BlinkerSpawn wrote:For the most part it's just a binary counter.
It is. Once the counter overflows, the tick moves up a slot, and the process starts again... all the way until the end of the line is reached. Then the ship moves one cell.
BlinkerSpawn wrote:For the most part it's just a binary counter.
x = 7, y = 5, rule = B3/S2-i3-y4i
4b3o$6bo$o3b3o$2o$bo!
Saka wrote:Lemme join in with my own rule, it's 7 states and it's based on a binary counter and it's not very slow, colors added for easy viewing:Code: Select all@RULE BinSlow
@TABLE
n_states:7
neighborhood:vonNeumann
symmetries:none
var a={0,1,2,3,4,5,6}
var b=a
var c=a
var d=a
#IMPORTANT
a,b,c,5,d,4
1,b,c,6,d,6
0,a,b,c,1,2
2,a,b,c,1,3
2,a,b,c,3,3
0,a,b,c,3,2
3,a,b,c,d,0
4,2,0,0,4,5
5,a,b,c,d,0
4,1,5,b,c,6
4,a,5,b,c,5
6,1,b,c,d,0
6,a,4,b,c,4
0,a,b,6,c,1
@COLORS
0 48 48 48
1 255 0 0
2 0 255 0
3 0 230 0
4 0 108 255
5 0 178 255
6 0 255 255
Example:Code: Select allx = 23, y = 21, rule = BinSlow
5.3D$5.D.D6.A$5.3D6.3D$5.D.D$5.3D4$3.3D.3D$5.D.D$3.3D.3D4.A$5.D3.D4.
6D$3.3D.3D4$3D.3D.3D$2.D.D.D.D.D3.A$3D.D.D.3D3.9D$D3.D.D3.D$3D.3D.3D!
@RULE FibonacciSpeed
@TABLE
n_states:4
neighborhood:Moore
symmetries:none
var a={1,2,3}
var b={a}
var c={0,1,2,3}
var d={1,2}
var e={0,3}
2,0,0,1,0,0,0,e,0,3
3,0,0,d,0,0,0,0,0,1
1,0,0,2,0,0,0,e,0,3
1,0,0,3,0,0,0,0,0,2
1,0,0,1,0,0,0,3,0,2
3,0,0,d,0,0,0,1,0,1
1,0,0,0,0,0,0,3,0,2
2,0,0,0,0,0,0,3,0,0
0,0,0,0,0,2,3,0,0,3
0,0,0,1,0,2,0,0,0,3
0,0,0,d,0,3,0,0,0,1
0,0,0,2,0,1,e,0,0,3
0,0,0,3,0,1,0,0,0,2
0,0,0,1,0,1,3,0,0,2
0,0,0,1,0,2,3,0,0,3
0,0,0,d,0,3,1,0,0,1
0,0,0,a,0,1,2,0,0,1
0,0,0,1,0,2,1,0,0,2
0,0,0,a,0,1,1,0,0,1
a,0,b,0,0,0,0,c,0,0
3,0,0,0,0,0,1,0,0,1
1,0,0,1,0,0,3,0,0,2
2,0,0,1,0,0,3,0,0,3
3,0,0,d,0,0,1,0,0,1
1,0,0,2,0,0,3,0,0,3
x = 20, y = 1, rule = FibonacciSpeed
B19A!
x = 20, y = 1, rule = FibonacciSpeed
AB2ACB14A!
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
Saka wrote:Idea: Use LCMs! I'm writing a program to calculate the LCM of primes.
gameoflifemaniac wrote:What is LCM?
gameoflifemaniac wrote:Saka wrote:Idea: Use LCMs! I'm writing a program to calculate the LCM of primes.
What is LCM?
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
Saka wrote:gameoflifemaniac wrote:Saka wrote:Idea: Use LCMs! I'm writing a program to calculate the LCM of primes.
What is LCM?
A person who is "like 3rd grade middle school" in maths and someone who "memorized 250 digits of pi and understands infinite sums and integrals" should know what an LCM is.
