ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

tDryLife

For discussion of other cellular automata.

Re: tDryLife

Postby Bullet51 » November 27th, 2016, 7:08 am

Possibly better precursor for the P4:
x = 11, y = 11, rule = B37_S2-i34q
6b3o$7bo4$8b3o$o7bobo$2o6b2o$o4b3o$5bobo$5b2o!
Still drifting.
Bullet51
 
Posts: 533
Joined: July 21st, 2014, 4:35 am

Re: tDryLife

Postby A for awesome » November 27th, 2016, 4:48 pm

muzik wrote:Any syntheses for this?: (Gate Kid)

rle

That's a "honeyloaf p5", actually, and it's known in tlife already.

Bullet51 wrote:And a p6:
x = 32, y = 32, rule = B37_S2-i34q
12b2o2b4o$12bobo2b3o$12bobobo2bo$12bo2b4o$12bobo2b2o$12b2o2bo2bo$12b2o
5bo$13b3o2b2o$12b2o2b2o$14b2o2bo$12b2o2b3o$12bob2ob2o$7obob11o3bo4bobo
$o4b4obobob3o2bo3bo2b2o2bo$b2obo2bobob3ob6obo3b3o2bo$3bo3bobob4obob2ob
o4bo3bo$ob2obo2bobob6ob3o4bo2b2o$2ob2o3bob3obobob3obobob3obo$2ob2o2bob
4ob2ob4ob5obo$3o2b3o4b7o2bo4b3o2bo$12bobob3o$15b2o2bo$14bo2b2o$13bo4bo
$12bo4b2o$18bo$13b7o$13b2o2bobo$14bo2b3o$12bo3bo$13bob3o$12bobo4bo!

What symmetry even is that? Or are you developing your own version of apgsearch?
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1876
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: tDryLife

Postby BlinkerSpawn » November 27th, 2016, 6:12 pm

A for awesome wrote:What symmetry even is that?

Looks like an 8x32 overlaid with itself to create diagonal symmetry.
apgsearch doesn't do hybrid symmetries last I checked.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image
User avatar
BlinkerSpawn
 
Posts: 1889
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tDryLife

Postby Rhombic » December 8th, 2016, 5:57 am

I left apgsearch overnight in D2_+1 to find three D2-symmetry-natural xq2 and xp8, among other less interesting discoveries.

Two predecessors for the xp8:
x = 28, y = 9, rule = B37/S2-i34q
20bo$b2o16bo$2b2o16b4o$2obo19bo2b2o$3b2o19b4o$2obo19bo2b2o$2b2o16b4o$b
2o16bo$20bo!



This soup is the most likely of the two for the synthesis of the new xq2:
x = 16, y = 31, rule = B37/S2-i34q
obbbbbbbbobooobo$
oobobobbooobboob$
booobboboobbobob$
boooobobboooboob$
ooboobbooobbbooo$
bboboobbbobbobbo$
bbboobobbboobobo$
oobbobbbbbboobbo$
bbbbooobbobobbbo$
obbbbobbobbbbbob$
oobbbbobbobbbbbb$
obooobobbbbobooo$
ooboobbboobbbbbb$
bobbbobobbobbbbo$
bobbboobbobobooo$
bobboobbobbobbob$
bobbboobbobobooo$
bobbbobobbobbbbo$
ooboobbboobbbbbb$
obooobobbbbobooo$
oobbbbobbobbbbbb$
obbbbobbobbbbbob$
bbbbooobbobobbbo$
oobbobbbbbboobbo$
bbboobobbboobobo$
bboboobbbobbobbo$
ooboobbooobbbooo$
boooobobboooboob$
booobboboobbobob$
oobobobbooobboob$
obbbbbbbbobooobo!


xp8 eats gliders:
x = 18, y = 6, rule = B37/S2-i34q
9b7o$10b2ob2o$7b2o7b2o$bo8b2ob2o$b2o6b7o$obo!

but otherwise reacts violently with pretty much anything :cry:

other nice xp8 reactions:
x = 76, y = 22, rule = B37/S2-i34q
71b3o$54bo$54bo16bobo$53b3o16bo4$26b2o$25b3o$26b2o2$2bo9bo19bo21bo17bo
$3bo7b3o17b3o19b3o15b3o$3o7bo3bo15bo3bo17bo3bo13bo3bo$3o6bo5bo13bo5bo
15bo5bo11bo5bo$9bo5bo13bo5bo15bo5bo11bo5bo$9bo5bo13bo5bo15bo5bo11bo5bo
$9bo5bo13bo5bo15bo5bo11bo5bo$9bo5bo13bo5bo15bo5bo11bo5bo$10bo3bo15bo3b
o17bo3bo13bo3bo$11b3o17b3o19b3o15b3o$12bo19bo21bo17bo!
SoL : FreeElectronics : DeadlyEnemies : 6a-ite : Rule X3VI
what is “sesame oil”?
User avatar
Rhombic
 
Posts: 1056
Joined: June 1st, 2013, 5:41 pm

Re: tDryLife

Postby Rhombic » May 4th, 2017, 1:12 pm

SoL : FreeElectronics : DeadlyEnemies : 6a-ite : Rule X3VI
what is “sesame oil”?
User avatar
Rhombic
 
Posts: 1056
Joined: June 1st, 2013, 5:41 pm

Re: tDryLife

Postby BlinkerSpawn » May 4th, 2017, 2:56 pm


I thought I remembered this osc from the tlife thread; maybe it was from somewhere else because I can't find the post.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image
User avatar
BlinkerSpawn
 
Posts: 1889
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tDryLife

Postby A for awesome » May 4th, 2017, 3:49 pm

BlinkerSpawn wrote:

I thought I remembered this osc from the tlife thread; maybe it was from somewhere else because I can't find the post.

http://www.conwaylife.com/forums/viewtopic.php?p=27818#p27818
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1876
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: tDryLife

Postby muzik » June 12th, 2017, 1:07 pm

Something possibly promising:

x = 43, y = 13, rule = B37_S2-i34q
39b2o$39bo2bo$40b3o8$2o$b3o$2bo!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik
 
Posts: 3465
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: tDryLife

Postby BlinkerSpawn » June 12th, 2017, 1:51 pm

muzik wrote:Something possibly promising:

x = 43, y = 13, rule = B37_S2-i34q
39b2o$39bo2bo$40b3o8$2o$b3o$2bo!

Like most (if not all) of the most promising 2-puffer interactions, this cleans up one track but adds two more.
We need a way to end up with net benefit if we're ever going to make a diagonal ship.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image
User avatar
BlinkerSpawn
 
Posts: 1889
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tDryLife

Postby Rhombic » June 12th, 2017, 3:36 pm

BlinkerSpawn wrote:
muzik wrote:Something possibly promising:

x = 43, y = 13, rule = B37_S2-i34q
39b2o$39bo2bo$40b3o8$2o$b3o$2bo!

Like most (if not all) of the most promising 2-puffer interactions, this cleans up one track but adds two more.
We need a way to end up with net benefit if we're ever going to make a diagonal ship.


I'm assuming he was referring to the glider that escapes backwards, since the two-Pond Layer interaction is already well-known.
SoL : FreeElectronics : DeadlyEnemies : 6a-ite : Rule X3VI
what is “sesame oil”?
User avatar
Rhombic
 
Posts: 1056
Joined: June 1st, 2013, 5:41 pm

Re: tDryLife

Postby BlinkerSpawn » June 12th, 2017, 4:10 pm

Rhombic wrote:I'm assuming he was referring to the glider that escapes backwards, since the two-Pond Layer interaction is already well-known.

Oh, then it is definitely not because there's no way to fit in another engine that can delete the block that prevents subsequent gliders from forming.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image
User avatar
BlinkerSpawn
 
Posts: 1889
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tDryLife

Postby AbhpzTa » June 13th, 2017, 12:12 pm

BlinkerSpawn wrote:
muzik wrote:Something possibly promising:

x = 43, y = 13, rule = B37_S2-i34q
39b2o$39bo2bo$40b3o8$2o$b3o$2bo!

Like most (if not all) of the most promising 2-puffer interactions, this cleans up one track but adds two more.
We need a way to end up with net benefit if we're ever going to make a diagonal ship.

2-pondpuffer interaction: 2 tracks
x = 19, y = 34, rule = B37/S2-i34q
2o$2o$2o$3b2o2$2bo$2bo4bo$2b2obo$2bobo$3bobo$4b2o21$17b2o$15b3o$16bo!


Rhombic wrote:
BlinkerSpawn wrote:
muzik wrote:Something possibly promising:

x = 43, y = 13, rule = B37_S2-i34q
39b2o$39bo2bo$40b3o8$2o$b3o$2bo!

Like most (if not all) of the most promising 2-puffer interactions, this cleans up one track but adds two more.
We need a way to end up with net benefit if we're ever going to make a diagonal ship.


I'm assuming he was referring to the glider that escapes backwards, since the two-Pond Layer interaction is already well-known.

