ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Thread for basic non-CGOL questions

For discussion of other cellular automata.

Re: Thread for basic non-CGOL questions

Postby GUYTU6J » September 4th, 2016, 12:20 am

Rocknlol wrote:
My guess is that it's quadratic.



Quadratic sawtooth?
Welcome to share your ideas about
etymology of names!
User avatar
GUYTU6J
 
Posts: 347
Joined: August 5th, 2016, 10:27 am
Location: outside Plain of Life

Re: Thread for basic non-CGOL questions

Postby Bullet51 » September 4th, 2016, 1:49 am

GUYTU6J wrote:
Rocknlol wrote:
My guess is that it's quadratic.



Quadratic sawtooth?


No, because it tends to infinity.

EDIT: In fact, the population quickly stabilizes:
3125.png
3125.png (10.65 KiB) Viewed 2192 times

But there are some issues on the NW edge:
2.png
Red represents chaotic borders, and white represents stable borders.
2.png (6.48 KiB) Viewed 2192 times
Still drifting.
Bullet51
 
Posts: 389
Joined: July 21st, 2014, 4:35 am

Re: Thread for basic non-CGOL questions

Postby shouldsee » September 30th, 2016, 4:29 am

Bullet51 wrote:
GUYTU6J wrote:
Rocknlol wrote:
My guess is that it's quadratic.



Quadratic sawtooth?


No, because it tends to infinity.

EDIT: In fact, the population quickly stabilizes:
3125.png

But there are some issues on the NW edge:
2.png


Shall we seek a relation between initial size and generation took to stabilise it?

Also, can we decompose Diamoeba(B35678/S5678) into two alternative conjugative rules,(i.e. inverse to each other), given its promising edge activity?
shouldsee
 
Posts: 376
Joined: April 8th, 2016, 8:29 am

Re: Thread for basic non-CGOL questions

Postby Bullet51 » September 30th, 2016, 6:10 am

shouldsee wrote:Shall we seek a relation between initial size and generation took to stabilise it?

Perhaps not, since there are some soups which grows indefinitely.

shouldsee wrote:Also, can we decompose Diamoeba(B35678/S5678) into two alternative conjugative rules,(i.e. inverse to each other), given its promising edge activity?


I'm sorry that I didn't get the idea of "alternative conjugate rules decomposition".
Still drifting.
Bullet51
 
Posts: 389
Joined: July 21st, 2014, 4:35 am

Re: Thread for basic non-CGOL questions

Postby shouldsee » September 30th, 2016, 6:15 am

Bullet51 wrote:
shouldsee wrote:Shall we seek a relation between initial size and generation took to stabilise it?

Perhaps not, since there are some soups which grows indefinitely.

shouldsee wrote:Also, can we decompose Diamoeba(B35678/S5678) into two alternative conjugative rules,(i.e. inverse to each other), given its promising edge activity?


I'm sorry that I didn't get the idea of "alternative conjugate rules decomposition".


1. small soups might stabilise quickly?

2. The question can be reformulated as: Can we find a B/S rule, that exhibit dynamics identical to Diamoeba , when run with invert_advance.py
shouldsee
 
Posts: 376
Joined: April 8th, 2016, 8:29 am

Re: Thread for basic non-CGOL questions

Postby shouldsee » October 2nd, 2016, 5:29 am

Anyway remeber a B-0 rule with similar dynamics?
x = 199, y = 181, rule = B01234678/S45
107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$
107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$88o2b
17o88b2o$85obo2bob16o85bob2obo$88ob2ob15o88bo2bo$30o54b6o2b99o6b2o$30o
54b3o5b99o3b5o$30o55b3ob103o3bo$30o60bob105obo$30o56bob3ob101obo3bo$
30o55b2o4b101o2b4o$30o55b2o5b100o2b5o$30o54bo4bo2b99ob4ob2o$30o56b2obo
b102o2bobo$30o54bo3b2o2b99ob3o2b2o$30o54b4obob100o4bobo$30o56bob2ob
102obo2bo$30o55b3o3b101o3b3o$30o56bo2b104ob2o$30o55b2o2b2ob100o2b2o2bo
$30o57b107o$30o54b2ob3o2b99o2bo3b2o$30o54bobob103obobo$30o54b3o3bob99o
3b3obo$30o57b2o2b103o2b2o$30o54b3ob3ob99o3bo3bo$30o54bob3o2b100obo3b2o
$30o54b2o6b99o2b6o$30o54b3obobob99o3bobobo$30o54b2ob2o3b99o2bo2b3o$30o
54b4ob2ob99o4bo2bo$30o55bo2bo2b101ob2ob2o$30o55b2ob2o2b100o2bo2b2o$30o
54b2o6b99o2b6o$30o54b2ob4ob99o2bo4bo$30o55b2ob2ob101o2bo2bo$30o56bo2b
2ob101ob2o2bo$30o58bo3b103ob3o$30o54bobobo3b99obobob3o$30o54b3o5b99o3b
5o$30o54b4ob2ob99o4bo2bo$30o54bo5b101ob5o$30o55b2o3bob100o2b3obo$30o
54b2ob3o2b99o2bo3b2o$30o57b2obob102o2bobo$30o55bo2b3ob100ob2o3bo$30o
57bo4b102ob4o$30o54b2obo2b101o2bob2o$30o56bo2b2ob101ob2o2bo$30o54b4ob
102o4bo$30o54b5o3b99o5b3o$30o56bob105obo$30o55bo2bo3b100ob2ob3o$30o56b
o2bo2b101ob2ob2o$30o54b4ob102o4bo$30o54b2ob104o2bo$30o54bob2obob100obo
2bobo$30o54bo2b2obob99ob2o2bobo$30o56b107o$30o54bobob2o2b99obobo2b2o$
30o55bob105obo$30o59b107o$30o55bobo2bob100obob2obo$30o55b3ob103o3bo$
30o56b3o3b101o3b3o$30o56bo2b104ob2o$30o54b3obo2b100o3bob2o$30o55bob2o
3b100obo2b3o$30o54b3obob101o3bobo$30o54bobo3b101obob3o$30o59b2ob104o2b
o$30o56b2obo2b101o2bob2o$30o56bo3b103ob3o$30o55b4ob102o4bo$30o54b2o4bo
b99o2b4obo$30o54b2ob4ob99o2bo4bo$30o56bo4b102ob4o$30o56b107o$30o54bobo
b2ob100obobo2bo$30o54bo4b2ob99ob4o2bo$30o58bo3b103ob3o$30o54b107o$30o
56b3obob101o3bobo$30o54b2ob2obob99o2bo2bobo$30o54b2o2b2ob100o2b2o2bo$
30o54bob2o2bob99obo2b2obo$30o55b2obobob100o2bobobo$30o59bob105obo$85ob
ob2o2b15o85bobo2b2o$84ob2o5b15o84bo2b5o$86o3bo2b15o86b3ob2o$84o3b2o2b
16o84b3o2b2o$84o2b4ob16o84b2o4bo$107o$107o$107o$107o$107o$107o$107o$
107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$
107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$
107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$
107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o!


One candidate is B3/S145678

x = 199, y = 181, rule = B3/S145678
107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$
107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$88o2b
17o88b2o$85obo2bob16o85bob2obo$88ob2ob15o88bo2bo$30o54b6o2b99o6b2o$30o
54b3o5b99o3b5o$30o55b3ob103o3bo$30o60bob105obo$30o56bob3ob101obo3bo$
30o55b2o4b101o2b4o$30o55b2o5b100o2b5o$30o54bo4bo2b99ob4ob2o$30o56b2obo
b102o2bobo$30o54bo3b2o2b99ob3o2b2o$30o54b4obob100o4bobo$30o56bob2ob
102obo2bo$30o55b3o3b101o3b3o$30o56bo2b104ob2o$30o55b2o2b2ob100o2b2o2bo
$30o57b107o$30o54b2ob3o2b99o2bo3b2o$30o54bobob103obobo$30o54b3o3bob99o
3b3obo$30o57b2o2b103o2b2o$30o54b3ob3ob99o3bo3bo$30o54bob3o2b100obo3b2o
$30o54b2o6b99o2b6o$30o54b3obobob99o3bobobo$30o54b2ob2o3b99o2bo2b3o$30o
54b4ob2ob99o4bo2bo$30o55bo2bo2b101ob2ob2o$30o55b2ob2o2b100o2bo2b2o$30o
54b2o6b99o2b6o$30o54b2ob4ob99o2bo4bo$30o55b2ob2ob101o2bo2bo$30o56bo2b
2ob101ob2o2bo$30o58bo3b103ob3o$30o54bobobo3b99obobob3o$30o54b3o5b99o3b
5o$30o54b4ob2ob99o4bo2bo$30o54bo5b101ob5o$30o55b2o3bob100o2b3obo$30o
54b2ob3o2b99o2bo3b2o$30o57b2obob102o2bobo$30o55bo2b3ob100ob2o3bo$30o
57bo4b102ob4o$30o54b2obo2b101o2bob2o$30o56bo2b2ob101ob2o2bo$30o54b4ob
102o4bo$30o54b5o3b99o5b3o$30o56bob105obo$30o55bo2bo3b100ob2ob3o$30o56b
o2bo2b101ob2ob2o$30o54b4ob102o4bo$30o54b2ob104o2bo$30o54bob2obob100obo
2bobo$30o54bo2b2obob99ob2o2bobo$30o56b107o$30o54bobob2o2b99obobo2b2o$
30o55bob105obo$30o59b107o$30o55bobo2bob100obob2obo$30o55b3ob103o3bo$
30o56b3o3b101o3b3o$30o56bo2b104ob2o$30o54b3obo2b100o3bob2o$30o55bob2o
3b100obo2b3o$30o54b3obob101o3bobo$30o54bobo3b101obob3o$30o59b2ob104o2b
o$30o56b2obo2b101o2bob2o$30o56bo3b103ob3o$30o55b4ob102o4bo$30o54b2o4bo
b99o2b4obo$30o54b2ob4ob99o2bo4bo$30o56bo4b102ob4o$30o56b107o$30o54bobo
b2ob100obobo2bo$30o54bo4b2ob99ob4o2bo$30o58bo3b103ob3o$30o54b107o$30o
56b3obob101o3bobo$30o54b2ob2obob99o2bo2bobo$30o54b2o2b2ob100o2b2o2bo$
30o54bob2o2bob99obo2b2obo$30o55b2obobob100o2bobobo$30o59bob105obo$85ob
ob2o2b15o85bobo2b2o$84ob2o5b15o84bo2b5o$86o3bo2b15o86b3ob2o$84o3b2o2b
16o84b3o2b2o$84o2b4ob16o84b2o4bo$107o$107o$107o$107o$107o$107o$107o$
107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$
107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$
107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$
107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o$107o!


