Home  •  LifeWiki  •  Forums  •  Download Golly

## All directions and infinite speeds

For discussion of other cellular automata.

### All directions and infinite speeds

Iv'e created a rule where every spaceship direction and almost every spaceship speed, under a limit, is possible. It is based off of Pteriforever's rule that had all orthogonal speeds, but now, it can go diagonal, and every other slope.
@RULE All_Speeds@TABLEn_states: 12neighborhood:Mooresymmetries:nonevar a={0,1,2,3,4,5,6,7,8,9,10,11}var b={a}var c={a}var d={a}var e={a}var f={a}var g={a}var h={a}0,0,0,0,1,5,0,0,0,50,0,0,0,2,5,0,0,0,50,0,0,0,0,1,5,0,0,20,0,0,0,0,5,0,2,0,50,0,0,0,0,5,2,0,0,50,0,0,0,5,2,0,0,0,10,0,0,0,5,0,0,2,0,60,0,0,0,6,0,0,0,0,10,0,0,0,0,0,6,0,0,50,0,0,0,3,0,5,0,0,50,0,0,0,0,0,3,5,0,40,0,0,0,0,4,5,0,0,50,0,0,0,0,0,5,7,0,50,0,0,0,5,7,0,0,0,20,0,0,0,0,5,7,0,0,70,0,0,0,0,0,5,7,0,50,0,0,0,3,0,2,0,0,80,0,0,8,0,0,0,0,0,30,0,0,0,0,0,0,8,0,20,0,0,0,1,0,4,0,0,90,0,0,9,0,0,0,0,0,10,0,0,0,0,0,0,9,0,40,0,0,3,0,0,0,2,0,00,0,0,0,1,4,0,0,0,10,0,0,0,0,1,4,0,0,40,0,0,1,0,0,0,4,0,00,0,0,0,1,0,2,0,0,100,0,0,10,0,0,0,0,0,10,0,0,0,0,0,0,10,0,20,0,0,1,0,0,0,2,0,00,0,0,0,3,2,0,0,0,30,0,0,0,0,3,2,0,0,20,0,0,0,7,0,0,0,0,30,0,0,0,0,5,0,4,0,70,0,0,0,5,7,0,3,0,20,0,0,0,5,0,0,4,0,70,0,0,0,0,5,0,7,0,70,0,0,9,0,0,0,5,0,10,0,0,0,5,7,7,0,0,20,0,0,0,1,0,5,0,0,50,0,0,0,0,0,1,5,0,20,0,0,5,1,5,0,0,0,50,0,0,0,5,5,0,0,0,50,0,0,0,1,2,0,0,0,10,0,0,0,0,1,2,0,0,20,0,0,0,3,2,5,0,0,30,0,0,0,1,2,5,0,0,10,0,0,0,10,0,5,0,0,50,0,0,10,0,0,0,5,0,10,0,0,0,9,0,5,0,0,50,0,0,9,0,0,0,5,0,10,0,0,0,4,0,1,5,0,20,0,0,0,2,0,1,5,0,20,0,0,0,4,1,2,0,0,20,0,0,0,7,0,0,2,0,80,0,0,0,7,0,0,5,0,30,0,0,0,3,4,0,0,0,30,0,0,0,0,3,4,0,0,40,0,0,0,4,3,2,0,0,20,0,0,0,9,0,2,0,0,100,0,0,9,0,0,0,2,0,00,0,0,0,4,0,0,10,0,20,0,0,0,3,0,4,0,0,110,0,0,3,0,0,0,4,0,00,0,0,11,0,0,0,0,0,30,0,0,0,0,0,0,11,0,40,0,0,0,11,0,2,0,0,80,0,0,0,4,0,0,8,0,20,0,0,11,0,0,0,2,0,00,0,0,0,5,0,0,9,0,70,0,0,0,7,0,0,8,0,20,0,0,5,0,5,0,2,0,60,0,0,0,5,0,2,0,0,60,0,0,6,6,2,0,0,0,10,0,0,8,0,0,0,5,0,30,0,0,0,8,0,5,0,0,50,0,0,0,2,0,3,5,0,40,0,0,0,2,3,4,0,0,40,0,0,0,8,0,4,0,0,110,0,0,8,0,0,0,4,0,00,0,0,0,2,0,0,11,0,40,0,0,0,2,1,4,0,0,40,0,0,5,5,0,0,0,0,10,0,0,0,0,0,5,5,0,40,0,0,0,2,1,2,0,0,20,a,b,1,c,d,e,f,g,10,a,b,c,d,e,f,2,g,20,a,b,3,c,d,e,f,g,30,a,b,c,d,e,f,4,g,41,a,b,c,d,e,f,g,h,02,0,0,0,5,0,0,0,0,22,0,0,7,5,0,0,2,0,22,a,b,c,d,e,f,g,h,03,a,b,c,d,e,f,g,h,07,0,0,0,0,5,0,0,0,74,a,b,c,d,e,f,g,h,05,0,0,1,0,0,0,0,0,05,0,0,2,0,0,0,0,0,05,0,0,0,0,0,0,0,2,05,0,0,0,0,0,0,2,0,05,0,0,0,0,0,0,0,6,05,0,5,3,0,0,0,0,0,05,0,0,4,0,0,0,0,0,05,7,0,0,0,0,0,0,0,05,0,5,0,0,0,0,0,0,05,0,5,1,0,0,0,0,0,05,0,0,5,0,0,0,0,0,05,0,0,2,0,0,0,5,0,05,5,1,5,0,0,0,0,0,05,1,0,0,0,0,5,5,5,05,5,1,5,0,5,0,0,0,05,5,0,5,0,5,0,0,0,05,5,0,5,0,5,0,1,0,05,0,1,0,0,0,5,0,5,05,0,5,1,0,0,2,0,0,05,0,5,3,0,0,5,0,0,05,7,5,0,5,0,0,0,7,05,7,0,0,0,0,5,0,2,06,a,b,c,d,e,f,g,h,07,0,0,0,5,0,0,0,0,77,0,0,0,0,5,0,7,0,77,0,0,7,5,0,0,0,3,77,a,b,c,d,e,f,g,h,08,a,b,c,d,e,f,g,h,09,a,b,c,d,e,f,g,h,010,a,b,c,d,e,f,g,h,011,a,b,c,d,e,f,g,h,0@COLORS1 255 0 02 255 255 03 0 0 2554 0 255 2555 255 255 2556 0 0 0