Do you mean
x = 14, y = 37, rule = B37/S2-i34q
2bo$b3o$o2bo$o$2bo$o2bo$3o$bo2$4bobo$6bo23$12b2o$10bo2bo$10b3o$11bo!
?
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa
 
Posts: 473
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

Re: tDryLife

Postby muzik » June 14th, 2017, 3:14 pm

Feel like I'm onto something.

x = 229, y = 220, rule = B37_S2-i34q
220b2o3bo$220b2o2bobo$224bo2bo$225bobo$226bo4$224b2o$215bo3b3o2b2o$
214b2o4b2o$214bo4b2o2b3o$219bobo2b2o$215b3o5bobo$216b2o6b2o$190b2o21b
3o8b2o$189bo2bo21bobo4b4o$189bo2bo22bo6b2o$190b2o7$216bo$179b2o35bo$
178bo2bo$178bo2bo$179b2o42bo$222bobo$221bo3bo$222bo2bo$205b2o$204bo2bo
6b3o9bo$205bob2o5b2o6bo5bo$212b2o8bobob2o$211b2o4b3o$209b2ob2o4bob2o$
207b2obo7b3o$206b4o4bo$206bo4bo3bo$207b4ob3o$207bobo$207b2obo$207b3o$
208bo3bo$208bo2b2o$207b2o2bo2b2o$214b2o12$193b2o$192bo2bo$192bo2bo$
193b2o3$210b2o$209bo2bo$209bo2bo$210b2o8$199b2o$198bo2bo$198bo2bo$199b
2o118$10b2o3bo$10b2o2bobo$14bo2bo$15bobo$16bo6$2b3o19bo$2o4b3o13bobobo
$o5bobo2b2o8bo2b2o$o5b2obob3o$bo12bo$2bo5b2o3b3o$3bo5bo3bo2bo$6bob2o4b
obo$6bo9bo$7bobo$8bo!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik
 
Posts: 3465
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: tDryLife

Postby BlinkerSpawn » June 14th, 2017, 4:04 pm

muzik wrote:Feel like I'm onto something.

engines die

Sorta, yeah:
x = 81, y = 107, rule = B37/S2-i34q
35bo2$31b2obo$31bobo4bo$32bobo3bo$33b4o$39b3o$39b3o8$24b2o$23bo2bo$23b
o2bo$24b2o25$64bo$63b2o$62b2o$63bo32$74b3o$74bob2o$73b2ob2o$72b2o3bo$
76bo$76b3o$75bo3b2o$76b5o$11b2o3bo58bo$11b2o2bobo54bo$15bo2bo53b2o$16b
obo52bo2bo$17bo54bobo$74bo$72bobo$71bo2bo$68b2obo2b3o$7bo2bo57b9o$72bo
$o4bo$2b2o5bo$b2o$4bo7bobob2o$6b4o2b2o2bobo$7bo9bo$11bo$6bo2b2o$6bo2b
2o$6bo2bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image
User avatar
BlinkerSpawn
 
Posts: 1889
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: tDryLife

Postby wildmyron » June 21st, 2017, 3:07 am

BlinkerSpawn wrote:
muzik wrote:Feel like I'm onto something.

engines die

Sorta, yeah:
x = 81, y = 107, rule = B37/S2-i34q
35bo2$31b2obo$31bobo4bo$32bobo3bo$33b4o$39b3o$39b3o8$24b2o$23bo2bo$23b
o2bo$24b2o25$64bo$63b2o$62b2o$63bo32$74b3o$74bob2o$73b2ob2o$72b2o3bo$
76bo$76b3o$75bo3b2o$76b5o$11b2o3bo58bo$11b2o2bobo54bo$15bo2bo53b2o$16b
obo52bo2bo$17bo54bobo$74bo$72bobo$71bo2bo$68b2obo2b3o$7bo2bo57b9o$72bo
$o4bo$2b2o5bo$b2o$4bo7bobob2o$6b4o2b2o2bobo$7bo9bo$11bo$6bo2b2o$6bo2b
2o$6bo2bo!

Slight variation which is period doubled, leaves behind 3 pond trails in place of 4, and emits a G and a backward T:
x = 73, y = 109, rule = B37/S2-i34q
40b3o$37b4o2bo$39b2ob2o$33bo$32bo2$30bo2bo2b3o$32bo6bo$40bo$31bo7bo$
32b7o6$47b3o$45bo2bobo$44b3ob3o$44b2o2bo$44b2ob2o$45bobo$46bo11$40b2o$
38b2o2bo$42b2o8b2o$43bo7bo2bo$38b5o9bo2bo$40b2o11b2o3$54b2o$54b2o$40bo
2b3o$39b2ob4o$38bobo5b2o$39b3ob5o$40bobobo$41b2ob2o$42bobo$43bo34$65b
2o3bo$2bo62b2o2bobo$bobo65bo2bo$2obo66bobo$o3b2o65bo$obo4bo$4bo$b2o2bo
bo3b2o$5b2o4b2o$b3obo$2b2o58bo$b3o56b2obo$2bo5bo50bo3bo$6b2obo48bobo2b
o$8bob2o45b2o4bo$11b2o44bobobobo$13bo42b3o4bo$10b3o43b2o4b2o$12bo45bo$
59b3o2bo$58b2ob5o2b3o$60bobo2b2o$62bo2bo2bobo$61b4o4bo$62bo!
The latest version of the 5S Project contains over 221,000 spaceships. Tabulated pages up to period 160 are available on the LifeWiki.
wildmyron
 
Posts: 1236
Joined: August 9th, 2013, 12:45 am

Re: tDryLife

Postby calcyman » June 21st, 2017, 3:49 am

wildmyron wrote:Slight variation which is period doubled, leaves behind 3 pond trails in place of 4, and emits a G and a backward T:
x = 73, y = 109, rule = B37/S2-i34q
40b3o$37b4o2bo$39b2ob2o$33bo$32bo2$30bo2bo2b3o$32bo6bo$40bo$31bo7bo$
32b7o6$47b3o$45bo2bobo$44b3ob3o$44b2o2bo$44b2ob2o$45bobo$46bo11$40b2o$
38b2o2bo$42b2o8b2o$43bo7bo2bo$38b5o9bo2bo$40b2o11b2o3$54b2o$54b2o$40bo
2b3o$39b2ob4o$38bobo5b2o$39b3ob5o$40bobobo$41b2ob2o$42bobo$43bo34$65b
2o3bo$2bo62b2o2bobo$bobo65bo2bo$2obo66bobo$o3b2o65bo$obo4bo$4bo$b2o2bo
bo3b2o$5b2o4b2o$b3obo$2b2o58bo$b3o56b2obo$2bo5bo50bo3bo$6b2obo48bobo2b
o$8bob2o45b2o4bo$11b2o44bobobobo$13bo42b3o4bo$10b3o43b2o4b2o$12bo45bo$
59b3o2bo$58b2ob5o2b3o$60bobo2b2o$62bo2bo2bobo$61b4o4bo$62bo!



Glide-symmetric version which leaves behind 2 pond trails and 4 period-doubled glider streams:

