Page 6 of 9

### Re: Thread for basic non-CGOL questions

Posted: December 22nd, 2017, 8:27 am
I don't know, but it is simulating a Margolus neighbourhood as 2x2 and similar rules would do.

### Re: Thread for basic non-CGOL questions

Posted: December 22nd, 2017, 8:55 am
lifeisawesome wrote:Is this a billiard table?
`x = 9, y = 9, rule = B2ei3e/Sbobobobo\$o7bo2\$o7bo2\$o7bo2\$o7bo\$bobobobo!`

No. It has no stator, so the rotor isn't inside anything.

### Re: Thread for basic non-CGOL questions

Posted: December 25th, 2017, 6:44 am
Is this a known fuse?
`x = 47, y = 3, rule = B36/S23b2o\$o2bob2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o\$b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o!`

### Re: Thread for basic non-CGOL questions

Posted: January 2nd, 2018, 9:44 am
Is it possible to create a counterexample to the no-spaceships-with-S0123 rule by utilizing 4a, similar to this?
`x = 6, y = 4, rule = B2ce3-an4a5a/S01e234rt6ac7c8bo2bo\$6o\$b4o\$2b2o!`

### Re: Thread for basic non-CGOL questions

Posted: January 2nd, 2018, 11:17 am
Are there any rules where the maximum speed is irrational?

### Re: Thread for basic non-CGOL questions

Posted: January 2nd, 2018, 11:21 am
muzik wrote:Are there any rules where the maximum speed is irrational?

I don't have a formal proof but in essence certainly not for finite patterns, because that would imply some kind of non-specific infinite-distance interaction that should somehow converge to no rational number. I've got no clue as to how to prove this though.

### Re: Thread for basic non-CGOL questions

Posted: January 2nd, 2018, 12:05 pm
BlinkerSpawn wrote:Is it possible to create a counterexample to the no-spaceships-with-S0123 rule by utilizing 4a, similar to this?
`x = 6, y = 4, rule = B2ce3-an4a5a/S01e234rt6ac7c8bo2bo\$6o\$b4o\$2b2o!`

Yes:
`x = 6, y = 4, rule = B2e3ij4n5n6k/S01235i6a7cb4o\$ob2obo\$2b2o\$2b2o!`

### Re: Thread for basic non-CGOL questions

Posted: January 2nd, 2018, 12:29 pm
Rhombic wrote:
muzik wrote:Are there any rules where the maximum speed is irrational?

I don't have a formal proof but in essence certainly not for finite patterns, because that would imply some kind of non-specific infinite-distance interaction that should somehow converge to no rational number. I've got no clue as to how to prove this though.

Could there perhaps be a family of finite ships whose speeds got closer and closer to an irrational speed limit, with none of them able to achieve it?

### Re: Thread for basic non-CGOL questions

Posted: January 2nd, 2018, 1:09 pm
On the same kind of thinking, what is the lowest max speed for orthogonal ships, that is not 0c? The max for JustFriends is C/3, I believe.

### Re: Thread for basic non-CGOL questions

Posted: January 2nd, 2018, 1:26 pm
muzik wrote:Are there any rules where the maximum speed is irrational?

No. In fact, there are no bounded interactions in finite-state cellular automata with an irrational speed.
(I'm assuming generations are indivisible.)
Here's a(n incomplete) proof:

By the definition of a cellular automaton, the automaton has an indivisible cell, the unit cell.
This fact, combined with the requirements that the interaction be bounded and have a finite number of states, means that there are finitely many patterns that can occur in the interaction.
The maximum amount of generations possible for the interaction to occur and still move is the number of patterns that can occur in the interaction, since any more generations would either lead to an oscillator (if it returned to the initial position without moving) or have a larger bounding box.
By the definition of speed in a cellular automaton, speed is the ratio of the distance (in unit cells) an interaction has moved to the number of generations taken to move that distance.
Since the interaction is finite, the distance moved is also finite.
Because the unit cells and generations are indivisible, partial unit cells and generations cannot exist. Thus, they must be counted with integers.
Since the distance and number of generations are both finite integers (as shown previously), the speed is always rational, by the definition of rational. Thus, a speed cannot be "not rational," or irrational.

### Re: Thread for basic non-CGOL questions

Posted: January 2nd, 2018, 1:41 pm
AbhpzTa wrote:
BlinkerSpawn wrote:Is it possible to create a counterexample to the no-spaceships-with-S0123 rule by utilizing 4a, similar to this?
`x = 6, y = 4, rule = B2ce3-an4a5a/S01e234rt6ac7c8bo2bo\$6o\$b4o\$2b2o!`

Yes:
`x = 6, y = 4, rule = B2e3ij4n5n6k/S01235i6a7cb4o\$ob2obo\$2b2o\$2b2o!`

Ah, I hadn't thought of that approach; I'll edit the wiki accordingly.

### Re: Thread for basic non-CGOL questions

Posted: January 2nd, 2018, 1:53 pm
Gamedziner wrote:
muzik wrote:Are there any rules where the maximum speed is irrational?

