x6,x7,x8,13
13,x1,13,x3,x4,x5,x6,x7,13,00
13,13,13,x3,x4,x5,x6,x7,x8,00
13,13,13,x3,x4,x5,x6,x7,13,00
13,x1,x2,x3,x4,x5,x6,13,x8,13
13,x1,x2,x3,x4,x5,x6,13,13,00
13,13,x2,x3,x4,x5,x6,13,x8,00
13,13,x2,x3,x4,x5,x6,13,13,00
13,x1,13,x3,x4,x5,x6,13,x8,00
13,x1,13,x3,x4,x5,x6,13,13,00
13,13,13,x3,x4,x5,x6,13,x8,00
13,13,13,x3,x4,x5,x6,13,13,00
00,x1,x2,13,x4,x5,x6,x7,x8,00
00,x1,x2,13,x4,x5,x6,x7,13,13
00,13,x2,13,x4,x5,x6,x7,x8,13
00,13,x2,13,x4,x5,x6,x7,13,00
00,x1,13,13,x4,x5,x6,x7,x8,00
00,x1,13,13,x4,x5,x6,x7,13,00
00,13,13,13,x4,x5,x6,x7,x8,00
00,13,13,13,x4,x5,x6,x7,13,13
00,x1,x2,13,x4,x5,x6,13,x8,00
00,x1,x2,13,x4,x5,x6,13,13,00
00,13,x2,13,x4,x5,x6,13,x8,00
00,13,x2,13,x4,x5,x6,13,13,13
00,x1,13,13,x4,x5,x6,13,x8,00
00,x1,13,13,x4,x5,x6,13,13,00
00,13,13,13,x4,x5,x6,13,x8,13
00,13,13,13,x4,x5,x6,13,13,00
13,x1,x2,13,x4,x5,x6,x7,x8,13
13,x1,x2,13,x4,x5,x6,x7,13,00
13,13,x2,13,x4,x5,x6,x7,x8,00
13,13,x2,13,x4,x5,x6,x7,13,00
13,x1,13,13,x4,x5,x6,x7,x8,00
13,x1,13,13,x4,x5,x6,x7,13,00
13,13,13,13,x4,x5,x6,x7,x8,00
13,13,13,13,x4,x5,x6,x7,13,00
13,x1,x2,13,x4,x5,x6,13,x8,00
13,x1,x2,13,x4,x5,x6,13,13,00
13,13,x2,13,x4,x5,x6,13,x8,00
13,13,x2,13,x4,x5,x6,13,13,00
13,x1,13,13,x4,x5,x6,13,x8,00
13,x1,13,13,x4,x5,x6,13,13,00
13,13,13,13,x4,x5,x6,13,x8,00
13,13,13,13,x4,x5,x6,13,13,00
00,x1,x2,x3,x4,x5,13,x7,x8,00
00,x1,x2,x3,x4,x5,13,x7,13,13
00,13,x2,x3,x4,x5,13,x7,x8,13
00,13,x2,x3,x4,x5,13,x7,13,00
00,x1,13,x3,x4,x5,13,x7,x8,00
00,x1,13,x3,x4,x5,13,x7,13,00
00,13,13,x3,x4,x5,13,x7,x8,13
00,13,13,x3,x4,x5,13,x7,13,13
00,x1,x2,x3,x4,x5,13,13,x8,00
00,x1,x2,x3,x4,x5,13,13,13,00
00,13,x2,x3,x4,x5,13,13,x8,00
00,13,x2,x3,x4,x5,13,13,13,13
00,x1,13,x3,x4,x5,13,13,x8,13
00,x1,13,x3,x4,x5,13,13,13,13
00,13,13,x3,x4,x5,13,13,x8,13
00,13,13,x3,x4,x5,13,13,13,00
13,x1,x2,x3,x4,x5,13,x7,x8,13
13,x1,x2,x3,x4,x5,13,x7,13,00
13,13,x2,x3,x4,x5,13,x7,x8,00
13,13,x2,x3,x4,x5,13,x7,13,00
13,x1,13,x3,x4,x5,13,x7,x8,00
13,x1,13,x3,x4,x5,13,x7,13,13
13,13,13,x3,x4,x5,13,x7,x8,00
13,13,13,x3,x4,x5,13,x7,13,00
13,x1,x2,x3,x4,x5,13,13,x8,00
13,x1,x2,x3,x4,x5,13,13,13,00
13,13,x2,x3,x4,x5,13,13,x8,00
13,13,x2,x3,x4,x5,13,13,13,00
13,x1,13,x3,x4,x5,13,13,x8,00
13,x1,13,x3,x4,x5,13,13,13,00
13,13,13,x3,x4,x5,13,13,x8,00
13,13,13,x3,x4,x5,13,13,13,00
00,x1,x2,13,x4,x5,13,x7,x8,13
00,x1,x2,13,x4,x5,13,x7,13,00
00,13,x2,13,x4,x5,13,x7,x8,00
00,13,x2,13,x4,x5,13,x7,13,13
00,x1,13,13,x4,x5,13,x7,x8,13
00,x1,13,13,x4,x5,13,x7,13,13
00,13,13,13,x4,x5,13,x7,x8,13