x = 738, y = 727, rule = B37/S2-i34q
471bo$470b2o$469b2o2$473bo$473b3o$472b2o$473b2o3$441b2o31bo$440bo2bo
30bo$440bo2bo31b2ob2o$441b2o33bob2o$475b2ob3o$476b2o2b2o$476b2o2b2o5$
430b2o$429bo2bo$429bo2bo$430b2o$459b3o2$459bobo$460bo$476b2o$475b2obo$
474b3o2bo$419b2o53bo3b2o$418bo2bo53b2ob2o4b2o$418bo2bo53bo3bo4b2o$419b
2o56bobo$477b3o7$408b2o$407bo2bo50b2o$407bo2bo49bo2bo$408b2o50bo2bo$
461b2o7$397b2o$396bo2bo$396bo2bo$397b2o3$423b2o11b2o$422b5o8bo2bo$421b
2ob3o9bo2bo$422bobo12b2o$423b3o$386b2o$385bo2bo49b2o$385bo2bo49b2o$
386b2o32b3o72bo$419b2ob2o70bob2o$419bo73b2o$420b3o64bobo3bo$421bo64bo
2bo2b2o3bo$486bo2bo3bo$486b3o7bo$426b2o68bo$375b2o48bo2bo65bo$374bo2bo
48b2o$374bo2bo$375b2o8$364b2o$363bo2bo$363bo2bo38b2o$364b2o38bo2bo56b
2o$404bo2bo55bo2bo$405b2o56bo2bo$464b2o2$422b2o$421bo2bo56b2o$421bo2bo
55bo2bo$353b2o67b2o56bo2bo$352bo2bo76b3o46b2o$352bo2bo38b2o36bo$353b2o
38bo2bo36bo19b2o$393bo2bo55bo2bo$394b2o56bo2bo$453b2o2$411b2o$410bo2bo
56b2o$410bo2bo55bo2bo$342b2o67b2o56bo2bo$341bo2bo97bo3bo23b2o$341bo2bo
38b2o56b3o2bo$342b2o38bo2bo61bo$382bo2bo54b2o2b2obobo$383b2o53bob2o3bo
2b2o$436bo9bob2o$436bo3bo6bo$400b2o33bobobo23b2o$399bo2bo33bobo3bobo
18b2o$399bo2bo33b3o$331b2o67b2o40bobo$330bo2bo$330bo2bo38b2o$331b2o38b
o2bo$371bo2bo$372b2o3$389b2o$388bo2bo$388bo2bo$320b2o67b2o$319bo2bo$
319bo2bo38b2o$320b2o38bo2bo$360bo2bo$361b2o3$378b2o$377bo2bo$377bo2bo$
309b2o67b2o$308bo2bo$308bo2bo38b2o$309b2o38bo2bo$349bo2bo$350b2o3$367b
2o$366bo2bo$366bo2bo$298b2o67b2o$297bo2bo$297bo2bo38b2o$298b2o38bo2bo$
338bo2bo$339b2o3$356b2o$355bo2bo$355bo2bo$287b2o67b2o$286bo2bo$286bo2b
o38b2o$287b2o38bo2bo$327bo2bo$328b2o3$345b2o$344bo2bo$344bo2bo$276b2o
67b2o$275bo2bo$275bo2bo38b2o$276b2o38bo2bo$316bo2bo$317b2o3$334b2o$
333bo2bo$333bo2bo$265b2o67b2o$264bo2bo$264bo2bo38b2o$265b2o38bo2bo$
305bo2bo$306b2o3$323b2o$322bo2bo$322bo2bo$254b2o67b2o$253bo2bo$253bo2b
o38b2o$254b2o38bo2bo$294bo2bo$295b2o3$312b2o$311bo2bo$311bo2bo$243b2o
67b2o$242bo2bo$242bo2bo38b2o$243b2o38bo2bo$283bo2bo$284b2o3$301b2o$
300bo2bo$300bo2bo$232b2o67b2o$231bo2bo$231bo2bo38b2o$232b2o38bo2bo$
272bo2bo$273b2o3$290b2o$289bo2bo$289bo2bo$221b2o67b2o$220bo2bo$220bo2b
o38b2o$221b2o38bo2bo$261bo2bo$262b2o3$279b2o$278bo2bo$278bo2bo383bo2bo
$210b2o67b2o381b2o4bo$209bo2bo456bo$209bo2bo38b2o408bo5b2o$210b2o38bo
2bo410b4o$250bo2bo411bo$251b2o2$664b3o$268b2o393bo$267bo2bo392bo2bo$
267bo2bo392b3o$199b2o67b2o433b2o$198bo2bo501b2o$198bo2bo38b2o397b2o$
199b2o38bo2bo395bo2bo$239bo2bo395bo2bo79b2o$240b2o397b2o80b3o$701b6o
16b3o$701bo2b2obo15b3o$257b2o442b2o5bo12b2o$256bo2bo444bob3o12b5o$256b
o2bo443b2ob2o15bobo6bo$188b2o67b2o446b2o19b2o2bobo$187bo2bo539b4o$187b
o2bo38b2o397b2o101bo$188b2o38bo2bo395bo2bo105b2o$228bo2bo395bo2bo104b
2o$229b2o397b2o105bo3$246b2o397b2o$245bo2bo395bo2bo$245bo2bo395bo2bo$
177b2o67b2o397b2o44b2o$176bo2bo510bo2bo$176bo2bo38b2o397b2o71bo2bo16bo
bo$177b2o38bo2bo395bo2bo71b2o16bo2bo$217bo2bo395bo2bo90bobo$218b2o397b
2o3$235b2o397b2o$234bo2bo395bo2bo$234bo2bo395bo2bo$166b2o67b2o397b2o$
165bo2bo$165bo2bo38b2o$166b2o38bo2bo359b2o$206bo2bo359b3o$207b2o360b2o
3$224b2o$223bo2bo498b2o$223bo2bo497bo2bo$155b2o67b2o498bo2bo$154bo2bo
567b2o$154bo2bo38b2o472b2o3bo$155b2o38bo2bo471b2o2bobo$195bo2bo475bo2b
o$196b2o477bobo$676bo2$213b2o$212bo2bo498b2o$212bo2bo497bo2bo$144b2o
67b2o498bo2bo$143bo2bo567b2o$143bo2bo38b2o474bo$144b2o38bo2bo50bo421bo
bo$184bo2bo48b2o2bo419bobo12b2o$185b2o51bo422bo11bob2o$640b2o31b5o$
639bo2bo25bo4bo2b2o$202b2o435bo2bo23bob2o4b3o$201bo2bo435b2o23b2o2bo5b
o27b2o$201bo2bo461bob2o32bo2bo$133b2o67b2o463b2o33bo2bo$132bo2bo567b2o
$132bo2bo$133b2o3$629b2o$628bo2bo$628bo2bo$629b2o61b2o$691bo2bo$122b2o
567bo2bo$121bo2bo521b2o44b2o$121bo2bo520bo2bo$122b2o312b3o206bo2bo$
646b2o$436bobo$437bo180b2o$617bo2bo$617bo2bo$618b2o61b2o$680bo2bo$111b
2o567bo2bo$110bo2bo521b2o44b2o$110bo2bo520bo2bo$111b2o521bo2bo$635b2o
2$607b2o$606bo2bo$606bo2bo$607b2o61b2o$669bo2bo$100b2o567bo2bo$99bo2bo
521b2o44b2o$99bo2bo520bo2bo$100b2o521bo2bo$624b2o2$596b2o$595bo2bo$
595bo2bo$596b2o61b2o$658bo2bo$89b2o567bo2bo$88bo2bo521b2o44b2o$88bo2bo
520bo2bo$89b2o521bo2bo$613b2o2$585b2o$584bo2bo$584bo2bo$585b2o61b2o$
647bo2bo$78b2o567bo2bo$77bo2bo521b2o44b2o$77bo2bo520bo2bo$78b2o521bo2b
o$602b2o2$574b2o$573bo2bo$573bo2bo$574b2o61b2o$636bo2bo$67b2o567bo2bo$
66bo2bo521b2o44b2o$66bo2bo520bo2bo$67b2o521bo2bo$591b2o2$563b2o$562bo
2bo$562bo2bo$563b2o61b2o$625bo2bo$56b2o567bo2bo$55bo2bo521b2o44b2o$55b
o2bo520bo2bo$56b2o521bo2bo$580b2o2$552b2o$551bo2bo$551bo2bo$552b2o61b
2o$614bo2bo$45b2o567bo2bo$44bo2bo521b2o44b2o$44bo2bo520bo2bo$45b2o521b
o2bo$569b2o2$541b2o$540bo2bo$540bo2bo$541b2o61b2o$603bo2bo$34b2o567bo
2bo$33bo2bo521b2o44b2o$33bo2bo520bo2bo$34b2o521bo2bo$558b2o2$530b2o$
529bo2bo$529bo2bo$530b2o61b2o$592bo2bo$23b2o567bo2bo$22bo2bo521b2o44b
2o$22bo2bo520bo2bo$23b2o521bo2bo$547b2o2$519b2o$518bo2bo$518bo2bo$519b
2o61b2o$581bo2bo$12b2o567bo2bo$11bo2bo521b2o44b2o$11bo2bo520bo2bo$12b
2o521bo2bo$536b2o2$508b2o$507bo2bo$317bo189bo2bo$316b2o190b2o61b2o$
316bobo251bo2bo$b2o567bo2bo$o2bo521b2o44b2o$o2bo520bo2bo$b2o521bo2bo$
525b2o2$497b2o$496bo2bo$496bo2bo$497b2o61b2o$559bo2bo$559bo2bo$514b2o
44b2o$513bo2bo$513bo2bo$514b2o2$486b2o$485bo2bo$485bo2bo$486b2o61b2o$
548bo2bo$548bo2bo$503b2o44b2o$502bo2bo$502bo2bo$503b2o2$475b2o$474bo2b
o$474bo2bo$475b2o61b2o$537bo2bo$537bo2bo$492b2o44b2o$491bo2bo$491bo2bo
$492b2o2$464b2o$463bo2bo$463bo2bo$464b2o61b2o$526bo2bo$526bo2bo$481b2o
44b2o$480bo2bo$480bo2bo$481b2o2$453b2o$452bo2bo$452bo2bo$453b2o61b2o$
515bo2bo$515bo2bo$470b2o44b2o$469bo2bo$469bo2bo$470b2o2$442b2o$441bo2b
o$441bo2bo$442b2o61b2o$504bo2bo$504bo2bo$459b2o44b2o$458bo2bo$458bo2bo
$459b2o2$431b2o$430bo2bo$430bo2bo$431b2o61b2o$493bo2bo$493bo2bo$448b2o
44b2o$447bo2bo$447bo2bo$448b2o5$483b2o$482bo2bo$482bo2bo$437b2o44b2o$
436bo2bo$436bo2bo$437b2o5$472b2o$471bo2bo$471bo2bo$472b2o8$461b2o$460b
o2bo$460bo2bo$461b2o8$450b2o$449bo2bo$449bo2bo$450b2o8$439b2o$438bo2bo
$438bo2bo$439b2o8$428b2o$427bo2bo$427bo2bo$428b2o8$417b2o$416bo2bo$
416bo2bo$417b2o8$406b2o$405bo2bo$405bo2bo$406b2o8$395b2o74bo$394bo2bo
74b2o$394bo2bo73b2o$395b2o8$384b2o$383bo2bo$383bo2bo$384b2o8$373b2o$
372bo2bo$372bo2bo$373b2o8$362b2o$361bo2bo$361bo2bo$362b2o8$351b2o$350b
o2bo$350bo2bo$351b2o8$340b2o$339bo2bo$339bo2bo$340b2o8$329b2o$328bo2bo
$328bo2bo$329b2o8$318b2o$317bo2bo$317bo2bo$318b2o8$307b2o$306bo2bo$
306bo2bo$307b2o8$296b2o$295bo2bo$295bo2bo$296b2o!


This is an over-unity component (a glider rake supported by AbphzTa-style waves) so we just need a mechanism by which the gliders can be used to delete unwanted ponds.
What do you do with ill crystallographers? Take them to the mono-clinic!
User avatar
calcyman
 