No. In fact, there are no bounded interactions in finite-state cellular automata with an irrational speed.

But if you replace "maximum speed" with "speed limit" -- I'm assuming that's what muzik meant -- your proof doesn't work. Since the rational numbers are dense in the reals, it's mathematically possible that rational speeds could exist arbitrarily close to some irrational limit but not above it.

### Re: Thread for basic non-CGOL questions

Posted: January 28th, 2018, 3:23 pm
Can somebody tell me the growth rate of this pattern?

`x = 17, y = 6, rule = B3ain/S2a4-ceitw56-n715bo\$bobob2ob2ob2ob3o\$6ob9o\$5ob2o3b2ob3o\$bo3b2obo6bo\$4bo!`

### Re: Thread for basic non-CGOL questions

Posted: January 28th, 2018, 3:31 pm
Pretty sure it's still technically linear

### Re: Thread for basic non-CGOL questions

Posted: January 28th, 2018, 5:24 pm
Yeah, it's irregular, but overall linear:

`x = 552, y = 536, rule = B3/S23261b3o2bo6b3o2b4o2b4o3b3o3b3o2b4o2b4o\$260bo3bobo7bo3bo3bobo3bobo3bobo3bobo3bobo3bo\$260bo5bo7bo3bo3bobo3bobo3bobo3bobo3bobo3bo\$260bo5bo7bo3b4o2b4o2bo3bob5ob4o2bo3bo\$260bo5bo7bo3bo5bo3bobo3bobo3bobo2bo2bo3bo\$260bo3bobo7bo3bo5bo3bobo3bobo3bobo3bobo3bo\$261b3o2b5o2b3o2bo5b4o3b3o2bo3bobo3bob4o8\$bo4b3o4bo4b3o2b5o\$2o3bo3bo2b2o3bo3bobo\$bo7bo3bo3bo3bobo\$bo6bo4bo4b3o3b3o10bo\$bo5bo5bo3bo3bo5bo9bo401bo\$bo4bo6bo3bo3bobo3bo9bo400b5o\$3o2b5o2b3o3b3o3b3o10bo400b6o\$37bo399b2ob4o\$37bo399b2o4bo\$37bo398b2o5b2o\$37bo394b2ob3o6bo\$37bo394b2ob2o7b2o\$37bo394b4o9bo\$37bo394b3o10bo\$37bo394bo12bo\$37bo393b2o12bo\$37bo393bo13bo\$37bo393bo13b2o\$37bo393bo14bo\$37bo393bo14bo\$37bo392b2o14bo\$37bo392bo15bo\$37bo392bo15bo\$37bo391b2o15bo\$37bo391bo16bo\$37bo391bo16bo\$37bo390b2o16bo\$37bo390b2o16bo\$37bo390bo17b2o\$37bo390bo18bo\$37bo390bo18bo\$37bo389bo19bo\$37bo388b2o19bo\$37bo388b2o19bo\$37bo388bo20bo\$37bo388bo20b2o\$37bo387b2o21bo\$37bo387bo22bo\$37bo387bo22bo\$37bo386b2o22bo\$37bo386bo23bo\$37bo386bo23bo\$37bo385b2o23b2o\$37bo382bo2b2o24bo85b3o\$37bo381b2ob2o25bo85b2o\$37bo381b5o25bo84b2o\$37bo381b4o26bo84bo\$37bo381bobo27b2o83bo\$37bo380b2o30bo82b2o\$37bo380bo31bo82b2o\$37bo380bo31bo82bo\$37bo380bo31bo82bo\$37bo379b2o31bo81b2o\$37bo379bo32b2o80bo\$37bo379bo33bo80bo\$37bo378b2o33bo79b2o\$37bo378bo34bo79bo\$37bo378bo34b2o78bo\$37bo378bo35bo77b2o\$37bo377b2o35bo77bo\$37bo377bo36bo77bo\$37bo377bo36bo76b2o\$37bo377bo36b2o74b2o\$37bo376b2o36b2o74bo\$37bo376bo38bo74bo\$37bo375b2o38bo73b2o\$37bo375bo39b2o72b2o\$37bo375bo39b2o72bo\$37bo374b2o40bo67bo4bo\$37bo374bo41b2o66bo3b2o\$37bo374bo42bo65b3o2bo\$37bo374bo42bo65bob4o\$37bo373b2o42b2o64bob3o\$37bo373bo44bo64bo