## The hunt for another B3457/S4568 ship

For discussion of other cellular automata.

### The hunt for another B3457/S4568 ship

B3457/S4568 is known for it's terribly slow c/5648, the slowest orthogonal elementary ship known. But are there other ships out there? Who knows? I have done ntzfind from p2 to p10, w6 to w8, currently doing p10 w7.
If you're the person that uploaded to Sakagolue illegally, please PM me.
x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo! (Check gen 2) Saka Posts: 3110 Joined: June 19th, 2015, 8:50 pm Location: In the kingdom of Sultan Hamengkubuwono X ### Re: The hunt for another B3457/S4568 ship This is an outer-totalistic rule, so you can just use normal zfind. I hope that helps at the higher widths. x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt) $$x_1=\eta x$$ $$V^*_\eta=c^2\sqrt{\Lambda\eta}$$ $$K=\frac{\Lambda u^2}2$$ $$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$ http://conwaylife.com/wiki/A_for_all Aidan F. Pierce A for awesome Posts: 1877 Joined: September 13th, 2014, 5:36 pm Location: 0x-1 ### Re: The hunt for another B3457/S4568 ship These types of rules interest me. I'm currently trying to hunt for the slowest ship by using blob rules. Wish me luck. This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.) Current rule interest: B2ce3-ir4a5y/S2-c3-y drc Posts: 1664 Joined: December 3rd, 2015, 4:11 pm Location: creating useless things in OCA ### Re: The hunt for another B3457/S4568 ship I find it interestingly coincidental that the speed of the spaceship is an anagram of the survival conditions. Here's hoping for a c/7543 or c/8654 ship. Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace! muzik Posts: 3466 Joined: January 28th, 2016, 2:47 pm Location: Scotland ### Re: The hunt for another B3457/S4568 ship I strongly suggest a c/7 diagonal bilateral symmetric search, since we have this (promising) partial: x = 74, y = 74, rule = B3457/S45684b4o$2bob4o$b4obob2o$2b8o$4o2bob4o$2obo2b6o$6ob3obobo$2obob2ob3ob2o$2b6obob5o$2b7o3bo2bo$4b2obo2bob6o$4b3obo2bob2ob2o$7b4ob2ob5o$6b3ob10o$8bob2ob9o$8b3ob3ob6o$10b9o3bo$10b11o2b2o$12b13o$12b4ob4ob5o$14b2ob3ob6o$14b2o2bob2ob5o$16bob3ob2ob2o2bo$17b6o3b4o$17b5o2bob2ob3o$19b4o3b4obo$19b15o$21bob4ob2o3bo$23bob3obo3b3o$22b9ob4o$24bobo2b3ob5o$24b3o3bob2ob3o$26bo2bob3ob5o$26b9obob2o$28b3o2bob7o$28b5ob2ob2ob2o$30b5o3b2ob3o$30b3ob2o3b2ob2o$32b5o2bob5o$32b3ob7ob2o$34b2obob9o$34b3ob5o2bobo$36b7o2b2ob2o$36b3obo6b3o$38b3o6b5o$38b5o4b2ob2o$40bobo4b4ob2o$40b2ob4obobob2o$42b11ob2o$42b3obob8o$44b11ob2o$44b2o2b3obobo2bobo$46b6o2bo2b2o$46b2ob2o2b2o2b5o$48b10o2b2o$48b2o4bobobo3b2o$50bo3b3obobob2o$50b5o2bobob3obo$52b2ob2ob2o2bob2o$51bobo3b3o2bob4o$53b2obo3bob4obo$53b2o2bo3b2ob2ob3o$55b9ob2ob2o$55b3o2bobo3bob4o$58b4o7b3o$57b6o3b6obo$59bo2b2obo2b2obo$59b3o3bob2o$61b3ob3o$61b6o$63b3o$63b4o2$65bo! Still drifting. Bullet51 Posts: 533 Joined: July 21st, 2014, 4:35 am ### Re: The hunt for another B3457/S4568 ship c/7 orthogonal also has promise, x = 19, y = 124, rule = B3457/S45689bo2$7b2ob2o2$4b2o2b3o2b2o$4b4obob4o$3b3o2bobo2b3o$3bobo2bobo2bobo$b4o2bo3bo2b4o$4b5ob5o$3obobo2bo2bobob3o$3b5obob5o$8obob8o$3bo2b7o2bo$5ob7ob5o$b3obo3bo3bob3o$ob15obo$b17o$2o3b2ob3ob2o3b2o$5b3obob3o$3ob4obob4ob3o$bob5obob5obo$6ob5ob6o$bo2bob3ob3obo2bo$5ob7ob5o$3bobo7bobo$5ob7ob5o$b17o$2obobo3bo3bobob2o$b17o$3o5bobo5b3o$b4ob7ob4o$3ob4obob4ob3o$2bo2b9o2bo$7ob3ob7o$b5obobobob5o$6obobobob6o$b2ob2ob5ob2ob2o$7ob3ob7o$bobob3o3b3obobo$obobo3bobo3bobobo$b3o2b3ob3o2b3o$3ob3ob3ob3ob3o$2b7ob7o$9ob9o$bo4bobobobo4bo$3ob2ob2ob2ob2ob3o$3bob3o3b3obo$2obo4b3o4bob2o$b3o2bob3obo2b3o$ob2ob9ob2obo$b3ob4ob4ob3o$o4b9o4bo$b4o3bobo3b4o$ob15obo$b3o3bobobo3b3o$5ob2o3b2ob5o$bob13obo$4ob9ob4o$bo2b5ob5o2bo$3ob11ob3o$2bobobo2bo2bobobo$6obobobob6o$b2ob4obob4ob2o$ob15obo$b4o2b5o2b4o$19o$bo2bobo2bo2bobo2bo$4o2b7o2b4o$b17o$19o$b17o$2ob13ob2o$b7obob7o$7o2bo2b7o$3o2b3obob3o2b3o$2b7ob7o$5ob3ob3ob5o$bob2ob3ob3ob2obo$3ob11ob3o$b7o3b7o$o3bob7obo3bo$bo2b3ob3ob3o2bo$ob4ob5ob4obo$b7obob7o$ob3o3b3o3b3obo$bo2b11o2bo$4obob5obob4o$bobob4ob4obobo$2ob2o2b5o2b2ob2o$bob13obo$3o5b3o5b3o$b7obob7o$o2b13o2bo$b4obob3obob4o$5ob7ob5o$bo2b4obob4o2bo$2obob4ob4obob2o$b4ob7ob4o$o4bob5obo4bo$b8ob8o$2obob9obob2o$b6ob3ob6o$2ob4ob3ob4ob2o$b7obob7o$19o$2bo2bo2b3o2bo2bo$3o2bobobobobo2b3o$b3obob5obob3o$obo4bobobo4bobo$b2ob2ob2ob2ob2ob2o$b3ob3o3b3ob3o$b2o2b9o2b2o$4b3obobob3o$ob3o2b5o2b3obo$b17o$6ob2ob2ob6o$2b4ob5ob4o$2ob3ob5ob3ob2o$bob6ob6obo$19o$b2ob11ob2o$ob15obo$2b6o3b6o!