Posts: 2088
Joined: June 1st, 2009, 4:32 pm

Re: tDryLife

Postby AbhpzTa » June 21st, 2017, 4:28 pm

Pondpuffer-based p1552 spaceship:
x = 1879, y = 1900, rule = B37/S2-i34q
1227b2o$1227bob2o$1227bo3b2o$1227b3ob2o4b2o$1227bo3b2o4b2o$1228bobo$
1228b3o2$1238bo$1238bo$1202b2o27b3o3b3o$1201bo2bo25bo2bo2bo2bo$1201bo
2bo26bobo6bo$1202b2o28bo4bobo5$1220b3o2$1220bobo$1191b2o28bo$1190bo2bo
$1190bo2bo$1191b2o5$1234bo$1233bobo$1229b2o2b2o$1180b2o47b2o3bobo$
1179bo2bo53b2o$1179bo2bo53b2o$1180b2o55bo$1236b2o$1236b2o6$1169b2o$
1168bo2bo50b2o$1168bo2bo49bo2bo$1169b2o50bo2bo$1222b2o7$1158b2o$1157bo
2bo$1157bo2bo$1158b2o8$1147b2o$1146bo2bo$1146bo2bo$1147b2o5$1261b4o$
1260b2o$1263b3o$1136b2o121bo2b3o$1135bo2bo126bo$1135bo2bo124bo$1136b2o
122bo4bo$1261bo$1263bo6$1125b2o$1124bo2bo$1124bo2bo$1125b2o8$1114b2o$
1113bo2bo$1113bo2bo$1114b2o5$1278b3o$1278bob2o$1277b2ob2o$1276b2o3bo$
1280bo$1280b3o$1279bo3b2o$1280b5o$1279bo$1276bo$1276b2o$1275bo2bo$
1250bo25bobo$1249b3o26bo$1092b2o155b3o24bobo$1091bo2bo180bo2bo$1091bo
2bo177b2obo2b3o$1092b2o157b2o19b9o$1250bo2bo22bo$1250bo2bo$1251b2o10$
1281b2o$1281b2o$1275b4o$1275b2ob2o11b2o$1274bo5bo9bo2bo$1275bobo2bob2o
b3o3bo2bo$1070b2o204b2ob2ob2ob3o4b2o$1069bo2bo205bo3bo2bo$1069bo2bo
206bob4o$1070b2o206bo5bo8b2o$1282b2o9b2o$1282bo$1281bo2$1286b2o4$1291b
o$1291bo9$1048b2o$1047bo2bo$1047bo2bo$1048b2o18$1330b2o$1026b2o302b2o$
1025bo2bo295b4o$1025bo2bo275b2o3bo14b2ob2o11b2o$1026b2o276b2o2bobo12bo
5bo9bo2bo$1308bo2bo12bobo2bob2ob3o3bo2bo$1309bobo13b2ob2ob2ob3o4b2o$
1310bo16bo3bo2bo$1328bob4o$1244bob2o3b2o74bo5bo8b2o$1242bo8b2o78b2o9b
2o$1241bo3bo2bo82bo$1242bobo3bo81bo$1243b2o2bo$1245bo2bo7bo38bo39b2o$
1245bo2bo7b2o36bobo12bo$1245bo10b3o35bobo11bo$1215b2o29bobo8b2o36bo10b
2obo$1214bo2bo36bo19b2o26bo3b2o32bo$1214bo2bo24b2o9b3o17bo2bo23b2obo2b
2o32bo$1215b2o25b3o7bob2o17bo2bo22b2o2b2o2bo$1244bo8b3o18b2o22bo3bobo
3b3o$1232bo3b2o5bobo53b2o2b2o4bo$1004b2o225bo2bo2bo62b4o$1003bo2bo225b
3o3bo63bo78b3o$1003bo2bo230bo143bob2o$1004b2o374b2ob2o$1379b2o3bo$
1204b2o28bo148bo$1203bo2bo26bo2bo26b2o118b3o$1203bo2bo27b2o26bo2bo116b
o3b2o$1204b2o56bo2bo117b5o$1263b2o117bo$1379bo$1221b2o156b2o$1220bo2bo
56b2o96bo2bo$1220bo2bo55bo2bo96bobo$1221b2o56bo2bo98bo$1280b2o97bobo$
1193b2o183bo2bo$1192bo2bo56b2o4bo116b2obo2b3o$1192bo2bo55bo2bo3bo116b
9o$1193b2o56bo2bo2b3o119bo$1252b2o2$982b2o226b2o$981bo2bo224bo2bo56b2o
$981bo2bo224bo2bo55bo2bo$982b2o226b2o56bo2bo$1269b2o$1182b2o$1181bo2bo
$1181bo2bo$1182b2o$1384b2o$1384b2o$1199b2o177b4o$1198bo2bo56b2o118b2ob
2o11b2o$1198bo2bo55bo2bo116bo5bo9bo2bo$1199b2o56bo2bo117bobo2bob2ob3o
3bo2bo$1258b2o119b2ob2ob2ob3o4b2o$1171b2o208bo3bo2bo$1170bo2bo208bob4o
$1170bo2bo207bo5bo8b2o$1171b2o212b2o9b2o$1385bo$1384bo$960b2o226b2o$
959bo2bo224bo2bo198b2o$959bo2bo224bo2bo$960b2o226b2o2$1160b2o232bo$
1159bo2bo231bo$1159bo2bo$1160b2o3$1177b2o256b3o$1176bo2bo255bob2o$
1176bo2bo254b2ob2o$1177b2o254b2o3bo$1437bo$1149b2o286b3o$1148bo2bo284b
o3b2o$1148bo2bo285b5o$1149b2o285bo$1433bo$1433b2o$938b2o226b2o264bo2bo
$937bo2bo224bo2bo264bobo$937bo2bo224bo2bo266bo$938b2o226b2o265bobo$
1432bo2bo$1138b2o289b2obo2b3o$1137bo2bo288b9o$1137bo2bo292bo$1138b2o3$
1155b2o$1154bo2bo$1154bo2bo$1155b2o2$1127b2o$1126bo2bo$1126bo2bo$1127b
2o309b2o$1438b2o$1432b4o$916b2o226b2o286b2ob2o11b2o$915bo2bo224bo2bo
284bo5bo9bo2bo$915bo2bo224bo2bo285bobo2bob2ob3o3bo2bo$916b2o226b2o287b
2ob2ob2ob3o4b2o$1435bo3bo2bo$1116b2o318bob4o$1115bo2bo316bo5bo8b2o$
1115bo2bo320b2o9b2o$1116b2o321bo$1438bo2$1133b2o308b2o$1132bo2bo$1132b
o2bo$1133b2o$1448bo$1105b2o341bo$1104bo2bo$1104bo2bo$1105b2o2$1489b3o$
894b2o226b2o365bob2o$893bo2bo224bo2bo363b2ob2o$893bo2bo224bo2bo362b2o
3bo$894b2o226b2o367bo$1491b3o$1094b2o394bo3b2o$1093bo2bo394b5o$1093bo
2bo393bo$1094b2o391bo$1487b2o$1486bo2bo$1111b2o374bobo$1110bo2bo375bo$
1110bo2bo373bobo$1111b2o373bo2bo$1483b2obo2b3o$1083b2o398b9o$1082bo2bo
401bo$1082bo2bo$1083b2o3$872b2o226b2o$871bo2bo224bo2bo$871bo2bo224bo2b
o$872b2o226b2o2$1072b2o$1071bo2bo$1071bo2bo417b2o$1072b2o418b2o$1486b
4o$1486b2ob2o11b2o$1089b2o394bo5bo9bo2bo$1088bo2bo394bobo2bob2ob3o3bo
2bo$1088bo2bo395b2ob2ob2ob3o4b2o$1089b2o398bo3bo2bo$1490bob4o$1061b2o
426bo5bo8b2o$1060bo2bo429b2o9b2o$1060bo2bo429bo$1061b2o429bo2$1497b2o$
850b2o226b2o$849bo2bo224bo2bo$849bo2bo224bo2bo$850b2o226b2o422bo$1157b
o344bo$1050b2o103b2o$1049bo2bo103b2o$1049bo2bo$1050b2o$1543b3o$1543bob
2o$1067b2o473b2ob2o$1066bo2bo471b2o3bo$1066bo2bo475bo$1067b2o476b3o$
1544bo3b2o$1039b2o504b5o$1038bo2bo502bo$1038bo2bo499bo$1039b2o500b2o$
1540bo2bo$1541bobo$828b2o226b2o485bo$827bo2bo224bo2bo482bobo$827bo2bo
224bo2bo481bo2bo$828b2o226b2o479b2obo2b3o$1537b9o$1028b2o511bo$1027bo
2bo$1027bo2bo$1028b2o$1246b3o$1247bo$1045b2o$1044bo2bo$1044bo2bo$1045b
2o2$1017b2o$1016bo2bo526b2o$1016bo2bo526b2o$1017b2o521b4o$1540b2ob2o
11b2o$1539bo5bo9bo2bo$806b2o226b2o504bobo2bob2ob3o3bo2bo$805bo2bo224bo
2bo504b2ob2ob2ob3o4b2o$805bo2bo224bo2bo506bo3bo2bo$806b2o226b2o508bob
4o$1543bo5bo8b2o$1006b2o539b2o9b2o$1005bo2bo538bo$1005bo2bo537bo$1006b
2o$1551b2o2$1023b2o$1022bo2bo$1022bo2bo530bo$1023b2o531bo2$995b2o$994b
o2bo$994bo2bo$995b2o600b3o$1597bob2o$1596b2ob2o$784b2o226b2o581b2o3bo$
783bo2bo224bo2bo584bo$783bo2bo224bo2bo584b3o$784b2o226b2o584bo3b2o$
1599b5o$984b2o612bo$983bo2bo608bo$983bo2bo608b2o$984b2o608bo2bo$1595bo
bo$1597bo$1001b2o592bobo$1000bo2bo590bo2bo$1000bo2bo587b2obo2b3o$1001b
2o588b9o$1595bo$973b2o$972bo2bo$972bo2bo$973b2o3$762b2o226b2o$761bo2bo
224bo2bo$761bo2bo224bo2bo$762b2o226b2o2$962b2o636b2o$961bo2bo635b2o$
961bo2bo629b4o$962b2o630b2ob2o11b2o$1593bo5bo9bo2bo$1594bobo2bob2ob3o
3bo2bo$979b2o614b2ob2ob2ob3o4b2o$978bo2bo615bo3bo2bo$978bo2bo616bob4o$
979b2o616bo5bo8b2o$1601b2o9b2o$951b2o648bo$950bo2bo646bo$950bo2bo$951b
2o652b2o3$740b2o226b2o$739bo2bo224bo2bo639bo$739bo2bo224bo2bo639bo$
740b2o226b2o2$940b2o$939bo2bo$939bo2bo708b3o$940b2o709bob2o$1650b2ob2o
$1649b2o3bo$957b2o694bo$956bo2bo693b3o$956bo2bo692bo3b2o$957b2o694b5o$
1652bo$929b2o718bo$928bo2bo717b2o$928bo2bo716bo2bo$929b2o718bobo$1651b
o$1649bobo$718b2o226b2o700bo2bo$717bo2bo224bo2bo696b2obo2b3o$717bo2bo
224bo2bo696b9o$718b2o226b2o701bo2$918b2o$917bo2bo$917bo2bo$918b2o3$
935b2o$934bo2bo$934bo2bo$935b2o$1654b2o$907b2o745b2o$906bo2bo738b4o$
906bo2bo738b2ob2o11b2o$907b2o738bo5bo9bo2bo$1648bobo2bob2ob3o3bo2bo$
1649b2ob2ob2ob3o4b2o$696b2o226b2o725bo3bo2bo$695bo2bo224bo2bo725bob4o$
695bo2bo224bo2bo724bo5bo8b2o$696b2o226b2o729b2o9b2o$1655bo$896b2o756bo
