ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Smallest Spaceships Supporting Specific Speeds (5s) Project

For discussion of other cellular automata.

Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby drc » June 4th, 2017, 1:28 am

Hello all, I have started a project that I think will attract a collaborative effort to find small spaceships of every speed across the vast isotropic rulespace. Here are some rules(? I don't know what to call them.)

1. Spaceships will be optimised by minimum population.
2. Speeds will be expressed unsimplified. (2c/6 is different than c/3)
3. Every ship will be oriented going to the east (orthogonal), southeast (diagonal), or in a position in which it lunges farthest to the right (knightships). No further optimization will be made for the orientation of asymmetric spaceships. Rule optimization will just be non-standard, for smaller spaceships I will try and shorten the rulestring, but for bigger ones I will leave the rulestring as-is in order to encourage further exploration in that rule.
4. Trivial flotillae don't count.

The format is currently: o#c#, d#c#, k#_#c# (with the largest number first in the case of knightships)

Maximum period is set to 1000 so far. Here's a link to the post with the current list of spaceships documented.
Last edited by drc on July 23rd, 2017, 5:50 am, edited 3 times in total.
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y
User avatar
drc
 
Posts: 1665
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby toroidalet » June 4th, 2017, 12:56 pm

I'd recommend putting spaceships of simple speeds as well.
This 16c/44 has a smaller bounding box but same population.
x = 24, y = 5, rule = B3-cky6ci/S23-ce4n7e
16b2o3bo$b2o12b5o2bo$o2bo10bo4bob3o$b2o12b5o2bo$16b2o3bo!

Here's a ridiculously large 12c/31
x = 184, y = 63, rule = B35ce/S234t6c
129b2o$129bobo$131bo11b2o10b2o$92b2o35bobo11b2o11bo$89bo3bo35b2o10b2o
10bo$88bo4bo10b2o10b2o23b2o10b2o$88bo2b2o11b2o10b2o$92b2o37bo$92b2o36b
3o35b2o$89b3o11b3o8b2o13bo3bo34bo$85b2o15bo3bo23b2o2bo33bo2bo$84bo2bo
13bo5bo23b3o35b2o$84bo16b2o3b2o33b3o$90b3o8bobobobo32b2o2bo2bo$58b2ob
2o19bo2bo3bo2bo17bob2o26b2o6bo31bobo$53bo4b6o5b3o10bo3bo2bo19b2o2bo23b
2ob3o3bo2bo30b4o$34b2o10b2o4b2obo6b2o18bo2bo3bo2bo17bob2o26b2o6bo31bob
o$33bo2bo8bo2bo3b2ob4o2bobo26b3o8bobobobo32b2o2bo2bo$33bobo9bobo4b2o5b
ob2o21bo16b2o3b2o33b3o$20b2o12bo11bo5bo5bo25bo2bo13bo5bo23b3o35b2o$16b
o2b3o31bo4bo26b2o15bo3bo23b2o2bo33bo2bo$bo13b6o68b3o11b3o8b2o13bo3bo
34bo$obo11bobob2o72b2o36b3o35b2o$14bobobo12b2o35b2o22b2o37bo$3o12b3o
11bo3b2o31bo3b2o16bo2b2o11b2o10b2o$bo14bo12bo36bo21bo4bo10b2o10b2o23b
2o10b2o$29bo5bo30bo5bo16bo3bo35b2o10b2o10bo$30bo3bo32bo3bo20b2o35bobo
11b2o11bo$4bo9b2o15b3o9b2o23b3o9b2o49bo11b2o10b2o$5bo8bo2bo24bobo34bob
o47bobo$4b2o9b3o23bo5bobo28bo5bobo42b2o$41b2obobob2o28b2obobob2o$4b2o
9b3o23bo5bobo28bo5bobo42b2o$5bo8bo2bo24bobo34bobo47bobo$4bo9b2o15b3o9b
2o23b3o9b2o49bo11b2o10b2o$30bo3bo32bo3bo20b2o35bobo11b2o11bo$29bo5bo
30bo5bo16bo3bo35b2o10b2o10bo$bo14bo12bo36bo21bo4bo10b2o10b2o23b2o10b2o
$3o12b3o11bo3b2o31bo3b2o16bo2b2o11b2o10b2o$14bobobo12b2o35b2o22b2o37bo
$obo11bobob2o72b2o36b3o35b2o$bo13b6o68b3o11b3o8b2o13bo3bo34bo$16bo2b3o
31bo4bo26b2o15bo3bo23b2o2bo33bo2bo$20b2o12bo11bo5bo5bo25bo2bo13bo5bo
23b3o35b2o$33bobo9bobo4b2o5bob2o21bo16b2o3b2o33b3o$33bo2bo8bo2bo3b2ob
4o2bobo26b3o8bobobobo32b2o2bo2bo$34b2o10b2o4b2obo6b2o18bo2bo3bo2bo17bo
b2o26b2o6bo31bobo$53bo4b6o5b3o10bo3bo2bo19b2o2bo23b2ob3o3bo2bo30b4o$
58b2ob2o19bo2bo3bo2bo17bob2o26b2o6bo31bobo$90b3o8bobobobo32b2o2bo2bo$
84bo16b2o3b2o33b3o$84bo2bo13bo5bo23b3o35b2o$85b2o15bo3bo23b2o2bo33bo2b
o$89b3o11b3o8b2o13bo3bo34bo$92b2o36b3o35b2o$92b2o37bo$88bo2b2o11b2o10b
2o$88bo4bo10b2o10b2o23b2o10b2o$89bo3bo35b2o10b2o10bo$92b2o35bobo11b2o
11bo$131bo11b2o10b2o$129bobo$129b2o!

I optimized for bounding box, so a longer one might have a smaller minimum population.
7c/48 diagonal:
x = 4, y = 4, rule = B3-cky8/S234n
bo$2b2o$obo$2o!

10c/27
x = 24, y = 27, rule = B3-cky8/S234n
2bo$2o2$12b2o$11bo2bo$12bobo$13bo3$18b3o$17bo3bo$17b2o3bo$23bo$20bo2bo
$23bo$17b2o3bo$17bo3bo$18b3o3$13bo$12bobo$11bo2bo$12b2o2$2o$2bo!

c/5 diagonal
x = 4, y = 4, rule = B3-cky4k/S23-c4cn
b2o$o2bo$2bo$2o!

11c/37
x = 35, y = 8, rule = B34n5y/S2-k34a
b3o16b3o$o2bo8b2o7b2o9bo$bo10b2o8b4obo4b2o$b3obo16bo2bo7b2o$b3obo16bo
2bo7b2o$bo10b2o8b4obo4b2o$o2bo8b2o7b2o9bo$b3o16b3o!

I guess it's too much work to search Catagolue as well as the forums.
c/6 diagonal
x = 3, y = 2, rule = B2-a/S12
2bo$2o!

4c/12
x = 4, y = 4, rule = B2i3-y6ci/S23-e4t
2b2o$o2bo$o2bo$obo!

c/30 diagonal
x = 4, y = 4, rule = B38/S234wz
b2o$o2bo$o2bo$bobo!

4c/14 diagonal
x = 15, y = 15, rule = B38/S234wz
2o$2obo$5bo$bo$4bo$2bo3$8b3o$8bo2bo$8bobo3bo$9bo4bo$14bo$13bo$10b3o!

