ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Rules with interesting dynamics

For discussion of other cellular automata.

Rules with interesting dynamics

Postby gmc_nxtman » October 8th, 2017, 3:47 pm

This thread is for rules that might not necessarily have engineering potential or other typical desirable aspects of a rule, but have an interesting dynamic or mechanic within them that you find interesting. If possible, describe the dynamic in detail. There's also been some discussion of these over at the #other-ca channel in the unofficial Discord server.

I'd like to begin by reposting a few old rules that I like:

B3aeijn4n/S234iqz, explosive because of the B-heptomino being an oblique quadratic growth pattern:
x = 4, y = 3, rule = B3aeijn4n/S234iqz
bo$3o$ob2o!


B2ce3i/S2-a34-aiq, generates large stable patterns and has a fairly common "checkerboard breeder":
x = 32, y = 16, rule = B2ce3i/S2-a34-aiq
3o2bo2b2ob5obo2b5ob5o$o4bo3b2obobo4bo2bo2bobobobo$b2ob5o2b2o4bobo4b2ob
o3bo$4o3b2o2b2ob3obo3b4ob5o$2bo3bo2b3o2bo3bobo2bo2bo3bo$2b4ob8ob2o2bo
2b2obo2b3o$4ob3obob2obobob7o3bobo$bobo3b3ob6o2b2obo2bob3obo$obob3o3bob
4o2bo2b2o2b3obobo$2b2o4b3o2bo4b2obo2bo4b3o$2b2obob3o4b2obo7b2obobo$bo
2b4o3bo2bobobo4b4ob2obo$2ob2obo2bo3bobo4bob2obobobobo$2bo3b3ob4ob7o2bo
bo2bo$9o3bob3obob8ob2o$o2b4ob3obob2ob3obobobobob3o!


B3-aq/S234-aeiq, large enough soups in this rule generate diamonds consisting of stable sections with small unstable "signals" that can drift and take a long time to stabilize:

x = 120, y = 121, rule = B3-aq/S234-aeiq
60b2o$59b2obo$58bobob2o$57b2obo3bo$56bo3b3o2bo$55bobobo3b2obo$54b2obob
ob2obob2o$53bobobobobo2bo3bo$54bobobo4bob3obo$51bob2o2bobo2b2o5b2o$50b
2ob2o2b2o6b4o2bo$49bobo6bobob4o4bobo$47b3ob2ob2o3b2obo2b4obob2o$46bo2b
obo3bo5b2ob2o2bo2bo2bo$44b4obo2b2o8bobo4bobobobo$43bo5b3o9bo5bobobobob
2o$42b7o3bobo7b6o3bobobobo$50b3ob2o5bo6bo3b2obobo$40b2ob7o4bobob2o2b5o
8bo2b2o$41b2o4bo2b2ob2obo2b2o2bo5bo2b2ob3o2bo$39bo4b7o5b2o3bobo2b6obo
5bobo$37b3ob4obobo2b5obobobobobo5bo2b6ob2o$36bo2bobo3b2ob3o2bo2bob2obo
bob4obob2o7bobo$35b4o3b2ob2obo2b2o3bobo3bobo5bobob2ob2obo2b2o$34bo4b3o
b2o5b2o3b2o3b3ob2o2b2o5b2obobobo2bo$33bob4o2bobo7bo2bobo3bo2b2obo2b6o
3bobob3o$32b2obo3bo2bo7bob3o3bo2b2o3b2o7bo2bobo4b3o$31bo2bo2b3o2bo6b3o
2bobob3o2b3obobo4bo3bobob3o2b2o$31b3ob2o4bobob2o2b2obo2b2o2bobobo3bobo
5b2obobobo2bobobo$29bo3bo3b3obob2o2b2obobo3b2obobobob2o2bo4b2obo2bo3b
2obob2o$28b3o2b4o3bobo5b2ob3o3bob2o3bo2b3o8b2ob3ob2obo2bo$27bo8b5o2bob
2obo5bo3bo2b3obo3bobob5obobo6bob3o$27bobob4obo4bobobobob7o3b3o3b2obo2b
2o5bob2ob6o4bo$28b2obo2bobo2b3obobobo8bo5b4ob4o2b4obo4bo4b7o$24bo4bobo
bo2bobobobobobob3obobobo4bo5bo2b4o3b5o2b4o7bo$23bobo2b2obob2obob2o2bo
3bobo2b2ob2o4bob5ob2o4b3o4b4o2b4o2b2obo$22b2obo3bobo2bobo3b3o3b2o3bo9b
o4bobob4o3b4o5bo4bo2b2obo$21bo3bobobo8b2o2bobobo15b3obo7bob2o3b4ob8o3b
o$20bob3o2bobo4bo2b2ob3ob2o6bo3bo7bob8o4b3o3bo9b6o$19bobo2b4o6bo3bobob
o8b3obobo7bo8b4o4b2ob9obo4bo$18b2ob3o4b3obob3o2b2obob2o4bo2bobob2o7b8o
3b5o3bobobo5bob2ob2o$17bo2bo2b5o2bobo4b2o3bo6b3obobobobo5b2o2bo3b4o4bo
bobobobob5obo2bobo$17b2o2b2o4bob2ob2ob2o2bobo2b2o5bobo2b2ob2o3bo2b2ob
3o3b4o4bobobob2o4bob3obo$15bo2bo5b2o3bobo4b4ob3o2bo6b2obobobo2bo2bo2bo
2bo2bo5b4obobo3b3o2bo4b3o$14b3o4b2obo3b2obob3o2bobo2b5o4b2ob2obob11obo
bobob3o4bobobobo3b2o2b2obo2bo$13bo2bo5bobo4bobobo2b2o2b3o5bo4bo4bo11bo
bo2b2obo2bob2obo2bob4o2b2obo3bobo$12bobob2o5b2o3bobob2o2bo3bo2b2obobo
4b4o2b10obobo4b4ob2obo3bo4bobob2o3b2ob2o$11b2ob2o8b2o2bobo4b2obobobo5b
o3bo4b2o10bobob4obo2b2o2bob7obo10bo$10bo2bo2b4obo3b2obob4obob2obobo2bo
2bo2bobob2o3b8obobobo4bobo2b2obobo2b2ob2obo4b3o$9b4o2bo3bob2o3bobobo2b
obo2bobo2bo4bo7bo2bo5bo2b3obobob2o2b4obob2o5bob2o3b2ob2o$8bo4b2obobo8b
o3bo3b2o3bo3bobobo2b2o5bo2b4o2bo4bobobob2o3bobob2o4bo2bo7bobob2obo$7b
5obobo3b4o5b4obo2bo2b2obobobobo3bobob2o2b2o2b7obobobobobobo2bo2bo2b2o
2b2o4bo2bobobob2o$6bo4bobobob3o2bo6bo3b3o2bobobobob2o5b2o8bo7b2obobo3b
ob2o4bo2b2o3bo2b2o2bob2obobob2o$5b2ob2obobobobo3bo2bo5b3o3b3obo3b3o7bo
b6ob7obobo2bo2b2ob2o4bobob2ob2o3bobo3bobobo3bo$4b2obo2b2obo2b2o2b5o2b
2obo2b3o3bob3o11bo6bo6bobobobo2bo2b2o5bobobo3bobobo2b2o2bo2b4obo$5bobo
bo2b3obo9bobobob2o2b2obo3bo13b6ob4o2b2obob7obo2bob2ob2o3bobo2bob5obo5b
2o$6b2obobo2bo7b2ob2obob2o2b2obob2o2bobobo10bo3bobo2bo3bobo4bo2bobo2b
2obobo2bo4b2ob2o5b5o3bo$bo5bobob2obo4bobobobo2bo3bo5b2o4b2ob2o10b2ob2o
bobobob2ob2o4bo2bobobo2bob2obob2ob3ob4o6b5o$3o4b2obobobobobob2obo2b2ob
4o6bob3ob2o2bo10bo3b2obob2obobo7b2obob2obobo3bo5bobo2bob2o2b2o4bo$3bo
6bob2ob2obobob2o3b2o2bob2o3bobo2b2o2b2o12b2obobobobobobo2bo3b2ob2obo2b
obo3bob3obo2bobobobo3b5o$2ob2o2b2o2bobobo2bobobo2bo3bobobobo2bobobo5b
2o12bobobobobo2b2obob2o3bo3bobob2obobobo2bob3obobob5o$bo4bobo4bo2b2o2b
obob6o2bobobobobob5o17bo2b2ob3o3bob2o5b2ob3o3b5ob2obo2bo4bo4bob2o$2b5o
b3o2b4ob2obobo5b4obob2ob3o4bo16bob2o3bo2b3o3bo3bobo2bo3b2o2bobobo2bob
2ob3o3b3obo$7bo3bo7bobob2ob3o3bobo4bo2b4o3bobo11bobobob2obo2bob2o2b3ob
obob4ob2o2bo2b3obob2o4bo3bo$4b2o2b2obob6o2b2obobo2b3o2bob3o2bo2bo3b2ob
2o9b2obobobob3obo4b2o2bob2obob4o2bob2o3b2o3b2o3b3o$5bo4b3o4bob2o3bo2b
2o2b4obo2b3o5b2o4bo9bobobobo3bobo2b3o2b2obobo9b2ob3o2bobo2bo3bo$6b2obo
3b3o5b4o4b2o4bob2o2b2o7b5o5b2obobobob4obo3bo7bob2o9bo2bob2o3b4o$7bob4o
2bo5bo2b5o2b3ob2o2b2o9bo4bobob2obob2obo2bo3bob2o5b2obobo7b2ob2o2bob4o
4bo$8bo3b2obobo2b2o2bo4b2o3bobobobo8b2ob3ob3obobobob3o3b3o9b4o4bo4bo3b
3obo4b3o$9b2obobob5ob2ob4o2b4obobob2o7bobo2bo3bobob2o4bo4bob3o10b2obob
2obob2obo2bo2b3obo$10bobobo8bobo2b4o3b2obobo7b2obobob2obobo3b4obo3bo4b
obo6bobobo4b3obo2b2ob2o2bo$11b2obob6o2b2obo4b3o3bobo8bobobobob2ob4o3bo
2bob7ob2o10bo4bo2bob2obobobo$12bo2bobo3bo3bob5o2b4ob2ob2obo3bobob2o3b
2o5bo2bobobo3bo6b3ob3o4b4ob2o2bobob2o$13bobobob2o3bo3bo2b3o8b2ob2o2bob
obo2b2ob2ob7obobob2o5b4obo4bo2b2obobobob2o2bo$14bob3o6b2obobo3b7o3bo3b
2obobo4bo9bobobobo4bo6b2o3bo4b2o3bo3b2o$15bo3b4o3bobob2obo2bo3bob2ob2o
b2obobo5bo2b5o2bo3b2o6bob2obo2bo2bobo3b4ob3o$17b3o3bo2b2obobob2obob2o
9bobo2bobo2bo6b3o5bo6bobob2ob3o4b2o6bo$17bo2b3o4bobobobobobobo3bob2ob
2obobobobobob4o3b4o2bobo3b2o6b2o2b2o2b6obo$18b2obo6bo2bobobobobobobobo
bobobob2obobob2o2b3o5bo2bo3b2o2bo4bob3obo3bo3bo$19bobo7b3obobobobobo5b
o3bo2bobobo3b3o2b5o8bob3o4bo2bob3obob2o$20b2obo4b2o3b2obobob2o5bo3bo2b
obobob2o3b2o8b4obobo5bobobo3b3obo$23b2obo2bob2obobobo4bo3bobo2b3obob2o
b4o2b8o3bobo2b3o2b3obob2o3bo$22b2ob4obo4b2obob3o4bob2obo4bo3bo3b2o4bo
3b3o2b3o5bo2bobobob2o$23bobo4b5o2bobobob4obo2bob7obob2ob4o3bobo2b2o3b
6ob2obobobo$24b2ob3o2bo2bo3bobobo3b5o2bob2o2bobobo5b5ob2ob4o6bobobob2o
$25bobo2bobob2obobobobobo6bo5b3o3bob2o2bo5bo7b2o2b2obobobo$26bob3obobo
b2ob2obob2ob5o9bo2bobobo2b2ob2ob6obo2bobobob2o$27bo2bobobo2b2obobo6bob
2o5b3obobobobo3bobo2bo5bob3obobobo$28b2o2bo2bo4bobob4obobo2bob3o3bob2o
bo2bobobo2bob3obobo2b3obo$29b4ob2ob2obobobo4b5ob3ob2ob2obob4obob5o2bob
obobo3bo$30bo3bobobob2ob2ob2o6bo2bobo3bobobo4bo6bo4b2obob2o$31b2obobob
o2bo2bobo6b2o2bobo3bobo3b2obob7o4bobobo$32bobobob2ob2obobo6b5obobobob
4o2bobobo5bo6bo$33b2obo2bobobobo2b2obobo5b2obobobo2bobobo3b4obo$34bob
2obo3bobob2ob2o3b2obo3bobobob9o4b2o$35bo2b2obobobo2bo4bo2bobo2b2obob2o
10b2obo2bo$36b2o2b2obobo2bob2obo2b2obo2bobo3b9obob2ob2o$37b3o3bob2obob
ob3o2b3o2bob4o6bo2bo2bob2o$39bob2obobobobo4bobo2bobo4bob4o2bob2obobo$
39bo2bobob3obob3o2bob2obob2obobo2b5obob2o$40bobobobo2bobo3b3obobob2o2b
obobo6bobo$41b2obobob2obobobo3bobo4bob2ob2o2b2ob2o$43bobo2bo2bob3ob4ob
3obo9bobo$43bo2b3ob3o2bobobobo3bob8ob2o$44b2obo3bo4bo4bobob2o4bo2bobo$
45bobobob2o7b2obobo2b2obo2bo$46bobobobo6bobo2b2o3bobob2o$47bo2b2o6b2ob
3o3bobobobo$48b2o3bo2b2o6b3ob2o2bo$49bo5bobob6o3bob2o$50b2obobo9b4obo$
51bob2obo3b5o4bo$52b2o3b3o6b3o$54b4obob4obo$54bo3bo2bo4bo$55b2ob2ob2ob
2o$56bobo2b2obo$57b2obob2o$58bobobo$59bobo$60bo!