Sok pinter ini orangnya
@RULE Tesserun
Idea: Use vertically stacked binary counters
When a counter finishes, it lengthens and increments the next counter
When the last counter finishes, all lengths reset and the ship advances
0 empty
1 normal backbone
2 counter off
3 counter on
4 counter action
5 counter finish
6 increment backbone
7 unstable backbone
8 collapse backbone
9 waiting backbone
10 eater
11 eater report
@TABLE
n_states:12
neighborhood:Moore
symmetries:none
var a1={0,1,2,3,4,5,6,7,8,9,10,11}
var a2=a1
var a3=a1
var a4=a1
var a5=a1
var a6=a1
var a7=a1
var a8=a1
var any=a1
var any2=a1
var value={0,1,2,3,4,6,7}
var value2={0,1,2,3,4,6,7}
var valuen={1,2,3,4}
var valuex={0,1,2,3,4,5,6,7}
var bit={2,3,4}
var nonzero={1,2,3,4,5,6,7,8,9,10,11}
var backbone={1,6,7}
#counter
##create action
2,a1,a2,value,0,0,a4,backbone,a5,4 #inter row
2,a1,a2,value,a3,a4,6,backbone,a5,4 #inter row
##action moves
4,a1,a2,valuen,a3,a4,a5,value2,a6,2
3,a1,a2,valuen,a3,a4,a5,4,a6,4
##action finishes
2,a1,a2,value,a3,a4,a5,4,a6,3
##action transforms
3,a1,a2,0,a3,a4,a5,4,a6,5
###special case
4,a1,a2,0,a3,a4,a5,value,a6,5
##extend
0,a1,a2,any,a3,a4,a5,5,a6,2
##completion moves
5,a1,a2,value,a3,a4,a5,valuen,a6,2
bit,a1,a2,5,a3,a4,a5,value2,a6,5
##completion finishes
1,a1,a2,5,a3,a4,a5,any,a6,6
##backbone resets
6,backbone,a2,value,a3,a4,a5,any,a6,1
#advancement
##destablilize
6,0,a2,value,a3,a4,a5,any,a6,7
##collapse
7,a1,a2,5,a3,a4,a5,any,a6,8
##propagate collapse
1,8,a2,valuex,a3,a4,a5,any,a6,8
##send eater
8,a1,a2,valuex,a3,a4,a5,any,a6,9
valuex,a1,a2,value,a3,a4,a5,8,a6,10
##eater eats
10,a1,a2,valuex,a3,a4,a5,any,a6,0
valuex,a1,a2,valuen,a3,a4,a5,10,a6,10
##eater reports
valuex,a1,a2,0,a3,a4,a5,10,a6,11
##report moves
11,a1,a2,any,a3,a4,a5,any,a6,0
0,a1,a2,11,a3,a4,a5,0,a6,11
##report bonds
0,a1,a2,11,a3,a4,a5,9,a6,5
9,a1,a2,5,a3,a4,a5,any,a6,0
##prepare counter
5,a1,a2,0,a3,a4,nonzero,9,a6,9
##activate
5,a1,a2,0,a3,a4,0,9,a6,1
##propagate activation
9,a1,a2,any,a3,1,a5,any2,a6,1
@COLORS
0 0 0 0
1 255 0 0
2 0 255 0
3 0 0 255
4 255 255 0
5 255 0 255
6 0 255 255
7 255 255 255
8 127 0 0
9 0 127 0
10 0 0 127
11 127 127 0
12 127 0 127
13 0 127 127
14 127 127 127
15 127 255 0
16 255 127 0
17 127 0 255
18 255 0 127
19 0 127 255
20 0 255 127
21 127 255 255
22 255 127 255
23 255 255 127
24 255 127 127
25 127 255 127
26 127 127 255
x = 2, y = 4, rule = Tesserun
AB$AB$AB$AB!