Expanding ones
x = 272, y = 256, rule = B34/S01245678
140b4o$138bob6o$137bob7o$136bob9o$131b2ob2ob4ob8o$131b21o$129b10ob14o$
128bob2ob21o$129b26o$123bobob31o$121b39o$119b43o$119b43o$117b46o$115b
46ob3o$113b25ob21ob4o$113b20ob32o$112b21o2b32o$111bob21ob25ob4obo$109b
50ob9o$108b9ob2ob4ob12ob15ob16o$108b4ob10ob11ob8ob7ob20o$103bo2b13ob
12ob14ob8ob17o$103b2ob5ob5ob34ob21o$102b11ob41ob14ob3o$99b7ob51ob18o$
99b4ob57ob15o$98b66ob5ob7o$95bob70ob11o$93b4ob5ob66o2b2obob2obo$93b80o
b5obob3o$92b84ob5obo2bo$89b90ob6o$89b93ob3o$88b96ob7o$84b102ob7o$84b
105ob6o$82b114o$80b117o$78b121o$76b125o$76b127o$74b129o$72b133o$72b
135o$70b139o$68b141o$66b144o$64b149o$62b153o$60b157o$60b159o$58b160o$
56b162obo$54b167o$54b170o$53b164ob7o$50b176o$50b177o$49b164ob3ob9o$46b
183o$44b185o$44b169o3b14o$42b189o$40b171o2b20o$38b196o$38b196o$37b175o
b23o$34b202o$34b203o$33b180obob6ob12obo$30b208o$29b5ob180ob25o$29b5ob
15ob3ob159obob12ob12o$28b31ob182o$28b6o2b13ob5ob5ob75ob9ob6ob60ob27o$
27b5ob16ob85ob17ob61obob26o$27b7ob16o2b6ob75ob11ob25ob45ob25o$25b10ob
4ob12ob8ob84obo2bo2b91o$25b12ob12ob2obob11ob67ob17ob3ob15ob42ob29o$24b
18ob8ob16ob66ob14ob7ob14ob72o$24b14o2b13ob93ob4ob2ob6ob3obobob18ob5ob
51o$24b32ob4ob75ob3ob3ob4obob2ob7ob2ob3ob4ob11ob5ob23obob27o$23b16ob2o
b20ob4ob96ob2ob4ob24ob50o$21b115ob4ob3ob2ob2ob15obob17ob7ob23ob8ob20o$
21b19ob28ob66ob11ob2obob15ob27ob20obob29o$20b23ob25o2b65ob4o2b10ob34ob
2o3bob54o$20b40ob79o2b47ob5ob23ob3ob27o$20b45ob11o2b111obob26obob29o$
20b41o2b8ob68obob38ob9ob9ob21obob26o$17b42ob3ob74ob50ob62o$16b4ob45o2b
9ob8ob53ob33ob45ob4o2b26o$16b56ob2ob59ob2ob51o2b61o$14b31ob18ob2ob12ob
9ob15ob10ob2ob42ob90o$14b7ob22ob24ob6ob4obob13ob10ob25ob25ob60obob3ob
26o$13b32ob4ob37ob4o2b3ob18ob6ob5ob3ob27ob8ob7ob20ob24o2bobobob22o$13b
9ob22obob2obob24ob8ob5ob5ob12ob7ob2ob2ob5obob26ob18ob10obob30ob31o$12b
57o2bob5o2b3ob4ob5ob4ob15ob6ob7obob30ob58ob33o$12b54ob2ob10ob28ob14ob
3ob2ob23o2bo2b13ob51ob30o$11b11ob50ob5ob2ob11obob17o2b2ob2ob6obob40ob
65ob19o$11b64o2b2o2b17ob18obob3ob3obob25ob36ob30obob9ob21o$9b61ob2ob3o
b3ob10ob2ob9ob7ob3ob5ob3ob30ob99o$9b38ob3ob19ob2ob44ob7ob3ob126o$8b72o
bob12obob4ob2ob7ob6ob11ob3ob59ob61o$8b40obob50ob19o2bob6ob3obob33ob3ob
15ob4ob27ob35o$7b89ob6ob18ob4ob3ob10ob5ob24ob19o3b36ob26o$7b35obo2b6ob
54ob9ob3ob3ob4ob2obob6ob5o2b2ob39ob7ob28ob29obo$6b40o3b2obob49obob10ob
5ob4ob2o2b6o2bob7ob4ob39ob30o2b35o$6b44obob28ob14ob7obob14ob13o2bob8o
3b5o2b2ob19ob16obob61ob2o$6b57ob37obob9ob3o2bo2bob6ob9ob4ob4ob6ob14ob
91o$5b39ob2o2b13ob31o2b9ob8o2b10obobo3b2ob2ob3ob5ob4obob41ob2ob27ob34o
$3b39ob3ob31obob15obob5o2b18obob7ob2ob2ob4ob10obobob31ob33ob37o$3b41ob
2ob4ob11o2b50ob2ob3o2b3ob7ob5o6bob3o2b9ob28ob5ob64o$2b45o2b13obob46ob
8ob2ob2ob4ob5ob2ob9o2b2obob2ob33ob35ob35o$2b43ob7ob7obob2o3b29ob3obob
7obo2bob8ob10o3bob3ob12ob6ob8ob52ob37o$b40o2b70ob5obob6ob8obob3obo2bob
ob6ob6obob99o$b42obob2ob3ob13ob2ob27ob21o2b2ob5o2bo2b12ob7o2b3ob3ob66o
b35o$32ob13ob67ob2obobobob4ob5o2b4ob6ob2ob6ob4ob12ob18obob63ob6o$31obo
b7ob8ob12ob54ob7o2b2obob8o2bobobobob2obob5ob67ob36o$b29ob3ob24ob7ob33o
2bob11obobobob5ob5ob3ob3ob6ob2ob7ob15ob16ob4ob62ob3ob2o$2b27ob2ob6ob7o
bob10ob2o2bob17ob7ob6ob5ob9o2b3ob2o2b5ob3obob4ob8ob3obobo2b36o2bobob
61obob2o$2b26ob2ob3o2b26ob2ob25o2b6ob5ob11ob9ob7ob3ob5o2bob9ob23ob85o$
2b32ob2ob11obob6ob6ob14ob13o4b9ob4o2bobob3ob2obob5ob9ob2ob5o2bo2bob70o
b33ob6o$3b48obo2b19o2b12ob3ob7ob18o2bo3b2o2b4ob19ob2ob3o2b22ob44ob40o$
3b15o3b10ob21ob2ob14ob4ob2ob20ob7o3b6o2b7ob2obob2obobobob2ob3ob3ob8ob
68ob40o$3b29ob6ob31o3b4ob41ob4ob5ob4ob3ob5ob2obob119o$4b29ob2ob3ob37ob
o2b26ob2o2b2obob2obo2b4ob5ob3ob3o2b8obob3obob25o2b75ob7o$4b30ob4obob
16ob10ob2ob31obob4ob2ob2ob3obob9ob5o2b6ob4ob10o2b20ob6ob3ob48ob16ob9o$
6b32obobob12o2b12ob3o3b2o2bo2b17ob6ob3ob3ob2o3b3ob3ob4obo2bob6ob6ob2ob
6ob44ob64o$6b30ob6ob26obob10ob15obob4ob15ob5ob3ob2ob5ob7ob7ob3ob22ob4o
b41obob27ob8o$7b50ob11ob6ob7ob21o2b4ob2o2b5o3b2ob9ob5ob2o2bobobobo2bob
41obob30ob35o$7b37ob8o2b3ob7o2b3ob3ob2ob22o4b4obob7ob3ob6ob2o2bob4ob4o
b4ob4ob45obob64o$8b15ob46ob14ob19ob2ob3obob2ob3ob3obob8ob2ob4obo2b19ob
15o2b11ob34obob27ob7o$8b48ob2ob8obobob4ob22obob15ob2obob7obob5ob2o2b3o
b4o2bobob3ob4ob19ob16ob24ob39o$10b27ob35ob4ob20ob4ob11ob8o2b9ob2ob2ob
2ob2obob4o2bobob4ob29ob38ob25o2b6o$9bob34ob19o2b38o4bobobo4b2ob2ob6ob
3ob3ob2ob4ob17ob9ob8o2b49ob3ob27o$10bob11ob45ob4ob4ob40obob10ob10ob3o
2bo3b2ob6ob39obob28obob2ob22ob3o$10b2ob11ob12ob18ob5ob2obob23ob32ob3ob
2ob2o2b2ob2obob2ob11ob3ob19o2bob9ob7ob28ob31o$12bob9ob2o2bobobob3o2b
13ob12ob20ob19ob11obobob3o2b2ob7ob4obob4o2b2o2b5ob25ob12obob34o2b23o$
11b3ob5ob5ob8obob28ob17ob31ob3ob9ob2ob4ob9ob3ob2ob18ob19obob34ob4obob
21o2bo$14bob6ob21o3b4ob23ob5ob24obob4ob8obob3obob5o2bobobob5ob4ob3o3b
20o2b3ob8ob35ob7ob22o$12b2o2b22ob3ob30ob13ob26o2bob2ob4ob8ob18ob2ob41o
b31obob28o$14bo3b39ob12o2b10o2b21o3b11ob9ob13ob3ob4ob3ob3ob14ob8ob3o3b
49ob20o$13b36o2b2obob14ob3ob34ob8ob9ob11ob2ob9ob27o2b6ob39ob3ob28o$14b
4o4b19ob11ob21ob44ob6ob12ob4o2b9ob82obob19o$15b4ob6ob4ob35ob37o2b14ob
6ob12ob2ob35o2bob21ob54o$15b11ob4o2b16ob3obo2b19ob52ob4ob4ob3ob8obob
32ob16ob23ob4ob27o$16b15ob18obo2b12ob2ob33o2b35obob15ob79ob21o$17b28ob
o3b7ob28obob12ob4ob5ob16obo2b10ob10ob2ob21ob22ob37ob18o$16b10obobobob
32ob2ob2ob14ob13ob3ob10ob27ob83ob14ob15o$15b16ob3ob4ob11ob4o2b27ob15ob
15ob8ob2ob12obob6obo2b5ob2ob21ob46ob3ob20o$16b4obobo2b15ob25ob2obob16o
b19ob20ob10ob9ob5ob2o2b16o2bob2ob54ob16o$16b6ob19ob31ob12ob26o2bo2b6ob
o2bob9ob4ob4ob2obo2b30ob38ob14obob12o$17b4ob18o2bob32ob28ob18obob2ob9o
b8obo2b10ob2ob23ob2ob43o2b5ob11o$17b5obob19ob14ob12ob17ob24ob13ob8ob9o
b3ob34ob18ob31ob16o$19b6ob13ob34ob2ob48ob3ob6ob13ob10o2b15o2bob6ob4ob
9ob20ob12o2b14o$19bob24ob12ob60ob3ob2ob2ob6ob13ob27ob3obob69o$20b50ob
20ob28ob7ob8ob11ob16ob19ob45ob2ob17o$19b11ob7ob33ob11ob36ob3ob2o2b5ob
12ob28ob5o2bob12ob4ob19ob28o$19b14obob34ob10ob52ob12ob39ob12ob29ob5ob
14o$20b14ob24ob73ob12ob30ob7ob2ob62o$20b11ob2ob24ob23ob49o2b10ob36o2b
5ob33o2b3ob21o$21b9ob5o2b20obob74ob8ob42ob62o$21b51ob6ob56ob6ob60ob21o
b21o$22b24ob21ob2ob11ob51ob6ob80o2b23o$22b47o2b64obob3ob44ob60o$23b7ob
27ob20ob114ob27o2bob21o$23b16ob5ob14ob6ob128ob31ob17o$24b16ob5ob10ob2o
b141ob27ob15o$24b11ob5ob4ob14ob52ob2ob103ob23o$25b14o2b2o3bob59ob3ob
121ob9o$27b4ob70ob2ob96ob25ob5ob7o$29b8ob6ob14ob2ob37ob119ob21o$30b12o
b4ob11ob38ob141o$31b8obo2b2ob16ob33ob122ob14ob5o$31b17ob42ob147o$32b
27o2b5ob7ob3ob6ob3ob128ob16ob3o$32b9ob17ob160ob17o$34b3obob9ob186o$34b
o2b180ob18o$36b4obob21ob169o$38b12ob17ob165o$38b24ob5ob2ob144o2b15o$
37b19ob16ob4ob128ob25o$38b33ob4obob2ob122ob12ob13o$38b6ob4ob34ob116ob
6ob2ob8ob2ob2ob2obo$39b36ob2ob8ob110ob31o$39b44ob5ob4ob100ob23ob8o$40b
9ob37ob8ob101obob19o2b2ob2o$40b45ob13ob90ob4o2b20obob8o$41b56ob4ob84ob
30ob8o$42b64ob77ob31ob11o$41b3ob56o2b3obob4ob62ob5ob14ob30o$43b65ob2ob
o2b2ob54ob11ob4ob37o$43b62ob5ob4ob4ob41ob6obob4ob6ob31obob8o$43b62ob3o
b6ob6ob37ob15ob7ob40o$45b44ob3ob8ob4ob16ob35ob11ob6ob46o$45b37ob3ob24o
b6ob6ob4ob9ob15ob3ob12ob24ob25o$47b28ob3ob15ob6obob7ob21ob17ob2o2bob
18ob46o$49b47ob3ob32ob24o2b14ob26ob21o$50b80ob2ob13ob63ob10o$51b26ob4o
b2ob10obob12ob7ob3ob20ob58ob16o$51b28o2b4ob2ob53ob40ob20o2b9ob3o$53b
29ob8ob5ob3ob39ob14ob46ob2obob6ob2o$55b22obobobob9ob4o2b40ob36ob11ob
28o$57bo3b18ob2ob7ob3ob2ob41ob6ob4ob53obo2b8o$60bo3b14ob2ob6ob25ob2ob
21o2b10ob26ob37o$64b2ob13ob6obob5ob23ob4ob12o2b7ob4ob63o$63b5ob9ob2ob
5ob5ob3ob19ob2ob3ob2ob18ob2ob57o2b5o$65bob4ob4ob16obobob17ob4ob9ob41ob
35obobo$66b15ob5ob7ob9ob4ob13ob7ob15ob20ob2ob23ob2ob9o$66b28ob2ob19ob
2ob8ob3ob6ob4ob20ob3ob20ob2ob5ob6o$67b13o2b14ob19ob3o2b4ob6ob5ob9ob38o
b2ob2o2bob3ob6o$69b55obob5ob5ob27o3bob11ob3ob22o$71b24ob13ob5ob2ob5ob
12ob36ob9ob8ob4ob8o$73b6o3b11ob10ob2ob25obob4ob27obob14o2b8ob11o$75b8o
b23ob4ob4ob14o2b3ob35ob8ob15ob6o$77b22ob11o2b6ob10ob4ob33o2b27obo2bo$
77b53ob7ob4ob55o$78bo3b30ob16obob6obob2ob13ob13obob4ob19o$79bob28ob2ob
16ob2ob40ob5ob17o$80b53ob7ob16ob16ob18o$80b22ob29obob18ob2ob14ob6ob14o
$80b19ob54obob3ob15ob11ob4o$81b18ob34ob17ob4ob2o2b29o$82b15ob3ob26ob
29ob31o$84b13ob59ob7ob3ob2ob14o$84b21ob50obobob6ob17obo$86b10obob8ob6o
b40o2b11ob8ob5ob2o$88b9ob16obob2ob9ob3ob20ob12ob6ob7obo$90b15ob2ob3ob
8ob31ob2ob3ob10ob10o$92b14ob15ob7ob21obob3ob8ob6ob5o$95b12ob11ob7ob2ob
20o2b7ob17o$96b12ob14ob2ob23ob3ob7ob11obo$96bo4b8ob11ob3o2b2ob19ob2ob
11ob9o$101b2ob6ob29ob8o2b5ob2ob6ob8o$104b2ob16ob7ob12ob9obob7ob9o$105b
13ob2ob20ob3ob5ob2ob3ob13o$105bob18ob7ob8ob12ob5ob8o$107b15ob27o2b17o$
106b21ob7ob16o2b2ob2ob6o2bo$107b27ob16ob2ob2o3b5o$109b20ob24ob2obo$
111b40ob3o2bo$113b18ob24o$115b39o$117b13ob2ob20o$117b17ob17o$120b20ob
9o$122bo2b5obob15o$126b19o$128b7ob8o$129b13obo$130b10o$132b8o$134b4o!
shouldsee
 