This is done by shifting the stationary cells by diagonal and orthogonal-pushing cells, which are the red and yellow colored and the blue and cyan colored states, respectively. There are a bunch of auxiliary states, but you only need to use states 1-5. To make a speed at slope (m,n), where m is the larger number, put a state 5 cell, then put n state 4 cells, each right 3 and down 1 from the last (If you need an example, see below), then put (m-n) state 2 cells in the same pattern, and then another state 5.

A preliminary example is a 3c/10 (6c/20) ship:
x = 13, y = 5, rule = All_SpeedsE$3.B$6.B$9.B$12.E!

Or a 2c/3 orthogonal ship, the fastest orthogonal speed in this rule:
x = 6, y = 2, rule = All_SpeedsE.AB$5.E! Diagonal works as well: 2c/11 diagonal: x = 12, y = 4, rule = All_SpeedsE$3.D$6.D$11.E!

C/4 diagonal:
x = 6, y = 3, rule = All_SpeedsE$3.D$5.E!

2c/5 diagonal:
x = 7, y = 4, rule = All_SpeedsE.CD2$4.2GE$5.E!

Another example is a (4,2)c/16 knightship:
x = 10, y = 4, rule = All_SpeedsE$3.D$6.B$9.E! The yellow cells push it N two spaces, and the diagonal ships push it two spaces diagonally NE. Another example is this (10,2)c/34: x = 19, y = 7, rule = All_SpeedsE$3.B$6.B$9.B$12.B$15.D$18.E! You can also compress ships by experimenting around a bit, here is a (4,2)c/8 knightship, the fastest possible in this rule: x = 6, y = 2, rule = All_SpeedsE.AD$5.E!

There are limits to how fast a ship can go by compressing the spaces for the pushers (the things that push the stable cells)
The limit speed for a given slope (m,n) , with largest number first, as (2m,2n)/(3m+2n), giving (4,2)c/8 for a knightship.

I have found some guns in this rule, but only for orthogonal and diagonal, I don't know if one exists for knightships:
x = 42, y = 11, rule = All_Speeds3.E$2.E$E.E$.E$5.E$4.E22.E13.E$3.E.E4.E15.E.E$E3.E6.E15.E3.E$.E24.E3.E4.E2.E$E3.2E3.E17.E2.E4.E$.E2.E5.E!