EDIT:
And c/5 potential:
x = 117, y = 25, rule = B3457/S456812bobobo2bobobobobobobob2o4bo2bobobobobobobobobobobobobobobobobob2obobo29bob2o$12b5obob11obo2b3ob2obob2ob2o2b4ob6obobobob4obobob4obo2bobobobobo2bobobo2bobobobo2b2o$bobobobobo2bob7o2bob4o2b3obob2ob5ob4ob2obo2b2obo2b6ob6ob4ob3ob6ob3ob3obob6ob2ob2obo$b4ob13ob4ob8ob4ob5ob4ob3o2b4ob5o4b3o3b6o2b4o4b11obob8ob2o$6o2b11ob4obo4b2ob13obob3ob19ob3ob4obobo11b5ob3obo2b3o2b2o$3ob2o2b11ob2ob13ob8obobob6ob6o2b5ob3o2b2ob4obo3b3o3b2o2b6ob5ob5o$2b5o2bo2bobo2bobobob2ob3ob5ob3obob2ob3ob7obob3ob17ob5o3bob2ob2o2bo2b4obo2b3ob3o$2b2o2b6ob2ob3ob2ob3ob9ob8ob2o3bobob5ob2o2b5o2b5ob4obo2b3ob5ob2ob2ob7ob6o$2bobob2ob4obob3obo2b2obob2ob2o2b5obob5obobobobob3ob9o2b2ob4ob2obo2b4o2b4o2bob3o2b8ob2o$4bo3b2o2b9o2b3ob3ob2ob3obobob4obobobobobob3o2bob3o2b4ob5obobob5ob8o2b7ob2o3b3o$6bobo2bobob6o2b4ob2obo3b6obob6ob6o2b5obo2b2o3b2obobob2o2b7o2b3obo2b3ob4obobob3o$5b10ob6o4bob11obo2b2o3b3ob2o2bo2bob8obob3obobobobob2ob9ob5o2bob4obob3o$5bobobob2ob3ob4ob11o2b5ob4o2b2o2b2o2bo2bo2bob3ob8o2bobo2b6ob6obo2b5ob3o2b3obo$5b10ob6o4bob11obo2b2o3b3ob2o2bo2bob8obob3obobobobob2ob9ob5o2bob4obob3o$6bobo2bobob6o2b4ob2obo3b6obob6ob6o2b5obo2b2o3b2obobob2o2b7o2b3obo2b3ob4obobob3o$4bo3b2o2b9o2b3ob3ob2ob3obobob4obobobobobob3o2bob3o2b4ob5obobob5ob8o2b7ob2o3b3o$2bobob2ob4obob3obo2b2obob2ob2o2b5obob5obobobobob3ob9o2b2ob4ob2obo2b4o2b4o2bob3o2b8ob2o$2b2o2b6ob2ob3ob2ob3ob9ob8ob2o3bobob5ob2o2b5o2b5ob4obo2b3ob5ob2ob2ob7ob6o$2b5o2bo2bobo2bobobob2ob3ob5ob3obob2ob3ob7obob3ob17ob5o3bob2ob2o2bo2b4obo2b3ob3o$3ob2o2b11ob2ob13ob8obobob6ob6o2b5ob3o2b2ob4obo3b3o3b2o2b6ob5ob5o$6o2b11ob4obo4b2ob13obob3ob19ob3ob4obobo11b5ob3obo2b3o2b2o$b4ob13ob4ob8ob4ob5ob4ob3o2b4ob5o4b3o3b6o2b4o4b11obob8ob2o$bobobobobo2bob7o2bob4o2b3obob2ob5ob4ob2obo2b2obo2b6ob6ob4ob3ob6ob3ob3obob6ob2ob2obo$12b5obob11obo2b3ob2obob2ob2o2b4ob6obobobob4obobob4obo2bobobobobo2bobobo2bobobobo2b2o$12bobobo2bobobobobobobob2o4bo2bobobobobobobobobobobobobobobobobob2obobo29bob2o!
-Josh Ball.

