ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Rules with interesting dynamics

For discussion of other cellular automata.

Re: Rules with interesting dynamics

Postby danny » December 26th, 2017, 11:20 pm

x = 23, y = 7, rule = B2ci3ai4ci8/S02ae3eijkq4iz5a6i7e
3bo15bo$b5o11b5o$bo3bo3b2o6bo3bo$2obob2ob2obo4b2obob2o$bo3bo3b2o6bo3bo
$b5o11b5o$3bo15bo!

90-degree turner:
x = 7, y = 11, rule = B2ci3ai4ci8/S02ae3eijkq4iz5a6i7e
2b2o$3bo$2b2o2$3bo$b5o$bo3bo$2obob2o$bo3bo$b5o$3bo!

Doubler:
x = 41, y = 29, rule = B2ci3ai4ci8/S02ae3eijkq4iz5a6i7e
12bo15bo$10b5o11b5o$10bo3bo6b2o3bo3bo$9b2obob2o4bob2ob2obob2o$10bo3bo
6b2o3bo3bo$10b5o11b5o$12bo15bo14$12bo15bo$10b5o11b5o$3bo6bo3bo6b2o3bo
3bo6bo$b5o3b2obob2o4bob2ob2obob2o3b5o$bo3bo4bo3bo6b2o3bo3bo4bo3bo$2obo
b2o3b5o11b5o3b2obob2o$bo3bo6bo15bo6bo3bo$b5o29b5o$3bo33bo!

It seems like the doubler could be used for a stable 180-degree reflector.

Fuses:
x = 44, y = 52, rule = B2ci3ai4ci8/S02ae3eijkq4iz5a6i7e
16bo15bo$14b5o11b5o$14bo3bo11bo3bo$8bo4b2obob2o4bo4b2obob2o4bo$6b5o3bo
3bo3b5o3bo3bo3b5o$b2o3bo3bo3b5o3bo3bo3b5o3bo3bo$ob2ob2obob2o4bo4b2obob
2o4bo4b2obob2o$b2o3bo3bo11bo3bo11bo3bo$6b5o11b5o11b5o$8bo15bo15bo14$8b
o$6b5o$b2o3bo3bo$ob2ob2obob2o$b2o3bo3bo$6b5o$8bo4bo$11b5o$11bo3bo$10b
2obob2o$11bo3bo$11b5o3bo$13bo3b5o$17bo3bo$16b2obob2o$17bo3bo$17b5o$19b
o4bo$22b5o$22bo3bo$21b2obob2o$22bo3bo$22b5o3bo$24bo3b5o$28bo3bo$27b2ob
ob2o$28bo3bo$28b5o$30bo!


It seems like with the current tech, all that is needed is a 2-cell pull+reflect reaction to create large ships of arbitrary slow speeds.

EDIT: This rule also has some big 2x2-like oscillators, but with 1x2 blocks.
she/they // Please stop using my full name. Refer to me as dani.

"I'm always on duty, even when I'm off duty." -Cody Kolodziejzyk, Ph.D.
User avatar
danny
 
Posts: 966
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA

Re: Rules with interesting dynamics

Postby danny » January 6th, 2018, 11:07 pm

I don't even know how to wrap my head around this one:
x = 95, y = 122, rule = B2k3/S23-a4eitz
91b2o$91b3o$85b2o6b2o$84bo8bo$71b2o11bo2bo4bo$72b2o11b3o$72b2o2$74b3o
2$3o9b3o9b3o9b3o9b3o9b3o9b2ob2o$75b2o57$30bo8b4o$28bo2bo3b2o2b2obo$28b
2ob2o7bo2b2o$28bo2b2o4b2o5bo$30bo7b7o$31b3obo$33bobobob6o$35bobobo4bo$
34bo2bo6bo$38b2o3bo$40bo6$2b3o$2b2obo$5b2o3b2o$2bo2bobob3o$b4o4b3o$2b
2o5bo$10b2o$4b3o3b2o$4bo2bo2b2o$7bo$5bo2bo$6bob2o$6b3o5$6bo$3bo2bo$4b
3o7$85bo$77bo7b2o$76b3o5bob2o$63bo11bobobo4bobo$63b2o9b2o2b2o4b2o$64bo
10bo2b2o$63b2obo8bo2bo$63b2obo9b3o$66b2o$64bobo$3b3o9b3o9b3o9b3o9b3o
11b2o$65bo!