If you have any questions about how to make ships, I can show examples. It was easy to prove that the bounds on speed, and I am certain they are correct, but if you find a problem, please let me know. I worked on this for weeks, and I tried to make it work as well as possible.

P.S. Just for fun, here's a Waterbear speed (23,5)c/79:
x = 77, y = 25, rule = All_SpeedsE$3.D$6.D$9.D$12.D$15.D$18.B$21.B$24.B$27.B$30.B$33.B$36.B$39.B$42.B$45.B$48.B$51.B$54.B$57.B$60.B$63.B$66.B$69.B$76.E!
Things to work on:
- An Isotropic version of All_Speeds
- Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y
- Find a (3,1)c/5 ship in a Non-totalistic rule (someone please search the rules)
AforAmpere

Posts: 332
Joined: July 1st, 2016, 3:58 pm

### Re: All directions and infinite speeds

This rule is really interesting to mess around with!

a simple triplet emits a stream of red cells, and can be turned into different guns. Two most basic examples:
x = 21, y = 5, rule = All_Speeds3.E11.E$2.E.D9.E3.D$E.E4.E4.E.E5.E$.EA2.AE6.E2.A2.E$.E4.E6.E5.E!

Additionally, here is a simple (puffer? wickstretcher? rake/puffer combo?):
x = 6, y = 3, rule = All_Speeds.E$EA2.F$.E3.E!

The red stream can be converted into additional wicks:
x = 18, y = 4, rule = All_Speeds.E$E6.E5.E$.E4.E5.EA2.F$7.E5.E3.E! Another one, this time oblique: x = 8, y = 4, rule = All_Speeds$.ED$E4.B$.E5.E!

A gun that looks like a transverse wave:

x = 41, y = 58, rule = All_Speeds17.E$16.E3.DA2.E$15.E$7.A8.E$15.E$14.E$13.E$14.E$13.E$12.E$11.E$12.E$11.E$10.E$9.E$10.E$9.E$8.E$7.E25.E$8.E23.E3.DA2.E$7.E23.E$6.E18.A6.E$5.E25.E$6.E23.E$5.E23.E$4.E8.A16.E$3.E25.E$4.E23.E$.A2E23.E$2.E25.E$.E25.E$2.E23.E$2E23.E$E25.E$25.E$E23.E$23.E$24.E$23.E$22.E$21.E$22.E$21.E$20.E$19.E$20.E$19.E$18.E$17.E$18.E$17.E$16.E$15.E$16.E$15.E$14.E$13.E$14.E! Things to work on: - An Isotropic version of All_Speeds - Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y - Find a (3,1)c/5 ship in a Non-totalistic rule (someone please search the rules) AforAmpere Posts: 332 Joined: July 1st, 2016, 3:58 pm ### Re: All directions and infinite speeds Fun: x = 104, y = 4, rule = All_Speeds.E$2E101.E$102.E$101.2E!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y