8c/183
x = 29, y = 5, rule = B2ei3aeiqr4-aiktz5aiqy6ac7c8/S12cin3i4cikwy5-ajr6ain7e
26bo$4bo13bobo5bo$2ob3o11bo2bo4b4o$4bo13bobo5bo$26bo!

2c/14 diagonal
x = 3, y = 3, rule = B34n5y/S2-k34a
bo$2o$b2o!

8c/128 diagonal
x = 4, y = 4, rule = B36in/S234cw
3o$3bo$o2bo$b2o!

More coming soon!
EDIT:
9c/56 diagonal
x = 18, y = 14, rule = B2n3-ej4e6e/S234i
13b2o$13b2o2$7bo$2b2o3bo$2b2obobo5b2o$4bo8bob2o$2b2o$16b2o$16bo$17bo$
2obo$o2bo6b2o$b3o6b2o!

3c/10
x = 4, y = 5, rule = B3-y4e6ci/S2-i3-ce
b3o$3bo$2b2o$2o$o!

EDIT2:
The 2c/8 is in a suboptimal phase.
x = 3, y = 4, rule = B2-a3-i/S1e3
bo$2bo2$obo!

2c/6 diagonal
x = 6, y = 7, rule = B3-j/S0234-r
o$b2o$b2o$bobo$2bo2bo$5bo$3b3o!

9c/18
x = 7, y = 8, rule = B2-ai3-in4w/S1c2aei3-aj
o4bo$6bo$o4bo$bo$bo$o4bo$6bo$o4bo!

4c/10
x = 5, y = 5, rule = B3-q4n/S23-c
2b2o$bob2o$o2bo$obo$bo!

18c/156
x = 18, y = 19, rule = B3-cky8/S23-c4n
3b3o2$4b2o$4b2o$3bo2bo$4b2o5$o$b2o3$16b2o$15b2o$12bobo$12b3o$13bo!

c/3 diagonal
x = 3, y = 3, rule = B2-ai3-in4w/S1c2aei3-aj
2bo$bo$obo!

4c/8
x = 7, y = 5, rule = B3-cqy6i/S23-aeky4ai5i
3b2o$o4bo$o4b2o$o4bo$3b2o!

2c/16
x = 4, y = 3, rule = B3-j4nwz5c7/S1c2-ik34i5ac
bobo$o2bo$bobo!

EDIT3:
16c/52
x = 26, y = 15, rule = B3-y6-a/S23-e
3bo$2bobo$bo2bo$o2bo9bobo$bobo7b3obo$5b2o4b4o6bo2bo$5b2o4bo9bo3bo$4bo
15bobo2bo$5b2o4bo9bo3bo$5b2o4b4o6bo2bo$bobo7b3obo$o2bo9bobo$bo2bo$2bob
o$3bo!

8c/22
x = 15, y = 11, rule = B3-cky6ci/S23-ce4n7e8
12bo$7bobobobo$7bo2bo3bo$7bobobobo$12bo$3o$12bo$7bobobobo$7bo2bo3bo$7b
obobobo$12bo!

8c/16
x = 6, y = 16, rule = B3-j/S234i
2b3o$obo2bo$o4bo$2ob3o$2bo7$2bo$2ob3o$o4bo$obo2bo$2b3o!

c/25 diagonal
x = 6, y = 6, rule = B2-a3-ik4-aik/S23
3bo$4b2o$4b2o$o2bo$b2o$b2o!

17c/34
x = 14, y = 7, rule = B2e3-a4/S23-a4-a7e
9bo$8b3obo$b2o5b2o3bo$2obo4b2o3bo$b2o5b2o3bo$8b3obo$9bo!

14c/28
x = 5, y = 13, rule = B34et/S23-a4eit6
bo$2bo$3b2o$2o2bo$bo2bo$2b2o2$2b2o$bo2bo$2o2bo$3b2o$2bo$bo!

EDIT4:
6c/12
x = 6, y = 7, rule = B2ce3-a/S2
o$bo$bo3bo$bob3o$bo3bo$bo$o!

10c/36
x = 38, y = 19, rule = B3/S2-k34k6c
12b2o$12b2o$7b2o$9bo7bo10bo8bo$6bo2bo7bo10b2o6b2o$9bo7bo10bo8bo$o6b2o$
o$o2$o$o$o6b2o$9bo7bo10bo8bo$6bo2bo7bo10b2o6b2o$9bo7bo10bo8bo$7b2o$12b
2o$12b2o!

20c/72
x = 44, y = 13, rule = B3/S2-k34k6c
34bo8bo$34b2o6b2o$34bo8bo2$18bo$18b2o$14bo25bobo$13b2o20bo4bobo$13b2o
7b3o8b2o8bo$2o11b2o20bo4bobo$2o12bo25bobo$18b2o$18bo!

4c/11
x = 9, y = 13, rule = B34t6k/S2-i35a
2bo$bobo$o$o4bo$b2o3bo$5bobo$8bo$5bobo$b2o3bo$o4bo$o$bobo$2bo!

16c/92 diagonal
x = 7, y = 4, rule = B34i5eiy/S234qy
4bo$2bobo$2o3bo$4b3o!

18c/72
x = 46, y = 30, rule = B356/S23
21b3ob3o2$2bo$bobo$o3bo11bo23b2o$o3bo10bo2bo21bob2o$bobo10bo3bo22bo2bo
$2bo12b2obo14bo11bo$16bo14b4o6bo3bo$31bob3o7bo$31bo2b2o$32bobo$33bo5$
33bo$32bobo$31bo2b2o$31bob3o7bo$16bo14b4o6bo3bo$2bo12b2obo14bo11bo$bob
o10bo3bo22bo2bo$o3bo10bo2bo21bob2o$o3bo11bo23b2o$bobo$2bo2$21b3ob3o!

11c/22
x = 25, y = 15, rule = B3-ky/S23-aiy4anq6n
bo2bo$5o14b3o$o4bo13b2ob2o$2o3bobo13bo2bo$2bo5bo15bo$5b2o17bo$22b3o2$
22b3o$5b2o17bo$2bo5bo15bo$2o3bobo13bo2bo$o4bo13b2ob2o$5o14b3o$bo2bo!

18c/87, optimized for bounding box like the 12c/31
x = 37, y = 20, rule = B2i3-ck/S02-i3-ck
33b2o$33b2o$21bobo11bo$21bo2bo8b2o$33b2o$22b2o$11bobo7bo5b2o$2bo9b2o
13b2o$2bo10bo8bo$2bo9b2o$o2bo7bobo$obo$bo5b2o20b2o$7b2o20b2o$2bo20b2o$
23bobo9bo$23b3o9b2o$23bobo10bo$35b2o$35bo!

9c/50 diagonal
x = 23, y = 19, rule = B34-iqr7c/S23-a4i
14bo$14bo$14bo3$b2o$o2bo$4bo11b2o$bo2bo10b2o4bo$2bobo10bo6bo$2b2o11b2o
5bo$15bo6bo$15b2o4bo$16b2o3$7bo$7bo$7bo!

(3,4)c/20
x = 10, y = 8, rule = B3/S234w7c
b3o3bo$2obo$2b2o$5bo$8b2o$9bo$7b2o$7bo!

EDIT5:
Ships from the oblique ships thread (plus the previous one)
(5,16)c/74
x = 5, y = 4, rule = B3/S23-e4e
2b2o$bob2o$o$2o!

(5,2)c/190
x = 22, y = 39, rule = B38/S23
bo$obo$b2o7$18bo$17b2o2$18bo$16b2o4$20b2o$20b2o11$9bo$8b2o2$9bo$7b2o4$
11b2o$11b2o!