$895bo2bo$895bo2bo760b2o$896b2o3$913b2o749bo$912bo2bo748bo$912bo2bo$
913b2o2$885b2o$884bo2bo$884bo2bo$885b2o3$674b2o226b2o$673bo2bo224bo2bo
$673bo2bo224bo2bo$674b2o226b2o2$874b2o$873bo2bo$873bo2bo$874b2o3$891b
2o$890bo2bo$890bo2bo$891b2o2$863b2o$862bo2bo$862bo2bo$863b2o$1703b2o$
1703b2o$652b2o226b2o815b4o$651bo2bo224bo2bo794b2o3bo14b2ob2o11b2o$651b
o2bo224bo2bo794b2o2bobo12bo5bo9bo2bo$652b2o226b2o799bo2bo12bobo2bob2ob
3o3bo2bo$1682bobo13b2ob2ob2ob3o4b2o$603b2o3bo243b2o829bo16bo3bo2bo$
603b2o2bobo241bo2bo846bob4o$607bo2bo240bo2bo845bo5bo8b2o$608bobo241b2o
850b2o9b2o$601b3o5bo1094bo$600b5o1098bo$599bob2ob2o263b2o81bo$598b3obo
2b2o261bo2bo78b2o716bo39b2o$598bob4o2bo261bo2bo79b2o714bobo12bo$597b3o
bo267b2o796bobo11bo$597bo3bobob2o1061bo10b2obo$598bob2ob3obo233b2o804b
2o26bo3b2o32bo$593b2o7bo2bo234bo2bo802bo2bo23b2obo2b2o32bo$593b2o10bob
o232bo2bo802bo2bo22b2o2b2o2bo$604bob2o233b2o804b2o22bo3bobo3b3o$573b2o
23b2o5b2o1065b2o2b2o4bo$572bo2bo20b2ob2o1072b4o$572bo2bo20bo2bo2bobo
25b2o226b2o815bo78b3o$573b2o20bo2bo2b2obo24bo2bo224bo2bo893bob2o$595bo
bo3bo3bo23bo2bo224bo2bo892b2ob2o$596b2o7bo24b2o226b2o892b2o3bo$596b2o
5b2o1151bo$603bo226b2o804b2o118b3o$829bo2bo802bo2bo116bo3b2o$829bo2bo
802bo2bo117b5o$830b2o804b2o117bo$562b2o1188bo$561bo2bo1187b2o$561bo2bo
282b2o804b2o96bo2bo$562b2o282bo2bo802bo2bo96bobo$846bo2bo802bo2bo98bo$
847b2o804b2o97bobo$579b2o1170bo2bo$578bo2bo237b2o804b2o121b2obo2b3o$
578bo2bo236bo2bo802bo2bo120b9o$579b2o237bo2bo802bo2bo124bo$819b2o804b
2o$551b2o$550bo2bo1237b4o$550bo2bo54b2o226b2o760bobo41b2o146b2o$551b2o
54bo2bo224bo2bo759b2o41bo2bo148b3o$607bo2bo224bo2bo760bo41bo2bo144bo2b
3o$608b2o226b2o804b2o151bo$568b2o1223bo$567bo2bo237b2o980bo4bo$567bo2b
o236bo2bo742bobo235bo$568b2o237bo2bo741bo2bo237bo$808b2o743bobo$540b2o
1276bo$539bo2bo1274bobo$539bo2bo282b2o986b2o2b2o$540b2o282bo2bo985b2o
3bobo$824bo2bo992b2o$825b2o993b2o$557b2o1262bo$556bo2bo237b2o1021b2o$
556bo2bo236bo2bo1020b2o$557b2o237bo2bo$797b2o$529b2o$528bo2bo1246b2o$
528bo2bo54b2o226b2o961bo2bo$529b2o54bo2bo224bo2bo860bob2o3b2o91bo2bo
13bo$585bo2bo224bo2bo858bo8b2o92b2o14b3o$586b2o226b2o858bo3bo2bo112bo$
546b2o1127bobo3bo$545bo2bo237b2o888b2o2bo$545bo2bo236bo2bo432bo456bo2b
o7bo$546b2o237bo2bo432b3o454bo2bo7b2o$786b2o433bo456bo10b3o$518b2o
1128b2o29bobo8b2o$517bo2bo1126bo2bo36bo$517bo2bo282b2o842bo2bo24b2o9b
3o$518b2o282bo2bo842b2o25b3o7bob2o176b2o$802bo2bo871bo8b3o176bob2o$
803b2o860bo3b2o5bobo186bo3b2o$535b2o1127bo2bo2bo194b3ob2o4b2o$534bo2bo
237b2o888b3o3bo193bo3b2o4b2o$534bo2bo236bo2bo892bo195bobo$535b2o237bo
2bo1088b3o$775b2o$507b2o1128b2o28bo208bo$506bo2bo1126bo2bo26bo2bo206bo
$506bo2bo54b2o226b2o842bo2bo27b2o200b3o3b3o$507b2o54bo2bo224bo2bo842b
2o229bo2bo2bo2bo$563bo2bo224bo2bo1074bobo6bo$564b2o226b2o1076bo4bobo$
524b2o1128b2o$523bo2bo237b2o887bo2bo$523bo2bo236bo2bo121b2o763bo2bo
200b2o$524b2o237bo2bo121b3o763b2o200bo2bo$764b2o122b2o966bo2bo$496b2o
1128b2o229b2o$495bo2bo1126bo2bo$495bo2bo282b2o842bo2bo$496b2o282bo2bo
842b2o$780bo2bo$781b2o$513b2o1128b2o$512bo2bo1126bo2bo$512bo2bo1126bo
2bo200b2o$513b2o1128b2o200bo2bo$1845bo2bo$485b2o1128b2o229b2o$484bo2bo
1126bo2bo$484bo2bo54b2o1070bo2bo$485b2o54bo2bo1070b2o$541bo2bo$542b2o$
502b2o1128b2o$501bo2bo1126bo2bo$501bo2bo1126bo2bo200b2o$502b2o1128b2o
200bo2bo$1834bo2bo$474b2o1128b2o229b2o$473bo2bo1126bo2bo$473bo2bo1126b
o2bo$474b2o1128b2o3$491b2o1128b2o$490bo2bo1126bo2bo$490bo2bo1126bo2bo
200b2o$491b2o1128b2o200bo2bo$1823bo2bo$463b2o1128b2o229b2o$462bo2bo
1126bo2bo$462bo2bo54b2o1070bo2bo$463b2o54bo2bo1070b2o$519bo2bo$520b2o$
480b2o1128b2o$479bo2bo1126bo2bo$479bo2bo1126bo2bo200b2o$480b2o1128b2o
200bo2bo$1812bo2bo$452b2o1128b2o229b2o$451bo2bo1126bo2bo$451bo2bo1126b
o2bo$452b2o1128b2o3$469b2o1128b2o$468bo2bo1126bo2bo$468bo2bo1126bo2bo
200b2o$469b2o1128b2o200bo2bo$1801bo2bo$441b2o1128b2o229b2o$440bo2bo
1126bo2bo$440bo2bo54b2o1070bo2bo$441b2o54bo2bo1070b2o$497bo2bo$498b2o$
458b2o1128b2o$457bo2bo1126bo2bo$457bo2bo1126bo2bo200b2o$458b2o1128b2o
200bo2bo$1790bo2bo$430b2o1128b2o229b2o$429bo2bo791b3o332bo2bo$429bo2bo
1126bo2bo$430b2o792bobo333b2o$1225bo2$447b2o1128b2o$446bo2bo1126bo2bo$
446bo2bo1126bo2bo200b2o$447b2o1128b2o200bo2bo$1779bo2bo$419b2o1128b2o
229b2o$418bo2bo1126bo2bo$418bo2bo54b2o1070bo2bo$419b2o54bo2bo1070b2o$
475bo2bo$476b2o$436b2o1128b2o$435bo2bo323bo802bo2bo$435bo2bo323b2o801b
o2bo200b2o$436b2o324bobo801b2o200bo2bo$765bo1002bo2bo$408b2o351b2ob2o
772b2o229b2o$407bo2bo349b3obo772bo2bo$407bo2bo344bo4b2o2bo772bo2bo$
408b2o343b4obo3bo775b2o$753b3o$758bobo$425b2o330b2o2bo793b2o$424bo2bo
329bo3bo792bo2bo$424bo2bo319b2o8bo3b2o791bo2bo$425b2o320b2o10bo795b2o
2$397b2o328b2o26b3o769b2o$396bo2bo326bo2bo27bo768bo2bo$396bo2bo54b2o
270bo2bo21b2o3b5o765bo2bo$397b2o54bo2bo270b2o19bo2b2o2b7o765b2o$453bo
2bo290bob2o3b4o2bobo$454b2o291bo2b4o4bo2bo$414b2o332b2o8bo2bo782b2o$
413bo2bo1126bo2bo$413bo2bo1126bo2bo200b2o$414b2o1128b2o200bo2bo$1746bo
2bo$386b2o328b2o798b2o229b2o$385bo2bo326bo2bo796bo2bo$385bo2bo326bo2bo
796bo2bo$386b2o328b2o798b2o3$403b2o328b2o798b2o$402bo2bo326bo2bo33b3o
760bo2bo$402bo2bo326bo2bo34bo761bo2bo$403b2o328b2o798b2o2$375b2o328b2o
798b2o$374bo2bo326bo2bo796bo2bo$374bo2bo54b2o270bo2bo796bo2bo$375b2o
54bo2bo270b2o798b2o$431bo2bo$432b2o$392b2o328b2o798b2o$391bo2bo326bo2b
o796bo2bo$391bo2bo326bo2bo796bo2bo200b2o$392b2o328b2o798b2o200bo2bo$
1724bo2bo$364b2o328b2o798b2o229b2o$363bo2bo326bo2bo796bo2bo$363bo2bo
326bo2bo796bo2bo$364b2o328b2o798b2o3$381b2o328b2o798b2o$380bo2bo326bo
2bo796bo2bo$380bo2bo326bo2bo796bo2bo$381b2o328b2o798b2o2$353b2o328b2o
798b2o$352bo2bo326bo2bo796bo2bo$352bo2bo54b2o270bo2bo796bo2bo$353b2o
54bo2bo270b2o798b2o$409bo2bo$410b2o$370b2o328b2o798b2o$369bo2bo326bo2b
o796bo2bo$369bo2bo326bo2bo796bo2bo200b2o$370b2o328b2o691bobo104b2o200b
o2bo$1393b2o307bo2bo$342b2o328b2o208b2o510bo77b2o229b2o$341bo2bo326bo
2bo206b2o588bo2bo$341bo2bo326bo2bo208bo587bo2bo$342b2o328b2o798b2o3$
359b2o328b2o798b2o$358bo2bo326bo2bo796bo2bo$358bo2bo326bo2bo796bo2bo$
359b2o328b2o798b2o2$331b2o328b2o798b2o$330bo2bo326bo2bo796bo2bo$330bo
2bo54b2o270bo2bo796bo2bo$331b2o54bo2bo270b2o798b2o$387bo2bo$388b2o$
348b2o328b2o798b2o$347bo2bo326bo2bo796bo2bo$347bo2bo326bo2bo796bo2bo
200b2o$348b2o328b2o798b2o200bo2bo$1680bo2bo$320b2o328b2o798b2o229b2o$
319bo2bo326bo2bo796bo2bo$319bo2bo326bo2bo796bo2bo$320b2o328b2o798b2o3$
337b2o328b2o798b2o$336bo2bo326bo2bo796bo2bo$336bo2bo326bo2bo796bo2bo$