drc

Posts: 1665
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

### Re: All directions and infinite speeds

P19 gun of some sort:
x = 18, y = 19, rule = All_Speeds6.E$5.E9.E.E$3.E.E5.E4.E$E.E3.E9.E$2.E13.E10$2.E10.E$E.E$2.E$3.E.E4.E2.E$5.E4.E! x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt) $$x_1=\eta x$$ $$V^*_\eta=c^2\sqrt{\Lambda\eta}$$ $$K=\frac{\Lambda u^2}2$$ $$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$ http://conwaylife.com/wiki/A_for_all Aidan F. Pierce A for awesome Posts: 1497 Joined: September 13th, 2014, 5:36 pm Location: 0x-1 ### Re: All directions and infinite speeds Orthogonal Transverse wave gun x = 13, y = 6, rule = All_SpeedsE$2.E$.E5.E$2.E8.E$.E5.2E3.E$2.E4.E!
Everyone, please stop posting B/S about CA
x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo! (Check gen 2) Saka Posts: 2310 Joined: June 19th, 2015, 8:50 pm Location: In the kingdom of Sultan Hamengkubuwono X ### Re: All directions and infinite speeds An adjustable relay: x = 24, y = 5, rule = All_Speeds22.E$E21.E$.E19.B$E21.2E$E21.E! To increase the period by 2, move the left unit 1 cell away. Other state 2 cells can be added in the mix as well. x = 24, y = 5, rule = All_Speeds22.E$E21.E$.E10.B2.B5.B$E21.2E$E21.E! It consists of a feedback loop where the leaving (state 2) signals block the incoming ones (state 1) from forming and then the state 1 cells that do make it bounce off a reflector and leave as state 2. A predecessor to a more "chaotic" relay: x = 18, y = 5, rule = All_Speeds.B6.B8.E$.A$2E2.B3.B2.B3.B.E$E.A2.A2.A2.A2.A.E$16.E! It consists of the normal relay but a 3rd stream of state 1 cells heads back and can block production of the state 2 signals a predecessor to a double relay: x = 16, y = 4, rule = All_Speeds.E2$E14.E$E14.E! *reads through new post* It looks like these have been used in the guns. EDIT: fixed pattern Last edited by toroidalet on June 24th, 2017, 7:33 pm, edited 1 time in total. toroidalet Posts: 823 Joined: August 7th, 2016, 1:48 pm Location: Somewhere on a planet called "Earth" ### Re: All directions and infinite speeds 3 cells -> gun: x = 5, y = 4, rule = All_SpeedsE2$4.E$4.A! x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt) $$x_1=\eta x$$ $$V^*_\eta=c^2\sqrt{\Lambda\eta}$$ $$K=\frac{\Lambda u^2}2$$ $$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$ http://conwaylife.com/wiki/A_for_all Aidan F. Pierce A for awesome Posts: 1497 Joined: September 13th, 2014, 5:36 pm Location: 0x-1 ### Re: All directions and infinite speeds Guns that shoot various period diagonal ships, based on A for Awesome's gun: x = 50, y = 5, rule = All_Speeds3.E19.E21.E$E.E4.D12.E.E3.D15.E.E2.D$2.E6.E12.E5.E15.E4.E$6.E.E16.E.E18.E.E$8.E18.E20.E! Things to work on: - An Isotropic version of All_Speeds - Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y - Find a (3,1)c/5 ship in a Non-totalistic rule (someone please search the rules) AforAmpere Posts: 332 Joined: July 1st, 2016, 3:58 pm ### Re: All directions and infinite speeds Rake of sorts! x = 10, y = 5, rule = All_Speeds3.E$5.D$9.E$ED$3.C3.E! And um x = 41, y = 9, rule = All_Speeds40.E2$37.E2$16.E17.E$18.D$E21.E8.E$13.ED$3.E12.C3.E7.E! Everyone, please stop posting B/S about CA x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)

Saka

Posts: 2310
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

### Re: All directions and infinite speeds

Yeah, I found that too, while I was testing the rule, it can be used to make a dot puffer:
x = 20, y = 10, rule = All_Speeds8.E$11.D$6.E6.E$7.D$E6.C3.E$.D2$7.D5.E$16.D$13.D4.E!