00,13,13,13,x4,x5,13,x7,13,00
00,x1,x2,13,x4,x5,13,13,x8,00
00,x1,x2,13,x4,x5,13,13,13,13
00,13,x2,13,x4,x5,13,13,x8,13
00,13,x2,13,x4,x5,13,13,13,00
00,x1,13,13,x4,x5,13,13,x8,13
00,x1,13,13,x4,x5,13,13,13,00
00,13,13,13,x4,x5,13,13,x8,00
00,13,13,13,x4,x5,13,13,13,00
13,x1,x2,13,x4,x5,13,x7,x8,00
13,x1,x2,13,x4,x5,13,x7,13,00
13,13,x2,13,x4,x5,13,x7,x8,13
13,13,x2,13,x4,x5,13,x7,13,13
13,x1,13,13,x4,x5,13,x7,x8,00
13,x1,13,13,x4,x5,13,x7,13,00
13,13,13,13,x4,x5,13,x7,x8,00
13,13,13,13,x4,x5,13,x7,13,00
13,x1,x2,13,x4,x5,13,13,x8,00
13,x1,x2,13,x4,x5,13,13,13,00
13,13,x2,13,x4,x5,13,13,x8,00
13,13,x2,13,x4,x5,13,13,13,00
13,x1,13,13,x4,x5,13,13,x8,00
13,x1,13,13,x4,x5,13,13,13,00
13,13,13,13,x4,x5,13,13,x8,00
13,13,13,13,x4,x5,13,13,13,00
00,x1,x2,x3,x4,13,x6,x7,x8,00
00,x1,x2,x3,x4,13,x6,x7,13,13
00,13,x2,x3,x4,13,x6,x7,x8,00
00,13,x2,x3,x4,13,x6,x7,13,00
00,x1,13,x3,x4,13,x6,x7,x8,13
00,x1,13,x3,x4,13,x6,x7,13,00
00,13,13,x3,x4,13,x6,x7,x8,00
00,13,13,x3,x4,13,x6,x7,13,13
00,x1,x2,x3,x4,13,x6,13,x8,13
00,x1,x2,x3,x4,13,x6,13,13,00
00,13,x2,x3,x4,13,x6,13,x8,00
00,13,x2,x3,x4,13,x6,13,13,13
00,x1,13,x3,x4,13,x6,13,x8,00
00,x1,13,x3,x4,13,x6,13,13,13
00,13,13,x3,x4,13,x6,13,x8,13
00,13,13,x3,x4,13,x6,13,13,00
13,x1,x2,x3,x4,13,x6,x7,x8,13
13,x1,x2,x3,x4,13,x6,x7,13,00
13,13,x2,x3,x4,13,x6,x7,x8,00
13,13,x2,x3,x4,13,x6,x7,13,00
13,x1,13,x3,x4,13,x6,x7,x8,00
13,x1,13,x3,x4,13,x6,x7,13,00
13,13,13,x3,x4,13,x6,x7,x8,00
13,13,13,x3,x4,13,x6,x7,13,00
13,x1,x2,x3,x4,13,x6,13,x8,00
13,x1,x2,x3,x4,13,x6,13,13,00
13,13,x2,x3,x4,13,x6,13,x8,00
13,13,x2,x3,x4,13,x6,13,13,00
13,x1,13,x3,x4,13,x6,13,x8,13
13,x1,13,x3,x4,13,x6,13,13,13
13,13,13,x3,x4,13,x6,13,x8,00
13,13,13,x3,x4,13,x6,13,13,00
00,x1,x2,13,x4,13,x6,x7,x8,13
00,x1,x2,13,x4,13,x6,x7,13,00
00,13,x2,13,x4,13,x6,x7,x8,00
00,13,x2,13,x4,13,x6,x7,13,13
00,x1,13,13,x4,13,x6,x7,x8,00
00,x1,13,13,x4,13,x6,x7,13,13
00,13,13,13,x4,13,x6,x7,x8,13
00,13,13,13,x4,13,x6,x7,13,00
00,x1,x2,13,x4,13,x6,13,x8,00
00,x1,x2,13,x4,13,x6,13,13,13
00,13,x2,13,x4,13,x6,13,x8,13
00,13,x2,13,x4,13,x6,13,13,00
00,x1,13,13,x4,13,x6,13,x8,13
00,x1,13,13,x4,13,x6,13,13,00
00,13,13,13,x4,13,x6,13,x8,00
00,13,13,13,x4,13,x6,13,13,00
13,x1,x2,13,x4,13,x6,x7,x8,00
13,x1,x2,13,x4,13,x6,x7,13,13
13,13,x2,13,x4,13,x6,x7,x8,00
13,13,x2,13,x4,13,x6,x7,13,00
13,x1,13,13,x4,13,x6,x7,x8,00
13,x1,13,13,x4,13,x6,x7,13,13
13,13,13,13,x4,13,x6,x7,x8,00
13,13,13,13,x4,13,x6,x7,13,00