(2,6)c/21
x = 16, y = 19, rule = B37/S2-i34q
7b5o$6b2o2b2o$6bo2bo2b3o$6b2ob2ob2obo$6b2o2bo4bo$13b2o$11bobo$10bo5$3b
3o$bo2bo$2bo5b2o$obo3bo3bob2o$obo9bobo$bo5b3obobo$12bo!

(3,1)c/13
x = 4, y = 5, rule = B2-ak3/S25ai
b3o$2b2o$3bo$obo$b2o!

(7,8)c/168
x = 7, y = 4, rule = B013568/S01
2obobo$2bo2b2o$2bo$4b2o!

(5,7)c/330
x = 6, y = 11, rule = B015/S14
o$o7$4b2o$4b2o$3bo!

(3,2)c/23
x = 5, y = 6, rule = B345/S126
o2$3bo$obobo$obo$ob3o!

(2,3)c/10
x = 5, y = 3, rule = B2en3/S25678
o2bo$bo2bo$3bo!

(2,29)c/89
x = 126, y = 58, rule = B3-k4c/S23
45b2o27bo$41bo3b2o27bo$41bo32bo$41bo$70b3o3b3o$2bobo$3ob2o68bo$2bo2b2o
43bobo21bo$2b2obo44bo2bob2o17bo$3bobo46b2o2b2o$52b2obo$43bo31b2o$43bo
6b2o23b2o$43bo5b3o$50b2o25bo25b3o$39b3o3b3o8b2o18b3o23bo$75b2ob2o22bo
2bo$43bo30bo25b2ob2o3b3o$43bo55bo2bo5b2obo$43bo55bo2bo3bo4bo$101bobo2b
2o3bo$74bobo25b3ob2o2bo$74b3o28bo3b2o7b2o$74b3o27bo4b2o7b2o$100b2o3b2o
2b2o11b2o$100b2o4bo15bobo$123b3o$81bo41b2o$80bobo$38b2o40bobo$38b2o41b
o$67b2o19bo13b2o$67b2o8b2o10b2o11bobo$77b2o9b2o14bo$102b3o$101bo$101bo
5bo$108bo$106b3o7$101bo$100bobo$100b2o3bo$105b2o$92bo4bo4bo$91bo9bo5bo
5bo$92bo14bo4b5o$94b2obobo3b3obo3bo5bo$94b2o5bobo6b3o2bob2o$100bo10b2o
2bobo$97b2o13bo$113b3o$114bo!

(1,4)c/25
x = 6, y = 3, rule = B2e3/S2a36
o$bo2bo$3b3o!

(2,15)c/35
x = 51, y = 25, rule = B3aijnq5ce/S23-y4ik5j
5bobo11b2o$18bo2bo$6bo12b2o13b2o$23b2o8bo2bo$23b2o9b2o$38b2o$6bo31b2o
5b2o$45bob2o$5bo39bobobo$17b2o30b2o$17bobo25b2ob2o$2bo16bo10bo12b2o3bo
$4bo11bob2o23b5o$2ob2o11b2o27bo2$bo28bo$bobo3bo21b3o$2bo3bo21b2obob2o$
3b2o26bo2bo7b2o$2bo2bo26b3o7bobo$2bo2bo6bo31b2o$2b3o7b3o26bob2o$14bo
26b3o$2o10b3o$2o!

(1,11)c/30
x = 15, y = 7, rule = B3/S23-c4w7
12bo$11bobo$b2o8bo2bo$2o12bo$o2bo8b3o$o2bo$bobo!

(1,6)c/21
x = 5, y = 3, rule = B367/S023-a4i5i
o2b2o$b3o$2bo!
I have the best signature ever.
User avatar
toroidalet
 
Posts: 751
Joined: August 7th, 2016, 1:48 pm
Location: Somewhere on a planet called "Earth"

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby drc » June 5th, 2017, 8:33 pm

Just updated, 45 new, 8 improved
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y
User avatar
drc
 
Posts: 1665
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby AbhpzTa » June 6th, 2017, 5:09 am

toroidalet wrote:Here's a ridiculously large 12c/31
x = 184, y = 63, rule = B35ce/S234t6c
129b2o$129bobo$131bo11b2o10b2o$92b2o35bobo11b2o11bo$89bo3bo35b2o10b2o
10bo$88bo4bo10b2o10b2o23b2o10b2o$88bo2b2o11b2o10b2o$92b2o37bo$92b2o36b
3o35b2o$89b3o11b3o8b2o13bo3bo34bo$85b2o15bo3bo23b2o2bo33bo2bo$84bo2bo
13bo5bo23b3o35b2o$84bo16b2o3b2o33b3o$90b3o8bobobobo32b2o2bo2bo$58b2ob
2o19bo2bo3bo2bo17bob2o26b2o6bo31bobo$53bo4b6o5b3o10bo3bo2bo19b2o2bo23b
2ob3o3bo2bo30b4o$34b2o10b2o4b2obo6b2o18bo2bo3bo2bo17bob2o26b2o6bo31bob
o$33bo2bo8bo2bo3b2ob4o2bobo26b3o8bobobobo32b2o2bo2bo$33bobo9bobo4b2o5b
ob2o21bo16b2o3b2o33b3o$20b2o12bo11bo5bo5bo25bo2bo13bo5bo23b3o35b2o$16b
o2b3o31bo4bo26b2o15bo3bo23b2o2bo33bo2bo$bo13b6o68b3o11b3o8b2o13bo3bo
34bo$obo11bobob2o72b2o36b3o35b2o$14bobobo12b2o35b2o22b2o37bo$3o12b3o
11bo3b2o31bo3b2o16bo2b2o11b2o10b2o$bo14bo12bo36bo21bo4bo10b2o10b2o23b
2o10b2o$29bo5bo30bo5bo16bo3bo35b2o10b2o10bo$30bo3bo32bo3bo20b2o35bobo
11b2o11bo$4bo9b2o15b3o9b2o23b3o9b2o49bo11b2o10b2o$5bo8bo2bo24bobo34bob
o47bobo$4b2o9b3o23bo5bobo28bo5bobo42b2o$41b2obobob2o28b2obobob2o$4b2o
9b3o23bo5bobo28bo5bobo42b2o$5bo8bo2bo24bobo34bobo47bobo$4bo9b2o15b3o9b
2o23b3o9b2o49bo11b2o10b2o$30bo3bo32bo3bo20b2o35bobo11b2o11bo$29bo5bo
30bo5bo16bo3bo35b2o10b2o10bo$bo14bo12bo36bo21bo4bo10b2o10b2o23b2o10b2o
$3o12b3o11bo3b2o31bo3b2o16bo2b2o11b2o10b2o$14bobobo12b2o35b2o22b2o37bo
$obo11bobob2o72b2o36b3o35b2o$bo13b6o68b3o11b3o8b2o13bo3bo34bo$16bo2b3o
31bo4bo26b2o15bo3bo23b2o2bo33bo2bo$20b2o12bo11bo5bo5bo25bo2bo13bo5bo
23b3o35b2o$33bobo9bobo4b2o5bob2o21bo16b2o3b2o33b3o$33bo2bo8bo2bo3b2ob
4o2bobo26b3o8bobobobo32b2o2bo2bo$34b2o10b2o4b2obo6b2o18bo2bo3bo2bo17bo
b2o26b2o6bo31bobo$53bo4b6o5b3o10bo3bo2bo19b2o2bo23b2ob3o3bo2bo30b4o$
58b2ob2o19bo2bo3bo2bo17bob2o26b2o6bo31bobo$90b3o8bobobobo32b2o2bo2bo$
84bo16b2o3b2o33b3o$84bo2bo13bo5bo23b3o35b2o$85b2o15bo3bo23b2o2bo33bo2b
o$89b3o11b3o8b2o13bo3bo34bo$92b2o36b3o35b2o$92b2o37bo$88bo2b2o11b2o10b
2o$88bo4bo10b2o10b2o23b2o10b2o$89bo3bo35b2o10b2o10bo$92b2o35bobo11b2o
11bo$131bo11b2o10b2o$129bobo$129b2o!


