`@RULE Symbiosis`

@TABLE

n_states:3

neighborhood:Moore

symmetries:permute

1,0,0,0,0,0,0,0,0,0

1,1,0,0,0,0,0,0,0,0

0,1,1,1,0,0,0,0,0,1

1,1,1,1,1,0,0,0,0,0

1,1,1,1,1,1,0,0,0,0

1,1,1,1,1,1,1,0,0,0

1,1,1,1,1,1,1,1,0,0

1,1,1,1,1,1,1,1,1,0

2,0,0,0,0,0,0,0,0,0

2,2,0,0,0,0,0,0,0,0

0,2,2,2,0,0,0,0,0,2

2,2,2,2,2,0,0,0,0,0

2,2,2,2,2,2,0,0,0,0

2,2,2,2,2,2,2,0,0,0

2,2,2,2,2,2,2,2,0,0

2,2,2,2,2,2,2,2,2,0

And I found a P19:

`x = 9, y = 7, rule = Symbiosis`

.A.A.A.A$A7.A2$2.A3.A$.B.A.A.B$2.B.A.B$3.B.B!

8-cell P3 in 2 phrases:

`x = 1, y = 8, rule = Symbiosis`

B$B$B$B$A$A$A$A!

LWSS deleter:

`x = 20, y = 11, rule = Symbiosis`

16.B2.B$15.B$15.B3.B$15.4B4$B5.B$7B$7A$A5.A!

P7:

`x = 10, y = 4, rule = Symbiosis`

B8.B$10B$10A$A8.A!

P7:

`x = 12, y = 10, rule = Symbiosis`

4.B2.B$4.B2.B2$B10.B$12B$12A$A10.A2$4.A2.A$4.A2.A!

So many LWSSes:

`x = 95, y = 43, rule = Symbiosis`

33.6B10.6B$33.B5.B9.B5.B$33.B15.B$34.B4.B10.B4.B$24.3B9.2B14.2B$23.5B

$22.2B.3B24.3A$23.2B26.A3.A$51.A3.A$49.2A.3A.2A$48.A.A4.3A26.2A$48.A

6.3A26.2A$.2A45.2A.A3.A22.3A$2A.2A45.2A25.A2.A$.4A72.A3.A6.A$2.2A52.

2A18.2A.A2.A4.A.A$23.2A3.A50.A.2A4.A.A$23.A.A.A.2A2.A34.A10.A3.A4.A$

4.A7.3A9.2A.A.4A.A32.A.A8.A4.A$3.2A9.A9.2A.A6.A18.A13.3A8.2A3.A8.2A$

2.2A.A6.3A9.2A.A.5A19.A3.A8.A.A12.A9.A2.A$3.A.A3.3A16.2A11.A.A.A2.2A

7.2A8.A4.2A18.2A$4.2A33.A3.A.2A.2A5.2A2.A12.A$45.A11.3A11.A.A$39.A3.A

5.2A20.2A$40.A7.4A18.5A$.2A42.A6.A16.A2.2A$2A.2A36.A3.5A.2A16.A2.A$.

4A36.2A.A3.A6.3A15.A$2.2A36.A.A3.A.A6.A2.A14.A5.A.A$39.2A2.A2.2A23.A.

A6.2A$39.3A14.2A13.2A7.A$24.3B13.A$23.5B13.A$22.2B.3B$23.2B3$33.6B$

33.B5.B$33.B$34.B4.B$36.2B!