fluffykitty wrote:Tetrationally slow ships:Code: Select all@RULE Tesserun
Idea: Use vertically stacked binary counters
When a counter finishes, it lengthens and increments the next counter
When the last counter finishes, all lengths reset and the ship advances
0 empty
1 normal backbone
2 counter off
3 counter on
4 counter action
5 counter finish
6 increment backbone
7 unstable backbone
8 collapse backbone
9 waiting backbone
10 eater
11 eater report
@TABLE
n_states:12
neighborhood:Moore
symmetries:none
var a1={0,1,2,3,4,5,6,7,8,9,10,11}
var a2=a1
var a3=a1
var a4=a1
var a5=a1
var a6=a1
var a7=a1
var a8=a1
var any=a1
var any2=a1
var value={0,1,2,3,4,6,7}
var value2={0,1,2,3,4,6,7}
var valuen={1,2,3,4}
var valuex={0,1,2,3,4,5,6,7}
var bit={2,3,4}
var nonzero={1,2,3,4,5,6,7,8,9,10,11}
var backbone={1,6,7}
#counter
##create action
2,a1,a2,value,0,0,a4,backbone,a5,4 #inter row
2,a1,a2,value,a3,a4,6,backbone,a5,4 #inter row
##action moves
4,a1,a2,valuen,a3,a4,a5,value2,a6,2
3,a1,a2,valuen,a3,a4,a5,4,a6,4
##action finishes
2,a1,a2,value,a3,a4,a5,4,a6,3
##action transforms
3,a1,a2,0,a3,a4,a5,4,a6,5
###special case
4,a1,a2,0,a3,a4,a5,value,a6,5
##extend
0,a1,a2,any,a3,a4,a5,5,a6,2
##completion moves
5,a1,a2,value,a3,a4,a5,valuen,a6,2
bit,a1,a2,5,a3,a4,a5,value2,a6,5
##completion finishes
1,a1,a2,5,a3,a4,a5,any,a6,6
##backbone resets
6,backbone,a2,value,a3,a4,a5,any,a6,1
#advancement
##destablilize
6,0,a2,value,a3,a4,a5,any,a6,7
##collapse
7,a1,a2,5,a3,a4,a5,any,a6,8
##propagate collapse
1,8,a2,valuex,a3,a4,a5,any,a6,8
##send eater
8,a1,a2,valuex,a3,a4,a5,any,a6,9
valuex,a1,a2,value,a3,a4,a5,8,a6,10
##eater eats
10,a1,a2,valuex,a3,a4,a5,any,a6,0
valuex,a1,a2,valuen,a3,a4,a5,10,a6,10
##eater reports
valuex,a1,a2,0,a3,a4,a5,10,a6,11
##report moves
11,a1,a2,any,a3,a4,a5,any,a6,0
0,a1,a2,11,a3,a4,a5,0,a6,11
##report bonds
0,a1,a2,11,a3,a4,a5,9,a6,5
9,a1,a2,5,a3,a4,a5,any,a6,0
##prepare counter
5,a1,a2,0,a3,a4,nonzero,9,a6,9
##activate
5,a1,a2,0,a3,a4,0,9,a6,1
##propagate activation
9,a1,a2,any,a3,1,a5,any2,a6,1
@COLORS
0 0 0 0
1 255 0 0
2 0 255 0
3 0 0 255
4 255 255 0
5 255 0 255
6 0 255 255
7 255 255 255
8 127 0 0
9 0 127 0
10 0 0 127
11 127 127 0
12 127 0 127
13 0 127 127
14 127 127 127
15 127 255 0
16 255 127 0
17 127 0 255
18 255 0 127
19 0 127 255
20 0 255 127
21 127 255 255
22 255 127 255
23 255 255 127
24 255 127 127
25 127 255 127
26 127 127 255Code: Select allx = 2, y = 4, rule = Tesserun
AB$AB$AB$AB!