Smaller:
x = 68, y = 56, rule = B35ce/S234t6c
14b2o10b2o10b2o$14b2o11bo10b2o$12b2o10bo11b2o$12b2o10b2o10b2o2$50b2o$
18bo30bo2bo$17b2o30bo2bo$16bo32bo3bo$17b2obo29bo2bo$18b3o30b2o10b2o$
62bo3bo$30b3o28bo5bo$29bo2b2o27bo5bo$28bo5bo26bo5bo$29bo2b2o28bo3bo$
30b3o18b2o10b2o$50bo2bo$18b3o28bo3bo$17b2obo28bo2bo$16bo32bo2bo$17b2o
31b2o$18bo4$39bobo$40b2o$40b2o$35bo5$16bo32bo$16b2o30b2o$17b3o27bo$18b
obo27b2obo$49b3o$o27bo$27bo2bo30b3o$29b2o29bo2b2o$27bo2bo28bo5bo$o27bo
31bo2b2o$61b3o$18bobo$17b3o29b3o$16b2o30b2obo$16bo30bo$48b2o$49bo2$10b
2o10b2o10b2o$10b2o10bo11b2o$12b2o11bo10b2o$12b2o10b2o10b2o!
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa
 
Posts: 335
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby drc » June 6th, 2017, 8:28 am

Accidentally forgot to mention I found a very small 12c/31 that let its exhaust die out, so I put that in the project folder right after I found it, which was when I was reading the post and adding the spaceships.
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y
User avatar
drc
 
Posts: 1665
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby 83bismuth38 » June 6th, 2017, 12:22 pm

(3,2)c/9:
x = 3, y = 4, rule = B34-air5/S234-ai
b2o$2bo$b2o$3o!
(I hope I got that right, I've never discovered an oblique before)
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!

No football of any dui mauris said that.
User avatar
83bismuth38
 
Posts: 366
Joined: March 2nd, 2017, 4:23 pm
Location: Still sitting around in Sagittarius A...

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby Rhombic » June 6th, 2017, 1:25 pm

10c/88
x = 6, y = 10, rule = B3-e4c5e6a/S2-i3-c7
2b3o$2bo2bo$bo2b2o$3bo$o2bo$2obo$3bo2$b2ob2o$3b2o!
User avatar
Rhombic
 
Posts: 766
Joined: June 1st, 2013, 5:41 pm

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby bprentice » June 6th, 2017, 2:42 pm

An excellent collection of small ships! You may find some of the bullets fired by the gun collections in this thread:

viewtopic.php?f=11&t=2792#p41832

useful. Some sample bullets follow:

x = 11, y = 71, rule = b2cea3n4ek5ceyqj7e/s2ea3knj4yz5eayq6ea
9.A$10.A$10.A$9.A9$10.A$8.A.A10$10.A$10.A$7.A.A9$8.A.A$10.A$7.A.A$8.
A7$9.A$10.A$10.A$9.A$8.A$6.A6$4.A.A$4.A.A.A.A$4.A.A.A.A$4.A.A7$A.A.
A.A2$A.A.A.A3.A$A.A.A.A3.A2$A.A.A.A!


x = 200, y = 46, rule = b2eai3knq4enqj5yqj6ek8/s2a3kqj4nqz5eyj8
99.A5.A$104.A.A53.A$29.A.A19.A.A49.A.A.A51.A.A15.A.A$30.A.A3.A16.A36.
A7.A3.A3.A.A51.A.A16.A18.A$29.A.A.A.A.A13.A3.A17.A17.A15.A.A15.A.A17.
A17.A15.A.A17.A$35.A.A17.A17.A15.A.A15.A.A17.A17.A17.A15.A.A17.A$54.
A15.A.A17.A7.A3.A3.A.A17.A13.A.A.A15.A.A16.A18.A$51.A.A15.A.A17.A13.
A.A.A33.A17.A.A15.A.A$70.A15.A.A15.A.A53.A$99.A5.A9$192.A.A.A$189.A
7.A$50.A3.A121.A.A.A11.A.A.A.A$35.A.A9.A.A3.A.A17.A17.A17.A15.A.A17.
A15.A.A17.A17.A$37.A15.A.A17.A17.A17.A17.A17.A17.A15.A.A13.A3.A$36.
A9.A.A.A3.A11.A.A3.A11.A.A3.A11.A.A3.A17.A17.A49.A.A.A$32.A.A32.A3.
A13.A3.A13.A3.A15.A.A15.A.A$34.A33.A.A15.A.A15.A.A$67.A.A15.A.A15.A
.A$66.A.A15.A.A17.A$65.A.A17.A$66.A6$136.A3.A.A$112.A.A3.A.A.A14.A3.
A.A$54.A17.A15.A.A15.A.A6.A7.A2.A9.A5.A.A15.A.A17.A$5.A31.A17.A14.A
2.A17.A15.A.A4.A.A.A.A.A.A2.A17.A17.A4.A.A3.A.A.A2.A15.A.A$5.A31.A13.
A.A.A13.A.A.A17.A17.A5.A3.A.A.A.A.A11.A.A3.A17.A7.A3.A.A.A.A15.A.A$
A3.A15.A5.A.A3.A3.A17.A15.A.A33.A.A5.A.A.A3.A3.A13.A.A.A17.A9.A3.A.
A.A15.A.A$3.A13.A7.A5.A.A.A123.A.A9.A.A3.A.A$2.A21.A.A.A.A.A.A$5.A15.
A7.A.A.A$6.A15.A5.A.A.A$31.A!