And a rake:
x = 34, y = 34, rule = All_Speeds22.E.C$26.2GE$20.E6.E$24.G$14.E3.C6.E$18.D2$24.D2.E.C$31.2GE$30.D.E2$30.E2$28.E2$26.E2$24.E2$22.E2$20.E2$18.E2$16.E2$14.E2$5.E6.E$7.D$E4.C4.E$3.D! EDIT, what the heck is this? x = 497, y = 161, rule = All_Speeds479.E$197.E280.E$479.E$.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A.2E$190.E286.E$4.A11.A459.E$189.2EB2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.E$187.E.E3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2E$188.E286.E$474.E$187.2EB3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B2.E$185.E.E4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A.2E$186.E286.E$472.E$185.2E4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B3.E$183.E.EA2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A.2E$184.E286.E$470.E$183.2EB2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.E$181.E.E3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2E$182.E286.E$468.E$181.2EB3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B6.B4.B6.B4.B6.B4.B6.B4.B2.E$179.E.E4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A.2E$180.E286.E$466.E$179.2E4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B6.B4.B6.B4.B6.B3.E$177.E.EA2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A.2E$178.E286.E$464.E$177.2EB2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B6.B4.B6.E$175.E.E3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2E$176.E286.E$462.E$175.2EB3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B2.E$173.E.E4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A.2E$174.E286.E$445.A11.A2.E$173.2E4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B5.E$171.E.EA2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A5.A4.A6.2E$172.E286.E$427.A11.A11.A6.E$171.2EB2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B3.2B.E$169.E.E3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A5.A4.A6.A4.A6.A3.2E$170.E286.E$409.A11.A11.A11.A10.E$169.2EB3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B2.E$167.E.E4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A5.A4.A6.A4.A6.A4.A6.A4.A2.2E$168.E286.E$391.A11.A11.A11.A11.A11.A2.E$167.2E4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B5.E$165.E.EA2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.2E$166.E286.E$373.A11.A11.A11.A11.A11.A11.A6.E$165.2EB2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B3.2B.E$163.E.E3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A3.2E$164.E286.E$355.A11.A11.A11.A11.A11.A11.A11.A10.E$163.2EB3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B2.E$161.E.E4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A2.2E$162.E286.E$337.A11.A11.A11.A11.A11.A11.A11.A11.A11.A2.E$161.2E4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B5.E$159.E.EA2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.2E$160.E286.E$319.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A6.E$159.2EB2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B3.2B.E$157.E.E3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A3.2E$158.E286.E$301.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A10.E$157.2EB3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B2.E$155.E.E4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A2.2E$156.E286.E$283.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A2.E$.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2E4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B5.E$155.EA2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.2E$154.E286.E$153.E4.E.E279.E$.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.E2.E2.B.E281.E$151.E2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.2E$152.E4.E281.E$157.E89.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A10.E$A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2EB3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B2.E$151.E4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A2.2E$149.E287.E$229.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A2.E$149.2E4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B5.E$147.E.EA2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.2E$148.E286.E$211.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A6.E$147.2EB2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B3.2B.E$145.E.E3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A3.2E$146.E286.E$193.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A10.E$145.2EB3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B2.E$143.E.E4.A2.A3.A4.A2.A3.A4.A2.A3.A4.A2.A5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A2.2E$144.E286.E$175.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A2.E$143.2E4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B5.E$141.E.EA2.A3.A4.A2.A3.A4.A2.A5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.2E$142.E286.E$157.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A6.E$141.2EB2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B3.2B.E$139.E.E3.A4.A2.A5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A3.2E$140.E286.E$139.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A10.E$139.2E4.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B2.E$137.E.E.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A2.2E$138.E286.E$121.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A2.E$137.2E2.B6.B4.B5.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B5.E$135.E.E2.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.2E$136.E286.E$103.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A6.E$135.2E.B4.B6.B4.B6.B4.B5.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B3.2B.E$133.E.E5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A3.2E$134.E286.E$85.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A10.E$133.2E5.B4.B6.B4.B6.B4.B6.B4.B5.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B2.E$131.E.E.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A2.2E$132.E286.E$67.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A2.E$131.2E2.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B5.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B5.E$129.E.E2.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.2E$130.E286.E$49.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A6.E$129.2E.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B5.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B3.2B.E$127.E.E5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A3.2E$128.E286.E$31.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A10.E$127.2E5.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B5.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B2.E$125.E.E.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A2.2E$126.E286.E$13.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A2.E$125.2E2.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B5.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B5.E$123.E.E2.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.2E$124.E286.E$7.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A6.E$123.2E.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B5.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B3.2B.E$121.E.E5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A3.2E$122.E286.E$.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A10.E$121.2E5.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B5.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B2.E$119.E.E.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A2.2E$120.E286.E$7.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A2.E$119.2E2.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B5.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B5.E$117.E.E2.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.2E$118.E286.E$.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A6.E$117.2E.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B5.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B3.2B.E$115.E.E5.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A3.2E$116.E286.E$7.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A10.E$115.2E5.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B5.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B2.E$113.E.E.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A2.2E$114.E286.E$.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A11.A2.E$4.A2.A2.A5.A2.A2.A5.A2.A2.A5.A2.A2.A5.A2.A2.A5.A2.A2.A5.A2.A2.A5.A2.A2.A5.A2.A2.A5.A2E2.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B6.B4.B5.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B3.B2.B4.B5.E$113.E2.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.A4.A6.2E$112.E286.E! Things to work on: - An Isotropic version of All_Speeds - Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y - Find a (3,1)c/5 ship in a Non-totalistic rule (someone please search the rules) AforAmpere Posts: 332 Joined: July 1st, 2016, 3:58 pm ### Re: All directions and infinite speeds I like how this looks like an actual "factory" x = 40, y = 7, rule = All_Speeds.E2$E26.E$.E3.E21.E10.E$6.E19.B12.E$3.E.E21.2E9.E$5.E21.E!