B2c3aijn4k/S2-k34cnqrt, produces large sections of checkerboard agar with "rivers" in between that expand the agar and change direction randomly; in this example, two rivers are initially produced that form a closed loop and stabilize around 188k gens:
x = 32, y = 16, rule = B2c3aijn4k/S2-k34cnqrt
b2o3bob5ob3o3b2ob2obobobo$2bo2bobo2b2o3bob5o4b4obo$o3b2ob3ob2obo2b2ob
2obobo3bo$3bob5obo3b2obo4bobo3b3o$2o7b4o2b2o4b4ob3ob2o$3b2obobo7b3ob2o
2b2ob2obo$b3o2b2o2b5ob2ob2o4bob4o$5o2bo2bo7b2ob6obob2o$2bo3bobo2b2obob
5ob2o2b3ob2o$2bobo2b2ob3ob2ob4o2b2obo3bo$bob5obob2o3bobo5b4o$ob2ob2o3b
5ob2ob2obo3bobo$2ob6o6b3obobo2bobob2o$2bo2b2obo2bob3ob3o2b2o6b2o$2bo3b
o3bob4obobobob2ob2ob3o$obo3b2o2b2obo2b4o3b4o2bo!


B3-q/S234y, a rule only two transitions from life with a common diagonal pi-based puffer that produces some pretty weird phenomena:
x = 16, y = 6, rule = B3-q/S234y
13b3o4$3o$o2bo!


x = 13, y = 6, rule = B3-q/S234y
11bo$11b2o3$3o$o2bo!


That's all for now, I hope to see more rules with interesting dynamics and textures later on.
User avatar
gmc_nxtman
 
Posts: 1129
Joined: May 26th, 2015, 7:20 pm

Re: Rules with interesting dynamics

Postby SuperSupermario24 » October 8th, 2017, 4:57 pm

Can't forget the anti-tub rule (TRYPOPHOBIACS BEWARE):
x = 16, y = 17, rule = B36-c7c8/S134cijkrw5-aej6-a7
3b2o2bo$2bob2ob2o3bo$o3b2o3b5o$14o$7ob4obo$4b2obob3o$b2o2b2ob5obo$5b6o
2bo$4b2ob4obo$4bobob4ob2o$4b2ob2ob2o2b2o$3b5obobo$3b6ob3o$4bo2b4obo$7b
3obo$9b2o$9b2o!
bobo2b3o2b2o2bo3bobo$obobobo3bo2bobo3bobo$obobob2o2bo2bobo3bobo$o3bobo3bo2bobobobo$o3bob3o2b2o3bobo2bo!
User avatar
SuperSupermario24
 
Posts: 119
Joined: July 22nd, 2014, 12:59 pm
Location: Within the infinite expanses of the Life universe

Re: Rules with interesting dynamics

Postby Macbi » October 8th, 2017, 5:28 pm

gmc_nxtman wrote:B2c3aijn4k/S2-k34cnqrt, produces large sections of checkerboard agar with "rivers" in between that expand the agar and change direction randomly; in this example, two rivers are initially produced that form a closed loop and stabilize around 188k gens:
x = 32, y = 16, rule = B2c3aijn4k/S2-k34cnqrt
b2o3bob5ob3o3b2ob2obobobo$2bo2bobo2b2o3bob5o4b4obo$o3b2ob3ob2obo2b2ob
2obobo3bo$3bob5obo3b2obo4bobo3b3o$2o7b4o2b2o4b4ob3ob2o$3b2obobo7b3ob2o
2b2ob2obo$b3o2b2o2b5ob2ob2o4bob4o$5o2bo2bo7b2ob6obob2o$2bo3bobo2b2obob
5ob2o2b3ob2o$2bobo2b2ob3ob2ob4o2b2obo3bo$bob5obob2o3bobo5b4o$ob2ob2o3b
5ob2ob2obo3bobo$2ob6o6b3obobo2bobob2o$2bo2b2obo2bob3ob3o2b2o6b2o$2bo3b
o3bob4obobobob2ob2ob3o$obo3b2o2b2obo2b4o3b4o2bo!

Cool! This is a Crystallographic defect between the two possible offsets of the checkerboard region.

SuperSupermario24 wrote:Can't forget the anti-tub rule (TRYPOPHOBIACS BEWARE):
x = 16, y = 17, rule = B36-c7c8/S134cijkrw5-aej6-a7
3b2o2bo$2bob2ob2o3bo$o3b2o3b5o$14o$7ob4obo$4b2obob3o$b2o2b2ob5obo$5b6o
2bo$4b2ob4obo$4bobob4ob2o$4b2ob2ob2o2b2o$3b5obobo$3b6ob3o$4bo2b4obo$7b
3obo$9b2o$9b2o!

A similar thing happens in B35678/S01234567
x = 16, y = 16, rule = B35678/S01234567
b2ob2obo2b4o$7bo6b2o$b4ob2ob3o2bo$o3bobo3bo2b3o$o3bo2bo2b2obo$obo2bo2b
o2bo3bo$2b7obo4bo$2b3o2b2obob3o$2b2o4b3o2bo$bobo4bob3ob2o$2b3o2b5ob3o$
3b5obob2obo$2o2bob2o2b5o$4o3b2obob2obo$o2bo4b2o2b2o$bob2obob2o!
User avatar
Macbi
 
Posts: 500
Joined: March 29th, 2009, 4:58 am

Re: Rules with interesting dynamics

Postby toroidalet » October 8th, 2017, 5:29 pm

B2ikn3-nqr4ceijnqw5jq6ae/S01c2-k3ci4aceiqty5-ijqr6-ck7c is explosive across lines of orthogonal and diagonal symmetry:
x = 3, y = 3, rule = B2ikn3-nqr4ceijnqw5jq6ae/S01c2-k3ci4aceiqty5-ijqr6-ck7c
bo$3o$bo!