Posts: 376
Joined: April 8th, 2016, 8:29 am

Re: Thread for basic non-CGOL questions

Postby toroidalet » October 25th, 2016, 10:59 am

Can someone stabilize the back of this into a 2c/4 spaceship?
x = 5, y = 11, rule = B2e3-a4/S23-a4-a7e
2bo$5o$b3o3$b3o$bobo$3bo$3bo$3bo$3bo!
I have the best signature ever.
User avatar
toroidalet
 
Posts: 751
Joined: August 7th, 2016, 1:48 pm
Location: Somewhere on a planet called "Earth"

Re: Thread for basic non-CGOL questions

Postby BlinkerSpawn » October 25th, 2016, 4:38 pm

toroidalet wrote:Can someone stabilize the back of this into a 2c/4 spaceship?
x = 5, y = 11, rule = B2e3-a4/S23-a4-a7e
2bo$5o$b3o3$b3o$bobo$3bo$3bo$3bo$3bo!

Do you have access to WLS?
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1467
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread for basic non-CGOL questions

Postby FlameandFury » October 25th, 2016, 8:16 pm

Wait, has anyone created a non-totalistic version of WLS? If yes then please link, thanks!
FlameandFury
 
Posts: 90
Joined: May 18th, 2016, 10:07 pm

Re: Thread for basic non-CGOL questions

Postby muzik » October 31st, 2016, 12:30 pm

Is there a name for the classes of small engineered naturally occurring spaceships you sometimes see in other CA, like the slope 3 knightships in tDryLife and the knightship in PedestrianLife?

I've been considering coining the term "Corderoid technology" since these are technically the rules' equivalents of the corderships.
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2595
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Thread for basic non-CGOL questions

Postby BlinkerSpawn » October 31st, 2016, 3:58 pm

muzik wrote:Is there a name for the classes of small engineered naturally occurring spaceships you sometimes see in other CA, like the slope 3 knightships in tDryLife and the knightship in PedestrianLife?

I've been considering coining the term "Corderoid technology" since these are technically the rules' equivalents of the corderships.

In most circumstances, they're just considered to be larger spaceships, but the technical term would be "stabilized puffer engines".
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1467
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread for basic non-CGOL questions

Postby muzik » November 14th, 2016, 4:33 pm

Can there be a non totalistic rule where glider works but snake doesn't?
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2595
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Thread for basic non-CGOL questions

Postby BlinkerSpawn » November 14th, 2016, 5:54 pm

muzik wrote:Can there be a non totalistic rule where glider works but snake doesn't?