13,x1,x2,13,x4,13,x6,13,x8,00
13,x1,x2,13,x4,13,x6,13,13,00
13,13,x2,13,x4,13,x6,13,x8,00
13,13,x2,13,x4,13,x6,13,13,00
13,x1,13,13,x4,13,x6,13,x8,00
13,x1,13,13,x4,13,x6,13,13,00
13,13,13,13,x4,13,x6,13,x8,00
13,13,13,13,x4,13,x6,13,13,00
00,x1,x2,x3,x4,13,13,x7,x8,00
00,x1,x2,x3,x4,13,13,x7,13,00
00,13,x2,x3,x4,13,13,x7,x8,00
00,13,x2,x3,x4,13,13,x7,13,00
00,x1,13,x3,x4,13,13,x7,x8,13
00,x1,13,x3,x4,13,13,x7,13,13
00,13,13,x3,x4,13,13,x7,x8,13
00,13,13,x3,x4,13,13,x7,13,00
00,x1,x2,x3,x4,13,13,13,x8,00
00,x1,x2,x3,x4,13,13,13,13,13
00,13,x2,x3,x4,13,13,13,x8,13
00,13,x2,x3,x4,13,13,13,13,00
00,x1,13,x3,x4,13,13,13,x8,13
00,x1,13,x3,x4,13,13,13,13,00
00,13,13,x3,x4,13,13,13,x8,00
00,13,13,x3,x4,13,13,13,13,00
13,x1,x2,x3,x4,13,13,x7,x8,00
13,x1,x2,x3,x4,13,13,x7,13,00
13,13,x2,x3,x4,13,13,x7,x8,00
13,13,x2,x3,x4,13,13,x7,13,00
13,x1,13,x3,x4,13,13,x7,x8,00
13,x1,13,x3,x4,13,13,x7,13,00
13,13,13,x3,x4,13,13,x7,x8,00
13,13,13,x3,x4,13,13,x7,13,00
13,x1,x2,x3,x4,13,13,13,x8,00
13,x1,x2,x3,x4,13,13,13,13,00
13,13,x2,x3,x4,13,13,13,x8,00
13,13,x2,x3,x4,13,13,13,13,00
13,x1,13,x3,x4,13,13,13,x8,00
13,x1,13,x3,x4,13,13,13,13,00
13,13,13,x3,x4,13,13,13,x8,00
13,13,13,x3,x4,13,13,13,13,00
00,x1,x2,13,x4,13,13,x7,x8,00
00,x1,x2,13,x4,13,13,x7,13,13
00,13,x2,13,x4,13,13,x7,x8,13
00,13,x2,13,x4,13,13,x7,13,00
00,x1,13,13,x4,13,13,x7,x8,13
00,x1,13,13,x4,13,13,x7,13,00
00,13,13,13,x4,13,13,x7,x8,00
00,13,13,13,x4,13,13,x7,13,00
00,x1,x2,13,x4,13,13,13,x8,13
00,x1,x2,13,x4,13,13,13,13,00
00,13,x2,13,x4,13,13,13,x8,00
00,13,x2,13,x4,13,13,13,13,00
00,x1,13,13,x4,13,13,13,x8,00
00,x1,13,13,x4,13,13,13,13,00
00,13,13,13,x4,13,13,13,x8,00
00,13,13,13,x4,13,13,13,13,00
13,x1,x2,13,x4,13,13,x7,x8,00
13,x1,x2,13,x4,13,13,x7,13,13
13,13,x2,13,x4,13,13,x7,x8,00
13,13,x2,13,x4,13,13,x7,13,00
13,x1,13,13,x4,13,13,x7,x8,00
13,x1,13,13,x4,13,13,x7,13,00
13,13,13,13,x4,13,13,x7,x8,00
13,13,13,13,x4,13,13,x7,13,00
13,x1,x2,13,x4,13,13,13,x8,00
13,x1,x2,13,x4,13,13,13,13,00
13,13,x2,13,x4,13,13,13,x8,00
13,13,x2,13,x4,13,13,13,13,00
13,x1,13,13,x4,13,13,13,x8,00
13,x1,13,13,x4,13,13,13,13,00
13,13,13,13,x4,13,13,13,x8,00
13,13,13,13,x4,13,13,13,13,00
00,x1,x2,x3,13,x5,x6,x7,x8,00
00,x1,x2,x3,13,x5,x6,x7,13,00
00,13,x2,x3,13,x5,x6,x7,x8,13
00,13,x2,x3,13,x5,x6,x7,13,13
00,x1,13,x3,13,x5,x6,x7,x8,13
00,x1,13,x3,13,x5,x6,x7,13,00
00,13,13,x3,13,x5,x6,x7,x8,00
00,13,13,x3,13,x5,x6,x7,13,13
00,x1,x2,x3,13,x5,x6,13,x8,13
00,x1,x2,x3,13,x5,x6,13,13,13