B2cen3ac4ar5/S5678 expands in an interesting way due to B2c phoenices:
x = 40, y = 40, rule = B2cen3ac4ar5/S5678
7o3b4obob22o$5o2b7obob10ob12o$5ob4ob2ob7obo3b3o2b3ob5o$b3o2bob4ob6ob3o
b5ob2ob7o$b2ob5obo2bob2ob8obob2ob2ob2ob2o$7obobo4bobo2b5o2b11obo$3ob3o
b3ob5obob7ob5o2b3obo$ob11o3b3obo2b3ob3obo2b2ob2o$8ob5ob4ob9obo2bo2bo2b
o$ob2o2b2obob2obobo2b11obob7o$o4bob4o3b2obob21o$11obob3ob4obob8ob5o$bo
2bo2b2ob6obob6obob3ob8o$5ob5ob3ob5obob9o2b4o$o2b2ob7ob3o2bob2o3b2ob5o
3b3o$5ob4o2b3o3b3ob5ob2obob5obo$3ob5ob3obob5o3b4ob5ob5o$23obob6o2b6o$b
3o2bob5ob2ob7ob3ob4ob4obo$2b7obobob5ob3obob4ob4obob2o$4ob4ob12obobob2o
2b2ob6o$2obobob2o2bob8obo2b2obobo2b3ob3o$b5ob2ob5ob2ob5o2b5ob3o2b3o$3b
2o3b4obob3obob5ob5o2bo2b2o$5ob4ob7obobob3ob2o4bo2b4o$7o2b2o2b3ob5o3b7o
b7o$b2ob4obob3ob9ob2ob3ob3o2b2o$2b3obob11ob2ob5ob6ob4o$2bob2o3b3obob2o
b5ob4o2b2obob3o$b15ob4obob3ob5ob6o$4obob3obob4ob2ob6ob10obo$ob3obo2b2o
2b8ob2obob5obobo2b2o$4obob6o2b7ob7ob3ob4o$21obo2b5ob5ob2o$o2b3o2bobob
5obob2ob7o3b7o$obo2b16o2bob4ob10o$2obob9ob2o2b8o2b5ob5o$ob9ob7o3b3ob6o
b2ob2obo$ob3o2b18o2bo3b9o$15ob4ob2ob2ob7ob4o!
I have the best signature ever.
User avatar
toroidalet
 
Posts: 866
Joined: August 7th, 2016, 1:48 pm
Location: Somewhere on a planet called "Earth"

Re: Rules with interesting dynamics

Postby Saka » October 9th, 2017, 2:50 am

Can't forget these 2:
B3aijn45aiy6acn78/S3inq4aiqr5aiy6acn78:
x = 30, y = 29, rule = B3aijn45aiy6acn78/S3inq4aiqr5aiy6acn78
6bobo$8b2o2bobobobobobo$5bob6obobobobo3bo$3b18obob3o$2b23obo$2b25o$ob
26o$28obo$b29o$b29o$2b28o$2b26o$3b25o$6b21o$6b21o$6b20o$7b19o$7b18o$8b
17o$9b15o$12b12o$11b12o$13b10o$11b11o$14b8o$12b8o$15b5o$14b4o$16b2o!

x = 7, y = 13, rule = B3aijn45aiy6acn78/S3inq4aiqr5aiy6acn78
3bo$3b3o$b6o$3b4o$6o$2b3o$6o$4o$6o$2b3o$5o$2b2o$2b2o!