I believe it's impossible if every phase of the glider has to be reproduced exactly, but there is this:
x = 9, y = 4, rule = B2c34k/S2-k3
obo4b2o$2o6bo$bo5bo$7b2o!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1467
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread for basic non-CGOL questions

Postby muzik » December 11th, 2016, 9:40 am

Is it possible to program unit cells in normal life to act like the special types of cells in extendedlife?
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2595
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Thread for basic non-CGOL questions

Postby muzik » July 2nd, 2017, 11:34 am

Using MAP rules, are there any 2D replicators that don't conform to the shape of an orthogonal/diagonal square or oblique rhombus?
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2595
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Thread for basic non-CGOL questions

Postby BlinkerSpawn » July 2nd, 2017, 1:09 pm

muzik wrote:Using MAP rules, are there any 2D replicators that don't conform to the shape of an orthogonal/diagonal square or oblique rhombus?

Not really, because replicators in asymmetric rules would be required to create copies in the same orientation as the original so each unit would replicate in the same direction as the original and you'd still retain the grid effect.
Although really a Sierpinski-type formation doesn't fit in either of your original categories so a replicator like that would be a possible exception.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1467
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread for basic non-CGOL questions

Postby dvgrn » July 3rd, 2017, 10:08 am

muzik wrote:Is it possible to program unit cells in normal life to act like the special types of cells in extendedlife?

Not really, depending on what you mean by "program". You could definitely rewire an OTCA metapixel or Calcyman's megacell to run ExtendedLife, but you'd need probably two or three more signal channels to each of the eight neighbors, which is a lot of new circuitry. There's no way for current unit cell mechanisms to signal to neighbors "LIVE!", or "DIE!", or "BE WHATEVER YOU'RE NOT!" (states 2, 3, and 4).

States 5 and 6 ... well, you could call that programming, since it probably amounts to just adding a few eaters in strategic places. But really "hacking" might be a better word -- in the positive sense, I guess. Though you're really just breaking part of the unit cell's normal functionality, turning it into a cancerous unit cell so to speak.
dvgrn
Moderator
 
Posts: 3988
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Thread for basic non-CGOL questions

Postby muzik » July 3rd, 2017, 12:08 pm

Is it possible for a knightship to exhibit glide symmetry for at least he generation in a MAP rule?

Also, I recall there being a clean replicator with some type of displacement value somewhere, but can't remember exactly. It was like this, but without the ash:

x = 3, y = 3, rule = B2a3a/S024
b2o$b2o$o!
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2595
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Thread for basic non-CGOL questions

Postby toroidalet » July 3rd, 2017, 12:15 pm

You meant this one, right?
x = 4, y = 3, rule = B3-e/S2-cn34i
3o$o2bo$o!
I have the best signature ever.
User avatar
toroidalet
 
Posts: 751
Joined: August 7th, 2016, 1:48 pm
Location: Somewhere on a planet called "Earth"

Re: Thread for basic non-CGOL questions

Postby muzik » July 3rd, 2017, 12:22 pm

Not exactly that one, but that definitely works as expected. I think the one I remembered was orthogonal.
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2595
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Thread for basic non-CGOL questions