This is also interesting to, it regenerates the dot with reds and yellows
x = 14, y = 7, rule = All_Speeds2.E2.E.C$E3.E$2.E.E$2.E$4.2E2.B4.E$2.E.E2.A4.E$3.E8.E!

Transverse display
x = 20, y = 168, rule = All_Speeds2.E8.E70$18.E$E18.E$2.E$.E5.E$2.E8.E$.E5.2E3.E$2.E4.E16$2.E8.E69$18.E$E18.E$2.E$.E5.E$2.E8.E$.E5.2E3.E$2.E4.E! Everyone, please stop posting B/S about CA x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)

Saka

Posts: 2310
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

### Re: All directions and infinite speeds

Alternate version of this rule with (EDIT: now two fewer states) and cleaner use of auxiliary states:
@RULE Speedy0 void1 left vertical2 right vertical3 left diagonal4 right diagonal5 fencepost6 left vertical advancer7 right vertical advancer8 left diagonal advancer9 right diagonal advancer@TABLEn_states:10neighborhood:Mooresymmetries:nonevar a = {0,1,2,3,4,5,6,7,8,9}var b = avar c = bvar d = cvar e = dvar f = evar g = fvar h = gvar l = {1,3}var r = {2,4}#left particle goes left0,0,0,1,0,0,0,0,0,11,a,b,c,d,e,f,g,h,0#right particle goes right0,0,0,0,0,0,0,2,0,22,a,b,c,d,e,f,g,h,0#left-d particle goes left0,0,0,3,0,0,0,0,0,33,a,b,c,d,e,f,g,h,0#right-d particle goes right0,0,0,0,0,0,0,4,0,40,0,0,0,0,0,0,4,5,44,a,b,c,d,e,f,g,h,0#left particle advances left0,0,0,0,1,0,5,0,0,65,0,6,0,0,0,0,0,0,00,0,0,0,6,0,0,0,0,50,0,0,0,0,0,0,6,0,26,a,b,c,d,e,f,g,h,0#right particle advances right0,0,0,0,5,0,0,2,0,75,0,0,0,0,0,0,0,7,00,0,0,0,0,0,7,0,0,50,0,0,0,7,0,0,0,0,17,a,b,c,d,e,f,g,h,0#left-d particle advances left0,0,0,0,3,0,5,0,0,85,0,8,0,0,0,0,0,0,00,0,0,0,0,0,8,0,0,50,0,0,0,0,0,0,8,0,48,a,b,c,d,e,f,g,h,0#right-d particle advances right0,0,0,0,5,0,0,4,0,95,0,8,5,0,0,0,0,0,05,8,0,0,0,0,0,5,0,00,0,0,0,9,0,0,0,0,30,0,0,0,0,5,0,9,0,90,0,0,0,0,0,5,9,0,80,0,0,0,0,0,0,5,9,59,a,b,c,d,e,f,g,h,0#slipstream0,0,0,l,0,0,0,r,0,r0,0,0,0,l,0,r,0,0,l0,0,0,l,r,0,0,0,0,l0,0,0,0,0,0,r,l,0,r0,0,0,0,0,l,r,0,0,r0,0,0,0,l,r,0,0,0,l@COLORS1 255 0 02 255 255 03 0 0 2554 0 255 2555 255 255 2556 255 127 1277 255 255 1278 127 127 2559 127 255 255

Ships can be directly pasted in without modification unless they are in phases with auxiliary states.
No funky signal-gun patterns here, though.

P.S. I liked in the original all-orthogonal-speeds rule how you could get strange things to happen when ships collided.
Looks like you can have fun with that here too:
x = 31, y = 19, rule = All_SpeedsE$5.D$8.F$9.E9$12.E$16.B$19.B$22.B$25.B$28.D$30.E!
Last edited by BlinkerSpawn on June 28th, 2017, 2:52 pm, edited 1 time in total.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Posts: 1544
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

### Re: All directions and infinite speeds

A gun. Guns are fun and look cool in this rule.
x = 69, y = 8, rule = All_Speeds3.E42.E$E.E40.E.E$2.E42.E$2.E5.E36.E5.E$9.E3.E11.E26.E3.E4.E$14.E16.E25.E9.E$11.E.E11.2E5.E21.E.E4.2E5.E$13.E11.E30.E4.E! CHALLENGE: Make a gun you can flip left-right and it will still work. Everyone, please stop posting B/S about CA x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)