B2e3ai4arw5678/S3-an4ar5i678:
x = 530, y = 441, rule = B2e3ai4arw5678/S3-an4ar5i678
303bo$303bobo$301b5obo3bo$299bob7ob3obo$297bob15obo3bo$295bob19ob3obo$
295b27obo3bo$293b31ob3ob3o$291bob39o$289bob42o$287bob46o$287b48o$285b
50o$283bob49o$281bob53o$279bob54o$279b56o$277b57o$275bob59o$273bob60o$
273b62o$271b63o$269bob65o$269b66o$267b68o$265bob67o$265b71o$263b72o$
261bob72o$259bob73o$257bob77o$255bob78o$253bob80o$251bob81o$249bob85o$
247bob86o$245bob88o$243bob89o$241bob93o$239bob94o$237bob96o$235bob97o$
233bob101o$231bob102o$229bob104o$227bob105o$225bob109o$223bob110o$221b
ob112o$219bob113o$219b117o$217b118o$217b120o$215b121o$215b123o$213b
124o$213b126o$211b127o$209bob129o$207bob130o$207b134o$205b136o$203bob
138o$203b139o$201b143o$201b143o$199b147o$199b147o$197b151o$197b150o$
195b154o$195b154o$193b158o$193b158o$191b162o$191b161o$189b165o$189b
165o$187b169o$187b169o$185b173o$185b172o$183b176o$183b176o$181b180o$
181b180o$179b184o$179b183o$177b187o$177b187o$175b191o$175b191o$173b
195o$173b194o$171b198o$171b198o$169b202o$169b202o$167b206o$167b205o$
165b209o$165b209o$163b213o$163b213o$161b217o$161b216o$159b220o$159b
220o$157b224o$157b224o$153b230o$153b229o$151b233o$151b233o$149b237o$
149b237o$147b241o$147b240o$143b246o$143b246o$141b250o$141b250o$137b
256o$137b255o$135b259o$135b259o$133b263o$133b263o$131b267o$131b266o$
129b270o$129b270o$127b274o$127b274o$125b278o$125b277o$123b281o$123b
281o$121b285o$121b285o$119b289o$119b288o$117b292o$117b292o$115b296o$
115b296o$113b300o$113b299o$111b303o$111b303o$109b307o$109b307o$105b
313o$105b312o$101b318o$101b318o$97b324o$97b324o$93b330o$93b329o$89b
335o$89b335o$85b341o$85b341o$81b347o$81b346o$79b350o$79b350o$77b354o$
77b354o$75b358o$75b357o$73b361o$73b361o$71b365o$71b365o$67b371o$67b
370o$65b374o$65b374o$61b380o$61b380o$57b386o$57b385o$53b391o$53b391o$
49b397o$49b397o$45b403o$45b402o$43b406o$43b406o$41b410o$41b410o$39b
414o$39b413o$37b417o$37b417o$35b421o$35b421o$31b427o$29bob426o$23bo3bo
b430o$21bob3ob432o$15bo3bob440o$15b3ob442o$13b450o$11bob449o$11b453o$
5bo3b455o$5b3ob457o$3b463o$3b465o$b466o$469o$469o$2b469o$2b469o$4b469o
$4b468o$6b468o$6b468o$8b468o$8b468o$10b468o$10b467o$12b467o$12b467o$
14b467o$14b467o$16b467o$16b466o$18b466o$18b465o$20b465o$20b465o$22b
465o$22b464o$24b464o$24b463o$26b463o$26b463o$28b463o$28b463o$30b463o$
30b462o$32b462o$32b462o$34b462o$34b461o$36b461o$36b461o$38b461o$38b
460o$40b460o$40b459o$42b459o$42b458o$44b458o$44b457o$46b457o$46b456o$
48b456o$48b455o$50b455o$50b455o$52b455o$52b454o$54b454o$54b453o$56b
453o$56b453o$58b453o$58b452o$60b452o$60b451o$62b451o$62b450o$64b450o$
64b449o$66b449o$66b448o$68b448o$68b448o$70b448o$70b447o$72b447o$72b
446o$74b446o$74b445o$76b445o$76b445o$78b445o$78b444o$80b444o$80b444o$
82b444o$82b443o$84b443o$84b442o$86b442o$86b441o$88b441o$88b440o$90b
440o$90b438o$92b437o$92b435o$94b434o$94b432o$96b431o$96b429o$98b428o$
98b426o$100b425o$100b423o$102b422o$102b420o$104b419o$104b417o$106b416o
$106b414o$108b413o$108b411o$110b410o$110b408o$112b402ob4o$112b396ob3o
3b2o$114b395o2b2o$114b393o$116b386o$116b384o$118b383o$118b381o$120b
374o$120b372o$122b371o$122b362ob6o$124b360o2b2o$124b358o$126b356o$126b
354o$128b352o$128b350o$130b348o$130b346o$132b344o$132b342o$134b340o$
134b338o$136b336o$136b334o$138b332o$138b318o$140b316o$140b312o$142b
308o$142b304o$144b298o$144b298o$146b294o$146b295o$148b291o$148b289o$
150b285o$150b283o$152b281o$152b277o$154b275o$154b273o$156b269o$156b
269o$158b264o$158b259o$160b257o$160b255o$162b253o$162b251o$164b246o$
164b244o$166b243o$166b241o$168b236o$168b234o$170b233o$170b231o$172b
227o$172b227o$174b221o$174b221o$176b215o$176b215o$178b209o$178b209o$
180b203o$180b203o$182b197o$182b197o$184b191o$184b191o$186b185o$186b
185o$188b179o$188b179o$190b173o$190b173o$192b167o$192b167o$194b161o$
194b161o$196b155o$196b155o$198b149o$198b149o$200b143o$200b143o$202b
137o$202b137o$204b5ob125o$204b4o2bob123o$212bob117o$214bob115o$216bob
109o$218bob107o$220bob101o$222bob99o$224bob93o$226bob91o$228bob85o$
230bob83o$232bob75o$234b75o$236b69o$236bob67o$238bob63o$240bob61o$242b
37ob17o$244b17ob3ob13o3b3ob11o$244bob13obo3bo3b5o11bo3b3o$246b3ob3ob3o
bo11b3o17bo$248bo3bo3bo!
Proud owner and founder of Sakagolue
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 2558
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Rules with interesting dynamics

Postby gmc_nxtman » October 14th, 2017, 1:08 pm

B3-cen/S234eijkrw5cry6ik:

x = 16, y = 16, rule = B3-cen/S234eijkrw5cry6ik
3o3bo4bo2bo$b4o3b3o3b2o$3obobo2b5o$b5ob4obob2o$obob2o4bo$ob4o2b2obo3bo
$bo2bob4obob2o$ob2o2bo3b2o3bo$3o2bobo4b3o$bo2b2o3b3obo$2ob3o3bob2o$b2o
b6ob3obo$6o6bo$3ob2o2b7o$3obo2b4o3bo$2ob3ob4o2bo!


B3-cej/S234eijkrw5cry6ik7:

x = 16, y = 16, rule = B3-cej/S234eijkrw5cry6ik7
9bo2bob2o$o5bob2o4b2o$3ob2obo2bob2obo$2bo3bo2bo2bo$2ob2o2bob5obo$3o2b
2ob4obobo$2ob2obob2o$o3b2obo5b2o$3b4ob3ob2o$4ob2ob5o2bo$2b2o3bob2obobo
$3bo3bob2ob4o$ob4obo3b2o$4bobob6obo$4b2obob2o2b3o$o4b2obo4b2o!


EDIT Oct 28: A variant of one of the first rules in the thread, B2cik3aciny4c5n/S23-ay4cjn, produces similar "snakeheads" that form crystal-like structures separating checkerboard agars. Discovered by Saka.

x = 32, y = 16, rule = B2cik3aciny4c5n/S23-ay4cjn
6b2o4b7o5bo5bo$6b2o4b3obo2b2ob4ob2o2bo$bo2b3o3b3o2b3o2b4o2b5o$2b2ob4o
2bo2b2o2bobo7b4o$b2obo2b2ob2ob3ob5o2b2obo$3b2ob8o3bobo2b5ob4o$3obo2bo
2bo3b5ob2o5bob2o$2o5bo4b3o5b3o3bobo$o5bob3ob3ob4o2b3ob6o$3obob3o2b2obo
bob3o3b3o2bo$3ob5obob3o5b2obobobobo$2bob2o2bo2bob3obo4b2ob2o2bo$2obo2b
o2b2obobob4ob3o3b2ob2o$b3ob2obob4o5b11obo$o7b2o4b3ob2o2b7ob2o$b2obo3b
2o6bo2b5o2b2ob2o!
User avatar
gmc_nxtman
 
Posts: 1129
Joined: May 26th, 2015, 7:20 pm

Re: Rules with interesting dynamics

Postby Saka » November 9th, 2017, 9:19 am

This rulespace can create large crystallish structures from relatively small seeds:
x = 16, y = 16, rule = B2ci3-i4ai78/S2a34a5aijn6acn78
3bo3b3o2bobo$3bo3b3o$3obo3bob2ob3o$ob5o5b2obo$obo3b3o3b3o$ob5o2b2obob
2o$2b4o2bo3bo$2ob4ob3obo2bo$2bobobob3ob4o$4obob2obo2b2o$4b2obo2b4obo$
3o3b2o3b2obo$2o2bo6b3o$obob5ob3obo$2b2o2bo2b2o2b2o$ob2ob3o3bobo!

x = 16, y = 16, rule = B2ci3-i4ai6i78/S2a34a5aijn6acn78
3o5b4ob3o$7obobobo$2o2b4o2bo2b2o$bo2b2ob2ob3o2bo$2obob2obo3b4o$bobob6o
b4o$b2obo2b9o$bo7bo3bobo$4b8o2bo$ob3ob4ob2obo$ob5o3b3o2bo$2o3b2o2b4ob
2o$2obob6ob2obo$3bo3bo3b2ob2o$2bobob4o2bo2bo$3bo4b3ob2obo!

x = 16, y = 16, rule = B2ci3-i4ai6ai78/S2a34a5aijn6acn78
2obob2o3bob2o$2o2bob2ob2o3b2o$obob5obob4o$bobob2obob2ob2o$5b2o2b7o$3b
3o2b2ob3obo$2obobob3o3b3o$2obobob4o3b2o$bobob2o2b2obob2o$o4b3obob2o2bo
$o2b4obob3o2bo$obob8o2bo$2b9ob2o$ob3o3bo4bobo$ob4o2b2o2bo2bo$o2bo2bobo
2bob2o!