Postby Rhombic » July 3rd, 2017, 12:48 pm

If you take every 2nd generation from this rule, what rule is it emulating?
x = 162, y = 153, rule = B345678/S01
bo7b3obo5bo2bo2bobo6b4o4bo3b5o3b4o3b4o5bo4bo5b8o2bo3bobobob5ob6obo4bob
o4b3o6bob13o2b4o2b4o$9o2bob11obob2ob3obo2bob2obobo6b3o4b2o6b3ob5ob4obo
bo4bob5o3b2ob3o5bo3bob5ob2obo3bob2ob2obo12b4o2bobobo$9b2obo8bo3bo2bobo
b3ob2obo3bob3ob2o3b3obo2b2o2b2o2b2obo2bo3bobo2b3obo4bob2obobo3bob2o2bo
b3o5bob2ob2o2b4obobob8ob2o4bobobo2b2o$2ob6o3b8o3b3ob3o2b3o2bobob3o3b2o
b5obobobo2b2o3bo2bob2ob2o3b4obob4obo2bobob3ob3o2bobo2bo2bob3o2bo2b2o3b
obobobo4bo5b5obobo2b2o$2bo4bob3o7bobobobo5bo4bo2bobo2b3obob2o4bo3b2o3b
5ob2obo2bobo4bo2b2o2b4obobo3bobo2bobobob2o7bob3o2b3obob2obob2obob3ob2o
bo2b2obobo$2ob3obobo2b3ob2obobo5b4ob2obobo2b3o6bo2b9ob4o3bo5bobo3b3o3b
o2bo4bo3b2obobob2obobo4b5ob2o4b2obobo2b2obobo2b2obob6o3bob2o$o2bob2o2b
obo2bobo2bob6o2bo2bo4b3o3b4o2b4o8bo5bob4ob2obobobo2bobobob5obob3obob3o
2bob2ob3o3bo3b3obo2bobobobobobob2o2b2o6b3ob2o$2ob3ob3ob3obobobobo2bo2b
5ob3o4b5obobo4b2ob5ob5obobob2o3bobo2bobobobo3bob3o3bob2o3b3obo5b2obobo
b2o2b3o2bob2obobo2b2o3b7o5b2o$bobobo9b4o3bo8bobob5o6bo2b3obobo2bo3bo3b
o2b2o2bob2ob2ob2obobobob4o3bo2bo4b2o2bobob3o2bo2b2o3b3o2bobo6bo3bob2o
7b6o$bob3obobob3obo2bob2obob3obobo3bobo3b3obob2ob5obob2obo3b2o2bobobob
ob2obo4bo2bo2bo2b2ob3ob3obob2ob2ob3o4b2o2b4obobob6o2b3o2b2ob2ob3o6bo$o
2bobo7bo2bobo2bobo2bo4bo5bob2o2bobobo2bo2bo2bobob2obobob3o2b2ob3obob3o
2b2obobobobo4bob2o2bo2bo3b2o2b5o2bo2bob3o4bobo2bo2b2o2bob2o2b6obo$4ob
6obob5ob2obob2ob9obob3obo2bo3b2o2b2o2bo3bobo2bobo2bobobobobo2b2o2bo2bo
bob4obo3bob2ob3o4b3o2b2obob3o3b3o3b2ob2obobobo2bob2o3b2obo$obo5bo2bob
2o2bo3bobobobobo8bobob4ob2ob4o2bo2bob3obob4ob2obobo2bobob2o2b4obo3b2ob
o2bo2bobo3b3o2bo4bobob2o2bob2obobo3bobo2bo3bobo2b3o$8ob3o3bobobo3bob2o
bob7o2bo2b3o4bobobob2ob2o2bob2obo2bo3b2o2bo2bo3bobo4bob5obo3b2o2bo3bo
2b2ob2obobo3bob2ob3obob5ob2o3bo2bo2bobob2o$o11bo2b4ob2obobob2obo6b3obo
4b4obobo3bob2o6b2ob5ob2obobobobobob2obobo5b4obob2o2bob2obo3bobo2bob2o
6bobo5bo2b4o3bo3b2obo$obobobobo2b2obobobo2bobobob2obob2o7bob3obob2o2bo
b2o2bob4o4bo6b2obob5obob2obobob4ob3obobo2b2obo2bob3obob2obob5obobo2b2o
bo2bo3b3ob5obo$o9b4o2bo2b4ob2o2bobobob10obo2bobob2o2bo3bo2bob5ob5o2b2o
3b3obob2obobo2b3obobobo2bobo2bobobo4b2o4bob2o3bob3obo2bobob3o3b2o3b2o$
ob6obo5bob2o3bo4bobo2bob2obo2b2o2bobobo2bobo4b2obobob3obobobobobob2obo
4bo2b2ob3obobo3b2ob2o2bob2o3b2ob2o2b3o5b4o5b2ob2obobobo2b4o2bo$obo2bob
ob2ob5o2bo2bobobo2bobo4bo2bo2bobobob3o2b2ob4ob3obobo3bo3bobo3bob4ob2o
2bo4bob4o2bo3b3o2bo2bo2bob2o3b5o4b3ob3obobo4bobobo5bo$2obobo4bobo4b2o
3bo4b2obob4ob2obobob3o3bobo3bobo2bo3bo2b3ob2ob3ob3o2bo5bobob4o5bob2obo
bo3b3o4bo2bo7b2ob2ob3o5b5o2bobob3obo$bobob4o3bobobobob3ob2obo2bo3bo5bo
2b2obob2o2bo2b2o2bobob5obo3bob2obo3bo2bobob3ob2o2bob7ob2ob2obo3b2ob2ob
4o2b2obobo5bob2ob2obo2b3o2bo2bobo$3bobob4o2bobobobo2bobo2b4ob6obob2ob
3ob8o2b2obo3bo2bob2obo2bobobobobo7bob2obobo4bo2bo3bobob2obo3bo4b2o2b2o
bob3obobobobo2b2o3b2obo2bo$3o2b3o2bob2ob3ob2obob4o2bobo4bo2bo4b2o9bobo
b4o2b2ob2obo3bobobo2bob2obobobob2obob2obo2bob3o3bobo3bob4obo2bo5bo2bob
3obob3obob4obobo$2bo4b2obo2bob4o2bo6bo3b2ob2obob3o2bob4obobobobo2bo2bo
bo2bob2obobob2ob3obo6bobobobo2b2o2b3o2b4obob3o7bobobob2o2bo2bobo2b2obo
bo6bobobo$ob4o2bob4o5bob6o2b3ob2o2bo2bob2obobobo5b2obobob2o2b2obobo2bo
bo2b2o3bobob4obobo2b3ob2obo2b2o2bo2bo2bo2b4o2bob3o2bo2b2ob4o3bobob7obo
bo$o4bobobo4b6o5bobobobo2bob4o5bo2bob5o2b2obo2bob3o3bob2o2b3ob2obo5bo
2bo3bo7bobobobobobobob3obo3bo2bo2b2ob2o2b2ob5ob3o5bobobo$4obobob5o6b4o
b3ob5obobo2b4obobo8bo2b2ob3o2bobobobob2obobob8ob3obobobo2bob2obobobob
2o2bo3bo2b6o2bobob2obobo6bo3b2ob2o2bobo$o3bob3o3bobob3o4bobobobobo2b2o
2b2obobobob9obobob2o2bobo3bobo4bobo2bo4bob2o3bobo2bob3ob2o3b2ob3ob3ob
2ob2o4b2obo2bobob6ob4obobobo2b2o$4bobo2b3ob2obobobo2bobo2b2obobo2bo4b
3obobo4bob2ob2ob2obobo2bo2bo2b5ob2ob2o3b2o2b3obobobo3bob2obo2bobo2bob
2obobobob3o3b2obobobobo3bo5bobob3obo$2bobobobo2bo2bob3ob3obob2obo3bobo
b2o3b3obobob5o4bobobo2bo3b2obo5bo2bo2b3obobo2bobobo2bobobo4bobobob2o2b
3ob3obo2bobob2obo2bo2b2obob3obob2o2bobo$obobobob2ob2obobob2o2bo2bobobo
bobob3ob3o4bob2o5b2obobo2b2ob4obobo2b3obob2o3bo2bo3bob2o2bob2ob4obobob
obob2ob2o5b3o2bo2bob3obo3bobob4obob3obo$b2obob2obobob2obo4b2ob2ob2ob2o
2b2o5bob3ob2o3b3ob3obobobo6bob3o2bob4obo3b6o2bobo8bo3bobo2b3obob5o3b2o
b3obo2b6obobobo2b2o3bo$o4bo5b2obob5ob3o3bob4o2b4obobobo3b3o8bo2b4obobo
2bobo2bo4bob4obo2bobobo2b8o2bob2ob2o2b2o2bo4b3o6bob2obo2bobo2b3obo2b4o
$11obobob2o2bobobob2o5b2obo3b2ob3obo2b2obob8o7bobo2bob3obobobo3bobobob
6obobo3bo3bo5b2obo2bob2o3bob4obo3bobo2b2o5b3o$o4bobobob2obob3obobobobo
b5ob2ob3o3bob4o2bo2b2o7b2ob3obobob2o4b2o3bob3o3bo5bobobob3o2bob2ob2o2b
o2b3obob3ob2ob2o3b3ob2o2b5obo2b5o$obob7obobo3bob2obo6bobo2bobo3b3obo2b
3ob2o3b2obo2bobo2bo3b2obobo2bob3obo4bob5o3bo5bo2b2obob3o2b2o6bobob5obo
bo2bobob2o3bobob2ob2o$ob2obo4bo3bob2o4bob9obo2bob2o4b2ob2obo2b2obo5bo
2bob2o2bo2bob2obo6b3o4bo3b2ob5ob2ob2obo3b5ob2ob2ob2o3bo3bo2bobobob2obo
b2ob2o4bo$bo2b2o2bob3o2bobob4obo10bo3bob3ob3obobobo2b3ob2obo2bo2bob2ob
3obob2ob3o2bob7ob4o4bo2bobob3o6bobo2bo4b5ob3o2bobo2b3obo2bob3obo$b2o3b
o2bo2b2ob2obo5b2ob2o2b2o2bobobo3bobo2b2ob5o2b2obob3o4bo9bob5o2b2obo4bo
6b2obobo6b7obobob3ob2o2bobo2b3o3bo2bobo2b2o2bo$obo2bob3obobo3bo2b3o2b
2o2b2ob2obobob5ob2o3bo6bobobo4bobobobobobo3bo6bobo3b3ob2ob4obobo3b5o7b
obo2bo2bo2bob2ob2o2b2o4b2ob2o5bobo$obob2obob4ob3ob2o2bob2obobo3bo2bobo
4bo4bo2bob6obob3obo3bo6b9o2b2obo3bobob2o3bo2b2o2bobobo5b2o2bobob2o4bob
obob2ob4obo2bo2b2ob2o$obo4bo5bo2bo3bo2b5ob2o2bobo2bob3ob5o2bobo8bobobo
2bob5obo2bo3bobo2b2ob3o2bobob2o2b2obobo5b4obobobobobobob2o2bo4bo5bo2b
2obobo3bo$o2b4ob5obo2b6obo4bob3ob3o2bob3o4b2o2bob7o2bobob2o2bo3b2o3b3o
2bo3bobo3bo2bo3bobob2obob4o5bobobobobobob2ob3obobob5o2bobo2b5o$b2o7bo
2bo2bo6bo2b4obob3o3bo2bo3b3o2bob2o6bobo3bo3bob2o2bob3o2bob2obob3obob2o
b2obobo2bobobo3b5ob3obobo3bobo7bobo4bobob2o$o3bobob2obo2bob4ob2o2b3obo
b7ob2ob2obo3bobobob2obo2bobo2bobob2obob3obo2b4o2bo3bo2bo2bo2bob2o2bob
4obo5bo3bobo2b2obo2b9ob3obobo2b3o2b3o$ob2o5bob3o4bobobobo11bobo2bobobo
bob4o2bo5bo2b5o2bo5b2obo6b2obobo3b2o2b3obob2o2b2obob4obob3ob4obo2b2obo
bo5b3obob3o2b2obo$o2bob4o4b3o2bobobob12o2bob2o2b4o3bob2ob3obobo5bobo2b
3ob2o2bob4o3b2o2bob4o2bobob2o2bo2b2o3bob2o2b2o4bob2o2bo3bobo2bobobo2bo
bobob3o$4obobob4o4bo4bobo5bobob2obobo2b2o4b3obobob3obobobobobobobo2bob
obobo2bob3obobo3bo2b2obobo2b2ob3obobo5bobob3obo2bobob3o5bobobobo2bobob
obo$2b2ob4obobob3ob4obo2bob8obob2obo2b2obo2bo7b2o2b2ob2o2b4obobobobobo
2bo2bobobo3b2ob3o2b2obo6bob4obobobobob2obo2bo4b4obobo2bob2o3bo2bo$4o5b
4obobobobob2obob2obo2bo3bobobo2b4obo2b3ob2o2bobobo2bob2o2bo3bob2obobo
2bobobob2ob2obo3b5obob3obobo3b2o3bo2bo3bob2ob4o2b3obob2o5bobobo$o2b6o
3bo3bob4o3bo4bo2bob3o3bo2bo3bo2bo2b4o5b2obo2bobob4o2bobo2bo2b3ob3o2bob