337b2o328b2o798b2o2$309b2o328b2o798b2o$308bo2bo326bo2bo796bo2bo$308bo
2bo54b2o270bo2bo796bo2bo$309b2o54bo2bo270b2o798b2o$365bo2bo$366b2o$
326b2o328b2o798b2o$325bo2bo326bo2bo796bo2bo$325bo2bo326bo2bo796bo2bo
200b2o$326b2o328b2o798b2o200bo2bo$1658bo2bo$298b2o328b2o798b2o229b2o$
297bo2bo326bo2bo796bo2bo$297bo2bo326bo2bo796bo2bo$298b2o328b2o798b2o3$
315b2o328b2o798b2o$314bo2bo326bo2bo796bo2bo$314bo2bo326bo2bo796bo2bo$
315b2o328b2o798b2o2$287b2o328b2o798b2o$286bo2bo326bo2bo796bo2bo$286bo
2bo54b2o270bo2bo796bo2bo$287b2o54bo2bo270b2o798b2o$343bo2bo$344b2o$
304b2o328b2o798b2o$303bo2bo326bo2bo796bo2bo$303bo2bo326bo2bo796bo2bo
200b2o$304b2o328b2o798b2o200bo2bo$1636bo2bo$276b2o328b2o798b2o229b2o$
275bo2bo326bo2bo350bobo443bo2bo$275bo2bo326bo2bo351b2o443bo2bo$276b2o
328b2o352bo445b2o3$293b2o328b2o798b2o$292bo2bo326bo2bo796bo2bo$292bo2b
o326bo2bo796bo2bo$293b2o328b2o798b2o2$265b2o328b2o798b2o$264bo2bo326bo
2bo796bo2bo$264bo2bo54b2o270bo2bo796bo2bo$265b2o54bo2bo270b2o798b2o$
321bo2bo$322b2o$282b2o328b2o798b2o$281bo2bo326bo2bo796bo2bo$281bo2bo
326bo2bo796bo2bo200b2o$282b2o328b2o798b2o200bo2bo$1614bo2bo$254b2o328b
2o798b2o229b2o$253bo2bo326bo2bo796bo2bo$253bo2bo326bo2bo796bo2bo$254b
2o328b2o798b2o3$271b2o328b2o798b2o$270bo2bo326bo2bo796bo2bo$270bo2bo
326bo2bo796bo2bo$271b2o328b2o798b2o2$243b2o328b2o798b2o$242bo2bo326bo
2bo796bo2bo$242bo2bo54b2o270bo2bo796bo2bo$243b2o54bo2bo270b2o798b2o$
299bo2bo$300b2o$260b2o328b2o798b2o$259bo2bo326bo2bo796bo2bo$259bo2bo
326bo2bo796bo2bo200b2o$260b2o328b2o798b2o200bo2bo$1592bo2bo$232b2o328b
2o798b2o229b2o$231bo2bo326bo2bo796bo2bo$231bo2bo326bo2bo796bo2bo$232b
2o328b2o798b2o3$249b2o328b2o798b2o$248bo2bo326bo2bo796bo2bo$248bo2bo
326bo2bo796bo2bo$249b2o328b2o798b2o2$221b2o328b2o798b2o$220bo2bo326bo
2bo796bo2bo$220bo2bo54b2o270bo2bo796bo2bo$221b2o54bo2bo270b2o798b2o$
277bo2bo$278b2o$238b2o328b2o798b2o$237bo2bo326bo2bo188bo607bo2bo$237bo
2bo326bo2bo187b3o606bo2bo200b2o$238b2o328b2o188b3o607b2o200bo2bo$1570b
o2bo$210b2o328b2o798b2o229b2o$209bo2bo326bo2bo796bo2bo$209bo2bo326bo2b
o796bo2bo$210b2o328b2o798b2o3$227b2o328b2o798b2o$226bo2bo326bo2bo796bo
2bo$226bo2bo326bo2bo796bo2bo$227b2o328b2o798b2o2$199b2o328b2o798b2o$
198bo2bo326bo2bo796bo2bo$198bo2bo54b2o270bo2bo796bo2bo$199b2o54bo2bo
270b2o798b2o$255bo2bo$256b2o$216b2o328b2o798b2o$215bo2bo326bo2bo796bo
2bo$215bo2bo326bo2bo796bo2bo200b2o$216b2o328b2o798b2o200bo2bo$1548bo2b
o$188b2o328b2o798b2o229b2o$187bo2bo326bo2bo796bo2bo$187bo2bo326bo2bo
796bo2bo$188b2o328b2o798b2o3$205b2o328b2o798b2o$204bo2bo326bo2bo796bo
2bo$204bo2bo326bo2bo796bo2bo$205b2o328b2o798b2o2$177b2o328b2o798b2o$
176bo2bo326bo2bo796bo2bo$176bo2bo54b2o270bo2bo796bo2bo$177b2o54bo2bo
270b2o798b2o$233bo2bo$234b2o$194b2o328b2o798b2o$193bo2bo326bo2bo796bo
2bo$193bo2bo326bo2bo796bo2bo200b2o$194b2o328b2o798b2o200bo2bo$1526bo2b
o$166b2o328b2o798b2o229b2o$165bo2bo326bo2bo796bo2bo$165bo2bo326bo2bo
796bo2bo$166b2o328b2o798b2o3$183b2o328b2o798b2o$182bo2bo326bo2bo796bo
2bo$182bo2bo326bo2bo796bo2bo$183b2o328b2o798b2o2$155b2o328b2o798b2o$
154bo2bo326bo2bo796bo2bo$154bo2bo54b2o270bo2bo796bo2bo$155b2o54bo2bo
270b2o798b2o$211bo2bo$212b2o$172b2o328b2o798b2o$171bo2bo326bo2bo796bo
2bo$171bo2bo326bo2bo796bo2bo200b2o$172b2o328b2o798b2o200bo2bo$1504bo2b
o$144b2o328b2o798b2o229b2o$143bo2bo326bo2bo796bo2bo$143bo2bo326bo2bo
796bo2bo$144b2o328b2o798b2o2$1188bobo$161b2o328b2o695b2o101b2o$160bo2b
o326bo2bo695bo100bo2bo$160bo2bo326bo2bo796bo2bo$161b2o328b2o798b2o2$
133b2o328b2o798b2o$132bo2bo326bo2bo796bo2bo$132bo2bo54b2o270bo2bo796bo
2bo$133b2o54bo2bo270b2o798b2o$189bo2bo$190b2o$150b2o328b2o798b2o$149bo
2bo326bo2bo796bo2bo$149bo2bo326bo2bo796bo2bo200b2o$150b2o328b2o798b2o
200bo2bo$1482bo2bo$122b2o328b2o798b2o229b2o$121bo2bo326bo2bo796bo2bo$
121bo2bo326bo2bo796bo2bo$122b2o328b2o798b2o3$139b2o328b2o798b2o$138bo
2bo326bo2bo796bo2bo$138bo2bo326bo2bo796bo2bo$139b2o328b2o798b2o2$111b
2o328b2o798b2o$110bo2bo326bo2bo796bo2bo$110bo2bo326bo2bo796bo2bo$111b
2o328b2o798b2o3$128b2o328b2o798b2o$127bo2bo326bo2bo796bo2bo$127bo2bo
326bo2bo796bo2bo200b2o$128b2o328b2o798b2o200bo2bo$1460bo2bo$100b2o328b
2o798b2o229b2o$99bo2bo326bo2bo796bo2bo$99bo2bo326bo2bo796bo2bo$100b2o
328b2o771bo26b2o$1203bo$1202b3o$117b2o328b2o798b2o$116bo2bo326bo2bo
796bo2bo$116bo2bo326bo2bo796bo2bo$117b2o328b2o798b2o2$89b2o328b2o798b
2o$88bo2bo326bo2bo796bo2bo$88bo2bo326bo2bo796bo2bo$89b2o328b2o798b2o3$
106b2o328b2o798b2o$105bo2bo326bo2bo796bo2bo$105bo2bo326bo2bo796bo2bo
200b2o$106b2o328b2o798b2o200bo2bo$1438bo2bo$78b2o328b2o798b2o229b2o$
77bo2bo157bo168bo2bo796bo2bo$77bo2bo156b2o168bo2bo796bo2bo$78b2o157bob
o168b2o798b2o3$95b2o328b2o798b2o$94bo2bo326bo2bo796bo2bo$94bo2bo326bo
2bo796bo2bo$95b2o328b2o798b2o2$67b2o328b2o798b2o$66bo2bo326bo2bo608bob
o185bo2bo$66bo2bo326bo2bo607bo2bo185bo2bo$67b2o328b2o609bobo186b2o3$
84b2o328b2o798b2o$83bo2bo326bo2bo796bo2bo$83bo2bo326bo2bo796bo2bo200b
2o$84b2o328b2o798b2o200bo2bo$1416bo2bo$56b2o328b2o1029b2o$55bo2bo326bo
2bo454bo$55bo2bo326bo2bo452b2o2bo$56b2o328b2o455bo3$73b2o328b2o726b2o
70b2o$72bo2bo326bo2bo725bobo68bo2bo$72bo2bo326bo2bo341b3o380bo2bo6b2o
60bo2bo$73b2o328b2o727b2o6bobo60b2o$747bobo381bo$45b2o328b2o371bo387b
2o5bo$44bo2bo326bo2bo298bo460b3o3bo$44bo2bo326bo2bo298b3o458b2o$45b2o
328b2o299bo459b2o2bo2bo$1105b2o27b6ob2o$1104bo2bo26bob3o2bobo$62b2o
328b2o710bo2bo27b2o5bo2b2o$61bo2bo326bo2bo710b2o37bo2bo$61bo2bo326bo2b
o748bo251b2o$62b2o328b2o752bo247bo2bo$1122b2o19bobo248bo2bo$34b2o328b
2o755bo2bo270b2o$33bo2bo326bo2bo143bo610bo2bo$33bo2bo326bo2bo142b2o
611b2o$34b2o328b2o144bo$1094b2o$1093bo2bo$51b2o328b2o710bo2bo$50bo2bo
326bo2bo710b2o$50bo2bo326bo2bo$51b2o328b2o$1111b2o$23b2o1085bo2bo$22bo
2bo317b2o765bo2bo$22bo2bo317b3o765b2o$23b2o318b2o$1083b2o$1082bo2bo$
40b2o1040bo2bo$39bo2bo1040b2o$39bo2bo1330b2o$40b2o1330bo2bo$1100b2o
270bo2bo$12b2o1085bo2bo270b2o$11bo2bo1084bo2bo$11bo2bo1085b2o$12b2o$
1072b2o$1071bo2bo$29b2o1040bo2bo$28bo2bo1040b2o$28bo2bo$29b2o$1089b2o$
b2o1085bo2bo$o2bo8bo1075bo2bo$o2bo6b2o2bo1074b2o$b2o9bo$1061b2o$1060bo
2bo$18b2o1040bo2bo$17bo2bo1040b2o$17bo2bo1330b2o$18b2o1330bo2bo$1078b
2o270bo2bo$1077bo2bo270b2o$1077bo2bo$1078b2o2$1050b2o$1049bo2bo$1049bo
2bo$1050b2o3$1067b2o$1066bo2bo$1066bo2bo$1067b2o2$1039b2o$1038bo2bo$
1038bo2bo$1039b2o$1329b2o$1328bo2bo$1056b2o270bo2bo$1055bo2bo270b2o$
1055bo2bo$1056b2o2$1028b2o$1027bo2bo$1027bo2bo$1028b2o3$1045b2o$1044bo