Who can find the longest-lasting in these 3 rules?
Proud owner and founder of Sakagolue
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 2558
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Rules with interesting dynamics

Postby toroidalet » November 14th, 2017, 10:59 am

variable-period replicator world:
x = 36, y = 3, rule = B2ce3ce4e5n6c/S01c2i3ciy4ct5ey6i7e8
35bo$o$35bo!
I have the best signature ever.
User avatar
toroidalet
 
Posts: 866
Joined: August 7th, 2016, 1:48 pm
Location: Somewhere on a planet called "Earth"

Re: Rules with interesting dynamics

Postby Saka » November 14th, 2017, 7:05 pm

toroidalet wrote:variable-period replicator world:
x = 36, y = 3, rule = B2ce3ce4e5n6c/S01c2i3ciy4ct5ey6i7e8
35bo$o$35bo!

Maybe a SMORBTRAASBIARAAS is possible (Spaceship Made Of Replicators But The Replicators Are Adjustable So Basically It's A Replicator-Afjustable Adjustable Ship)
Proud owner and founder of Sakagolue
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 2558
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Rules with interesting dynamics

Postby BlinkerSpawn » November 14th, 2017, 7:14 pm

Saka wrote:
toroidalet wrote:variable-period replicator world:
x = 36, y = 3, rule = B2ce3ce4e5n6c/S01c2i3ciy4ct5ey6i7e8
35bo$o$35bo!

Maybe a SMORBTRAASBIARAAS is possible (Spaceship Made Of Replicators But The Replicators Are Adjustable So Basically It's A Replicator-Afjustable Adjustable Ship)

I don't see how you could make a spaceship out of a four-way replicator without some really messy junk interaction.
I can't even escort one with the natural c/3s because whenever the tail catches up to the head the timing gets thrown off.
There appears to be a cool family of hasslers, though.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image
User avatar
BlinkerSpawn
 
Posts: 1788
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Rules with interesting dynamics

Postby Rhombic » November 22nd, 2017, 3:54 pm

Has a spaceship and very weird pseudorandom linear growths:
x = 10, y = 15, rule = B2ce3ak4cjnqt5ein7e/S1e2aik3cejqr4ikwy5nr6k8
9o$6bo2bo$9o10$3b6o$6bo2bo$3b6o!


Failed MMS
x = 48, y = 11, rule = B34z5e6n7/S2-i34q
13b2o$6b2ob4obo$3o3bo16b2o$obo2bo2bobo10b2o3bo7bo3bo$6bob4o9b2obo2bo2b
6obobo5b2o$7bob3o10b3o4b2o4bobobo4bo2bo$8b2o12bobo7bob2o2bo5bo2bo$23b
2ob2o6bo8b2ob2o$24b3o2b4ob2o8b2o$31bo3bo$35bo!
Last edited by Rhombic on December 21st, 2017, 5:43 am, edited 1 time in total.
SoL : FreeElectronics : DeadlyEnemies : 6a-ite
what is “sesame oil”?
User avatar
Rhombic
 
Posts: 992
Joined: June 1st, 2013, 5:41 pm

Re: Rules with interesting dynamics

Postby LaundryPizza03 » December 15th, 2017, 12:54 am

Unusually textured chaos (as well as an optical illusion):
#C [[ THEME 6 ZOOM 1.0 GPS 60 STEP 1 ]]
x = 16, y = 16, rule = B2678/S34578
o3b5o$o3bo2b2ob2obobo$o5b5obobo$5bo2b2obo$o3bobo3bo4bo$b11ob2o$bo2b4o
3bob3o$o3bob3obo2b3o$2ob2o2b6obo$3b3o3bo4bo$o2b5ob4ob2o$b2ob2o2b2o4b2o
$ob5ob3obo2bo$o2b3o3b3ob2o$2ob2o2b2ob4obo$o4b2o5bob2o!

The chaos has small regions of short-term stability, and the white regions appear light gray while it plays at 60 gps, 1x speed.

The rule is also black/white symmetric and has a bidirectional double c wickstretcher sandwiching a replicator-like system:
x = 11, y = 12, rule = B2678/S34578
3bo3bo$bob5obo$4obob4o$11o2$bo7bo$bo7bo2$11o$4obob4o$bob5obo$3bo3bo!

As well as a stable eater:
x = 12, y = 16, rule = B2678/S34578
4bo2bo2$5b2o3$4bo$7bo$5b2o3$4bo2bo$5b2o2$bo8bo$12o$bo2bo2bo2bo!


EDIT:
This rule produces an expanding cloud of chaos with escaping puffers.
x = 4, y = 4, rule = B3/S02-i34q
2b2o$2b2o$3o$bo!

The puffer is a c/2 p60 that evolves from the B-heptomino. It leaves a trail that emits gliders, which can interact with other puffers in various ways:
x = 29, y = 33, rule = B3/S02-i34q
26bo$26b2o$27b2o$26b2o12$ob2o$3o$bo12$26b3o$28bo$26bobo$26b2o!


This rule produces regions of horizontal and vertical farmland with filaments of chaos at places where the farmland changes phase (not orientation):
#C [[ ZOOM 1.0 ]]
x = 5, y = 7, rule = B3/S0123:T512,512
3bo$3bo$3b2o3$2o$bo!

Although there are no spaceships, I'd like to know if there is a pattern that fills the plane with zebra stripes without gaps or defects.
Last edited by LaundryPizza03 on December 15th, 2017, 1:53 am, edited 1 time in total.
x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!