6o3bo3bob3o6bobob2obob3obobo4bob3obo3bob5o$3bo4b3o2b4o5b2ob4ob2obobo2b
3o2bobobo2bobo2bobob2obo4bobo2bo2b2obob2ob2obo4b3ob3obo4b2obobobo3b4ob
3o3bo3bo4bobob3obo3b6obo4b3o$3o3bobob2obo2bob3o2bobo2b3obobobob2o2bo2b
2obob2ob3obob3ob3obob3o2bo3b2o6bob3o3bo4bob2o2bo2b3ob3ob3o4bo2bob2obob
3obobo2bobo4bo4bo2b4o$2b3o3bo4b2obobobo2bob2o5bob2o4bo2b2obob4o2bobobo
3bo2bob2o2bobob3o2b3ob4o2bobobobob2obob2obo2bobo3bo3b2o2bobobob4o2bob
2ob3obobobob5o6bo$o4b3ob2obo2b2obob3obobo2b3obo2bo2bob2obobo3bo2bobob
2obob2o2b2ob2ob2obobob3obo4b3o3bo3bo2bo3bo2b2ob7obob3obobobo2b2obo4bob
obobobo6b6o$b3obob2o2b4o4bo3b2obob2obobo2b3o5bob2obo2bo2bo2bob4o2bo6bo
b3o2bo4b4o2bo2bobo3bob2o3bo2bobo3bo2bo5b2ob3obo2bob2obo2b3obob2obobo4b
2o$4bo2bo2b2o4b4obo4bob2o3b3o2b7o2bob9obo3b2ob8obob2obob5o2bo2b3o3bob
3ob2ob2obo3bobobo2b3obob2o3b3ob2ob2obo2b2obo6b3o2bo$ob5obob2ob4ob4ob3o
bo2b3o2bobo6bobo10bo2b2obo6bo3b2o3b3o2bo2b3obo4bo4bo3b2obobob2obob4o2b
obobob3o2bo2b2o3bo2b2obobob2obob4o$2o3bo2bo2bobobobo4bo2bobobo2b2obo2b
2ob2o4b3ob3o2b4obobob4o2b3o2b3o2b2obob3ob4ob6obobobobobobo3bobobo2bobo
6b2o4bobob2o2bobo4bobo2bo2bo$3b5ob3obo2b3ob5o2b2ob4o2b2obobob4o3b2o2b
2o4bob2obo3b3o2b3o4bob2o4bo3b2o7bobo3bo2bo2b4o2b2o2bob3obobob4ob2o3b2o
2b5ob3obo2bo$ob2o5b2obobobo2bo3b2ob3obo2bo2bob2ob2o5bo3b2o5bo2bobobo4b
obo3bobo5b2ob2obo3b5o3b5ob2obobo3b3obob5ob2obo5bobob2obo5bo2b2obo2bo$o
2bob4ob3obo2b2ob3o10b2o6b2ob2obob4ob2obobo2bob3ob2obobob2o2bob4obob3o
3bo5b3o2bobobo2bo2bob2o3bobobobobo2b2ob4obobob5ob6ob2obo$bo3bo3b2o4b2o
5b6ob3obob5o2b3o2bobo3b5ob5o3bobobobobobob3o2b2obobobob2ob3o4b5ob2obo
2bobo3b2ob2o4b3o2bo5bob2o4bob2obo4bobo$bob4o5bo2bob2ob2o2bob2o2bo2bob
2obobo3b4obobobobobo3bob4o2b2o2b3obo7bobob2ob2o3bob4o4b2ob2obobobob2ob
2o2bobobo3b4o2bo5bob2ob8o2bo$bobo2b5ob2o2b3o2bob4ob3ob2ob7obobo2bob4ob
obob2o6b2ob2obobob5obobo3bo2bo2b2obo4b4o2b2ob4obo2bo3bobo3b4o5b2obo2b
3obo2bo5bobo$bobobobo2bobobo3b3obo2bo3b3o10b2o2bobobobobo2bobob3obobob
o2b3obobob2obobo2bobobob2o2bob2o5bobobo3bobo2bob3obobo2bob6obo3b2o3bo
3b4obo2bo$bo2b2obob2o4bob2o2bob5o3bob4ob3o4bobobo3b2ob2obobo2b2o3b2o5b
3o3bobob3ob5o4b3obob3obobobob2o2bo3bob2ob2o2bo2bobo2b5o2b3obobo2bob2o$
ob2o3bo4b4obobob2o2bo2bob3o4bo2b3obobobob2obobobob2obobob3obob3obob3ob
2obo3bo4b4o4b3o3bo2b3obob4o3bo3b3obob6o2bo3bo2bobobo6b2o$o3b3ob3obobo
3b2obob7obob2obob2o6b5o4bo4bobobobo3bo3bob2o3bo4b3obobobob6obob6obob2o
5bob4o5bobo2b2o2b8obobob6o$ob2o3bo2bob6o3b2o4bo2b2obo2b3ob7o4b5obobob
2obob9obo3b6o4bobobo7bo2bobo5bob2ob2o3bo5b4ob2o2bob2obobo2bobob2ob3ob
3o$ob2ob4obobo5b2o2bob6o3bo3bobo2bo4b3o2bobobo2bobobo2bo8b4obo4b5obobo
3b3obo2b2obob4ob2obo2b3o2b4o7b11o3b2o3bobo3bo$o2b3ob2obo3b4obo2b2o5b4o
b2o3b2obob2o2bob2obo2bobo2bobob2ob7obobobob3o4b3ob5o2b2ob2obo2bo4bob2o
bo3b2o3b2ob5o4bo5b4o2b2obob5o$obo2bo2bobo3bob2obobo2b4obo2bo2bob2o3b2o
b2obob2ob3o2bob2o2bobob2o4b5obobo3b2obobo7b2obo2b2obo2b4obobob3obobo2b
ob2obo2bo4b4o3bob2ob2o2bobo$2o3b2obo2b3obo2bobob2obo2b2o2b2ob2o3b3o2b
2ob2o2b2obobobobob2obo3bob2o5bo2bob3o2bobobobobobo2b2o4b2obo3bob2obo3b
obobo2b5ob2ob2obob3ob2obo4b3o$ob2o2bobobobob3obobo3b4obobobo2b3obo3bo
5bobobo2bobob3ob6obob4ob3obo3b3o2bo6bobo2bo2bobobob2o2bo3b6obobo4b2o3b
2o5bobo2b5o2b3o$o3bob3obo2bo2bobo2b2obob2ob2obob2o4bob2o2bob3o5b3ob4ob
obobob3o3bo5b3o3b5ob3obob9obo3b2o2b2o3bob3o2bobob2obobob3obo4bo3bob2o$
b4ob3ob3obobob3o2b2o2bo2bob2ob4ob2obob3o3b2ob2o2bo6b6o4b3ob4o2b2obo4bo
bobobobo3bo4b2o2bo2bo2bo3b3obob2obo2b4o5bo2b3ob2o2b2ob3o$bo2b2o3bobo3b
o2bo2bo5b3o3bobo3b2o2bob2obob2obo3bobob4o5bobob2o4bo2bo4b4obobo3bo3bob
obobobo3b4o3bobob3obob3o5bob2o2b2o6bo6bo$bobob3obo2b2obo3bo2b4o2b2ob2o
2bobo2b4o7bobo2bobo2bo2b5ob3ob5obo2bob2o2b5ob5obo3bob2o2b3obo3b4ob3obo
bo4b2ob2obo2b2o3b4obo2b4o$obo2b2o2b2obob2obob3obobobo3bob5o4bo2b5obobo
4b4o2bo2bo5b2o4b2ob2o2b2obobo2bobo4bo2bobobobo3bo2b2o3bobob3ob2ob3o2bo
2b3obob2o4b2obobo$ob2ob4obo3bo2bobob2o2bobobobob2obob7obo2bobobob3o4bo
b2ob2obobobobo2bobobobo4bobobobob7o3bobo3b3o2b2obobobobo7b2o2bo3bo2b2o
2b3o5b3o$o3b2o3b2obobob2obo3bo2bob2o3b5o7b2obob2obo2bobob3obobo7bo3b2o
b2o3b2o2bobobobo2bo2bobobobobobobo2bo2bob2obob6ob5ob3obobo2b4ob6o$b2o
3b2ob2obobobobobobob2o2bo8bob7ob2obobo2bobo5b2ob4obob2ob3obobob2obob2o
bob2obo3bo2bo3bobo3bo2bob2o2b3obo3b2obo5bo2bobobo6bob2o2b2o$b2ob2ob2o
2bobob2o2bob2o3b2ob7ob2o7b2ob2ob2obobobob3obo2bo5b3obo2b2obobo5bobob4o
2b3obob2o2bobo4bob2obobob3o3b2ob2obob2o2b7obo2bo2bo$2b2o3bob2obob2obob
o2b6obo5b3ob2ob3o2bobob5obo10bob4o4b2o4bobo2bob2obobo2b2obo5bo2b2ob4o
2bob2o3bo2b4ob2obob2obobo6b4obobobo$bo2b3obo5b4o2bobo4b2ob5o3bo5b2obob
obo3b2ob4ob4ob2o2bob5obobobobo9b2o3bo2bobobobo5b2obo3bob3o2bo2bo2bobo
2bob8o5b2ob3o$2o2b3ob5obo3bob3ob2obo4bob3obob2ob2obo2bobob4obo2b2o4bo
2b5o3bobob3obob5obo3b2o2b3o3bobo2b4obob4obo2b3ob4o2b2obobobo5b4obobo$
2bobobo4bo2bob2o2bob2o2bo2bo2bo3bo3bobobo2b2obo2bo4b2obob3o2bo5bob2ob
2o4bob2obob3obob2o2bobobob2ob2obo4b2ob2obobo3bo4b2obobobobo2b3o2bo5b2o
$3obob4ob4o2bob2obo2bobob2ob3obobobo3b4obob4ob2obo3bobo2b3obobobobo3b
2o2bo3bo4bob2ob3o4b3o5b2obo2b3obo2b3ob5ob2obobo2bobo2bob6obo$bobo3bobo
2bo2bob2o3bo2bobo4bobo2b2ob5o4b3ob2o2b3obob3obo6bobobob2obobobob2ob2ob
o3b2obob3o2bob4obobobo2b2obob3obo4b2o2bob2ob2ob2o2bo4bobo$bob4obo5b2ob
obobobobob6o2bob3o3bo2b4o2bo2bobobo3bobob2ob5obobobo2bobobobob2o2bob2o
2bobo2b4obobobob2obobo3bo2b2obob2obobobobo2bobo2bobob2obobo$bobo3b2ob
4obobobobo2bo2b2o4b3obobobob3o6bob2obobobobo2b4obobo2b2obob3obobob4ob
2obob3o3bo5bo2bobobob2o2b2obobob2obo4bob2o2bob5o3bo2bobo$bo3bo3bo3b2o
4b2obobobo2b3o3bob2ob2obo2bobobobo2b3o2bo2b4o3b6obobo5b2obo6bob2o4b2ob
2ob2ob3obobo2bo4bo2bo2bobob2obo2b2obo3bo3bob4obo$bob2ob6o3b4ob3ob3ob2o
bobo2bobob2ob2o2b2o3b3ob4ob2o3bo2bo7b3o2bo2b2o2bob3ob2o2b4o3bo2bo2bob
2o2b2obob2obo2b4obo2b5obobobo2b2obo4bobo$bobobo2bo2b2o2bo3b2obo4bo3bob
4ob2o5b2obo5bobo3bo2b3ob2ob5o2bobo4bobo2bo2b4ob2o3b2obob2obobo3b2o2bob
o2bob2o2b2obobo5bo2bob2o3bob2obo2bo$o2b2o2bobo2b4o2bob3o2bo2b5o6b6o2b
7ob2obo2b3o4bobobo3bob5obo2b2o2bo4bo2b3obobobob3ob3o2bobo3b2o3bo4b2ob
3o2bob3o2bob2o2bob2obo$o4bo2b2ob2obobobobob2o2b2o4bobob3o7bo3bo3bob2ob
o4b5obo2b2o2bo5b2obo3b6o2bobo2bo2b2obo8bobobob10ob2obo3bobo2b2ob2ob2ob
2ob2o$b6obobobo2b5o2bo2b2ob4obo4bob10ob5obob4o6b2ob2o2b3ob3o2bo2b2o5b
4o2b5o4b9obo3bobo2b2o2bo2bobob3o2bo4b2o2bo2bo2bo$7bob2o3bo2bo2b2ob2obo
b2ob2ob4o2bo4bo3b4o4bo4bo2b5obo2bobo5b4obobob4o2bob2o3bo2b3o2bo7b6ob2o
2bo2b2o3bo3b3ob3obob2obobobo$3o2bob3ob2ob2obobo3bobo2b5o6b2obo2bob2o2b
o2b6ob2o3bob2o2b3obo2b2obob2ob2o2b2o2bo2bob4ob2o3bo2b3ob2obo2bo2b4obob
3o2bob3obobo5bobob3obo$obob2obobobobobobobobobob2o6b6o3b2obo2bobob2o4b
ob2ob7ob2o4b3o4bo3bobobo2bo2b2o2bob5ob4obobo2b2o2b2obo3b3o2b3ob2ob2obo
b5obo4b2o$o2bobob3obobo3bob2obo4b2ob3o6b5ob3ob2o2b2obob2obobo2bo4b7ob