2bo\$37bo373bo44bo63b2o\$37bo372b2o44b2o62bo\$37bo372bo46b2o61bo\$37bo372bo46b2o60b2o\$37bo371b2o47bo60bo\$37bo371bo48bo60bo\$37bo371bo48bo59b2o\$37bo369b3o48b2o58bo\$37bo368b4o49bo58bo\$37bo368b2o51bo57b2o\$37bo368bo52bo57bo\$37bo368bo52bo56b2o\$37bo367b2o52bo56b2o\$37bo367bo53b2o54b2o\$37bo367bo54b2o53b2o\$37bo366b2o55b2o52bo\$37bo366b2o55b2o51b2o\$37bo366bo57b3o49bo\$37bo366bo58b3o48bo\$37bo365b2o59b2o47b2o\$37bo356bo8bo61bo47b2o\$37bo355b2o8bo61b3o45bo\$37bo355b2o7b2o62b3o43b2o\$37bo355b3o6bo64b4o24b2o15bo\$37bo354b2obo5b2o65b4o23b3o13b2o\$37bo354bo2bo4b3o66bobo22b4o11b3o\$37bo354bo2b2o3b2o69bo21b2o2bo11b3o\$37bo354bo2b3ob2o70bo21b2o2bo10b3o\$37bo353b2o3b4o71bo20b2o3bo10bo\$37bo353b2o4b3o71b2o17b3o4bo10bo\$37bo353bo80bo16b4o4bo10bo\$37bo352b2o80bo10b2o4bobo5b2o8b2o\$37bo352bo81bo10b2o3b2o8bo8bo\$37bo352bo81bo9b3ob3o9bo7b2o\$37bo352bo81b2o7b7o10bo7bo\$37bo351b2o81b2o3bo2b3o2b2o11b2o5b2o\$37bo351bo83bo3b5o16b2o5bo\$37bo351bo83b2ob4o19bo5bo\$37bo351bo84b3ob2o19b2o2b3o\$37bo350b2o85bo24bob3o\$37bo349b2o111b5o\$37bo349b2o111b3o\$37bo349bo\$37bo349bo\$37bo348b2o\$37bo348b2o\$37bo348bo\$37bo348bo\$37bo347b2o\$37bo347bo\$37bo347bo\$37bo346b2o\$37bo346bo\$37bo346bo\$37bo345b2o\$37bo343bobo\$37bo343b3o\$37bo343b3o\$37bo343bo\$37bo342b2o\$37bo342bo\$37bo342bo\$37bo342bo\$37bo341bo\$37bo341bo\$37bo341bo\$37bo340b2o\$37bo340bo\$37bo340bo\$37bo339b2o\$37bo339bo\$37bo339bo\$37bo338b2o\$37bo338bo\$37bo337b2o\$37bo337b2o\$37bo336b2o\$37bo336bo\$37bo336bo\$37bo335b2o\$37bo335bo\$37bo330b2o3bo\$37bo330b2o2b2o\$37bo330b2ob2o\$37bo329b6o\$37bo329bo2b2o\$37bo329bo\$37bo329bo\$37bo328b2o\$37bo328bo\$37bo328bo\$37bo327bo\$37bo327bo\$37bo304bo22bo\$37bo303b3o20b2o\$37bo303b3o20bo\$37bo303bobo20bo\$37bo302b2obo19b2o\$37bo302bo2bo18b2o\$37bo301b2o2bo18b2o\$37bo301bo3b2o17bo\$37bo301bo4bo16b2o\$37bo301bo4bo16bo\$37bo300b2o4bo16bo\$37bo300bo5bo16bo\$37bo300bo5b2o14bo\$37bo299b2o6bo14bo\$37bo299bo7bo13b2o\$37bo298b2o7b2o12bo\$37bo298bo9bo8b2ob2o\$37bo298bo9bo8b2obo\$37bo298bo9b2o7b2obo\$37bo297b2o10b3o3b6o\$37bo297bo11b3o2b3o2bo\$37bo297bo12b6o\$37bo297bo14b2o\$37bo296bo15b2o\$37bo296bo\$37bo296bo\$37bo295bo\$37bo295bo\$37bo295bo\$37bo294b2o\$37bo292bobo\$37bo292b3o\$37bo292b3o\$37bo291b2o\$37bo291bo\$37bo291bo\$37bo291bo\$37bo290b2o\$37bo290bo\$37bo290bo\$37bo289b2o\$37bo289bo\$37bo289bo\$37bo288b2o\$37bo288bo\$37bo288bo\$37bo287b2o\$37bo287bo\$37bo287bo\$37bo286b2o\$37bo286bo\$37bo285b2o\$37bo285bo\$37bo285bo\$37bo284b2o\$37bo284bo\$37bo279b2o3bo\$20b7o10bo279b2o2b2o\$23bo13bo278b3ob2o\$22bo14bo278bob4o\$21bo15bo278bob3o\$20b7o10bo278bo\$37bo278bo\$21b5o11bo277bo\$20bo5bo10bo277bo