00,13,x2,x3,13,x5,x6,13,x8,00
00,13,x2,x3,13,x5,x6,13,13,13
00,x1,13,x3,13,x5,x6,13,x8,00
00,x1,13,x3,13,x5,x6,13,13,13
00,13,13,x3,13,x5,x6,13,x8,13
00,13,13,x3,13,x5,x6,13,13,00
13,x1,x2,x3,13,x5,x6,x7,x8,13
13,x1,x2,x3,13,x5,x6,x7,13,00
13,13,x2,x3,13,x5,x6,x7,x8,00
13,13,x2,x3,13,x5,x6,x7,13,00
13,x1,13,x3,13,x5,x6,x7,x8,00
13,x1,13,x3,13,x5,x6,x7,13,13
13,13,13,x3,13,x5,x6,x7,x8,00
13,13,13,x3,13,x5,x6,x7,13,00
13,x1,x2,x3,13,x5,x6,13,x8,00
13,x1,x2,x3,13,x5,x6,13,13,00
13,13,x2,x3,13,x5,x6,13,x8,13
13,13,x2,x3,13,x5,x6,13,13,00
13,x1,13,x3,13,x5,x6,13,x8,00
13,x1,13,x3,13,x5,x6,13,13,00
13,13,13,x3,13,x5,x6,13,x8,13
13,13,13,x3,13,x5,x6,13,13,00
00,x1,x2,13,13,x5,x6,x7,x8,00
00,x1,x2,13,13,x5,x6,x7,13,13
00,13,x2,13,13,x5,x6,x7,x8,00
00,13,x2,13,13,x5,x6,x7,13,13
00,x1,13,13,13,x5,x6,x7,x8,00
00,x1,13,13,13,x5,x6,x7,13,13
00,13,13,13,13,x5,x6,x7,x8,13
00,13,13,13,13,x5,x6,x7,13,00
00,x1,x2,13,13,x5,x6,13,x8,00
00,x1,x2,13,13,x5,x6,13,13,13
00,13,x2,13,13,x5,x6,13,x8,13
00,13,x2,13,13,x5,x6,13,13,00
00,x1,13,13,13,x5,x6,13,x8,13
00,x1,13,13,13,x5,x6,13,13,00
00,13,13,13,13,x5,x6,13,x8,00
00,13,13,13,13,x5,x6,13,13,00
13,x1,x2,13,13,x5,x6,x7,x8,00
13,x1,x2,13,13,x5,x6,x7,13,00
13,13,x2,13,13,x5,x6,x7,x8,00
13,13,x2,13,13,x5,x6,x7,13,00
13,x1,13,13,13,x5,x6,x7,x8,00
13,x1,13,13,13,x5,x6,x7,13,00
13,13,13,13,13,x5,x6,x7,x8,00
13,13,13,13,13,x5,x6,x7,13,00
13,x1,x2,13,13,x5,x6,13,x8,00
13,x1,x2,13,13,x5,x6,13,13,00
13,13,x2,13,13,x5,x6,13,x8,00
13,13,x2,13,13,x5,x6,13,13,00
13,x1,13,13,13,x5,x6,13,x8,00
13,x1,13,13,13,x5,x6,13,13,00
13,13,13,13,13,x5,x6,13,x8,00
13,13,13,13,13,x5,x6,13,13,00
00,x1,x2,x3,13,x5,13,x7,x8,13
00,x1,x2,x3,13,x5,13,x7,13,00
00,13,x2,x3,13,x5,13,x7,x8,00
00,13,x2,x3,13,x5,13,x7,13,13
00,x1,13,x3,13,x5,13,x7,x8,00
00,x1,13,x3,13,x5,13,x7,13,13
00,13,13,x3,13,x5,13,x7,x8,13
00,13,13,x3,13,x5,13,x7,13,00
00,x1,x2,x3,13,x5,13,13,x8,00
00,x1,x2,x3,13,x5,13,13,13,13
00,13,x2,x3,13,x5,13,13,x8,13
00,13,x2,x3,13,x5,13,13,13,00
00,x1,13,x3,13,x5,13,13,x8,13
00,x1,13,x3,13,x5,13,13,13,00
00,13,13,x3,13,x5,13,13,x8,00
00,13,13,x3,13,x5,13,13,13,00
13,x1,x2,x3,13,x5,13,x7,x8,00
13,x1,x2,x3,13,x5,13,x7,13,13
13,13,x2,x3,13,x5,13,x7,x8,00
13,13,x2,x3,13,x5,13,x7,13,00
13,x1,13,x3,13,x5,13,x7,x8,13
13,x1,13,x3,13,x5,13,x7,13,00
13,13,13,x3,13,x5,13,x7,x8,00
13,13,13,x3,13,x5,13,x7,13,00
13,x1,x2,x3,13,x5,13,13,x8,00
13,x1,x2,x3,13,x5,13,13,13,00
13,13,x2,x3,13,x5,13,13,x8,13
13,13,x2,x3,13,x5,13,13,13,00