2ob2ob2obo2bobobobo2bobo6b3o2bobob2o2bo3bo2b2o3b2o2bobo2b2ob3o4bob2obo
$bobobob2ob2ob4o6b3obobo2bob4obobo2b2o3bo2b2ob2ob4ob2obob3o2bo4bo3bo3b
o2b2o2bo2b4o2b8o2bo3b2obo2bob3obo2b4o2b2ob4ob2obob4ob3ob3o$3o2bo6bobo
2b2obob2obobob4ob4o3bobo2b2obobobobo2bo3bo2b2obobobob2obo2b2ob3obo2bob
3o2bo2b2o7bob2ob2obobobo2bob5o4b3obo6b3obo3bo4bo$o2b2ob8obobo8b2ob2o2b
o4b5o2bo2b2o2b2ob3obob3o3bo2bo2bo4b2ob2o4b2o7bobobob3ob2obobobo3bobobo
2bo6bobo5b3ob2o2b3ob4ob2obobo$bobobo7bo2bob7obobo2bo2bobo3bo3b2ob2o3bo
b2obobo4bob4o3b4obo5bobob5ob5o5bob2o2b2obob2o2bob2obob10ob3o2bob3o3b2o
2b3ob2o$bobob3ob3ob5obo4b3ob3ob3ob7o3bobobob2o4bobo2bobo2b2ob2o3bob3ob
2o7bo4bo2b2obob2obobobobobob2o2bo2b2o4bo5bobob3obo2b3o2bobo6bo$2obo2bo
b4obo4b2o2b2o2bobo5bo3bobo2b2obo5bob4o3b2obob2o2bobobobobo2bob2ob4obob
2obobob2obobobobobob2o2bobob3obob2obobobo2b2obobo2b2o3b3ob2obob3o$b2ob
obo5bobob3obo4bo2bob3o2b7o3b2obobobobob6o2bobobobo2b2obo4bo2bobo2b2o3b
ob3o3bo2bob2o6b3o2bo3bo3bobob2o3bobo2bo2bob2obo2bo2b4o$2b3ob5obo2bo3b
2obo2b2obobo4bobo4b3o3bob2o3bo8bob2o3bobo2bobobo3bo3bo2bo2bo3bob2ob3o
3b2o2b2o3b2o2b2obo2bo2b2ob5obobob3obobob3o6bo$3obobo3bob4ob2obob4obo2b
2ob3o2bob2o3b4obob5obob4o4b2obobob2obobob12o2bobo2bobo4bo2b2obobo4b2ob
o3b3o3bo5bob2ob2o3b2obob6o$2bobobob2obobo2bobo2bo5bobob2o3bo2bo2bo6bo
11bo2b4o3bobo3bob3o11bob2ob2o3bob2obobobobob2obobo2bob3o3bobobob3o2bo
2bob3o2bobo4b2o$bo2b2ob3obobob2obo2bob6ob2ob4obobobobob2obo2bob7ob3o4b
3obob2o2bo2bob2ob3o2bo2bobo3b4obob4ob2obo3bo2bobobob4obob2o2b2o2b2obo
3b3obob3o$2b2obo3b2o2bobo3b2obobo5bo4b2obob3obobo2bob3o2bo8b2o2bo2bob
4ob2ob3o2b3ob3obob3obob2o8bo2bob3obo2bobo5b2o3bo2bobo2bob3obobobo3b2o$
bobob4ob2ob3o2b2ob2obob11ob2o3b2obobob2ob2o2b7obob2ob4obo3bob2o2bobobo
5bo2bobo3bob4ob3o3bo3b2obobobob2o2b2o2bob2ob2obo5bob5obo$bob2o4bo6b3o
2b2o2b2o3bobobo2bo2b2o2bo2bo2bobob3o2bo3b2o2bobo3bo3bo2bo3b2obo2bob4ob
ob3obobo2bobobob4obobob2obo4b3o4bobo6b2obo8bo$bo3b3ob7obobo3b2obob8obo
bo2b5obobo5bob4o2b4o5bobob7obobob2obo4bo7b2ob3obobo4b2obobob5o3b4o2b6o
bob2obobob2obobo$2b3o2bobo4bo2bobo2bobo3bo6bobob4o3bobo2b3o4bo3b2o3bob
2o2bo3bo4b2obobo2bobob2o2b7o3b3obobo2b2o3bob2o5b2o5b3o2bo2b2ob2o3b3o2b
o$2o3bob2ob3obo2bob4obo3bob6ob2obo3bobob2obobob2obob2ob4obo3bo2bo3b2o
4bobo4bo2bobobobo2b2o6bob3o3bo2bob4o2bob4o4b2obo3bob2o4b2obobo$bo3bobo
2bobob3ob2obo3b5o3b3obo3b4obo2bob4o2bo2bo6bob5ob4o2b5obobobo2bo2bobo2b
2o2b6ob2o3b4obob2ob3o6b7ob4o2b2obo4bobo$bobobobobobobob2obo2bo2bo4b3o
5b4o4bob3obobobobo3bobobobo5bo4bo6bo2bo2b3ob2o2bobobobo5bobob3o2b2obo
5bobob2obo6bo5b2o3b7o$obo2bob3ob3o5b3o4b3ob4ob2o2bob3obobobobobo2b2obo
b2obobob4ob2o3b7obo2b2o3bo2b2obo3b2ob3o6bo2b3ob3o2bob2ob2ob2obob2ob6ob
o8b2o$2b4obobobo3bobo2bo2b2obobobo2b2obo2b2obobo2bo3bo3bob2o2bo2bobobo
2bo2bobob2obo2bob3obob3obobob4o2bo3b7obo3bo2b3o6bobob2ob3o2bo3bob5ob2o
bo$2o5b3ob2obob2o2bob2obobob2o3bo2bobob2obobob4obobo3b5o2bob2o2bo5b5ob
obobo4bo2bobo3bo2b2o2bobo6bob4o4bob5obobo2bo2b2o2b3o5bobob2o$bob3o5bob
o2bob3o3b2obob2ob3o2bo2b2o2bobobo5bob3o5b2obobo2bo3bo5bobo3bobobobob2o
b7o2b3obob5ob2obob2ob2obo4bobobobobob4ob4obobo$bobo2b6o2bob2o3b3obob2o
2b2o3bob3ob2obobob5o2bobob3o2bob3obob4o2b2obob2ob2o3bobobobo7b4o2bobo
5b2obob2obobob2obobobo2bobob2o2bob5ob4o$bobo2bo5b2ob2obob2o3bo3b3obobo
4bobob2ob2o2b2obobo2bo3b3ob3ob4o2b3obobobobo2bobob3obob3obobo3b2obob3o
bo2bobo3bo2bobobobob2ob2obo3b2obobo5bo$o2b4ob4o6bo3b4ob2o3b2obo2b2o2b
2o3bobo4bobob2ob3o8bobo2bo3bo3b2ob2obo2b3o4b2ob3o2b2ob2o2b2ob3ob7obob
2ob2o3b3o2b3obobobob6o$2o3bo2bo2bob4ob2o2bo5bobobobob2o2b4ob3o3b4obo2b
o5b2o2b2obob2ob3o2b3obob2o2b2o4bobo2bo2b2ob2o3b4o3b3obo2bob2o5bob2o3bo
2bobo2bo2bo$2b2obo3bobobo2bo3b3o2bo2bobob2ob3obo2bobobo2bobo3bobob6obo
b2ob2o4bo2bobo3b3ob2obob2o3b6o2b2ob3o4b2o3bo2b2o4b4ob3ob2ob2obo3b2obob
6o$bob2ob2o2bo3bobo2bo2bo4bob2obob2o2bobobobobobobob3o3bo2bob2o2bo2bo
3b2ob2obobob3obobob3obo2bo6b2o4b2ob3ob3obob2ob2o2b2obob3ob2o4b4o2b2obo
4bo$o2bo3bobobob2ob2obob2ob2obo2b2ob2ob2o3bo5bob4o2b3ob6obobob2ob4o2b
2o2bobob2obo3bobob3ob2o3b7obo2b2ob2o6bob2o3bo3bo2bob2o2b3o2bob2obobo$o
bob2obobobo3bob3o5b3o5bo4b3ob4ob2o2bob2o6bo2bobo2bobobo3b2o2bobobo3bob
3o2bo2b2obob3o8bobobo2bob6o2bob2ob2ob2o2b2obobob2obob4o$ob2obobob2ob2o
bo3b2ob4o2b3obobob3obob2o2b2obobobobob6obob5obo3bo2bo2bobo2b2obo3bob2o
2bo6b7obob2o2b3o8bo2bobo2bobobo2bobobob2obo3b2o$obo2bob2o5b5o2bo3b2obo
4bo10b2o2b2obobobob2obo3bobo3bob6ob2ob4ob2ob4ob2ob4obobobobo3b3o3bo6b
3ob2o2bobob5obob2obo4bobobob2o$ob3ob2obobo2b2o4b2obob2o2b15obobobobo3b
ob9ob2obob2o2bobob2o5b2obo2bo3b2o8bo2bob2o2b3ob7o4b2obo3bobobob2obob5o
2bobob2o$2o3bo3b2o3b4o2b2obobo2bo13bo2bobobobobobobo2bo4bobobobo2bobob
o3b3obo2bo2b2obo4b7obob6o3bobo6b3ob2ob4o2b2o2b2o5bo2bob3o$bob6o3b2o4b
2o2bobob3ob8ob2o2b2o2bo3bo3bo2bo3b3ob2obo2b2ob2o2b2obo4b2ob2obob5o4bo
3bo6b5o2b6o3b2obob2obo3bobo2b3o3b2o3b2o$bobobo3b3o2bobo3b2o2bo2b2obo6b
o2bobobobob3ob6o2b2ob2ob3ob2o3bob2o2bo2b2o2bo3bo2bobo2bobobob2ob6o6bob
o3b3o2bobo2bo2b2ob6obob3ob2o2bo$bob4ob2obob3ob2o3bob3o2bobobobobob2obo
bobobobobo6bo2b3obobo2b3o5bob2obobob4obobo2b2o2b3ob3o3bo2bob3ob4o5b2ob
o2bob2obo8b3obo2b4o$2obo2b3o2bobo5b4o4bobobob2obo5bob3o2bobob2o2b5obo
2b5o2bob2obobobobob2o3bo2bob2ob4o4bob2obob3o3b2o3b4obo2b2obobo3b5ob2o$
3bobobobob3ob4o3bob3ob2obob2obob5ob5ob2obob2obob2o2b4o6bo2b2obo3bo3b4o
b2o3b2obob5o2bo5b4o2b2obobo2bobo2bo2bob2o3bob2ob5ob2ob2o$3o3b5o5bo2bo
2bobo2b2o2b2o3b3o3bobobo3bob2ob2obo2bobo5b3obobo2bobobobob3ob2obobobo
6bo2b4o2b3o2bo2b2o2bo2bobob2obob3o2b3o2bobobo2bobobo2bo$b3o2bo3b5obob
2obo3b2o2b3o2b3o2bo5b5o4bo2bob3obob4o2bob3obob2obobobo6bobob2ob5obo3b
3o3b2o2bo2b3obo2bo2b2obo2bob2obob2obobob2obob3o$2o4bobobo3b5o3b2o2bobo
bob2o2bob2ob3o6b3obo5b2o2bob3o2bob4obo2b2obo2b5obobo4bo2bobob2o4b2o2bo
b2obobo2b2obobo2bobob2o2bo2bo2bobo2bo2b2obo$2b5o5b2o5b3o2b3ob2obobo3b
3ob2ob6o3b2ob2o4bobobobo2bo4bob3obobob4obobob2ob4obo5b7o2bo2b3o2bob3o
2bo4b2ob2obobobobob3ob2o$2obobo2bob3obob2o7bobobob2ob2o2bobo3bo4b5obob
ob6obob2obob3o5b2ob2o4bo2bob3o3bobob3o2bo2bo2bob2o4bobo5b2ob3o6bobo3b
2o2bobobobo$b6obobo3b3o2bob7obo5bobob2obobob2obob2o2bobob3o2bobo2bobob
ob5o3b2o2b4ob2o2bo2bobo2bo3bob2obob2ob4o2bob2obobobobo2b5obobobo3bobob
obo$5bo3bo2b2o2bob2o2bo2bo4b3o3b4ob2obobo3bo3b2obo4b2o3b3obo5bob3obobo
bo2bo3b2o2b2o3b6obobob2o8b2obob2obo2b2ob2obo2bobob4o2bo2b2obo$4o2b2obo
2bo2bobo2bobob6o2b3obo2bobob2o2b2ob2o2bob2obo2bo2b2o3b2obob2o2bo2bo2bo
bo2bob2o2bobob4ob3obo2bo3b8o3bo2bob2obo2b6ob2o5bob2ob2obo$bobobob4ob2o
bob4o3bo3b2o4bobo7b3o2bob3o3bob2obobo2b3obo3bobob2obo2bobob2obob3obo4b
o4b2o3b2o8bobo2b4obob3o4bobo3b2obob3obobobo$4obobo4b4obo2bo3bo3bob3obo
b8o2b3obo3b2obo3bob4o6bobob2obobobobobo3bo3bob4obob2obob2ob4obobo2bob
3ob2o2bobo2b3ob2ob3o2b3obob2obo$o2bobobo2b2o2bo2bob5o2bobo3bobo2bo5b3o
3bob2o2bo3b3o4b6o3bo6bob3ob9obob2obobobo2bobo10bobo5b3o3bob2o8bo4bob2o
b3o!
User avatar
Rhombic
 