\$20bo5bo10bo276b2o\$20bo5bo10bo276bo\$21b5o11bo276bo\$37bo275b2o\$37bo275bo\$20bo5bo10bo275bo\$20b7o10bo275bo\$20bo5bo10bo274b2o\$37bo273b2o\$37bo273b2o\$20bo16bo272b2o\$20bo16bo272b2o\$20b7o10bo272bo\$20bo16bo272bo\$20bo16bo271b2o\$37bo271bo\$21b6o10bo270b2o\$20bo2bo13bo270b2o\$20bo2bo13bo270bo\$20bo2bo13bo269b2o\$21b6o10bo269bo\$37bo267bobo\$26bo10bo266b4o\$26bo10bo200bo65b3o\$26bo10bo199b3o64bo\$26bo10bo198b5o62bo\$20b7o10bo196b3o3bo62bo\$37bo196b3o3bo50bo11bo\$20b6o11bo196b2o4b2o49b2o9b2o\$26bo10bo196bo6bo48b3o9bo\$26bo10bo195b2o6bo48b3o8b2o\$26bo10bo195bo7bo48bobo8bo\$20b6o11bo195bo7bo47b2ob2o6b2o\$37bo195bo7bo47bo3bo6b2o\$21b2o14bo194bo8bo47bo3bo6bo\$20bo2bo13bo194bo8bo46b2o3b2o3b3o\$20bo2bo13bo194bo8b2o45b2o3b2o2b4o\$20bo2bo13bo193b2o9bo45bo5b6o\$20b7o10bo193bo10bo45bo6b3o\$37bo193bo10bo44b2o\$21b5o11bo192b2o10bo44bo\$20bo5bo10bo192bo11bo44bo\$20bo5bo10bo192bo11bo43b2o\$20bo5bo10bo190b3o11bo42b2o\$21b5o11bo189b3o12b2o41b2o\$37bo189b3o13bo41bo\$21b2o14bo189bo15bo40b2o\$20bo2bo13bo189bo15bo40bo\$20bo2bo13bo188b2o15bo40bo\$20bo2bo13bo188bo17bo38b2o\$20b7o10bo188bo17bo38bo\$37bo188bo17bo38bo\$37bo187b2o17bo37b2o\$37bo187bo18b2o36bo\$37bo186b2o19bo35b2o\$37bo186bo20bo33bobo\$37bo186bo20b2o32b3o\$37bo186bo20b2o31b4o\$37bo185bo22bo31bo\$37bo185bo22b2o30bo\$37bo185bo23bo29b2o\$37bo183b3o23bo29bo\$37bo183b2o24bo29bo\$37bo183bo25b2o27b2o\$37bo183bo26bo27bo\$37bo182b2o26b2o25b2o\$37bo182bo27b3o24bo\$37bo182bo28b2o24bo\$37bo177bo4bo29b2o22b2o\$37bo176b2o3bo30b4o11b2o7bo\$37bo176b3ob2o32b2o11b2o6b2o\$37bo176b6o33bo11b2o5b3o\$37bo176bob3o34b2o8b5o4bo\$37bo175b2obo37bo7b3o2bo4bo\$37bo175bo40bo4b5o3bo3b2o\$37bo175bo40bo3b5o4bo3bo\$37bo174b2o40b5o2bo5bo2b2o\$37bo174b2o41b3o9b5o\$37bo174bo55b3o\$37bo174bo\$37bo173b2o\$37bo173bo\$37bo172b2o\$37bo172b2o\$37bo172bo\$37bo172bo\$37bo171b2o\$37bo170b2o\$37bo170bo\$37bo170bo\$37bo169b2o\$37bo169bo\$37bo169bo\$37bo168b2o\$37bo168bo\$37bo168bo\$37bo167bo\$37bo167bo\$37bo166b2o\$37bo164b3o\$37bo163b4o\$37bo163bo\$37bo163bo\$37bo163bo\$37bo162b2o\$37bo150b2o10bo\$37bo150b3o9bo\$37bo150b3o8b2o\$37bo150bobo8bo\$37bo149b2obo7b2o\$37bo149bo2bo7bo\$37bo148b2o2bo7bo\$37bo148b2o3bo4b3o\$37bo148bo4b2o2b3o\$37bo148bo4b2ob4o\$37bo147bo6b4o\$37bo147bo7b2o\$37bo147bo\$37bo146b2o\$37bo146bo\$37bo145b2o\$37bo145b2o\$37bo144b2o\$37bo144bo\$37bo144bo\$37bo143b2o\$37bo143bo\$37bo143bo\$37bo142b2o\$37bo142b2o\$37bo141b2o\$37bo141b2o\$37bo139bobo\$37bo138b4o\$37bo138b3o\$37bo138b3o\$37bo137b2o\$37bo137bo\$37bo137bo\$37bo137bo\$37bo136b2o\$37bo135b2o\$37bo135b2o\$37bo135bo\$37bo134b2o\$37bo134bo\$37bo134bo\$37bo132b3o\$37bo99b2o31b2o\$37bo98b3o31bo