Speed ~ c/2^127
a(1)=3
a(n)=a(n-1)+2^n+2n-2
b(1)=2
b(n)=2^b(n-1)-1
c(1,m)=a(m)
c(n,2)=a(b(n))
c(n,m)=c(n-1,2^m-1)
d(1)=0
d(n)=2b(n-1)+d(n-1)
f(n)=c(n,2)+d(n)+n-1+2b(n)+2
Height 1 c/15
Height 2 c/34
Height 3 c/325
Height 4 c/340282366920938463463374607431768227739
Height 5 ~c/2^2^127
Extension times (Blank-Blank):
Length 1 3 (exceptional)
Length 2 6 (2^n+2n-2)
Length 3 12
Length 4 22
Length 5 40
Length 6 74
Length 7 140
Length 8 270
Increments required (Blank-Blank):
Length 1: 1 (2^n)
Length 2: 2
Length 3: 4
Time after last increment (State 6 below-Backbone activation):
Length 2: 4 (2n-2)
Length 3: 6
Total time after last increment (State 6 bottom-State 8 top):
Height 1: 0 (∆n)
Height 2: 4
Height 3: 10
Collapse propagation: (State 8 top-State 8 bottom):
Height 1: 0 (n-1)
Height 2: 1
Clearing time (State 8-State 1+2):
Length 4: 8 (2n)
Length 5: 10
∑n=n extensions of bottom
∑0=0
∑1=3
∑n=∑(n-1)+2^n+2n-2
∏n,m=m extensions of nth layer from length 1
∏1,m=∑m
∏n,m=∏n-1,(2^m-1)
¬n=Length of layer n (1=top layer):
¬1=2
¬n=2^(¬n-1)-1
∆n=Increment propagation time bottom to top with n layers (final increment)
∆1=0
∆n=2¬(n-1)+∆(n-1)
∫n=Collapse propagation time with n layers
∫n=n-1
Ωn=Clearing time for bottom layer with n layers
Ωn=2¬n+2
Height 1: ∏1,2+∆1+∫1+Ω1=15
∏1,2=∑2=3+6=9
∆1=0
∫1=0
Ω1=2¬1+2=2*2+2=6
Height 2: ∏2,2+∆2+∫2+Ω2=34
∏2,2=∏1,3=∑3=3+6+12=21
∆2=2¬1+∆1=2¬1=4
∫2=1
Ω2=2¬2=2*3+2=8
Height 3: ∏3,2+∆3+∫3+Ω3=325
∏3,2=∏2,3=∏1,7=∑7=3+6+12+22+40+74+140=297
∆3=2(¬2+¬1)=2(3+2)=2*5=10
∫3=2
Ω3=2¬3=2*7+2=16
Height 4: ∏4,2+∆4+∫4+Ω4=340282366920938463463374607431768227739
∏4,2=∏3,3=∏2,7=∏1,127=∑127=3+6+12+22+40+...+170141183460469231731687303715884105980=340282366920938463463374607431768227456
∆4=2(¬3+¬2+¬1)=2(7+3+2)=2*12=24
∫4=3
Ω4=2¬4=2*127+2=256
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!
83bismuth38 wrote:i want a speed at which an onion grows
EDIT: sorry for the short post, btw. It's just that I really want the speed of an onion in ca... don't judge me.
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
Saka wrote:83bismuth38 wrote:i want a speed at which an onion grows
EDIT: sorry for the short post, btw. It's just that I really want the speed of an onion in ca... don't judge me.
Few problems with this:
1. What onion? There are tons of onions out there, mind you. Sometimes Alliums are counted as onions and schizobasis intricata is called a vining onion so what onion?
2. Defini grow. The roots getting longer? The bulb grtting taller? The leaves getting taller? The olant getting taller in general?
x = 8, y = 10, rule = B3/S23
3b2o$3b2o$2b3o$4bobo$2obobobo$3bo2bo$2bobo2bo$2bo4bo$2bo4bo$2bo!
Saka wrote:Sometimes Alliums are counted as onions
muzik wrote:Saka wrote:Sometimes Alliums are counted as onions
Aren't onions part of the Allium subspecies?
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
83bismuth38 wrote:Saka wrote:83bismuth38 wrote:i want a speed at which an onion grows
EDIT: sorry for the short post, btw. It's just that I really want the speed of an onion in ca... don't judge me.
Few problems with this:
1. What onion? There are tons of onions out there, mind you. Sometimes Alliums are counted as onions and schizobasis intricata is called a vining onion so what onion?
2. Defini grow. The roots getting longer? The bulb grtting taller? The leaves getting taller? The olant getting taller in general?
the growth at which bread grows on an onion ring.
x=1,y=1,rule=S0
o
Saka wrote:Idea:
1. A dot creates a c/2 dot moving left and spawns a binary counter that counts to the left.
2. Once the counter hits a certain point (noted by a dot), it starts counting down (If possible) and is moved 1 cell to the right.
3. After countdown has finished, the counter is turned into a c/1 dot moving left and a dot marking the position, but 1 cell to the right.