It makes a diagonal checkerboard which gradually fills up on the right.
she/they // Please stop using my full name. Refer to me as dani.

"I'm always on duty, even when I'm off duty." -Cody Kolodziejzyk, Ph.D.
User avatar
danny
 
Posts: 966
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA

Re: Rules with interesting dynamics

Postby A for awesome » January 7th, 2018, 12:50 pm

danny wrote:I don't even know how to wrap my head around this one:
rle


It makes a diagonal checkerboard which gradually fills up on the right.

That's a nice example of an MMMS breeder and an illustration of why cubic growth is impossible. Great find!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1877
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Rules with interesting dynamics

Postby LaundryPizza03 » January 7th, 2018, 9:44 pm

gmc_nxtman wrote:B3-cej/S234eijkrw5cry6ik7:

x = 16, y = 16, rule = B3-cej/S234eijkrw5cry6ik7
9bo2bob2o$o5bob2o4b2o$3ob2obo2bob2obo$2bo3bo2bo2bo$2ob2o2bob5obo$3o2b
2ob4obobo$2ob2obob2o$o3b2obo5b2o$3b4ob3ob2o$4ob2ob5o2bo$2b2o3bob2obobo
$3bo3bob2ob4o$ob4obo3b2o$4bobob6obo$4b2obob2o2b3o$o4b2obo4b2o!


Takes a long time to stabilize for sure. Here's a 2c/8 diagonal from that rule:
x = 4, y = 5, rule = B3-cej/S234eijkrw5cry6ik7
3o$2o$3bo$obo$bo!
x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!

LaundryPizza03 at Wikipedia
User avatar
LaundryPizza03
 
Posts: 457
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Rules with interesting dynamics

Postby gmc_nxtman » January 8th, 2018, 9:27 pm

Another odd variant of the "crystallographic defect" rule, with some weird phenomena:

x = 64, y = 4, rule = B2cn3-eqry4ckr/S01c2c3c4c
6o2bob2o3b2o3bo2b3o3bob2o2b4o2bobob5o2bob3o2b2o2bo$bo2bob3o2bo3b2ob9o
8bobobobo2b2o2b5o4bo2b2obo$4b3obo2bo7b7o2b2o2b3o2b2o2bo5b2ob6o2bo2bo$
2b2o3b2ob2o2b2o2bo3bob2ob2o3b3o2bobobo2b2o3b2obob2ob7o!


Things crystallise slightly differently in this rule. There are multiple oscillating "wicks" that crystallise in the defects that seem to move in a random way. that I originally thought there was only one rule with the phenomenon, but Saka later proved me wrong, and there may be even more weird things lurking in this set of rules.

EDIT: Spacefiller in another variant:

x = 208, y = 5, rule = B2cn3-eqry4ckr/S01c2cn3c4cq
2b3ob3ob2o2bobo3b3o5b2o2bo5bo3bob2o2b3o2b2o4b2o2bo2b4o3b2ob2o7b2obobob
o2b2ob5obobobo2b2obob7o2b2ob4o2bo3bo10b2ob2ob6ob2obob4o2bobobo4b2ob3ob
4ob2ob3obobo2bo$b2ob2obobo2bob2ob2o2bob7obob3obob2obo3b2o3b3o2bo2bo3b
2o3bob6ob2o3bo2bob2o2bobo2bo2bob2ob2obobobob4o3bo4bobo4bob2obo5bo2bob
3o3b2o2b4o2b3o2bob2ob2ob2ob2o3b2ob2ob2o2bob4obob3o$2bo2bob2o4b3o4bo2bo
bo2bo3bobobobobob4obo3bo2bob4ob2o2bo3b2o4b3o5b2o2b4o2bo5b2o2bo2bobob2o
3b2ob8o2b2obo4b2ob6ob5o7b2obo3bob3obobo7b5obob2o2bo2b2ob3o3b2o$2bo3bo
2b6o2b3obo3b2obo2b3o2bob3obo3b3ob3ob3o2bo2bo2bo2bo3bobo3b5obo2bob2obob
3ob2ob5obob2o6bo2b7ob3ob3o2bobo6bob3obob2o2bo2bo2bobo3b4o2b2o3b2ob2o4b
ob2o2b5o3bob2o$o5b4obo3b2o3bo2b7o2bobobo3bobob2o4bo4b2ob3o2b2o3b3o3bo
2bobo3bo2bob7o2bobo2bo6bob2o2bobob3o2b2obobo3bob3obobobob2o7bo2bob3ob
2obob3o2b3obo3bobo2bo2bo3bo2b2o3b2o2b3o!
User avatar
gmc_nxtman
 
Posts: 1147
Joined: May 26th, 2015, 7:20 pm

Re: Rules with interesting dynamics

Postby dvgrn » January 8th, 2018, 11:05 pm

danny wrote:EDIT: This rule also has some big 2x2-like oscillators, but with 1x2 blocks.

Very interesting -- so this variant Snowflakes rule has the same exact set of even-length Sierpinski-triangle XOR oscillators again:

x = 72, y = 1, rule = B2ci3ai4ci8/S02ae3eijkq4iz5a6i7e
72o!
#C [[ STOP 174762 ]]

The odd lengths look like they're going to do the same thing, but they reliably collapse. I guess that's one way to tell even from odd --

x = 73, y = 1, rule = B2ci3ai4ci8/S02ae3eijkq4iz5a6i7e
73o!

To look up what period an oscillator will be, add two to the length and look up that value in the WolframIndex column in the table.
User avatar
dvgrn
Moderator
 
Posts: 5827
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Rules with interesting dynamics

Postby A for awesome » January 8th, 2018, 11:37 pm

Something that I realized about these XOR oscillators: They're all actually 2x2 block oscillators, it's just that the 2x2 blocks have different contents. For the original 2x2 rule, the 2x2 blocks are completely full; for B2c/S and analogues, the blocks consist of one on cell and 3 off cells; and for rules such as that in the above post, the blocks look like this:
oo
..

Obviously, they aren't all Margolus automata (at least range 1) — unlike 2x2 — but I feel like they still classify as 2x2 block oscillators, if not automata.

Here are two more families I've found based on this idea:
x = 96, y = 2, rule = B2c/S2c
obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob
obobobobobobobobobobobobo$bobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobobobobobobobobobobobobobobobo!

x = 90, y = 2, rule = B2c3i5i/S3i4i
90o$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
bobobobobobobobobobobobo!

Unfortunately, patterns in rules supporting the latter family cannot escape their bounding box.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1877
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Rules with interesting dynamics

Postby dvgrn » January 8th, 2018, 11:56 pm

A for awesome wrote:Something that I realized about these XOR oscillators: They're all actually 2x2 block oscillators, it's just that the 2x2 blocks have different contents. For the original 2x2 rule, the 2x2 blocks are completely full; for B2c/S and analogues, the blocks consist of one on cell and 3 off cells; and for rules such as that in the above post, the blocks look like this:
oo
..

Yup, and clearly the dynamics of all these rules have to be exactly isomorphic in some sense, or the recognizable behavior couldn't happen.

I had this rule confused with Snowflakes for a while there, and posted the following in the wrong thread. Putting it here now with appropriate edits, so as not to waste it --

There seem to be oscillators out there with period (2^N-2)*2^k for any N>2 and k>=0. And then there are the exceptions-that-prove-the-rule ones at 174762 and 45 billion [one third of "standard" numbers, both -- (2^19-2)/3 and (2^37-2)/3 ]...