\$37bo97b4o30b2o\$37bo97b2obo24b2o4bo\$37bo96b2o2bo24b2o4bo\$37bo96bo3bo24b2o3bo\$37bo96bo4bo22b4ob2o\$37bo96bo4bo22bo2b4o\$37bo95b2o4bo22bo2b3o\$37bo95bo5bo21b2o\$37bo94b2o5bo21bo\$37bo94b2o5bo20b2o\$37bo93b2o6b2o19bo\$37bo93bo8bo19bo\$37bo93bo8bo18b2o\$37bo92b2o8bo18bo\$37bo92bo9b2o16b2o\$37bo92bo10bo15b3o\$37bo91b2o10bo15b2o\$37bo91bo11b2o13b2o\$37bo90b2o11b2o13bo\$37bo90b2o12bo13bo\$37bo90bo13b3o10b2o\$37bo87bob2o14b3o9bo\$37bo87b3o15b3o4b2o2b2o\$37bo87b3o17bo2b4o2bo\$37bo86b2o19b10o\$37bo86bo20b4o3b2o\$37bo86bo27b2o\$37bo86bo\$37bo85bo\$37bo85bo\$37bo84b2o\$37bo84bo\$37bo83b2o\$37bo83bo\$37bo83bo\$37bo82b2o\$37bo81b2o\$37bo81b2o\$37bo80b2o\$37bo75bo4bo\$37bo74b2o3b2o\$37bo74b2o3b2o\$37bo73b3o3bo\$37bo73bob5o\$37bo73bo2b3o\$37bo72b2o2b2o\$37bo72bo\$37bo72bo\$37bo71bo\$37bo71bo\$37bo70b2o\$37bo70bo\$37bo70bo\$37bo68b3o\$37bo68b2o\$37bo67b2o\$37bo67bo\$37bo67bo\$37bo67bo\$37bo66bo\$37bo65b2o\$37bo48b2o15bo\$37bo48b2o12bob2o\$37bo47b3o11b2obo\$37bo47bobo11b4o\$37bo46b2obo11bobo\$37bo46bo3bo9b2o\$37bo46bo3bo9bo\$37bo45b2o3bo8b2o\$37bo45bo4bo7b2o\$37bo44b2o4b2o6b2o\$37bo44b2o5b2o5bo\$37bo44bo6b2o2bob2o\$37bo42b3o7b6o\$37bo42b2o8b6o\$37bo42bo13bo\$37bo41b2o\$37bo41bo\$37bo41bo\$37bo40b2o\$37bo39b2o\$37bo36bo2bo\$37bo36bob2o\$37bo35b4o\$37bo35bob2o\$37bo35bo\$37bo34b2o\$37bo34bo\$37bo33b2o\$37bo33bo\$37bo32b2o\$37bo32bo\$37bo23bo7b2o\$37bo22b3o5b2o\$37bo22b3o4b3o\$37bo22bobo4bo\$37bo22bobo3b2o\$37bo21bo2b3obo\$37bo20b2o3b4o\$37bo20bo5b2o\$37bo19b2o\$37bo19bo\$37bo18b2o\$37bo17b2o\$37bo16b3o\$37bo16bo\$37bo15b2o\$37bo15bo\$37bo10b2o2b2o\$37bo10b2ob2o\$37bo9b5o\$37bo9bo2bo\$37bo8b2o\$37bo7b2o\$37bo6b2o\$37bo4bob2o\$37bo3b4o\$17b3o3b3o11bo3bobo\$16bo3bobo3bo10bo2b2o\$20bobo3bo10bob2o\$18b2o3b4o10b3o\$20bo5bo10b501o\$16bo3bo5bo\$17b3o3b3o8\$35b3o185b3o2b5obo3bob5ob4o3b3o2b5o2b3o3b3o2bo3bo10bo34bo4b3o4bo4b3o3bo175bo4b3o3b3o3b3o3b3o\$34bo3bo183bo3bobo5b2o2bobo5bo3bobo3bo3bo5bo3bo3bob2o2bo9bo11bo22b2o3bo3bo2bobo2bo3bo3bo173b2o3bo3bobo3bobo3bobo3bo\$34bo2b2o183bo5bo5bobobobo5bo3bobo3bo3bo5bo3bo3bobobobo9bo4b4ob5o2b3o2b4o2b5o3bo3bo2b2obo3bobo2b2o3bo174bo3bo2b2obo2b2obo2b2obo2b2o\$34bobobo183bo2b2ob3o3bo2b2ob3o3b4o2b5o3bo5bo3bo3bobo2b2o9bo3bo7bo3bo3bobo3bo9bo3bobobo7bobobo3bo174bo3bobobobobobobobobobobobo\$34b2o2bo183bo3bobo5bo3bobo5bo2bo2bo3bo3bo5bo3bo3bobo3bo9bo4b3o4bo3b5obo3bob5o3bo3b2o2bo7b2o2bo3bo174bo3b2o2bob2o2bob2o2bob2o2bo\$34bo3bo183bo3bobo5bo3bobo5bo3bobo3bo3bo5bo3bo3bobo3bo9bo7bo3bo3bo5bo3bo9bo3bo3bo7bo3bo3bo174bo3bo3bobo3bobo3bobo3bo\$35b3o185b3o2b5obo3bob5obo3bobo3bo3bo4b3o3b3o2bo3bo10bo2b4o5b2o2b4ob4o9b3o3b3o9b3o3bo174b3o3b3o3b3o3b3o3b3o\$312bo\$312bo!`