13,x1,13,x3,13,x5,13,13,x8,00
13,x1,13,x3,13,x5,13,13,13,00
13,13,13,x3,13,x5,13,13,x8,00
13,13,13,x3,13,x5,13,13,13,00
00,x1,x2,13,13,x5,13,x7,x8,00
00,x1,x2,13,13,x5,13,x7,13,13
00,13,x2,13,13,x5,13,x7,x8,13
00,13,x2,13,13,x5,13,x7,13,00
00,x1,13,13,13,x5,13,x7,x8,13
00,x1,13,13,13,x5,13,x7,13,00
00,13,13,13,13,x5,13,x7,x8,00
00,13,13,13,13,x5,13,x7,13,00
00,x1,x2,13,13,x5,13,13,x8,00
00,x1,x2,13,13,x5,13,13,13,00
00,13,x2,13,13,x5,13,13,x8,00
00,13,x2,13,13,x5,13,13,13,00
00,x1,13,13,13,x5,13,13,x8,00
00,x1,13,13,13,x5,13,13,13,00
00,13,13,13,13,x5,13,13,x8,00
00,13,13,13,13,x5,13,13,13,00
13,x1,x2,13,13,x5,13,x7,x8,00
13,x1,x2,13,13,x5,13,x7,13,00
13,13,x2,13,13,x5,13,x7,x8,13
13,13,x2,13,13,x5,13,x7,13,00
13,x1,13,13,13,x5,13,x7,x8,00
13,x1,13,13,13,x5,13,x7,13,00
13,13,13,13,13,x5,13,x7,x8,00
13,13,13,13,13,x5,13,x7,13,00
13,x1,x2,13,13,x5,13,13,x8,00
13,x1,x2,13,13,x5,13,13,13,00
13,13,x2,13,13,x5,13,13,x8,00
13,13,x2,13,13,x5,13,13,13,00
13,x1,13,13,13,x5,13,13,x8,00
13,x1,13,13,13,x5,13,13,13,00
13,13,13,13,13,x5,13,13,x8,00
13,13,13,13,13,x5,13,13,13,00
00,x1,x2,x3,13,13,x6,x7,x8,00
00,x1,x2,x3,13,13,x6,x7,13,13
00,13,x2,x3,13,13,x6,x7,x8,00
00,13,x2,x3,13,13,x6,x7,13,13
00,x1,13,x3,13,13,x6,x7,x8,00
00,x1,13,x3,13,13,x6,x7,13,13
00,13,13,x3,13,13,x6,x7,x8,00
00,13,13,x3,13,13,x6,x7,13,00
00,x1,x2,x3,13,13,x6,13,x8,00
00,x1,x2,x3,13,13,x6,13,13,13
00,13,x2,x3,13,13,x6,13,x8,13
00,13,x2,x3,13,13,x6,13,13,00
00,x1,13,x3,13,13,x6,13,x8,13
00,x1,13,x3,13,13,x6,13,13,00
00,13,13,x3,13,13,x6,13,x8,00
00,13,13,x3,13,13,x6,13,13,00
13,x1,x2,x3,13,13,x6,x7,x8,00
13,x1,x2,x3,13,13,x6,x7,13,00
13,13,x2,x3,13,13,x6,x7,x8,00
13,13,x2,x3,13,13,x6,x7,13,00
13,x1,13,x3,13,13,x6,x7,x8,00
13,x1,13,x3,13,13,x6,x7,13,00
13,13,13,x3,13,13,x6,x7,x8,00
13,13,13,x3,13,13,x6,x7,13,00
13,x1,x2,x3,13,13,x6,13,x8,00
13,x1,x2,x3,13,13,x6,13,13,00
13,13,x2,x3,13,13,x6,13,x8,00
13,13,x2,x3,13,13,x6,13,13,00
13,x1,13,x3,13,13,x6,13,x8,13
13,x1,13,x3,13,13,x6,13,13,00
13,13,13,x3,13,13,x6,13,x8,00
13,13,13,x3,13,13,x6,13,13,00
00,x1,x2,13,13,13,x6,x7,x8,00
00,x1,x2,13,13,13,x6,x7,13,13
00,13,x2,13,13,13,x6,x7,x8,13
00,13,x2,13,13,13,x6,x7,13,00
00,x1,13,13,13,13,x6,x7,x8,13
00,x1,13,13,13,13,x6,x7,13,00
00,13,13,13,13,13,x6,x7,x8,00
00,13,13,13,13,13,x6,x7,13,00
00,x1,x2,13,13,13,x6,13,x8,13
00,x1,x2,13,13,13,x6,13,13,00
00,13,x2,13,13,13,x6,13,x8,00
00,13,x2,13,13,13,x6,13,13,00
00,x1,13,13,13,13,x6,13,x8,00
00,x1,13,13,13,13,x6,13,13,00