Saka

Posts: 2310
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

### Re: All directions and infinite speeds

Do you mean that it still shoots the same color "pushers" ? Because I don't think that is possible, because each color goes in one direction. Red and blur go left, cyan and yellow go right.
Things to work on:
- An Isotropic version of All_Speeds
- Find more ships in B2ek3-ajny4ajqr5a/S02ack3ackny4aq5y
- Find a (3,1)c/5 ship in a Non-totalistic rule (someone please search the rules)
AforAmpere

Posts: 332
Joined: July 1st, 2016, 3:58 pm

### Re: All directions and infinite speeds

AforAmpere wrote:Do you mean that it still shoots the same color "pushers" ? Because I don't think that is possible, because each color goes in one direction. Red and blur go left, cyan and yellow go right.

No. Just that it works when flipped.
Everyone, please stop posting B/S about CA
x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo! (Check gen 2) Saka Posts: 2310 Joined: June 19th, 2015, 8:50 pm Location: In the kingdom of Sultan Hamengkubuwono X ### Re: All directions and infinite speeds Saka wrote: AforAmpere wrote:Do you mean that it still shoots the same color "pushers" ? Because I don't think that is possible, because each color goes in one direction. Red and blur go left, cyan and yellow go right. No. Just that it works when flipped. Easy: x = 11, y = 4, rule = All_SpeedsE9.E$.E7.E$.E.E3.E.E$2.E5.E!
"It's not easy having a good time. Even smiling makes my face ache." - Frank N. Furter
Ethanagor

Posts: 78
Joined: March 15th, 2017, 7:34 pm
Location: the Milky Way galaxy

### Re: All directions and infinite speeds

Ethanagor wrote:Easy:
x = 11, y = 4, rule = All_SpeedsE9.E$.E7.E$.E.E3.E.E$2.E5.E! It doesnt work at all..? Everyone, please stop posting B/S about CA x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)

Saka

Posts: 2310
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

### Re: All directions and infinite speeds

Do you think the gun on the left will eventually break?
x = 44, y = 7, rule = All_Speeds.E21.E$2.E21.E$E21.E$.E21.E$.E8.E12.E19.E$7.E.E30.E.E$9.E32.E!
Everyone, please stop posting B/S about CA
x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo! (Check gen 2) Saka Posts: 2310 Joined: June 19th, 2015, 8:50 pm Location: In the kingdom of Sultan Hamengkubuwono X ### Re: All directions and infinite speeds Saka wrote: Ethanagor wrote:Easy: x = 11, y = 4, rule = All_SpeedsE9.E$.E7.E$.E.E3.E.E$2.E5.E!

It doesnt work at all..?

oh crap, I didn't copy the whole things correctly. Let me try again:
x = 14, y = 11, rule = All_Speeds7.E6$.E10.E$2.E8.E$E.E8.E.E$.E10.E$.E10.E! "It's not easy having a good time. Even smiling makes my face ache." - Frank N. Furter Ethanagor Posts: 78 Joined: March 15th, 2017, 7:34 pm Location: the Milky Way galaxy ### Re: All directions and infinite speeds I accidentally made one heck of a gun. Cleanup? x = 24, y = 9, rule = All_Speeds6.E$5.E16.E$6.E16.E$E.E2.E16.E$2.E3.E8.E$5.E8.E$6.E7.2E$6.E6.E$14.E! EDIT: And this fun one that features a "staircase" x = 30, y = 18, rule = All_SpeedsE.E$2.2E$.E$2.E$.E2.C21.E$2.E17.E2.E.E.E.E$.E17.E5.E.E$2.E13.G.E.E$.E15.E$2.E13.E.E$.E6.C6.E$2.E11.E.E$.E5.C5.E$2.E7.G.E.E$.E5.C3.E$2.ED2.D.G.E.E$2.E6.E$10.E!
Everyone, please stop posting B/S about CA
x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo! (Check gen 2) Saka Posts: 2310 Joined: June 19th, 2015, 8:50 pm Location: In the kingdom of Sultan Hamengkubuwono X ### Re: All directions and infinite speeds Weird: x = 108, y = 26, rule = All_Speeds31.E$10.E.E17.3E$8.E.E20.E$5.E.E.E13.D$4.E2.E2.EA2.A16.E$3.E19.E6.3E$E.E.E.B7.C3.C3.E$.EA2.A2.A2.A3.D2.D4.E$.E2.E4.D2.D7.E57.E.E$2.3E15.2E58.2E$3.E75.E$80.E$79.E2.C21.E$80.E17.E2.E.E.E.E$79.E17.E5.E.E$80.E13.G.E.E$79.E15.E$80.E13.E.E$79.E6.C6.E$80.E11.E.E$79.E5.C5.E$80.E7.G.E.E$79.E5.C3.E$80.ED2.D.G.E.E$80.E6.E$88.E!