### Re: Thread for basic non-CGOL questions

Posted: January 28th, 2018, 11:46 pm
Actually, starting at generation 180536 it periodically produces growing spaceships that extend to the side (down) at period 163840, so the asymptotic growth rate is quadratic.

### Re: Thread for basic non-CGOL questions

Posted: March 16th, 2018, 4:41 am
Does there exist, in B45678/S2345, a "full" oscillator in which the casing is a diamond?
This is an example of a "full" oscillator of period 97
`x = 8, y = 8, rule = B45678/S23458o\$o2b2o2bo\$ob4obo\$obo2bobo\$2o4b2o\$obo2bobo\$ob4obo\$b6o!`

As you can see, full oscillators tend to have higher periods and use all space given for the rotor.
But when I change the casing to a diamond shape, randomness inside just degrades into
a) a vacuum
b) a still life
c) non-full oscillators
example of degradation into an oscillator, still life, and vacuum
`x = 29, y = 19, rule = B45678/S23457bo16bo\$6bobo14bobo\$5bo3bo12bo3bo\$4bo5bo10bob2o2bo\$3b3ob5o8bo3b2o2bo\$2bo2bob4obo8bo2b2obo\$bo2bob2obo3bo8bo3bo\$o3b2o2bobo3bo8bobo\$bo3b2obo4bo10bo\$2bo2bob4obo\$3bob2o2b3o12bo\$4bo5bo12bobo\$5bo3bo12bo3bo\$6bobo12bob2o2bo\$7bo12bo2bo4bo\$21bob3obo\$22bo3bo\$23bobo\$24bo!`

Actually I have found one, but it has a small period of 10 and this is the only one I have found. Are there more of larger periods?
`x = 9, y = 9, rule = B45678/S23454bo\$3bobo\$2bo3bo\$bo5bo\$2o6bo\$b3o3bo\$2b2o2bo\$3b3o\$4bo!`

### Re: Thread for basic non-CGOL questions

Posted: June 29th, 2018, 3:13 pm
Do there exist any programs that can simulate any desired one-dimensional rules with a range higher than 1?

### Re: Thread for basic non-CGOL questions

Posted: June 29th, 2018, 3:30 pm
muzik wrote:Do there exist any programs that can simulate any desired one-dimensional rules with a range higher than 1?

You can use Wolfram Alpha to simulate a lot of those rules if you want to simulate what happens with one starting cell. Or do you need something else?

### Re: Thread for basic non-CGOL questions

Posted: June 29th, 2018, 3:37 pm
The ability to specify more starting conditions.

### Re: Thread for basic non-CGOL questions

Posted: June 29th, 2018, 8:58 pm
muzik wrote:Do there exist any programs that can simulate any desired one-dimensional rules with a range higher than 1?

You can try MCell, it's pretty good, although it's limited to a boinded grid.

### Re: Thread for basic non-CGOL questions

Posted: June 30th, 2018, 12:23 am
There should be made a script that converts one into a 8 state golly rule

### Re: Thread for basic non-CGOL questions

Posted: June 30th, 2018, 7:56 pm
What rule does the edge of this simulate?:

`x = 1, y = 3, rule = B2-ek/So2\$o!`

### Re: Thread for basic non-CGOL questions

Posted: July 3rd, 2018, 2:13 pm
This sort of fits the description of this thread. Would anyone like a new version of the Glider Database, but for Isotropic Non-Totalistic rules? This script, which is a modified version of isotropic-rule-gen.py, which takes a rule as input, and outputs programmed in ships as output if they are viable in that rule. It runs with Golly, and so inputting a rule automatically places known ships on the grid. Currently only the Glider and LWSS are programmed in.
`# Glider_Database.py, run with Golly.import golly as gimport osimport sysg.new("")class RuleGenerator:    notationdict = {        "0"  : [0,0,0,0,0,0,0,0],   #            "1e" : [1,0,0,0,0,0,0,0],   #   N        "1c" : [0,1,0,0,0,0,0,0],   #   NE        "2a" : [1,1,0,0,0,0,0,0],   #   N,  NE        "2e" : [1,0,1,0,0,0,0,0],   #   N,  E        "2k" : [1,0,0,1,0,0,0,0],   #   N,  SE        "2i" : [1,0,0,0,1,0,0,0],   #   N,  S        "2c" : [0,1,0,1,0,0,0,0],   #   NE, SE        "2n" : [0,1,0,0,0,1,0,0],   #   NE, SW        "3a" : [1,1,1,0,0,0,0,0],   #   N,  NE, E        "3n" : [1,1,0,1,0,0,0,0],   #   N,  NE, SE        "3r" : [1,1,0,0,1,0,0,0],   #   N,  NE, S        "3q" : [1,1,0,0,0,1,0,0],   #   N,  NE, SW        "3j" : [1,1,0,0,0,0,1,0],   #   N,  NE, W        "3i" : [1,1,0,0,0,0,0,1],   #   N,  NE, NW        "3e" : [1,0,1,0,1,0,0,0],   #   N,  E,  S        "3k" : [1,0,1,0,0,1,0,0],   #   N,  E,  SW        "3y" : [1,0,0,1,0,1,0,0],   #   N,  SE, SW        "3c" : [0,1,0,1,0,1,0,0],   #   NE, SE, SW        "4a" : [1,1,1,1,0,0,0,0],   #   N,  NE, E,  SE        "4r" : [1,1,1,0,1,0,0,0],   #   N,  NE, E,  S        "4q" : [1,1,1,0,0,1,0,0],   #   N,  NE, E,  SW        "4i" : [1,1,0,1,1,0,0,0],   #   N,  NE, SE, S        "4y" : [1,1,0,1,0,1,0,0],   #   N,  NE, SE, SW        "4k" : [1,1,0,1,0,0,1,0],   #   N,  NE, SE, W        "4n" : [1,1,0,1,0,0,0,1],   #   N,  NE, SE, NW        "4z" : [1,1,0,0,1,1,0,0],   #   N,  NE, S,  SW        "4j" : [1,1,0,0,1,0,1,0],   #   N,  NE, S,  W        "4t" : [1,1,0,0,1,0,0,1],   #   N,  NE, S,  NW        "4w" : [1,1,0,0,0,1,1,0],   #   N,  NE, SW, W        "4e" : [1,0,1,0,1,0,1,0],   #   N,  E,  S,  W        "4c" : [0,1,0,1,0,1,0,1],   #   NE, SE, SW, NW        "5i" : [1,1,1,1,1,0,0,0],   #   N,  NE, E,  SE, S        "5j" : [1,1,1,1,0,1,0,0],   #   N,  NE, E,  SE, SW        "5n" : [1,1,1,1,0,0,1,0],   #   N,  NE, E,  SE, W        "5a" : [1,1,1,1,0,0,0,1],   #   N,  NE, E,  SE, NW        "5q" : [1,1,1,0,1,1,0,0],   #   N,  NE, E,  S,  SW        "5c" : [1,1,1,0,1,0,1,0],   #   N,  NE, E,  S,  W        "5r" : [1,1,0,1,1,1,0,0],   #   N,  NE, SE, S,  SW        "5y" : [1,1,0,1,1,0,1,0],   #   N,  NE, SE, S,  W        "5k" : [1,1,0,1,0,1,1,0],   #   N,  NE, SE, SW, W        "5e" : [1,1,0,1,0,1,0,1],   #   N,  NE, SE, SW, NW        "6a" : [1,1,1,1,1,1,0,0],   #   N,  NE, E,  SE, S,  SW        "6c" : [1,1,1,1,1,0,1,0],   #   N,  NE, E,  SE, S,  W        "6k" : [1,1,1,1,0,1,1,0],   #   N,  NE, E,  SE, SW, W        "6e" : [1,1,1,1,0,1,0,1],   #   N,  NE, E,  SE, SW, NW        "6n" : [1,1,1,0,1,1,1,0],   #   N,  NE, E,  S,  SW, W        "6i" : [1,1,0,1,1,1,0,1],   #   N,  NE, SE, S,  SW, NW        "7c" : [1,1,1,1,1,1,1,0],   #   N,  NE, E,  SE, S,  SW, W        "7e" : [1,1,1,1,1,1,0,1],   #   N,  NE, E,  SE, S,  SW, NW        "8"  : [1,1,1,1,1,1,1,1],   #   N,  NE, E,  SE, S,  SW, W,  NW        }        allneighbours = [          ["0"],        ["1e", "1c"],        ["2a", "2e", "2k", "2i", "2c", "2n"],        ["3a", "3n", "3r", "3q", "3j", "3i", "3e", "3k", "3y", "3c"],        ["4a", "4r", "4q", "4i", "4y", "4k", "4n", "4z", "4j", "4t", "4w", "4e", "4c"],        ["5i", "5j", "5n", "5a", "5q", "5c", "5r", "5y", "5k", "5e"],        ["6a", "6c", "6k", "6e", "6n", "6i"],        ["7c", "7e"],        ["8"],        ]            allneighbours_flat = [n for x in allneighbours for n in x]        numneighbours = len(notationdict)        # Use dict to store rule elements, initialised by setrule():    bee = {}    ess = {}    alphanumeric = ""    rulename = ""        # Save the isotropic rule    def saveAllRules(self):            self.saveIsotropicRule()        # Interpret birth or survival string    def ruleparts(self, part):        inverse = False        nlist = []        totalistic = True        rule = { k: False for k, v in self.notationdict.iteritems() }                # Reverse the rule string to simplify processing        part = part[::-1]                for c in part:            if c.isdigit():                d = int(c)                if totalistic:                    # Add all the neighbourhoods for this value                    for neighbour in self.allneighbours[d]:                        rule[neighbour] = True                elif inverse:                    # Add all the neighbourhoods not in nlist for this value                    for neighbour in self.allneighbours[d]:                        if neighbour[1] not in nlist:                            rule[neighbour] = True                else:                    # Add all the neighbourhoods in nlist for this value                    for n in nlist:                        neighbour = c + n                        if neighbour in rule:                            