00,13,13,13,13,13,x6,13,x8,00
00,13,13,13,13,13,x6,13,13,00
13,x1,x2,13,13,13,x6,x7,x8,00
13,x1,x2,13,13,13,x6,x7,13,00
13,13,x2,13,13,13,x6,x7,x8,00
13,13,x2,13,13,13,x6,x7,13,00
13,x1,13,13,13,13,x6,x7,x8,00
13,x1,13,13,13,13,x6,x7,13,00
13,13,13,13,13,13,x6,x7,x8,00
13,13,13,13,13,13,x6,x7,13,00
13,x1,x2,13,13,13,x6,13,x8,00
13,x1,x2,13,13,13,x6,13,13,00
13,13,x2,13,13,13,x6,13,x8,00
13,13,x2,13,13,13,x6,13,13,00
13,x1,13,13,13,13,x6,13,x8,00
13,x1,13,13,13,13,x6,13,13,00
13,13,13,13,13,13,x6,13,x8,00
13,13,13,13,13,13,x6,13,13,00
00,x1,x2,x3,13,13,13,x7,x8,00
00,x1,x2,x3,13,13,13,x7,13,13
00,13,x2,x3,13,13,13,x7,x8,13
00,13,x2,x3,13,13,13,x7,13,00
00,x1,13,x3,13,13,13,x7,x8,13
00,x1,13,x3,13,13,13,x7,13,00
00,13,13,x3,13,13,13,x7,x8,00
00,13,13,x3,13,13,13,x7,13,00
00,x1,x2,x3,13,13,13,13,x8,13
00,x1,x2,x3,13,13,13,13,13,00
00,13,x2,x3,13,13,13,13,x8,00
00,13,x2,x3,13,13,13,13,13,00
00,x1,13,x3,13,13,13,13,x8,00
00,x1,13,x3,13,13,13,13,13,00
00,13,13,x3,13,13,13,13,x8,00
00,13,13,x3,13,13,13,13,13,00
13,x1,x2,x3,13,13,13,x7,x8,00
13,x1,x2,x3,13,13,13,x7,13,00
13,13,x2,x3,13,13,13,x7,x8,00
13,13,x2,x3,13,13,13,x7,13,00
13,x1,13,x3,13,13,13,x7,x8,00
13,x1,13,x3,13,13,13,x7,13,00
13,13,13,x3,13,13,13,x7,x8,00
13,13,13,x3,13,13,13,x7,13,00
13,x1,x2,x3,13,13,13,13,x8,00
13,x1,x2,x3,13,13,13,13,13,00
13,13,x2,x3,13,13,13,13,x8,00
13,13,x2,x3,13,13,13,13,13,00
13,x1,13,x3,13,13,13,13,x8,00
13,x1,13,x3,13,13,13,13,13,00
13,13,13,x3,13,13,13,13,x8,00
13,13,13,x3,13,13,13,13,13,00
00,x1,x2,13,13,13,13,x7,x8,13
00,x1,x2,13,13,13,13,x7,13,00
00,13,x2,13,13,13,13,x7,x8,00
00,13,x2,13,13,13,13,x7,13,00
00,x1,13,13,13,13,13,x7,x8,00
00,x1,13,13,13,13,13,x7,13,00
00,13,13,13,13,13,13,x7,x8,00
00,13,13,13,13,13,13,x7,13,00
00,x1,x2,13,13,13,13,13,x8,00
00,x1,x2,13,13,13,13,13,13,00
00,13,x2,13,13,13,13,13,x8,00
00,13,x2,13,13,13,13,13,13,00
00,x1,13,13,13,13,13,13,x8,00
00,x1,13,13,13,13,13,13,13,00
00,13,13,13,13,13,13,13,x8,00
00,13,13,13,13,13,13,13,13,00
13,x1,x2,13,13,13,13,x7,x8,00
13,x1,x2,13,13,13,13,x7,13,00
13,13,x2,13,13,13,13,x7,x8,00
13,13,x2,13,13,13,13,x7,13,00
13,x1,13,13,13,13,13,x7,x8,00
13,x1,13,13,13,13,13,x7,13,00
13,13,13,13,13,13,13,x7,x8,00
13,13,13,13,13,13,13,x7,13,00
13,x1,x2,13,13,13,13,13,x8,00
13,x1,x2,13,13,13,13,13,13,00
13,13,x2,13,13,13,13,13,x8,00
13,13,x2,13,13,13,13,13,13,00
13,x1,13,13,13,13,13,13,x8,00
13,x1,13,13,13,13,13,13,13,00
13,13,13,13,13,13,13,13,x8,00
13,13,13,13,13,13,13,13,13,00