LaundryPizza03 at Wikipedia
User avatar
LaundryPizza03
 
Posts: 231
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Rules with interesting dynamics

Postby LaundryPizza03 » December 15th, 2017, 1:12 am

gmc_nxtman wrote:B2c3aijn4k/S2-k34cnqrt, produces large sections of checkerboard agar with "rivers" in between that expand the agar and change direction randomly; in this example, two rivers are initially produced that form a closed loop and stabilize around 188k gens:
x = 32, y = 16, rule = B2c3aijn4k/S2-k34cnqrt
b2o3bob5ob3o3b2ob2obobobo$2bo2bobo2b2o3bob5o4b4obo$o3b2ob3ob2obo2b2ob
2obobo3bo$3bob5obo3b2obo4bobo3b3o$2o7b4o2b2o4b4ob3ob2o$3b2obobo7b3ob2o
2b2ob2obo$b3o2b2o2b5ob2ob2o4bob4o$5o2bo2bo7b2ob6obob2o$2bo3bobo2b2obob
5ob2o2b3ob2o$2bobo2b2ob3ob2ob4o2b2obo3bo$bob5obob2o3bobo5b4o$ob2ob2o3b
5ob2ob2obo3bobo$2ob6o6b3obobo2bobob2o$2bo2b2obo2bob3ob3o2b2o6b2o$2bo3b
o3bob4obobobob2ob2ob3o$obo3b2o2b2obo2b4o3b4o2bo!


Those rivers, in the absence of crystallographic defects, tend to evolve according to the curve-shortening flow:
x = 140, y = 140, rule = B2c3aijn4k/S2-k34cnqrt
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
o$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
o$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobob2obobob
obobobobobobobobobobobobobobobobobob2obobobobobobobobobobobobobobobobo
bobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobo2bobobo
bobobobobobobobobobobobobobobobobobo2bobobobobobobobobobobobobobobobob
obobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobob2obobo
bobobobobobobobobobobobobobobobobobob2obobobobobobobobobobobobobobobob
obobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobo2bobob
obobobobobobobobobobobobobobobobobobo2bobobobobobobobobobobobobobobobo
bobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobob2obob
obobobobobobobobobobobobobobobobobobob2obobobobobobobobobobobobobobobo
bobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobo2bobo
bobobobobobobobobobobobobobobobobobobo2bobobobobobobobobobobobobobobob
obobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobob2obo
bobobobobobobobobobobobobobobobobobobob2obobobobobobobobobobobobobobob
obobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobo2bob
obobobobobobobobobobobobobobobobobobobo2bobobobobobobobobobobobobobobo
bobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobob2ob
obobobobobobobobobobobobobobobobobobobob2obobobobobobobobobobobobobobo
bobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobo2bo
bobobobobobobobobobobobobobobobobobobobo2bobobobobobobobobobobobobobob
obobobobobobobobobobobo$obobobobobobobobobobobobobobobobobobobobobob2o
bobobobobobobobobobobobobobobobobobobobob2obobobobobobobobobobobobobob
obobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobobobobobo
bobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobobobobobo
bobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobobobobob
obobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobobobobob
obobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobobobobo
bobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobobobobo
bobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobobobob
obobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobobobob
obobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobobobo
bobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobobobo
bobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobobob
obobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobobob
obobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobobo
bobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobobo
bobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2obo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobob
obobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2bo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobob
obobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2ob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobobo
bobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo2b
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobobo
bobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob2o
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobobob
obobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobobo
2bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobobo
bobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobob
2obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobob
obobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobob
o2bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobob
obobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobo
b2obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obobo
bobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobobo
bo2bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bobo
bobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobob
ob2obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obob
obobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobob
obo2bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2bob
obobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobobo
bob2obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob2obo
bobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobobo
bobobobobobob2obobobobobobobobobobobobobobobobobobobobob2obobobobobobo
bobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobob
obobobobobobo2bobobobobobobobobobobobobobobobobobobobobo2bobobobobobob
obobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobob
obobobobobobob2obobobobobobobobobobobobobobobobobobobobob2obobobobobob
obobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobobo
bobobobobobobo2bobobobobobobobobobobobobobobobobobobobobo2bobobobobobo
bobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobobo
bobobobobobobob2obobobobobobobobobobobobobobobobobobobobob2obobobobobo
bobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobobobobobobob
obobobobobobobo2bobobobobobobobobobobobobobobobobobobobobo2bobobobobob
obobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobobobobobob
obobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobobobobobo
bobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobobobobobo
bobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobobobobob
obobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobobobobob
obobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobobobobo
bobobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobobobobo
bobobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobobobob
obobobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobobobob
obobobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobobobo
bobobobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobobobo
bobobobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobobob
obobobobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobobob
obobobobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobobo
bobobobobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobobo
bobobobobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobob
obobobobobobobobobobobo2bobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobob2obobobobobobobobobobobobo$obobobobobobobobobob
obobobobobobobobobobobob2obobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobo2bobobobobobobobobobobobo$bobobobobobobobobobo
bobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobobo
bobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobob
obobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobob
obobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobobo
bobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobobo
bobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobob
obobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobob
obobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobobo
bobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobobo
bobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobob
obobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobob
obobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobobo
bobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobobo
bobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobob
obobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobob
obobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobobo
bobobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobobo
bobobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobob
obobobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobob
obobobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobobo
bobobobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobobo
bobobobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobob
obobobobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobob
obobobobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobobo
bobobobobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobobo
bobobobobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobob
obobobobobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobob
obobobobobobobobobobobobobobobobobobob2obobobobob2obobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobobo
bobobobobobobobobobobobobobobobobobobo2bobobobobo2bobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$obo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$ob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$bo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$o
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$b
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo$
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
!
x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!

LaundryPizza03 at Wikipedia
User avatar
LaundryPizza03
 
Posts: 231
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Rules with interesting dynamics

Postby danny » December 15th, 2017, 11:08 am

gmc_nxtman wrote:B2c3aijn4k/S2-k34cnqrt

Certain soups don't seem to stabilize:
x = 16, y = 16, rule = B2c3aijn4k/S2-k34cnqrt
bobo2b2o2b3o$2o4bobobo2bo$bobo2bobob2o2b2o$6o2bob3obo$ob3o5b3o$7obobo$
3o2bo2bo2b2ob2o$3b2obo4b3obo2$ob3obobobo2bobo$obob2o2bo3bobo$bob5ob4ob
o$7b3obo3bo$o4b3ob2o2b3o$3b2ob2ob4ob2o$2b2ob9o!

Please let me know if it somehow does.
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 724
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Rules with interesting dynamics

Postby LaundryPizza03 » December 25th, 2017, 9:52 pm

Circuit city!
x = 3, y = 3, rule = B2a3i4i6k7e/S2e3j5k
3o$obo$obo!

x = 16, y = 16, rule = B2a3i4i6k7e/S2e3j5k
5bob2ob3o$bobobobo2bob2o$2b2o3bobob5o$o5bob5obo$o3bob2ob3o3bo$o3bo2bob
7o$2ob2o2b2o2b3o$2o2bo4b2o$o5bobobo2bo$b2obo3bob3obo$3obo7bo$o3bob4obo
bo$o2bobobob3o2bo$obo2b2o2b2ob2o$b7o3bo3bo$5b3obo3b2o!
x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!