rule[neighbour] = True                        else:                            # Error                            return {}                                    inverse = False                nlist = []                totalistic = True            elif (c == '-'):                inverse = True            else:                totalistic = False                nlist.append(c)                return rule    # Set isotropic, non-totalistic rule    # Adapted from Eric Goldstein's HenselNotation->Ruletable(1.3).py    def setrule(self, rulestring):            # neighbours_flat = [n for x in neighbours for n in x]        b = {}        s = {}        sep = ''        birth = ''        survive = ''                rulestring = rulestring.lower()                if '/' in rulestring:            sep = '/'        elif '_' in rulestring:            sep = '_'        elif (rulestring[0] == 'b'):            sep = 's'        else:            sep = 'b'                survive, birth = rulestring.split(sep)        if (survive[0] == 'b'):            survive, birth = birth, survive        survive = survive.replace('s', '')        birth = birth.replace('b', '')                b = self.ruleparts(birth)        s = self.ruleparts(survive)        if b and s:            self.alphanumeric = 'B' + birth + 'S' + survive            self.rulename = 'B' + birth + '_S' + survive            self.bee = b            self.ess = s        else:            # Error            g.note("Unable to process rule definition.\n" +                    "b = " + str(b) + "\ns = " + str(s))            g.exit()                # Save a rule file:    def saverule(self, name, comments, table, colours):                ruledir = g.getdir("rules")        filename = ruledir + name + ".rule"        global results   results = ""        results += table        # Only create a rule file if it doesn't already exist; this avoids        # concurrency issues when booting an instance of apgsearch whilst        # one is already running.            # Defines a variable:    def newvar(self, name, vallist):        line = "var "+name+"={"        for i in xrange(len(vallist)):            if (i > 0):                line += ','            line += str(vallist[i])        line += "}\n"        return line    # Defines a block of equivalent variables:    def newvars(self, namelist, vallist):        block = "\n"        for name in namelist:            block += self.newvar(name, vallist)        return block    def scoline(self, chara, charb, left, right, amount):        line = str(left) + ","        for i in xrange(8):            if (i < amount):                line += chara            else:                line += charb            line += chr(97 + i)            line += ","        line += str(right) + "\n"        return line    def isotropicline(self, chara, charb, left, right, n):        line = str(left) + ","        neighbours = self.notationdict[n]                for i in xrange(8):            if neighbours[i]:                line += chara            else:                line += charb            line += chr(97 + i)            line += ","        line += str(right) + "\n"        return line            def saveIsotropicRule(self):              table = """"""        for n in self.allneighbours_flat:            if self.bee[n]:                table += "1"       else:      table += "0"        for n in self.allneighbours_flat:            if self.ess[n]:                table += "1"       else:      table += "0"                colours = ""   comments = ""        self.saverule(self.rulename, comments, table, colours)rulestring = g.getstring("Enter rule string in Alan Hensel's isotropic rule notation",                          "B2-a/S12")rg = RuleGenerator()rg.setrule(rulestring)rg.saveIsotropicRule()g.setrule(rulestring)# g.show(results)p=0j=0ships=["b2o\$obo\$2bo!", "b3o\$o2bo\$3bo\$3bo\$obo!"]y=["000002202112211222220222222222222202222222222222222200112222211212222222222022222222222222222222222222", "000002002122211222222222222222222220222222222222022020211122111211222202222222220222022222022220202222"]for z in range(len(y)):    p = 0    for x in range(len(results)):        if (results[x] == "1" and y[z][x] == "0") or (results[x] == "0" and y[z][x] == "1"):       # g.show(rg.rulename + "False")       p = 1    if p ==0:   # g.show(rg.rulename + "True")   g.setclipstr(ships[z])   g.paste(j,0,"or")   j+=30`

The code is very unoptimized, but it works. You input new spaceships by putting the RLE in a string in the top list, and the string corresponding to the rule in the bottom. The bottom rule string is what you get when you take each transition in the order below, and for each transition, put a 0 if it is not allowed, a 1 if it is required, or a 2 if it does not matter.
`        ["0"],        ["1e", "1c"],        ["2a", "2e", "2k", "2i", "2c", "2n"],        ["3a", "3n", "3r", "3q", "3j", "3i", "3e", "3k", "3y", "3c"],        ["4a", "4r", "4q", "4i", "4y", "4k", "4n", "4z", "4j", "4t", "4w", "4e", "4c"],        ["5i", "5j", "5n", "5a", "5q", "5c", "5r", "5y", "5k", "5e"],        ["6a", "6c", "6k", "6e", "6n", "6i"],        ["7c", "7e"],        ["8"]`
I will work on a script to make additions a bit easier if anyone is interested.

### Re: Thread for basic non-CGOL questions

Posted: July 4th, 2018, 1:16 am
YASSSS