2bo$1044bo2bo$1045b2o2$1017b2o$1016bo2bo$1016bo2bo$1017b2o$1307b2o$
1306bo2bo$1034b2o270bo2bo$1033bo2bo270b2o$1033bo2bo$1034b2o2$1006b2o$
1005bo2bo$1005bo2bo$1006b2o3$1023b2o$1022bo2bo$1022bo2bo$1023b2o2$995b
2o$994bo2bo$994bo2bo$995b2o$1285b2o$1284bo2bo$1012b2o270bo2bo$1011bo2b
o270b2o$1011bo2bo$1012b2o2$984b2o$983bo2bo$983bo2bo$984b2o3$1001b2o$
1000bo2bo$1000bo2bo$1001b2o2$973b2o$972bo2bo$972bo2bo$973b2o$1263b2o$
1262bo2bo$990b2o270bo2bo$989bo2bo270b2o$989bo2bo$990b2o2$962b2o$961bo
2bo$961bo2bo$962b2o3$979b2o$978bo2bo$978bo2bo$979b2o2$951b2o$950bo2bo$
950bo2bo$951b2o$737bo503b2o$1240bo2bo77bo$736bobo229b2o270bo2bo76bob2o
$737bo229bo2bo270b2o75bobo2bo$737bo229bo2bo347bo3b2o$968b2o348bob2o$
1319bobo$940b2o377b2o$939bo2bo373bo$939bo2bo372b3o$940b2o372bo4bo$
1314bo$1314b2o3bo$957b2o357b3o$956bo2bo356b3o$956bo2bo332b2o$957b2o
332bo2bo$1291bo2bo$929b2o361b2o$928bo2bo$928bo2bo$929b2o$1219b2o$1218b
o2bo$946b2o270bo2bo$945bo2bo270b2o$945bo2bo332b2o$946b2o332bo2bo$1280b
o2bo$918b2o361b2o$917bo2bo$917bo2bo$918b2o378b2o$1297bo2bo$1297bo2bo$
935b2o361b2o$934bo2bo$934bo2bo332b2o$935b2o332bo2bo$1269bo2bo$907b2o
361b2o$906bo2bo$906bo2bo$907b2o378b2o$1197b2o87bo2bo$1196bo2bo86bo2bo$
924b2o270bo2bo87b2o$533bo389bo2bo270b2o$534b2o387bo2bo332b2o$533b2o
389b2o332bo2bo$1258bo2bo$896b2o361b2o$895bo2bo$895bo2bo$896b2o378b2o$
1275bo2bo$1275bo2bo$913b2o361b2o$912bo2bo$912bo2bo332b2o$913b2o332bo2b
o$1247bo2bo$885b2o361b2o$884bo2bo$884bo2bo$885b2o378b2o$1175b2o87bo2bo
$1174bo2bo86bo2bo$902b2o270bo2bo87b2o$901bo2bo270b2o$901bo2bo332b2o$
902b2o332bo2bo$1236bo2bo$874b2o361b2o$873bo2bo$873bo2bo$874b2o378b2o$
1253bo2bo$1253bo2bo$891b2o361b2o$890bo2bo$890bo2bo332b2o$891b2o332bo2b
o$1225bo2bo$863b2o361b2o$862bo2bo$862bo2bo$863b2o378b2o$1153b2o87bo2bo
$1152bo2bo86bo2bo$880b2o270bo2bo87b2o$879bo2bo270b2o$879bo2bo332b2o$
880b2o332bo2bo$1214bo2bo$852b2o361b2o$851bo2bo$851bo2bo$852b2o378b2o$
1231bo2bo$1231bo2bo$869b2o361b2o$868bo2bo$868bo2bo332b2o$869b2o332bo2b
o$1203bo2bo$841b2o361b2o$840bo2bo$840bo2bo$841b2o378b2o$1131b2o87bo2bo
$1130bo2bo86bo2bo$858b2o270bo2bo87b2o$857bo2bo270b2o$857bo2bo332b2o$
858b2o332bo2bo$1192bo2bo$830b2o361b2o$829bo2bo$829bo2bo$830b2o378b2o$
1209bo2bo$1209bo2bo$847b2o361b2o$846bo2bo$846bo2bo332b2o$847b2o332bo2b
o$1181bo2bo$819b2o361b2o$818bo2bo$818bo2bo$819b2o378b2o$1109b2o87bo2bo
$1108bo2bo86bo2bo$836b2o270bo2bo87b2o$835bo2bo270b2o$835bo2bo332b2o$
836b2o332bo2bo$1170bo2bo$808b2o361b2o$807bo2bo$807bo2bo$808b2o378b2o$
1187bo2bo$1187bo2bo$825b2o361b2o$824bo2bo$824bo2bo332b2o$825b2o332bo2b
o$1159bo2bo$797b2o361b2o$796bo2bo$796bo2bo$797b2o378b2o$1087b2o87bo2bo
$1086bo2bo86bo2bo$814b2o270bo2bo87b2o$813bo2bo270b2o$813bo2bo332b2o$
814b2o332bo2bo$1148bo2bo$786b2o361b2o$785bo2bo$785bo2bo$786b2o378b2o$
1165bo2bo$1165bo2bo$726bo76b2o361b2o$726bo75bo2bo$725b3o74bo2bo332b2o$
803b2o332bo2bo$1137bo2bo$648bo126b2o361b2o$647b2o125bo2bo$647bobo124bo
2bo$775b2o378b2o$1065b2o87bo2bo$1064bo2bo86bo2bo$792b2o270bo2bo87b2o$
791bo2bo270b2o$791bo2bo332b2o$792b2o332bo2bo$1126bo2bo$764b2o361b2o$
763bo2bo$763bo2bo$764b2o378b2o$1143bo2bo$1143bo2bo$781b2o361b2o$780bo
2bo$780bo2bo332b2o$781b2o332bo2bo$1115bo2bo$753b2o361b2o$752bo2bo$752b
o2bo$753b2o378b2o$1043b2o87bo2bo$1042bo2bo86bo2bo$770b2o270bo2bo87b2o$
769bo2bo270b2o$769bo2bo332b2o$770b2o332bo2bo$1104bo2bo$742b2o361b2o$
741bo2bo$741bo2bo$742b2o378b2o$1121bo2bo$1121bo2bo$759b2o361b2o$758bo
2bo$758bo2bo332b2o$759b2o332bo2bo$1093bo2bo$731b2o361b2o$730bo2bo$730b
o2bo$731b2o378b2o$1021b2o87bo2bo$1020bo2bo86bo2bo$748b2o270bo2bo87b2o$
747bo2bo270b2o$747bo2bo332b2o$748b2o332bo2bo$1082bo2bo$1083b2o3$1100b
2o$1099bo2bo$1099bo2bo$737b2o361b2o$736bo2bo$736bo2bo332b2o$737b2o332b
o2bo$1071bo2bo$1072b2o3$1089b2o$999b2o87bo2bo$998bo2bo86bo2bo$998bo2bo
87b2o$999b2o$1061b2o$1060bo2bo$1060bo2bo$1061b2o$339bobo$340b2o$340bo
737b2o$1077bo2bo$1077bo2bo$1078b2o2$1050b2o$1049bo2bo$1049bo2bo$1050b
2o3$1067b2o$977b2o87bo2bo$976bo2bo86bo2bo$976bo2bo87b2o$977b2o$1039b2o
$1038bo2bo$1038bo2bo$1039b2o3$1056b2o$1055bo2bo$1055bo2bo$1056b2o2$
1028b2o$1027bo2bo$1027bo2bo$1028b2o3$1045b2o$955b2o87bo2bo$954bo2bo86b
o2bo$954bo2bo87b2o$955b2o$1017b2o$1016bo2bo$1016bo2bo$1017b2o3$1034b2o
$1033bo2bo$1033bo2bo$1034b2o2$1006b2o$1005bo2bo$1005bo2bo$1006b2o3$
1023b2o$933b2o87bo2bo$932bo2bo86bo2bo$932bo2bo87b2o$933b2o$995b2o$994b
o2bo$994bo2bo$995b2o3$1012b2o$1011bo2bo$1011bo2bo$1012b2o2$984b2o$983b
o2bo$983bo2bo$984b2o3$1001b2o$911b2o87bo2bo$910bo2bo86bo2bo$910bo2bo
87b2o$911b2o$973b2o$972bo2bo$972bo2bo$973b2o3$990b2o$989bo2bo$989bo2bo
$990b2o2$962b2o$961bo2bo$961bo2bo$962b2o3$979b2o$889b2o87bo2bo$888bo2b
o86bo2bo$888bo2bo87b2o$889b2o$951b2o$950bo2bo$950bo2bo$951b2o3$968b2o$
967bo2bo$967bo2bo$968b2o2$940b2o$939bo2bo$939bo2bo$940b2o3$957b2o$867b
2o87bo2bo$866bo2bo86bo2bo$866bo2bo87b2o$867b2o$929b2o$928bo2bo$928bo2b
o$929b2o3$946b2o$945bo2bo$945bo2bo$946b2o2$918b2o$917bo2bo$917bo2bo$
918b2o3$935b2o$934bo2bo$934bo2bo$935b2o2$907b2o$906bo2bo$906bo2bo$907b
2o3$924b2o$923bo2bo$923bo2bo$924b2o2$896b2o$895bo2bo$895bo2bo$896b2o3$
913b2o$912bo2bo$912bo2bo$913b2o2$885b2o$884bo2bo$884bo2bo$885b2o3$902b
2o$901bo2bo$901bo2bo$902b2o2$874b2o$873bo2bo$873bo2bo$874b2o3$891b2o$
890bo2bo$890bo2bo$891b2o2$863b2o$862bo2bo$862bo2bo$863b2o3$880b2o$879b
o2bo$879bo2bo$880b2o2$852b2o$851bo2bo$851bo2bo$852b2o3$869b2o$868bo2bo
$868bo2bo$869b2o2$841b2o$840bo2bo$840bo2bo$841b2o3$858b2o$857bo2bo$
857bo2bo$858b2o2$830b2o$829bo2bo$829bo2bo$830b2o3$847b2o$846bo2bo$846b
o2bo$847b2o2$819b2o$818bo2bo$818bo2bo$819b2o3$836b2o$835bo2bo$835bo2bo
$836b2o2$808b2o$704bo102bo2bo$703b3o101bo2bo$703b3o102b2o3$825b2o$824b
o2bo$824bo2bo$825b2o2$797b2o$796bo2bo$796bo2bo$797b2o3$814b2o$813bo2bo
$813bo2bo$814b2o2$786b2o$785bo2bo$785bo2bo$786b2o3$803b2o$802bo2bo$
802bo2bo$803b2o2$775b2o$774bo2bo$774bo2bo$775b2o3$792b2o$791bo2bo$791b
o2bo$792b2o2$764b2o$763bo2bo$763bo2bo$764b2o3$781b2o$780bo2bo$780bo2bo
$781b2o2$753b2o$752bo2bo$752bo2bo$753b2o3$770b2o$769bo2bo$769bo2bo$
770b2o2$742b2o$741bo2bo$741bo2bo$742b2o3$759b2o$758bo2bo$758bo2bo$759b
2o2$731b2o$730bo2bo$730bo2bo$731b2o3$748b2o$747bo2bo$747bo2bo$748b2o2$
720b2o$719bo2bo$719bo2bo$720b2o3$737b2o$736bo2bo$736bo2bo$737b2o2$709b
2o$708bo2bo$708bo2bo$709b2o3$726b2o$725bo2bo$725bo2bo$726b2o2$698b2o$
697bo2bo$697bo2bo$698b2o3$715b2o$714bo2bo$714bo2bo$715b2o8$704b2o$703b
o2bo$703bo2bo$704b2o!
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa
 