4. Once the c/1 dot catches the c/2 dot, it turns into a c/1 dot.
5. The c/1 dot moves to the right until it hits the binary counter marker (See #3).
6. Repeat.
This would be REALLY slow
@RULE KnuthArrows
@TABLE
n_states:41
neighborhood:Moore
symmetries:none
var all0 = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40}
var all1 = {all0}
var all2 = {all0}
var all3 = {all0}
var all4 = {all0}
var all5 = {all0}
var all6 = {all0}
var all7 = {all0}
var all8 = {4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40}
var onoff0 = {0,1,2,3}
var onoff1 = {0,1,2,3}
var onoff2 = {0,1,2,3}
var onoff3 = {0,1,2,3}
0,0,0,0,onoff0,onoff1,1,4,0,4
0,0,0,0,onoff0,onoff1,0,4,0,5
0,0,0,0,onoff0,onoff1,1,5,0,4
0,0,0,5,0,onoff0,onoff1,0,0,6
0,0,0,6,0,onoff0,onoff1,0,0,6
0,0,0,6,1,onoff0,onoff1,0,0,7
0,7,0,onoff0,0,0,0,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,7,0,8
0,0,0,7,1,onoff0,onoff1,0,0,10
1,8,0,onoff0,0,0,0,onoff1,0,0
0,0,0,8,1,onoff0,onoff1,0,0,8
0,8,0,onoff0,0,0,0,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,8,0,9
0,9,0,onoff0,0,0,0,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,9,0,5
0,0,0,10,1,onoff0,onoff1,0,0,10
0,10,0,onoff0,0,0,0,onoff1,0,1
0,0,0,10,0,onoff0,onoff1,0,0,11
#halt
1,11,0,onoff0,0,0,0,onoff1,0,0
0,0,0,11,1,onoff0,onoff1,0,0,12
0,0,0,0,onoff0,onoff1,1,12,0,13
0,12,0,onoff0,0,0,0,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,12,0,37
0,0,0,0,onoff0,onoff1,0,13,0,14
1,14,0,onoff0,0,0,0,onoff1,0,0
0,0,0,0,onoff0,onoff1,1,14,0,15
1,15,0,onoff0,0,0,0,onoff1,0,0
0,0,0,15,1,onoff0,onoff1,0,0,16
0,0,0,16,0,onoff0,onoff1,0,0,17
0,0,0,17,0,onoff0,onoff1,0,0,17
1,17,0,onoff0,0,0,0,onoff1,0,0
0,0,0,0,onoff0,onoff1,1,17,0,18
0,18,0,onoff0,0,0,0,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,18,0,19
0,0,0,0,onoff0,onoff1,1,19,0,19
0,0,0,0,onoff0,onoff1,0,19,0,20
0,0,0,0,onoff0,onoff1,1,20,0,20
0,20,0,onoff0,0,0,0,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,20,0,21
1,21,0,onoff0,0,0,0,onoff1,0,0
0,0,0,0,onoff0,onoff1,1,21,0,22
0,0,0,0,onoff0,onoff1,0,21,0,21
0,0,0,0,onoff0,onoff1,1,22,0,22
0,22,0,onoff0,0,0,0,onoff1,0,1
0,0,0,22,0,onoff0,onoff1,0,0,23
0,0,0,23,1,onoff0,onoff1,0,0,23
0,0,0,23,0,onoff0,onoff1,0,0,24
0,0,0,24,1,onoff0,onoff1,0,0,24
0,0,0,24,0,onoff0,onoff1,0,0,25
0,0,0,25,1,onoff0,onoff1,0,0,25
0,0,0,25,0,onoff0,onoff1,0,0,26
0,0,0,0,onoff0,onoff1,0,26,0,27
0,0,0,0,onoff0,onoff1,1,26,0,17
0,27,0,onoff0,0,0,0,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,27,0,28
0,0,0,0,onoff0,onoff1,1,28,0,28
0,28,0,onoff0,0,0,0,onoff1,0,1
0,0,0,28,0,onoff0,onoff1,0,0,29
1,29,0,onoff0,0,0,0,onoff1,0,0
0,0,0,0,onoff0,onoff1,1,29,0,30
0,0,0,0,onoff0,onoff1,1,30,0,31
1,31,0,onoff0,0,0,0,onoff1,0,0
0,0,0,0,onoff0,onoff1,1,31,0,32
0,0,0,0,onoff0,onoff1,1,32,0,32
0,32,0,onoff0,0,0,0,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,32,0,33
0,0,0,0,onoff0,onoff1,1,33,0,34
1,34,0,onoff0,0,0,0,onoff1,0,0
0,0,0,0,onoff0,onoff1,1,34,0,35
0,0,0,0,onoff0,onoff1,0,34,0,36
0,35,0,onoff0,0,0,0,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,35,0,36
0,0,0,0,onoff0,onoff1,1,35,0,35
0,36,0,onoff0,0,0,0,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,36,0,6
0,37,0,onoff0,0,0,0,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,37,0,38
0,0,0,0,onoff0,onoff1,1,38,0,38
0,0,0,38,0,onoff0,onoff1,0,0,39
1,39,0,onoff0,0,0,0,onoff1,0,0
0,0,0,39,1,onoff0,onoff1,0,0,40
1,40,0,onoff0,0,0,0,onoff1,0,0
0,0,0,40,1,onoff0,onoff1,0,0,6
all8, all1, all2, all3, all4, all5, all6, all7, all0, 0
x = 13, y = 2, rule = KnuthArrows
D$A.3A.7A!