x = 220, y = 94, rule = b2ea3nr4kiyz5kin/s3r4i5kiny6n
27.A$26.A.A$25.A.A.A36.A$24.A.A.A.A34.A.A36.A$25.A.A.A.A32.A.A.A34.
A.A$26.A.A.A.A30.A.A.A.A32.A.A.A73.A$27.A3.A.A30.A3.A.A30.A3.A.A71.
A.A36.A$34.A36.A36.A73.A36.A$34.A36.A36.A73.A36.A$27.A3.A.A30.A3.A.
A30.A3.A.A73.A36.A$28.A.A.A30.A.A.A.A32.A.A.A$29.A.A32.A.A.A34.A.A$
30.A34.A.A36.A$66.A$17.A$16.A.A$15.A.A.A$14.A.A.A.A$13.A.A.A.A.A157.
A36.A$12.A.A.A.A.A.A157.A.A34.A.A$11.A.A.A.A.A.A.A156.A.A34.A.A$10.
A.A.A.A.A.A.A.A152.A3.A34.A$9.A.A.A.A.A.A.A.A.A$8.A.A.A.A.A.A.A.A.A
.A$7.A.A3.A.A.A.A.A.A.A.A36.A36.A$6.A.A5.A.A.A.A.A.A.A.A34.A.A34.A.
A$5.A.A7.A.A.A.A.A.A.A.A32.A.A.A32.A.A.A$4.A.A9.A.A.A.A.A.A.A.A30.A
.A.A.A30.A.A.A.A$3.A.A11.A.A.A3.A.A.A.A30.A.A.A.A30.A.A.A.A$2.A.A13.
A.A5.A.A.A.A30.A.A.A.A30.A.A.A.A$3.A15.A7.A3.A.A30.A3.A.A30.A3.A.A20.
A42.A40.A$34.A36.A36.A20.A.A.A.A.A.A.A.A.A26.A.A.A.A.A.A30.A.A.A.A$
34.A36.A36.A20.A.A.A.A.A.A.A.A.A26.A.A.A.A.A.A30.A.A.A.A$3.A15.A7.A
3.A.A22.A7.A3.A.A30.A3.A.A20.A42.A40.A$2.A.A13.A.A5.A.A.A.A22.A.A5.
A.A.A.A30.A.A.A.A$3.A.A11.A.A.A3.A.A.A.A24.A.A3.A.A.A.A30.A.A.A.A$4.
A.A9.A.A.A.A.A.A.A.A26.A.A.A.A.A.A30.A.A.A.A$5.A.A7.A.A.A.A.A.A.A.A
28.A.A.A.A.A32.A.A.A$6.A.A5.A.A.A.A.A.A.A.A30.A.A.A.A34.A.A$7.A.A3.
A.A.A.A.A.A.A.A32.A.A.A36.A$8.A.A.A.A.A.A.A.A.A.A34.A.A$9.A.A.A.A.A
.A.A.A.A36.A148.A.A$10.A.A.A.A.A.A.A.A189.A$11.A.A.A.A.A.A.A107.A.A
.A.A.A.A.A.A32.A.A.A32.A.A.A$12.A.A.A.A.A.A112.A.A.A.A.A.A36.A32.A.
A.A$13.A.A.A.A.A112.A38.A.A.A3.A32.A$14.A.A.A.A110.A.A46.A30.A.A$15.
A.A.A153.A5.A$16.A.A155.A3.A$17.A157.A.A4$207.A.A$179.A.A28.A$178.A
3.A28.A.A.A.A.A$180.A.A28.A.A.A.A.A$173.A3.A.A30.A$99.A72.A.A.A.A28.
A.A$26.A36.A34.A.A70.A.A.A.A$25.A.A34.A.A32.A.A.A68.A.A.A.A$24.A.A.
A32.A.A.A30.A.A.A.A68.A.A.A$23.A.A.A.A30.A.A.A.A28.A.A.A.A.A68.A.A$
22.A.A.A.A.A28.A.A.A.A.A26.A.A.A.A.A.A68.A$21.A3.A.A.A.A26.A3.A.A.A
.A24.A.A3.A.A.A.A$20.A5.A.A.A.A24.A5.A.A.A.A22.A.A5.A.A.A.A110.A$19.
A7.A3.A.A22.A7.A3.A.A22.A7.A3.A.A69.A38.A.A$34.A36.A36.A69.A.A.A36.
A$34.A36.A36.A69.A.A.A36.A$19.A7.A3.A.A22.A7.A3.A.A22.A7.A3.A.A67.A
.A38.A.A$20.A5.A.A.A.A22.A.A5.A.A.A.A22.A.A5.A.A.A.A69.A40.A$21.A3.
A.A.A.A24.A.A3.A.A.A.A24.A.A3.A.A.A.A$22.A.A.A.A.A26.A.A.A.A.A.A26.
A.A.A.A.A.A$23.A.A.A.A28.A.A.A.A.A28.A.A.A.A.A$24.A.A.A30.A.A.A.A30.
A.A.A.A$25.A.A32.A.A.A32.A.A.A$26.A34.A.A34.A.A76.A38.A$62.A36.A76.
A.A36.A.A$177.A.A36.A.A$180.A.A36.A$180.A.A36.A$177.A.A36.A.A$176.A
.A36.A.A$177.A38.A7$A$.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.
A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A
.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.
A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A$.A.A.A.A.A.A.A.A.A.A.A.A.
A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A
.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.
A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A$A!


There are many more small ships featured there but unfortunately you will have to run the guns to find them.

Some errors, the original file name is on the left and the correct file name is on the right.

errors.png
errors.png (73.3 KiB) Viewed 2260 times


The asterisk indicates that the pattern is not a ship but does evolve into one. o6c50 is not a ship.

Brian Prentice
bprentice
 
Posts: 407
Joined: September 10th, 2009, 6:20 pm
Location: Coos Bay, Oregon

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby drc » June 6th, 2017, 4:50 pm

Fixed all the errors, thanks.

The most curious of them all was, of course, the o6c50.rle case, where that rule DOES have a ship, but it's o12c122. I have no idea what happened in all honesty. Plus I was up at 02:00 one night.

I'm not including B0 rules for now because I feel like those rules aren't as 'genuine' , in the sense that they are really strobing rules and don't have any real spaceships. Feel free to argue this cause with me,though.
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y
User avatar
drc
 
Posts: 1665
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby toroidalet » June 7th, 2017, 12:05 am

c/14 diagonal
x = 3, y = 3, rule = B2ek3-qy6cik/S2aein3inr4ai5i
bo$o$2bo!

c/12 diagonal
x = 4, y = 4, rule = B2cek3acijr5c6cik/S2-ck3inr
3bo2$3bo$obo!

We should devise a modified apgcode for these so they will be
dc14_214, and
dc12_8085.
oc3_1101
x = 4, y = 1, rule = B2ci3ai6c/S02ac3-en
2obo!

6k1c88_ec23 (yes, it's a bit awkward.)
x = 4, y = 4, rule = B2in3/S2-in3-jr4ajr
3bo$ob2o$2o$2o!

2k3c30_2li
x = 3, y = 5, rule = B2e3-cey/S1c2ace3ajnr
bo$obo$bo2$b2o!

1k7c71_699azwccw4aa4
x = 10, y = 9, rule = B3/S2-n34z6c
b2o$o2bo$o$b3o3$7b2o$2b2o2bo2bo$2b2o3b2o!

EDIT: Just to make things clear, these are the codes for the ship in the optimal phase (lowest bounding box of all phases with minimum population, heading east or southeast or moving most to the right)
o4c12_147
x = 3, y = 3, rule = B2-ae3aijy4t/S02ack3in
obo$2bo$b2o!

EDIT2:
d4c14_28092
x = 5, y = 4, rule = B2-ai/S02i3j
3bo$o3bo2$bobo!

Can someone help? I'm running out of steam (ships) here!
EDIT3:
o6c12_44y1ewh4
x = 12, y = 5, rule = B2ikn3ainqy4int5r67/S0
10bo$7bo$2o5bo3bo$7bo$10bo!

dc8_215
x = 3, y = 3, rule = B2-ae3-i4e/S02
b2o$o$2bo!
I have the best signature ever.
User avatar
toroidalet
 
Posts: 751
Joined: August 7th, 2016, 1:48 pm
Location: Somewhere on a planet called "Earth"

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby toroidalet » June 11th, 2017, 11:41 am

bumped
also
d8c28_o88f1t4z103111
x = 7, y = 7, rule = B2ek3ai6a/S2-i3-a4eijktz
3b3o$3bo$3bob2o$4obo$o4bo$ob4o$2bo!

d5c28_31ck8
x = 5, y = 5, rule = B2ek3ai6a/S2-i3-a4eijktz
2o$o$2b2o$2bobo$3bo!

d12c42_o88f1i8z010211
x = 7, y = 7, rule = B2ek3ai6i/S2-i3-a4eijkt
3b2o$3bobo$3bo$4o2bo$o4bo$bo2b2o$3bo!

d18c63_7d72zy15kngeqzy210111
x = 11, y = 11, rule = B2ek3ai/S2-i3-a4ijk
3o$ob2o$3o$bo2$5bobo$7bob2o$5b3obo$9b2o$6b3obo$6bob3o!