#collision perma-kill (prevents worm from moving right after collision)
w1,s1,s2,w2,w3,a1,f1,f2,11,00
w1,s1,s2,w2,w3,a1,f1,11,f2,00
w1,s1,s2,w2,w3,a1,11,f1,f2,00
#
w1,s1,w2,w3,00,a1,f1,f2,11,00
w1,s1,w2,w3,00,a1,f1,11,f2,00
w1,s1,w2,w3,00,a1,11,f1,f2,00
#photon to charge (how worms will absorb photons)
04,S1,S2,w1,a1,13,a2,w2,S3,06
04,s1,s2,04,w1,06,w2,w3,a1,06
06,w1,w2,w3,S1,S2,S3,w4,w5,04
#excess charge filter (prevents worms from "exploding")
w1,w2,s1,06,09,w4,s2,W2,10,04
w1,w2,s1,06,w3,w4,s2,W2,W3,04
06,s1,s2,06,w2,w3,w4,w5,s3,04
#outside signal (preserves gene from outside of stream)
w1,w2,07,S1,S2,S3,S4,S5,w3,00
w1,w2,07,S1,S2,S3,S4,S5,00,00
w1,w2,w3,S1,S2,S3,S4,S5,S6,w1
#signal backflow decay (prevents signal from moving back and forth)
w1,a1,s1,w2,a2,s2,a3,a4,a5,07
w1,s1,a1,w2,a3,s2,a4,a5,a6,07
#w1,s1,a1,w2,s2,a2,a3,a4,a5,07
#signal movement
w1,w2,a1,a2,a3,a4,a5,w3,s1,w2
w1,w2,a1,a2,a3,a4,a5,s1,a6,w2
w1,w2,a1,a2,a3,a4,a5,a6,s1,w2
#decay/worm retract
w1,08,a1,a2,a3,a4,a5,a6,a7,07
w1,a1,08,a2,a3,a4,a5,a6,a7,07
w1,a1,a2,a3,a4,a5,a6,a7,a8,00
07,a1,a2,a3,a4,a5,a6,a7,a8,00
s1,W1,a1,W2,a3,W3,a4,W4,a5,00
09,W1,W2,W3,W4,W5,W6,W7,W8,00
10,W1,a1,W2,a3,W3,a4,W4,a5,00
11,a1,a2,a3,a4,a5,a6,a7,a8,00
#test
#00,00,00,08,07,08,00,00,00,09
#08,00,00,00,00,07,08,00,00,04
@COLORS
00 0 0 0
01 255 098 0
02 255 0 0
03 0 255 0
04 0 0 255
05 0 0 180
06 0 0 090
07 220 100 0
08 75 75 75
09 100 100 100
10 125 125 125
11 255 070 0
12 255 200 0
13 255 230 0
14 180 180 90