#C period 45812984490 oscillator
x = 188, y = 1, rule = B2ci3ai4ci8/S02ae3eijkq4iz5a6i7e
188o!

... So can the pointy ends of these diamonds make gliders and suchlike, the way AbhpzTa did with the horiship guns in B2cek3i/S12cei?
User avatar
dvgrn
Moderator
 
Posts: 5827
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Rules with interesting dynamics

Postby jimmyChen2013 » January 9th, 2018, 8:36 am

variable-period replicator world:
......


Thought I saw a mandelbrot at around 969,000
freaked my out
Failed Replicator!
x = 4, y = 4, rule = B34ce5cen67c8/S2-i3-jqry4cent5j67c8
bo$obo$bobo$2bo!

(That I wish was not failed D:)
User avatar
jimmyChen2013
 
Posts: 133
Joined: December 11th, 2017, 3:28 am

Re: Rules with interesting dynamics

Postby muzik » January 9th, 2018, 12:11 pm

A for awesome wrote:Something that I realized about these XOR oscillators: They're all actually 2x2 block oscillators, it's just that the 2x2 blocks have different contents. For the original 2x2 rule, the 2x2 blocks are completely full; for B2c/S and analogues, the blocks consist of one on cell and 3 off cells; and for rules such as that in the above post, the blocks look like this:

I found this out a good few months ago. I tried looking for a rule where the last family worked though, with no success.

Here's more:
x = 23, y = 6, rule = B2e/S
o3bo5bo6bo$bo3bo5bo6bo$6bo5bo6bo$7bo5bo6bo$14bo6bo$22bo!


The thread also mentioned this one:
x = 65, y = 32, rule = B2-a3/S01c5i
o19bo19bo19bo$21bo19bo19bo$22bo19bo19bo$43bo19bo$64bo16$2o18b2o18b2o
18b2o$2o18b2o18b2o18b2o$2o18b2o18b2o18b2o$2o18b2o18b2o18b2o$20b2o18b2o
18b2o$20b2o18b2o18b2o$20b2o18b2o18b2o$20b2o18b2o18b2o$40b2o18b2o$40b2o
18b2o$60b2o$60b2o!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik
 
Posts: 3465
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Rules with interesting dynamics

Postby muzik » January 9th, 2018, 12:44 pm

A type R(?) replicator, which fits in at least six of the seven rules:

x = 1, y = 1, rule = B1c2n3c4c/S
o!


x = 2, y = 1, rule = B1c2a3q6i/S
2o!


x = 2, y = 2, rule = B1c2n/S1c2n4c
bo$o!


x = 2, y = 2, rule = B1c2a3aq4qw8/S2a3q6i
2o$bo!


x = 2, y = 2, rule = B1c2a4w/S3a4q8
2o$2o!


x = 1, y = 1, rule = B1e2i3e4e/S
o!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik
 
Posts: 3465
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Rules with interesting dynamics

Postby A for awesome » January 9th, 2018, 7:08 pm

It also appears that the "off" block state can be replaced under some circumstances allowing for oscillators that are similar if not exactly the same:
x = 15, y = 15, rule = B4c/S02en3ce4ci5e
15o$obobobobobobobo$2obobobobobob2o$obobobobobobobo$2obobobobobob2o$ob
obobobobobobo$2o9bob2o$obobobobobobobo$2obobobobobob2o$obobobobobobobo
$2obobobobobob2o$obobobobobobobo$2obobobobobob2o$obobobobobobobo$15o!

x = 15, y = 15, rule = B4t5ey6ci/S2ek3cnr4cy5e
4b2o3b2o$b2obobobobob2o$bobobobobobobo$2bobobobobobo$2obobobobobob2o$o
bobobobobobobo$bob2obobobo2bo$2bobobobobobo$bobobobobobobo$obobobobobo
bobo$2obobobobobob2o$2bobobobobobo$bobobobobobobo$b2obobobobob2o$4b2o
3b2o!