EDIT:d2c14_1w5
x = 4, y = 3, rule = B2cek3k4c5y/S02i3j
o2bo2$3bo!

3k17c41_33033z0gggy9gggz1443y81443
x = 20, y = 13, rule = B3-ej4e/S234i
2ob2o$2ob2o8$b3o13b3o$o2bo12bo2bo$3bo15bo$b2o14b2o!
Last edited by toroidalet on June 21st, 2017, 3:50 pm, edited 1 time in total.
I have the best signature ever.
User avatar
toroidalet
 
Posts: 751
Joined: August 7th, 2016, 1:48 pm
Location: Somewhere on a planet called "Earth"

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby AforAmpere » June 16th, 2017, 1:02 pm

A lot of strange speeds that I have found

6c/66 orthogonal:
x = 4, y = 5, rule = B2-ac3-jnqr67e8/S1c23-akny4
obo$obo$obo$o2bo$o!


3c/25 diagonal:
x = 3, y = 3, rule = B34eqyz5/S23
3o$o$o!


c/2 diagonal:
x = 5, y = 5, rule = B2a3an4i5r/S2ae3a4a
2b3o$bo$o$o2b2o$o2bo!


c/64 orthogonal:
x = 5, y = 5, rule = B2-ac3-jnqr/S1c23-akny4
2o$b4o$4bo$b4o$2o!


Smaller 3c/10 diagonal:
x = 4, y = 6, rule = B2-ac3-jnqr/S1c23-akny4
b2o$2bo$2b2o$obo$obo$3o!


3c/212 diagonal:
x = 6, y = 11, rule = B2-ac3-jnqr/S1c23-akny4
4bo$3b3o$3bobo$3bo$3b2o$bo$2b4o$b2ob2o$4bo$o3bo$3o!


Smaller 3c/10 orthogonal:
x = 2, y = 8, rule = B2en3-ckqy5akqy68/S12ei3an578
bo$o2$bo$bo2$o$bo!


2c/46 diagonal:
x = 5, y = 5, rule = B2en3-ckqy5akqy68/S12ei3an578
obo$bo2$3b2o$3b2o!


4c/14 orthogonal:
x = 6, y = 6, rule = B2n34ckqz/S23
bo$o3bo$bo3bo$3bobo$2bo2bo$3bobo!


2c/18 diagonal:
x = 5, y = 3, rule = B34eqyz5-k/S23
ob3o$ob2o$2bo!


Smaller c/16 diagonal:
x = 3, y = 4, rule = B2ek3-ajny4aw/S02-ei3n4aq
o2$2bo$o!


16c/38 orthogonal based repship:
x = 48, y = 15, rule = B2i34cejqwyz/S23
14bo$12b4o$10b2o$11b2o17bo$29bobo11bo$28bo2bo10b2ob2o$b2o14b2o8b5o3b2o
6bo3bo$o2bo13b2o7b3o7bo6bo3bo$b2o14b2o8b5o3b2o6bo3bo$28bo2bo10b2ob2o$
29bobo11bo$11b2o17bo$10b2o$12b4o$14bo!


(2,1)c/105:
x = 4, y = 7, rule = B2n34cqz5ckny/S23
3o$bo4$2b2o$2b2o!



EDIT 1, ones not found by me, in the glider database, I have a huge list of totalistic ships:

4c/6 orthogonal:
x = 4, y = 5, rule = B256/S03
2bo2$o2bo2$2bo!


26c/60 orthogonal:
x = 132, y = 22, rule = B38/S02456
79b3o$29bobo45bob3o$28b2obo19bobo23bo17b2o18bo$28bo2bo16b3ob3o20b2o17b
obo8bo13b3o6bo$16bo12b2o18bo2b2o21bo2b2o10bo4b2o7b3o3bo6b3ob3o4bobo$6b
o7b3o4bo7b2o9b3o5bob2obo12b3o5bo6b2o7b2ob2obo6bo3bobobo5bobo4bo4b3o$5b
o9b2o23b3o4b3o4b2o10b3o5bo6b2o7b2ob2obo6bo3bobobo5bobo4bo4b3o$8bo8bo3b
o9bo17b2o2b3o2bo16bo2b2o10bo4b2o7b3o3bo6b3ob3o4bobo$6b3o39b4o3b3obo15b
2o17bobo8bo13b3o6bo$7b2o19b2o18bo2b6obo18bo17b2o18bo$bo46b3ob3o22bob3o
$obo24bobo21bobo2bo22b3o3bo22bo$bo2bobo21bobobo2bo13bob2o3b3o26bo18bo
4b2o$2b3obo19bo2b2ob3o14b4ob2o2bo6b2o13bo3bo24bobo4b2o$3bo2bo14bobo2bo
b6obobo12bobo4b2o6b4obo9bo5bob2o4bo4bo7bo5b2o3bo$2b2o18bobo3bob2o5bo
11bo5bo13bobo8b5o7b2ob2obobo4b3o3b2o5b2o$b3o16bo3bo4bobo4bo13bo2bo14bo
bo9b5o7b2ob2obobo4b3o3b2o5b2o$2b2o18bo4b2obobobo16bob2o10bo2bo11bo5bob
2o4bo4bo7bo5b2o3bo$29bob4o17b3o13b2o14bo24bobo4b2o$30bobo20bo13bobo15b
o18bo4b2o$66b3o16bo22bo$66bobobo!


Same pop and smaller bounding box for 3c/7:
x = 4, y = 5, rule = B34/S12567
2bo$3bo$o2bo$3bo$2bo!


11c/38 orthogonal:
x = 12, y = 15, rule = B3/S2378
9bo$8bobo$7b2ob2o$3o5bo2bo$o8b2o$o4$o$o8b2o$3o5bo2bo$7b2ob2o$8bobo$9bo!


2c/9 orthogonal:
x = 3, y = 7, rule = B3/S246
o$bo$2bo$2bo$2bo$bo$o!


4c/30 orthogonal:
x = 3, y = 5, rule = B346/S013
o$bo2$2bo$2o!


2c/19 orthogonal:
x = 5, y = 5, rule = B347/S02567
bobo$o$2b3o$bo$3bo!


2c/25 orthogonal:
x = 5, y = 16, rule = B36/S237
2o$2o4$2b2o$bo2bo$bo2bo$bo2bo$bo2bo$2b2o4$2o$2o!


2c/26 orthogonal:
x = 5, y = 4, rule = B34/S02567
4bo$3b2o$3o$bobo!


2c/27 orthogonal:
x = 6, y = 9, rule = B347/S037
2bo$o$4bo$o$obo2bo$o$4bo$o$2bo!


2c/31 orthogonal:
x = 3, y = 10, rule = B36/S013567
2bo$o$bo$2o$bo$bo$2o$bo$o$2bo!


c/18 orthogonal:
x = 6, y = 9, rule = B3567/S0145
5bo$2bo$3bo2$o2b2o2$3bo$2bo$5bo!