77topaz wrote:Interestingly, that page you linked actually references work by one of this forum's users, Adam Goucher.
@RULE KnuthArrows
@TABLE
n_states:47
neighborhood:Moore
symmetries:none
var all0 = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46}
var all1 = {all0}
var all2 = {all0}
var all3 = {all0}
var all4 = {all0}
var all5 = {all0}
var all6 = {all0}
var all7 = {all0}
var all8 = {4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46}
var onoff0 = {0,1,2,3}
var onoff1 = {0,1,2,3}
var onoff2 = {0,1,2,3}
var onoff3 = {0,1,2,3}
0,0,0,0,onoff0,onoff1,1,4,0,4
0,0,0,0,onoff0,onoff1,0,4,0,5
0,0,0,0,onoff0,onoff1,1,5,0,4
0,0,0,5,0,onoff0,onoff1,0,0,6
0,0,0,6,0,onoff0,onoff1,0,0,6
0,0,0,6,1,onoff0,onoff1,0,0,7
0,7,0,onoff0,all0,all1,all2,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,7,0,8
0,0,0,7,1,onoff0,onoff1,0,0,10
1,8,0,onoff0,all0,all1,all2,onoff1,0,0
0,0,0,8,1,onoff0,onoff1,0,0,8
0,8,0,onoff0,all0,all1,all2,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,8,0,9
0,9,0,onoff0,all0,all1,all2,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,9,0,5
0,0,0,10,1,onoff0,onoff1,0,0,10
0,10,0,onoff0,all0,all1,all2,onoff1,0,1
0,0,0,10,0,onoff0,onoff1,0,0,11
11,all0,all1,all2,all3,0,all4,all5,all6,41
0,41,0,1,0,0,0,0,0,41
0,41,1,0,0,0,0,0,0,42
0,1,all0,0,all1,1,all3,42,all4,43
0,1,all0,0,all1,1,all3,43,all4,43
0,1,all0,0,all1,all2,all3,42,all4,42
0,1,all0,0,all1,all2,all3,43,all4,42
1,all0,all1,all2,all3,42,all4,all5,all6,0
1,42,all0,all1,all2,all3,all4,all5,all6,0
0,0,0,0,0,0,0,42,1,44
0,0,0,44,0,0,0,0,0,44
0,0,0,44,0,0,1,0,1,45
0,1,onoff0,45,onoff0,1,1,0,1,45
0,0,onoff0,45,onoff0,0,1,0,1,45
0,1,onoff0,45,onoff0,1,0,0,0,45
0,0,1,45,1,0,0,0,0,46
0,0,0,1,0,0,46,0,0,46
0,0,0,0,0,1,46,0,0,4
0,0,0,all0,all1,45,0,onoff0,0,onoff0
1,0,0,all0,all1,45,0,onoff0,0,onoff0
0,45,0,all0,0,0,0,onoff0,0,onoff0
1,45,0,all0,0,0,0,onoff0,0,onoff0
#0,0,0,0,onoff0,1,onoff1,41,0,41
#1,0,0,1,0,onoff0,onoff1,onoff2,41,0
#1,0,0,0,0,0,0,0,41,42
#0,42,0,0,0,0,0,0,0,43
#0,43,0,0,0,0,0,0,0,44
#0,onoff0,onoff1,44,0,0,0,0,onoff2,44
1,11,0,onoff0,all0,all1,all2,onoff1,0,0
0,0,0,11,1,onoff0,onoff1,0,0,12
0,0,0,0,onoff0,onoff1,1,12,0,13
0,12,0,onoff0,all0,all1,all2,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,12,0,37
0,0,0,0,onoff0,onoff1,0,13,0,14
1,14,0,onoff0,all0,all1,all2,onoff1,0,0
0,0,0,0,onoff0,onoff1,1,14,0,15