@ICONS

XPM

/* width height num_colors chars_per_pixel */
"7 49 2 1"
/* colors */
"o c #000000"
". c #FFFFFF"
/*state 1 */
"......."
".oooo.."
".o....."
".ooo..."
".o....."
".oooo.."
"......."
/*state 2 */
"......."
".o....."
".o....."
".o....."
".o....."
".oooo.."
"......."
/*state 3 */
"......."
".ooo..."
".o..o.."
".ooo..."
".o..o.."
".o..o.."
"......."
/* state 4 */
"......."
".oooo.."
".o....."
".ooo..."
".o....."
".o....."
"......."   
/* state 5 */
"......."
".ooo..."
".o..o.."
".o..o.."
".o..o.."
".ooo..."
"......."
/* state 6 */
"......."
"..ooo.."
".o....."
".o....."
".o....."
"..ooo.."
"......."
/* all other states */
"......."
"......."
"......."
"......."
"......."
"......."
"......."


It has the fun effect that there are two very different types of organisms -- worms and state-13 plankton -- and they interact nontrivially to form an ecosystem.
What do you do with ill crystallographers? Take them to the mono-clinic!
User avatar
calcyman
 
Posts: 2072
Joined: June 1st, 2009, 4:32 pm

Re: Complexity in loop rules?

Postby toroidalet » March 31st, 2018, 11:03 pm

c/2 (trivial) worm gun which can be made to oscillate at any period of 33n (by adding more signals) and can fire different length c/2 worms:
x = 79, y = 44, rule = WormLoop-pre3
.2H$H2DH$H2DH$.2H11$13.M.2M.M2.2M2.M.2M.M15$48.M.2M.M2.2M2.M.2M.M5$.
2H$H2DH$H2DH$.2H19.12DI$21.13DA$21.14H$76.2H$75.H2DH$75.H2DH$76.2H!

it probably could've been reduced but it's late where i am.
it also probably could be made to fire nontrivial worms.
also thanks for using B2cek3q4-i/S13ck4k or some variant of it
"Build a man a fire and he'll be warm for a day. Set a man on fire and he'll be warm for the rest of his life."

-Terry Pratchett
User avatar
toroidalet
 
Posts: 998
Joined: August 7th, 2016, 1:48 pm
Location: my computer

Re: Complexity in loop rules?

Postby calcyman » April 1st, 2018, 9:17 am

toroidalet wrote:c/2 (trivial) worm gun which can be made to oscillate at any period of 33n (by adding more signals) and can fire different length c/2 worms:
x = 79, y = 44, rule = WormLoop-pre3
.2H$H2DH$H2DH$.2H11$13.M.2M.M2.2M2.M.2M.M15$48.M.2M.M2.2M2.M.2M.M5$.
2H$H2DH$H2DH$.2H19.12DI$21.13DA$21.14H$76.2H$75.H2DH$75.H2DH$76.2H!

it probably could've been reduced but it's late where i am.
it also probably could be made to fire nontrivial worms.
also thanks for using B2cek3q4-i/S13ck4k or some variant of it


Thanks for the worm gun! I thought that B2cek3q4-i/S13ck4k was a particularly good choice of rule because of the large p33 that's easy to move around.
What do you do with ill crystallographers? Take them to the mono-clinic!
User avatar
calcyman
 
Posts: 2072
Joined: June 1st, 2009, 4:32 pm

Previous

Return to Other Cellular Automata

Who is online

Users browsing this forum: FWKnightship and 4 guests