x = 17, y = 17, rule = B3a5i8/S3i4i6ci7e8
bobobobobobobobo$17o$bobobobobobobobo$17o$bobobobobobobobo$17o$bobobob
obobobobo$17o$b13obo$17o$bobobobobobobobo$17o$bobobobobobobobo$17o$bob
obobobobobobo$17o$bobobobobobobobo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1877
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Rules with interesting dynamics

Postby muzik » January 9th, 2018, 7:16 pm

This one seems to work for any even number not divisible by 4:

x = 36, y = 16, rule = B2e3a4w/S1c3a4q
2o5b2o11b2o$2o5b2o11b2o$2b2o5b2o11b2o$2b2o5b2o11b2o$11b2o11b2o$11b2o
11b2o$13b2o11b2o$13b2o11b2o$28b2o$28b2o$30b2o$30b2o$32b2o$32b2o$34b2o$
34b2o!


Also, bilateral rules can allow for this:

x = 31, y = 31, rule = B3i6i/S2i5i
2o28bo$2o28bo$2o28bo$2o28bo$2o28bo$2o28bo$2o28bo$2o28bo$2o28bo$2o28bo$
2o28bo$2o28bo9$2o28bo$2o28bo$2o28bo$2o28bo$2o28bo$2o28bo$2o28bo$2o28bo
$2o28bo$2o28bo$2o28bo!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik
 
Posts: 3465
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: Rules with interesting dynamics