Posts: 766
Joined: June 1st, 2013, 5:41 pm

Re: Thread for basic non-CGOL questions

Postby blah » July 3rd, 2017, 5:32 pm

Rhombic wrote:If you take every 2nd generation from this rule, what rule is it emulating?

Something with a neighbourhood larger than the Moore neighbourhood, given that signals would have to be able to travel 2 cells in one generation:
x = 17, y = 5, rule = B345678/S01
9bo5bo$10bo$5o2b5o2b3o$10bo$9bo5bo!
succ
User avatar
blah
 
Posts: 174
Joined: April 9th, 2016, 7:22 pm

Re: Thread for basic non-CGOL questions

Postby Rhombic » July 7th, 2017, 1:22 pm

Are spaceships possible in either of these rules?

MAPAj8PAX6IQhRIiAYFSgEnFAiJFQVQCKCEdhBixcgA5RQBlgwBCBTgECaQwEGIDSEUyJmWAchIQaTkWKJQAwgiJA
MAPAj8PAX6IQhRIiAYFSgEnFAiJFSVQCKCEdhBixcgA5RQBngwBCBTgECaQwEGIDSEUyJmWAchIQaTkWKJQAwgiJA

Example soup:
x = 46, y = 45, rule = MAPAj8PAX6IQhRIiAYFSgEnFAiJFQVQCKCEdhBixcgA5RQBlgwBCBTgECaQwEGIDSEUyJmWAchIQaTkWKJQAwgiJA
obobob2o4b2ob3o2b2o2b3ob2ob4o2bo2bo4bo$3o3b8o4b5obob4ob3o2b2obo4b2o$4o
b2ob3ob2o2bobo3bo2b2o2b2o6b2ob3o2bo$2b3o4b2ob3ob5o2bob3o2bob7o2b2o2bo$
o2b3ob4o2b2o2bob2o2bob2o3bo3b2ob2ob2obobo$2b3obob3o5b2ob3ob2o4bo4bob2o
2bobob2o$o2b2obobo2b2ob2o2b4ob4o2bo6b2obobo3bo$b3obo3b3ob2o7bo2b3obob
3ob2o2bobo$3bobo5bo3b2obo5b2o2b4o3bob2o2b5o$o2bo3b3o2b2ob2o3b3o3b6obo
5bo2b4o$b3obo6b2ob7o2bob5o2b4ob2o2b3o$3bo3bo4bo5b4ob3obo2bobo2b3ob2obo
b2o$4ob2obobob3obo4bob3o2b6o2bobo2bobobo$b2o2b2o4b2obo3bo2b2o2bo2bob4o
b4o2bob3o$2o2bo2bo4b2o2b3obobo2bo2bo4b4obo6bo$obob5o2b3o2bobob2ob4o3b
4ob3obo3b3o$ob2ob2obobob5o3b2obobo3b4o2bobob4obo$4o2bo3bobob2obob5obob
obo2bo2b3ob2o3bo$2b3obo2b2o3b2ob4o2b3obo6b2o4bo4bo$2o3b3ob3o3b2obo3b2o
4b2obo2b3o2bo2b4o$2bo2bobo3b2o2b2o4b3obobo3bo3bo5bobobo$b2o9bob2o3bo2b
2o5bob5o6b3o$3b2o2bo2bo2bo6b2o2b6o2bo3bobob5o$4o5b2o4b5ob2obo5b2ob4ob
2ob5o$b3o2b3o2bo2bob2o3b5ob2o3bob2obobo3bobo$o5b4obo3b3o2bo2bobo7bo3b
2o5bo$o2b2ob2obob4ob3obobo5b3obob5obo2bobo$ob6o2b2o3b4obo2bo4b2o2b5obo
bob2o$3bo2bo2bob2o2b2obobo2b2obob2o8bo6bo$o2b2o2b3o2bobo2b2obo3b2o3b4o
bo4bo2b2obo$2obo2bobo2bo2b4obo3bobob2o2bo2bob4obob2o$3bobo3bobobo3b2o
2b2obo2b2o6b3obo4b2o$b7o2bo9b2o3bo4bobo3bob2o3b2o$obob4obob4obob2o2bob
3o3bo2bobobo4bobo$obo4b2o3bobobo2b2ob4o2bobo4b2o3bobo2bo$bo4bo4bobobo
2b2obo2bo3bob2o3b2o2b2o2bo$o2b4obo2b6o5b2o2b3obob3o2bo4bobo$b8obo2b2o
7bobo4bo2b2o3bo5b2o$ob2o2b2ob5ob2o3bo2b3o2b3o4bob4obo$bobob3obo2b2o5bo
2bo2bobo3b3obo4bobo2bo$o5b5o2bob2ob2obobob2obo3bobo2bo3b3o$5o2b2o2b8o
2b2o3bobobo3bobob3ob3o$2ob2o2b3ob3ob2obo2b2obobobobob2ob3o3b2o$2bob2ob
4o2bobo2b2o2b3obo2bobo4bob2obo2b2o$o2b2ob3obo2b2o2bo2bo2b3ob2o4b3o5bo
3bo!
User avatar
Rhombic
 
Posts: 766
Joined: June 1st, 2013, 5:41 pm

Re: Thread for basic non-CGOL questions

Postby gameoflifemaniac » July 14th, 2017, 3:53 pm

What's the highest period one-cell oscillator in a (non-)isotropic rule?
https://www.youtube.com/watch?v=q6EoRBvdVPQ
One big dirty Oro. Yeeeeeeeeee...
User avatar
gameoflifemaniac
 
Posts: 379
Joined: January 22nd, 2017, 11:17 am
Location: 54°00'39.4"N 21°43'50.5"E

Re: Thread for basic non-CGOL questions

Postby AforAmpere » July 14th, 2017, 6:19 pm

I believe that p1 is the max, because otherwise B1e or B1c must be used in some direction, and any direction that B1c is used in will have cells that keep going in that direction, so B1c in any direction is out. Also, if B1c is out, B1e is out too, because without B1c, there is nothing to prevent more births from new cells, like this, but any direction works the same:
x = 1, y = 1, rule = B1e/S
o!
Things to work on:
- An Isotropic version of All_Speeds
- Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y
- Find a (3,1)c/5 ship in a Non-totalistic rule (someone please search the rules)
AforAmpere
 
Posts: 266
Joined: July 1st, 2016, 3:58 pm

PreviousNext

Return to Other Cellular Automata

Who is online

Users browsing this forum: calcyman and 4 guests