Posts: 473
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

Re: tDryLife

Postby muzik » June 21st, 2017, 4:38 pm

this guy is a genius
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik
 
Posts: 3465
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: tDryLife

Postby drc » June 21st, 2017, 5:05 pm

Me 1 month ago: Ehh, it's not sparky enough to yield a spaceship.
Me now: W o w .
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y
User avatar
drc
 
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: tDryLife

Postby muzik » June 21st, 2017, 7:49 pm

So the speeds we have so far:

c/2 orthogonal
c/3 orthogonal
c/5 orthogonal
2c/21 orthogonal
c/4 diagonal
?c/240 diagonal
8c/21 camel

Can someone put a modified gfind on this rule or something?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik
 
Posts: 3465
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: tDryLife

Postby AforAmpere » June 21st, 2017, 8:10 pm

Can your python connect to your Golly? There is a script in the Adapting gfind thread:
http://www.conwaylife.com/forums/viewtopic.php?f=9&t=925&p=41661&hilit=adapting#p6825
Download EricG's mod and use the Python script to generate the rule table thing, there are instructions on the .c file. I have been running it for my rule B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y. I would make the script for this, but I can't get Python to connect to golly on Linux, so I manually typed the transitions in, and it takes forever.
I and wildmyron manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule
- Finish a rule with ships with period >= f_e_0(n) (in progress)
AforAmpere
 
Posts: 1046
Joined: July 1st, 2016, 3:58 pm

Re: tDryLife

Postby A for awesome » June 21st, 2017, 8:29 pm

muzik wrote:?c/240 diagonal

It's actually 11c/776 (22c/1552 for the ship).
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1876
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: tDryLife

Postby calcyman » June 22nd, 2017, 4:40 am

AforAmpere wrote:I would make the script for this, but I can't get Python to connect to golly on Linux, so I manually typed the transitions in, and it takes forever.


How did you install Golly? The following installation method works straight out of the box:

sudo apt-get install golly


It's sufficiently popular to be in most repositories (at the very least, Ubuntu and Debian both have it).
What do you do with ill crystallographers? Take them to the mono-clinic!
User avatar
calcyman
 
Posts: 2088
Joined: June 1st, 2009, 4:32 pm

Re: tDryLife

Postby Rhombic » June 29th, 2017, 5:50 am

Seeing as tDryLife has pretty much taken over the tlife wiki article, is it time to move it to its own article?
PS. The large images for the puffers and spaceships could potentially be changed to slightly smaller ones.
SoL : FreeElectronics : DeadlyEnemies : 6a-ite : Rule X3VI
what is “sesame oil”?
User avatar
Rhombic
 
Posts: 1056
Joined: June 1st, 2013, 5:41 pm

Re: tDryLife

Postby drc » September 17th, 2017, 10:03 pm

A p120 puffer, and a p40 ship and rake:
x = 57, y = 129, rule = B37/S2-i34q
2bo$o3bo$5bo$5bo$6o4$6o$5bo$5bo$o3bo$2bo4$6b3o$8bo$6bobo$6b2o11$9bo$7b
o3bo$12bo$12bo$7b6o4$7b6o$12bo$12bo$7bo3bo$9bo$2bo$bobo$obo2b2o$bo11b
3o$5b3o7bo$6bo6bobo$6bo6b2o4$6bo6b2o$6bo6bobo$5b3o7bo$bo11b3o$obo2b2o$
bobo$2bo$9bo$7bo3bo$12bo$12bo$7b6o4$7b6o$12bo$12bo$7bo3bo$9bo8$28bo$
26bo3bo$31bo$31bo$26b6o4$26b6o$31bo$31bo$26bo3bo$27b2o$25b3o$24bo3bo$
6b2o16bo3bo$5bob2o15b3o20bo3bo$9bo17bobo16bobo4bo$8bo18bo13b2o2bo8bo$
4bobo15bobo15bo2bo2b3o5bo$23bo12bo4b2o10b2o$6b2o27bobo11bo2bo$5b2o16b
5o8bobo10b2o$5b3o14bo3bo10bo$16b2o4b2obo22bo$16b2o7bo20bo3bo$24b2obobo
21bo$25bo2bo22bo$26b3o17b6o4$48b6o$53bo$30b3o20bo$20b2o7b2ob2o14bo3bo$
6b2o12b2o6b3o19bo$5bobo19bo2bo10bo$2bo24b3o3bo6bobo$4bob2o22bo2bo5bobo
11b2o$5b2o20b2o3bo2bo4bo4b2o5bo2b2o$bobobobo19bo2bo2bobo8bo2bo3b3o2bo$
obo26b2o2bobo9b2o4bo4bo$3bo25b3o19b5o$b2obo3bo19bo2bo20b2o$3bobo2bobo
18b3o$2b4o24bo$5b2o$5b2o!

Simple B->G:
x = 4, y = 8, rule = B37/S2-i34q
2b2o$2b2o3$bo$2bo$2bo$3o!

Simple DSMMWSS->G:
x = 14, y = 15, rule = B37/S2-i34q
2bo$o3bo$5bo$5bo$6o4$6o$5bo$5bo$o3bo5b2o$2bo7bobo$12bo$12b2o!

DSMMWSS turns two beehives into caps:
x = 13, y = 21, rule = B37/S2-i34q
10b2o$9bo2bo$10b2o2$2bo$o3bo$5bo$5bo$6o4$6o$5bo$5bo$o3bo$2bo2$10b2o$9b
o2bo$10b2o!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y
User avatar
drc
 
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

PreviousNext

Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 4 guests