velcrorex

Posts: 339
Joined: November 1st, 2009, 1:33 pm

### Re: The hunt for another B3457/S4568 ship

A really, really, really, really, really, really bad c/4 partial from zfind:
x = 16, y = 8, rule = B3457/S45687b2o2$5b6o$3b10o$3b3ob2ob3o$b14o$3obobo2bobob3o$3ob8ob3o!

A considerably much better (but not as much as the one above) c/7:
x = 18, y = 19, rule = B3457/S45688b2o2$6b6o2$4b2obo2bob2o$3bo10bo$2b3obo4bob3o$2bobo8bobo$2o2b10o2b2o$3bo10bo$6ob4ob6o$bob3o6b3obo$o3b10o3bo$b6o4b6o$ob4ob4ob4obo$b6o4b6o$6obo2bob6o$2b6o2b6o$o2bo3b4o3bo2bo!

Heres the final result, with 0 spaceships found:
x = 18, y = 22, rule = B3457/S45688b2o$6bo4bo$3b2o2bo2bo2b2o$b7o2b7o$2b6o2b6o$18o$b4ob6ob4o$obobob2o2b2obobobo$b6ob2ob6o$ob14obo$b4o2b4o2b4o$obob10obobo$bob12obo$o3b3ob2ob3o3bo$b3ob2ob2ob2ob3o$18o$2b6o2b6o$3o2b3o2b3o2b3o$ob14obo$bobob8obobo$obobob2o2b2obobobo\$bob12obo!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik

Posts: 3466
Joined: January 28th, 2016, 2:47 pm
Location: Scotland