LaundryPizza03 at Wikipedia
User avatar
LaundryPizza03
 
Posts: 231
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Rules with interesting dynamics

Postby LaundryPizza03 » December 25th, 2017, 10:52 pm

Discovery: B1/S08 emulates another cellular automaton on a grid of dots at integer coordinates divisible by 4:
x = 21, y = 21, rule = B1/S08
o3bo7bo4$o3bo3bo3bo3bo3bo4$4bo3bo11bo4$o7bo7bo4$16bo3bo4$o!

This unit cell has period 4. What rule is this?
x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!

LaundryPizza03 at Wikipedia
User avatar
LaundryPizza03
 
Posts: 231
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Rules with interesting dynamics

Postby KittyTac » December 25th, 2017, 11:34 pm

B2cek3i/S12-ak

A rule that has quite a bit of engineering potential, but is also fun to watch on a randomly seeded 1500x1500 torus. Also, the replicator, if left alone on an infinite plane, produces the ruler sequence. Check out the thread for it BTW.

#CXRLE Pos=3,0
x = 2, y = 3, rule = B2cek3i/S12-ak
o$bo$o!
User avatar
KittyTac
 
Posts: 528
Joined: December 21st, 2017, 9:58 am

Re: Rules with interesting dynamics

Postby KittyTac » December 25th, 2017, 11:38 pm

LaundryPizza03 wrote:Circuit city!
x = 3, y = 3, rule = B2a3i4i6k7e/S2e3j5k
3o$obo$obo!

x = 16, y = 16, rule = B2a3i4i6k7e/S2e3j5k
5bob2ob3o$bobobobo2bob2o$2b2o3bobob5o$o5bob5obo$o3bob2ob3o3bo$o3bo2bob
7o$2ob2o2b2o2b3o$2o2bo4b2o$o5bobobo2bo$b2obo3bob3obo$3obo7bo$o3bob4obo
bo$o2bobobob3o2bo$obo2b2o2b2ob2o$b7o3bo3bo$5b3obo3b2o!


I wonder if this could be used to procedurally generate cities for video games.
User avatar
KittyTac
 
Posts: 528
Joined: December 21st, 2017, 9:58 am

Re: Rules with interesting dynamics

Postby KittyTac » December 26th, 2017, 10:23 am

In B2cik3aciny4c5n/S23-ay4cjn, the bigger, pre-block like replicator-like growths on the crystals need another pre-block to replicate, have we found sexually-reproducing replicators here? :P
User avatar
KittyTac
 
Posts: 528
Joined: December 21st, 2017, 9:58 am

Re: Rules with interesting dynamics

Postby toroidalet » December 26th, 2017, 2:08 pm

KittyTac wrote:In B2cik3aciny4c5n/S23-ay4cjn, the bigger, pre-block like replicator-like growths on the crystals need another pre-block to replicate, have we found sexually-reproducing replicators here? :P

This is confusing, it just appears to be another of those snake rules that have popped up at least 3 times. (Yes, the snakes "crystallize, but saka mentioned that too)
Some explosive cousins of B2cek3q4-i/S13ck4k, such as B2cek3q4-i5ajkqr6-i/S13ck4k exhibit strange dynamics because of the "pushy" p33 oscillator:
x = 37, y = 18, rule = B2cek3q4-i5ajkqr6-i/S13ck4k
35bo$36bo$35bo5$3bo$4bo$3bo7$obo$bo!
I have the best signature ever.
User avatar
toroidalet
 
Posts: 866
Joined: August 7th, 2016, 1:48 pm
Location: Somewhere on a planet called "Earth"

Re: Rules with interesting dynamics

Postby BlinkerSpawn » December 26th, 2017, 2:26 pm

LaundryPizza03 wrote:Discovery: B1/S08 emulates another cellular automaton on a grid of dots at integer coordinates divisible by 4:
x = 21, y = 21, rule = B1/S08
o3bo7bo4$o3bo3bo3bo3bo3bo4$4bo3bo11bo4$o7bo7bo4$16bo3bo4$o!

This unit cell has period 4. What rule is this?

B1c2a3j4ajn5knqr6a/S2i3ekry4-anw5-a678
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image
User avatar
BlinkerSpawn
 
Posts: 1788
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Rules with interesting dynamics

Postby KittyTac » December 26th, 2017, 9:52 pm

BlinkerSpawn wrote:
LaundryPizza03 wrote:Discovery: B1/S08 emulates another cellular automaton on a grid of dots at integer coordinates divisible by 4:
x = 21, y = 21, rule = B1/S08
o3bo7bo4$o3bo3bo3bo3bo3bo4$4bo3bo11bo4$o7bo7bo4$16bo3bo4$o!

This unit cell has period 4. What rule is this?

B1c2a3j4ajn5knqr6a/S2i3ekry4-anw5-a678


I wonder if there's a program for that.
User avatar
KittyTac
 
Posts: 528
Joined: December 21st, 2017, 9:58 am

Re: Rules with interesting dynamics

Postby Majestas32 » December 26th, 2017, 10:12 pm

There's this thing called Golly...
Please, stop spam searching Snowflakes.
User avatar
Majestas32
 
Posts: 509
Joined: November 20th, 2017, 12:22 pm
Location: 'Merica

Re: Rules with interesting dynamics

Postby BlinkerSpawn » December 26th, 2017, 10:14 pm

KittyTac wrote:
BlinkerSpawn wrote:
LaundryPizza03 wrote:Discovery: B1/S08 emulates another cellular automaton on a grid of dots at integer coordinates divisible by 4:
x = 21, y = 21, rule = B1/S08
o3bo7bo4$o3bo3bo3bo3bo3bo4$4bo3bo11bo4$o7bo7bo4$16bo3bo4$o!

This unit cell has period 4. What rule is this?

B1c2a3j4ajn5knqr6a/S2i3ekry4-anw5-a678


I wonder if there's a program for that.

Program for what?
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image
User avatar
BlinkerSpawn
 
Posts: 1788
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Rules with interesting dynamics

Postby KittyTac » December 26th, 2017, 10:25 pm

BlinkerSpawn wrote:Program for what?


For finding rules that the natural unit cells like that one simulate.
User avatar
KittyTac
 
Posts: 528
Joined: December 21st, 2017, 9:58 am

Next

Return to Other Cellular Automata

Who is online

Users browsing this forum: cvojan, Sarp and 6 guests