1,15,0,onoff0,all0,all1,all2,onoff1,0,0
0,0,0,15,1,onoff0,onoff1,0,0,16
0,0,0,16,0,onoff0,onoff1,0,0,17
0,0,0,17,0,onoff0,onoff1,0,0,17
1,17,0,onoff0,all0,all1,all2,onoff1,0,0
0,0,0,0,onoff0,onoff1,1,17,0,18
0,18,0,onoff0,all0,all1,all2,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,18,0,19
0,0,0,0,onoff0,onoff1,1,19,0,19
0,0,0,0,onoff0,onoff1,0,19,0,20
0,0,0,0,onoff0,onoff1,1,20,0,20
0,20,0,onoff0,all0,all1,all2,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,20,0,21
1,21,0,onoff0,all0,all1,all2,onoff1,0,0
0,0,0,0,onoff0,onoff1,1,21,0,22
0,0,0,0,onoff0,onoff1,0,21,0,21
0,0,0,0,onoff0,onoff1,1,22,0,22
0,22,0,onoff0,all0,all1,all2,onoff1,0,1
0,0,0,22,0,onoff0,onoff1,0,0,23
0,0,0,23,1,onoff0,onoff1,0,0,23
0,0,0,23,0,onoff0,onoff1,0,0,24
0,0,0,24,1,onoff0,onoff1,0,0,24
0,0,0,24,0,onoff0,onoff1,0,0,25
0,0,0,25,1,onoff0,onoff1,0,0,25
0,0,0,25,0,onoff0,onoff1,0,0,26
0,0,0,0,onoff0,onoff1,0,26,0,27
0,0,0,0,onoff0,onoff1,1,26,0,17
0,27,0,onoff0,all0,all1,all2,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,27,0,28
0,0,0,0,onoff0,onoff1,1,28,0,28
0,28,0,onoff0,all0,all1,all2,onoff1,0,1
0,0,0,28,0,onoff0,onoff1,0,0,29
1,29,0,onoff0,all0,all1,all2,onoff1,0,0
0,0,0,0,onoff0,onoff1,1,29,0,30
0,0,0,0,onoff0,onoff1,1,30,0,31
1,31,0,onoff0,all0,all1,all2,onoff1,0,0
0,0,0,0,onoff0,onoff1,1,31,0,32
0,0,0,0,onoff0,onoff1,1,32,0,32
0,32,0,onoff0,all0,all1,all2,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,32,0,33
0,0,0,0,onoff0,onoff1,1,33,0,34
1,34,0,onoff0,all0,all1,all2,onoff1,0,0
0,0,0,0,onoff0,onoff1,1,34,0,35
0,0,0,0,onoff0,onoff1,0,34,0,36
0,35,0,onoff0,all0,all1,all2,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,35,0,36
0,0,0,0,onoff0,onoff1,1,35,0,35
0,36,0,onoff0,all0,all1,all2,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,36,0,6
0,37,0,onoff0,all0,all1,all2,onoff1,0,1
0,0,0,0,onoff0,onoff1,0,37,0,38
0,0,0,0,onoff0,onoff1,1,38,0,38
0,0,0,38,0,onoff0,onoff1,0,0,39
1,39,0,onoff0,all0,all1,all2,onoff1,0,0
0,0,0,39,1,onoff0,onoff1,0,0,40
1,40,0,onoff0,all0,all1,all2,onoff1,0,0
0,0,0,40,1,onoff0,onoff1,0,0,6
all8, all1, all2, all3, all4, all5, all6, all7, all0, 0
x = 14, y = 4, rule = KnuthArrows
D$A.3A.8A2$A.3A.8A!
x = 10, y = 4, rule = KnuthArrows
D$A.4A.3A2$A.4A.3A!
x = 14, y = 4, rule = KnuthArrows
D$A.3A.8A2$A.3A.8A!
Return to Other Cellular Automata
Users browsing this forum: No registered users and 1 guest