2c/35 orthogonal:
x = 8, y = 10, rule = B346/S04578
5bo$3b2o$4b2o$o3b2o$obo2b3o$obo2b3o$o3b2o$4b2o$3b2o$5bo!


2c/43 orthogonal:
x = 5, y = 9, rule = B346/S1468
2o$2bo$2bo$2bobo$obobo$2bobo$2bo$2bo$2o!


2c/15 diagonal:
x = 7, y = 7, rule = B347/S247
3b2o$5bo$6bo$o3b2o$o2b3o$bob2o$2bo!


2c/21 diagonal:
x = 9, y = 9, rule = B3567/S1357
6bo$5bo$6b2o$7bo$8bo$bo4bo$obo2bo2bo$2b2o$4bobo!


2c/25 diagonal:
x = 5, y = 5, rule = B34/S0256
2b2o$b2o$2obo$obobo$3bo!


smaller c/14 diagonal:
x = 4, y = 3, rule = B3/S0124
3bo$3bo$2o!
Things to work on:
- An Isotropic version of All_Speeds
- Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y
- Find a (3,1)c/5 ship in a Non-totalistic rule (someone please search the rules)
AforAmpere
 
Posts: 266
Joined: July 1st, 2016, 3:58 pm

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby toroidalet » June 16th, 2017, 6:52 pm

dc2_e1d5
x = 4, y = 4, rule = B2a3a4i/S2ae3a
b3o$o$ob2o$obo!

o4c8_1w1011
x = 7, y = 1, rule = B2ac3nr4ci5y/S0
o2bob2o!

d4c8_80gps
x = 5, y = 5, rule = B2a3acr4ai/S2ae3a
3bo2$4bo$o2b2o$2b3o!

d8c16_xg1024z12036062
x = 8, y = 8, rule = B2ae3acr4ai/S2ae3a
4bo$6bo$7bo2$3bo$o2bo$bob2ob2o$4bobo!
I have the best signature ever.
User avatar
toroidalet
 
Posts: 751
Joined: August 7th, 2016, 1:48 pm
Location: Somewhere on a planet called "Earth"

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby muzik » June 16th, 2017, 7:57 pm

How about an 8c/96 diagonal? Pretty weird and exotic speed if I do say so myself.

x = 76, y = 76, rule = B3/S23
59b2o$59b2o7$67b2o$67b2o4$56bo$55b3o$55bob2o$54b2o$54b2o$54b2o$58bo13b
o$57b2o10b2o$55bobo11b2ob2o$54bo2bo13bo$55b2o12b2o2$56bo13b2o$56bo$46b
2ob2o5bo16bo$46bo2bo20bobo$48b2o21bo2b2o$47bo$46bobo4$48b4o$48bo10$27b
2o2bo$27bo2bo$29bobo3b2o$27b3o5bo$27bo7bo$35bo3$16b3o3bo$14b5o2bobo$
13b2o8bob3o$14b2o4b3o$15bo3b2o$2o$2o7$8b2o$8b2o$20b2obo$20b2obobo2bo$
22bo2bo3bo$19bobo6bo$21bo5bo$29bo$29bo!


More ships:
x = 41, y = 48, rule = B358/S238
16$15bo$14bobo$14bobo$16bo$14bo$13b3o4b3o$19bob2o$19bobob2o$19bob2o$
13b3o4b3o$14bo$16bo$14bobo$14bobo$15bo!


x = 8, y = 8, rule = B3457/S456
3b4o$b6o$b7o$5obo$4ob3o$3ob3o$7o$2bobo!


Also, some soups that emit velocities that don't appear to be documented yet:

x = 16, y = 16, rule = B2i3ai4/S23
bboboooooobobbbb$
obooobbboboobbbb$
obobbboobboobobb$
bobbooobboooobob$
obbbobbbbbbooobo$
bbooobobbbbobobb$
boobbbbobbboboob$
boobboboboooobbo$
bbooobobbobboboo$
bobboboboooobbob$
boboboboboboobbo$
oboooooooobooobo$
booboooooboooooo$
bbbooboboboooboo$
boboobbbboobbbbb$
obobboobbbbbbobb!


x = 16, y = 16, rule = B3678/S35678
ooobobobbbboobob$
bboobboboooobbbb$
bobbboobbooboooo$
oboobbbbbbbbobbb$
bbobboobbobbobbo$
booooooboooboobb$
bbobbbbooooobobb$
bbooooobbooobboo$
obbobbooboobbbbb$
ooobbbbbbooboobo$
bobboboobbobobbo$
obbbbbbbboooobbo$
bbbooooooooboboo$
bbboobbobobbbooo$
obobooooboboobbo$
boobobboobbbbooo!
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2595
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby AforAmpere » June 16th, 2017, 8:32 pm

I am just trying to fill in the gaps in the list, so these are probably not optimal, unfortunately a lot of my minimum size ships for totalistic rules are B0 rules. Do you want to see the list, drc?

C/21 diagonal:
x = 10, y = 10, rule = B345/S05
5bobobo$bo3bo$5bo3bo$5bo3bo$5bo3bo$6o$7bobo$o5b2o2$ob3obo!


C/23 diagonal:
x = 4, y = 4, rule = B3567/S02467
2o$o2bo2$bo!


C/24 diagonal:
x = 6, y = 3, rule = B36/S01356
2bo2bo$4obo$4bo!


C/27 diagonal:
x = 8, y = 8, rule = B356/S13
4bob2o$3b2o$5bo$bo$2o$2bo$o$o!


C/29 diagonal:
x = 11, y = 11, rule = B3678/S1348
9b2o$9b2o2$6bobo$6bo$7bo$3b2o2bo$5b3o$3bo$2o$2o!


Smaller c/30 diagonal:
x = 4, y = 3, rule = B3567/S1256
ob2o$o2bo$bobo!


c/33 diagonal:
x = 17, y = 17, rule = B36/S035678
3bo$b4o2bo$b8o$12o$b11o$2b11o$2b11o$b12o$2b11o$3b12o$3b11o$3b12o$5b12o
$9b8o$9bob4o$12b2o$12b2o!


2c/68 diagonal:
x = 6, y = 4, rule = B35/S0135
2bo$2bobo$4o$3bobo!


c/37 diagonal:
x = 12, y = 12, rule = B345/S05
6bo$11bo$4b2ob3obo$11bo$2bo5b4o$2bo$o6b4o$2bo3b2o$2bobobo$2bobobo$4bob
o$b4o!


c/38 diagonal:
x = 4, y = 5, rule = B345/S0145
b2o$3o$2bo$obo$3bo!


c/45 diagonal:
x = 8, y = 8, rule = B37/S014567
4bo$2b2o$b5o$b6o$ob2ob2o$2b5o$3b5o$6bo!


2c/112 diagonal:
x = 6, y = 4, rule = B34/S0145
obo$o$b2obo$2o3bo!


c/59 diagonal:
x = 8, y = 8, rule = B34/S0156
4bo$3bo$6bo$bo$o5b2o2$2bobobo$4bo!


c/62 diagonal:
x = 7, y = 7, rule = B345/S0457
bobo$5bo$b2ob2o$o5bo$2bo$b2o2b2o$3bobo!


c/86 diagonal:
x = 7, y = 6, rule = B346/S0157
4bo$3o$o5bo$6bo$obo$4bo!


c/93 diagonal:
x = 7, y = 7, rule = B36/S2456
2bo2bo$2bob2o$7o$2bo$b2o$3o$2bo!


c/116 diagonal:
x = 6, y = 6, rule = B346/S01458
2bobo$bob2o$bo2b2o$2bob2o$o2bo$bo!


c/118 diagonal:
x = 8, y = 8, rule = B347/S356
2bo2bo$b2obo$5ob2o$2bobobo$b3o2bo$o$2b3o$2bo!