EDIT: State-4-to-ship converter:
x = 11, y = 7, rule = All_Speeds4.E$5.E$3.E$D$8.E$9.E$9.2E!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

A for awesome

Posts: 1497
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

### Re: All directions and infinite speeds

Saka wrote:Do you think the gun on the left will eventually break?
x = 44, y = 7, rule = All_Speeds.E21.E$2.E21.E$E21.E$.E21.E$.E8.E12.E19.E$7.E.E30.E.E$9.E32.E!

The one on the right does. The one on the left becomes period 52 by generation 1000.
This almost works as a knightship gun:
x = 32, y = 5, rule = All_Speeds2.E$12.E$E.E$.E9.AE$12.E18.E!

This better one almost works, but a single dot that goes missing ruins it:
x = 26, y = 7, rule = All_Speeds2.E.E$5.E4.E$E.E$.E2.AE$5.E18.E$23.E.E$24.E!
A for awesome wrote:EDIT: State-4-to-ship converter:
x = 11, y = 7, rule = All_Speeds4.E$5.E$3.E$D$8.E$9.E$9.2E!

smaller:
x = 10, y = 7, rule = All_Speeds4.E$5.E$3.E$D$8.E$9.E$7.E!

state 4 to 2 state 3s:
x = 10, y = 3, rule = All_SpeedsD8.E$7.E$8.E!

state 4 to state 3:
x = 9, y = 4, rule = All_Speeds7.E$D7.E$6.E$7.E! state 1 to state 2 and related heisenburp x = 7, y = 13, rule = All_Speeds2.E2$E.E$.E4.A6$2.E2$2.E$6.A!

state 2 to state 1
x = 10, y = 4, rule = All_Speeds9.E$B$8.E$9.E! state 2 to a parabola of state 1s x = 17, y = 25, rule = All_Speeds12.E3.E2$11.E2$10.E2$9.E2$8.E2$7.E2$6.E2$5.E2$4.E2$3.E2$E.E$.E13.E$6.B9.E$14.E$15.E! I have the best signature ever. toroidalet Posts: 823 Joined: August 7th, 2016, 1:48 pm Location: Somewhere on a planet called "Earth" ### Re: All directions and infinite speeds Ethanagor wrote: Saka wrote: Ethanagor wrote:Easy: x = 11, y = 4, rule = All_SpeedsE9.E$.E7.E$.E.E3.E.E$2.E5.E!

It doesnt work at all..?

oh crap, I didn't copy the whole things correctly. Let me try again:
x = 14, y = 11, rule = All_Speeds7.E6$.E10.E$2.E8.E$E.E8.E.E$.E10.E$.E10.E! Wow, still left one cell out. This one works for real, I hope: x = 14, y = 13, rule = All_Speeds8.E$7.E7$.E10.E$2.E8.E$E.E8.E.E$.E10.E$.E10.E! sorry for all of that. I need to test things I copy to make sure I have the whole thing. I hate myself. "It's not easy having a good time. Even smiling makes my face ache." - Frank N. Furter Ethanagor Posts: 78 Joined: March 15th, 2017, 7:34 pm Location: the Milky Way galaxy ### Re: All directions and infinite speeds Ethanagor wrote:Wow, still left one cell out. This one works for real, I hope: x = 14, y = 13, rule = All_Speeds8.E$7.E7$.E10.E$2.E8.E$E.E8.E.E$.E10.E$.E10.E! sorry for all of that. It works fine, but can be shrunk down a bit: x = 12, y = 11, rule = All_Speeds7.E$6.E7$E10.E$.E8.E$.E8.E! EDIT #dunno: Much smaller and symmetrical: x = 10, y = 6, rule = All_SpeedsE8.E$.E6.E$2.E4.E$.E6.E$2.E4.E$2.E4.E!

This one's tiny but I didn't want to throw out the other one because that one's orthogonal(EDIT #toomany: ok how is it even smaller now):
x = 6, y = 2, rule = All_SpeedsE4.E\$E4.E!

Why do fenceposts create signals in this rule anyway?
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]