EDIT 1:

12c/50 orthogonal:
x = 6, y = 8, rule = B2-ac3-jnqr/S1c23-akn4
3o$o2$4b2o$3ob2o$obobo$obobo$2b3o!


Better c/7 orthogonal:
x = 2, y = 5, rule = B345/S016
o2$2o2$o!
Things to work on:
- An Isotropic version of All_Speeds
- Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y
- Find a (3,1)c/5 ship in a Non-totalistic rule (someone please search the rules)
AforAmpere
 
Posts: 266
Joined: July 1st, 2016, 3:58 pm

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby A for awesome » June 17th, 2017, 11:11 am

C/2 diagonal:
x = 3, y = 4, rule = B2ac/S1
2bo2$b2o$o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1407
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby muzik » June 17th, 2017, 1:52 pm

I had a bunch of spaceships in this post, but the page refreshed, so excuse me while I type out this behemoth of a post again.

Some ships from my orthogonal ships thread that don't seem to be on here yet:

c/18:
, y = 6, rule = B3567/S0145
o7bo$4bo$2bobobo$bo5bo2$4bo!
!


c/21:
x = 5, y = 8, rule = B36/S0135
bobo$2bo$2bo$bobo$bobo$o3bo2$2bo!


c/22:
x = 8, y = 6, rule = B3567/S1367
b2o2b2o$obo2bobo$2bo2bo3$3b2o!


c/24:
x = 7, y = 12, rule = B2e3ai4arw5678/S3-an4ar5i678
3bo$bobobo$2b3o$7o$b5o$7o$7o$2b3o$bobobo$2b3o$3bo$3bo!


c/29:
= 7, y = 4, rule = B345/S0478
2b3o$ob3obo$b5o$o5bo!


c/30:
x = 9, y = 5, rule = B346/S3578
bo5bo$b2obob2o$3o3b3o$4bo$bo5bo!


c/44:
x = 7, y = 8, rule = B34568/S458
2b3o$2obob2o2$o5bo$7o$7o$bobobo$bobobo!


c/64:
x = 5, y = 5, rule = B2-ac3-jnqr/S1c23-akny4
b3o$bobo$bobo$2ob2o$o3bo!


c/2068: (I'm surprised you forgot this one, unless you're excluding the ridiculous ships)
x = 8, y = 8, rule = B34578/S456
bobobo$2b4o$2ob2o2bo$4obobo$2ob3o$8o$2b4o$b3obo!


c/5648: (this one even more so)
x = 12, y = 14, rule = B3457/S4568
5b2o$3bo4bo$3b2o2b2o$b3o4b3o$b3o4b3o$2ob6ob2o$3ob4ob3o$ob3o2b3obo$2ob
6ob2o$obobo2bobobo$2b2ob2ob2o$2b8o$4b4o$4bo2bo!
2c/n spaceships project

Current priorities: see here
muzik
 
Posts: 2595
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby AforAmpere » June 17th, 2017, 3:04 pm

The c/64 is only in this thread, found by me, so it is already been posted, I am not sure why it ended up in your post.
Things to work on:
- An Isotropic version of All_Speeds
- Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y
- Find a (3,1)c/5 ship in a Non-totalistic rule (someone please search the rules)
AforAmpere
 
Posts: 266
Joined: July 1st, 2016, 3:58 pm

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby drc » June 17th, 2017, 3:07 pm

I have added all of the discoveries, apologies for the wait. The only ship I contributed is this dc28:
x = 4, y = 5, rule = B3-n4c8/S2-i34-ar6ci
2o$b2o$3bo$2bo$3bo!

I promise I will have more next time.
muzik wrote:(I'm surprised you forgot this one, unless you're excluding the ridiculous ships)

I wrote:Maximum period is set to 1000 so far.

I also wrote:*facepalm*
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y
User avatar
drc
 
Posts: 1665
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby AforAmpere » June 17th, 2017, 3:27 pm

c/20 orthogonal:
x = 4, y = 5, rule = B35678/S1247
obo$2bo$o2bo$2bo$obo!


c/23 orthogonal:
x = 4, y = 7, rule = B3/S0145678
bo$bo2$2obo2$bo$bo!


c/26 orthogonal:
x = 7, y = 6, rule = B3457/S04578
2bobo$4ob2o$o5bo$o5bo$4ob2o$2bobo!


EDIT 1: 3c/30 diagonal
x = 5, y = 5, rule = B3-q4nrt5nr6i/S2-c3-q4r5cejn
o2bo$4bo$2o$bobo$2b3o!


EDIT 2: 13c/512 diagonal
x = 26, y = 27, rule = B2-ac3-jnqr5y67e8/S1c23-akny4
o2bo$o2bo$4o$b2o13$18bo$8bobo5bob3o$10bo5bo3bo$7bo8b2o2bo$7b3o2bo4bobo
2b2o$5b2ob3ob2o4bo3bo$8bo9b5ob2o$7bobobo13bo$25bo$19bo4bo$21b2o!
Things to work on:
- An Isotropic version of All_Speeds
- Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y
- Find a (3,1)c/5 ship in a Non-totalistic rule (someone please search the rules)
AforAmpere
 
Posts: 266
Joined: July 1st, 2016, 3:58 pm

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby A for awesome » June 19th, 2017, 2:51 pm

Almost a p3 knightship:
x = 4, y = 3, rule = B2acn3r4at/S01e2ac3ir
3o$bobo$obo!

Can anyone find a real one?
EDIT: 2c/3 orthogonal:
x = 3, y = 2, rule = B2ac3ae4t5e/S1c2i3i
bo$3o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1407
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby AforAmpere » June 19th, 2017, 3:33 pm

Are p3 knightships only possible in B2a rules?
Things to work on:
- An Isotropic version of All_Speeds
- Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y
- Find a (3,1)c/5 ship in a Non-totalistic rule (someone please search the rules)
AforAmpere
 
Posts: 266
Joined: July 1st, 2016, 3:58 pm

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby A for awesome » June 19th, 2017, 3:42 pm

AforAmpere wrote:Are p3 knightships only possible in B2a rules?

I believe so. I think the same goes for p4 knightships, although I don't know if those are possible in any rule.

EDIT: Actually, they may be possible in B1e rules as well. Definitely nothing without either of those transistions, though.
Last edited by A for awesome on June 19th, 2017, 3:47 pm, edited 1 time in total.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1407
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby AforAmpere » June 19th, 2017, 3:45 pm

There is a p4 knightship in a B0 rule if that counts
Here's a (3,1)c/3 close call:
x = 3, y = 3, rule = B2a/S1e2i
3o2$2bo!
Things to work on:
- An Isotropic version of All_Speeds
- Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y
- Find a (3,1)c/5 ship in a Non-totalistic rule (someone please search the rules)
AforAmpere
 
Posts: 266
Joined: July 1st, 2016, 3:58 pm

Re: Smallest Spaceships Supporting Specific Speeds (5s) Project

Postby A for awesome » June 19th, 2017, 3:47 pm

See my edit, actually.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1407
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Next

Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 3 guests