Postby LaundryPizza03 » January 10th, 2018, 4:01 pm

When there are two or more natural spaceships that travel at different speeds in the same direction, it is sometimes possible for islands of debris/chaos to form:
x = 64, y = 64, rule = B2ek3eikqr4aejr6k/S02ack3aknry4akn
b2obobob2obo2b5o2bo5b5ob3o3bo2b2obo2bob2obob2o3b3o$3bobo2b3ob4o3bob2ob
obo2b8obo5b5o2bobo3b4ob2o$2bob2o2bo4bobo3b2ob2o7bo2b2ob3ob3o2b4o2b3o2b
2o3b2o$3bo3bobo4b2o2b2ob2o2b2o2bo2bo8b2obo2bo2b2o4b4ob2o$b2ob3obob3ob
2ob2ob5ob2ob3o4bo2b2ob3o2b2obob3ob2o2b4o$o2b3o2bo2bo2bo2b4ob2o2bobob2o
bobo3bobob2obob2o2b5obob3o$bo2bo4b3o3bobo4b3o3b2o3bo4b5ob2o2bo2bob2obo
3bo2bo$4obo5b5o2b3o2bo2bo2bo2b2o3bobo4b2o2b4o2b3ob3o$2ob7o4b2o2bo2bobo
3b2ob5obob2o5b2ob5obo2bo3b3o$2o3bob6obo2bo2b7obob2ob2obobob4obo6bo2bob
ob3obo$o2b4ob3ob2ob2ob2ob2o4b4obob2o2bob2o2bob3o10bo2bo$b4obobo2b4obob
2obobobo2bobo2b3obo2bo6b4obo5b2o$2bo7bo3bo2bo3b3o2b3o4bobobob2o7b2o2bo
2b3o2b3o$2obobo2bo3bo3b3obob3o2bo4bobo3b2o4b2o4bo2b3o3b2obo$5obo2b2o2b
obobo5bo2bobo2bo3b4o3bo3bobobob2ob2obob2o$b6o4bob3obo2bob2ob2obobo3b2o
bo4b2o7bob2o2b2o$2obo4b3obo2bob4obo3bo3bob2o2bo2bo4b3obob7ob2o2bo$2bo
4bobob3o3b5obob2o3bo3bobo2bo3bobo3b4o2bo6b2o$obo2b2o3b3obob4o3bo2b4o3b
2o2b2o4bo6b2ob2o2bob3o$3o2b2obo4b2ob2o2b2obo3b2obob2o2bob2obob2o5b2ob
3o2bo2bobo$6b4obo3bo2b2obob2o4b2obob3o2b2o3bob2o4b2o2b2o3bobo$bob2obo
3bobo2bo5b2obo7bo2bo2b5obo3b3obobo3b3o$2ob4o2bo3bo3bobobo3bob4ob2ob3o
3bo3b2obob3o7bob2o$5bo2bo4bo5b2o2bobo2bo2b3obob4o2bob2o3b3o2b4o3b2o$5b
o3bobob2ob3obo2b6ob2ob2o4b2o5bo2bo2bo7bo$obo3bo2b2o2b4obo3bobo4b2o2b2o
2bob2obob3ob6ob2o2b4o$5b4ob2o2bob3ob2o2bo2bob2obo6bobob2obobo4b5o2b4o$
2b2ob2o2bob2ob2obob4obo2b4obo2bobob4o3bobo3bo2bob2obo2bo$3ob3o3bo3bobo
6b2ob3obob4obobob4o2bo2b4ob2obo2bo$2b3ob2o4b2o3b2obob2o6b3obo2bo2b2ob
2obo2b2o2b7obobo$2bo2bob2obob2obob2o3b2obo4b3ob2o2bo2b2o2b3o2b2o3bo2b
2obobo$2b4o2b2obobo3bob6o5b2ob3obo4bo4b2obobo4b2o2bobo$o4b3obobob6o3b
2o2bo2b2o5bob2o4bo4bob7ob4o$b2o2bob7ob2obob2ob3o2b2obobo3b4obo2b2o2b2o
bob2ob7o$o5bo2bob2o3b3o2bo3b5ob2ob2ob2o3bo4bo2b3o2bo3bob2o$bo2bobo6bob
3ob5ob3obo2b3o2b2o2b2o3bo2b2o2bo2bo2b2o$obobo3bobobob5o2bob3ob4obobob
2o2bo2b4obo2b9ob2o$3bo4b3ob5ob2o3b3ob8obob3obob2ob2o2b2ob3ob5o$bo2b2ob
o2bo3bo2b2o3bo2b3ob4ob7o3bobo4b2obo2bob3obo$4o7bobob2o2b2o3bob2o2bo2b
3ob2o5bobob3o4b2o3bo2bo$5o4b2ob4o10bobob2ob2o3b2obo2b7ob2ob5ob2o$2bo3b
obob2o3bobo2bob3o4bo3b3o4b2obo4bo5b2o6bo$3b4o2bo3b3obobo6bobo4bobo2bob
ob7obo2bob3obo2b2o$2b3ob5ob3o2b2o2bob3o2b3o2bo2bo4b6o6b6o3bo$5bob6obob
obo3bo2bobo2b3obo3bob2ob2ob2obo2b4obob4o$2ob2obobo3b2obob2o7b2ob3ob2ob
o2bo2b2o2b3o4b2o5bobo$obo3b2ob4o2bob2o2b2ob3obobob4o4b5o8b3obob5o$2bo
3bo3b2ob3o2bo4bob3obo2bobobob2o2b2o2b5obobobob2o2b2o$o3bo4bob2ob2obo2b
3o3b3obo2b4ob3o3b3obobo2b2obob3o$o2bob2ob2o2b2o4b2ob2o3bob2ob2o2bo2bo
2bo5b2obobob2obo4b2o$6o2bo2bobobo3bo2b3o2bob4ob2obo3b7obo2bob2obob2o2b
o$bobobob2o3bobobo2bob4obob2ob3o5b2o2b2o3b3ob2ob5o$2bobo3b7o2bobob3o2b
3ob2o2b2ob2o4bob5o3bob3o3bobo$bobobobo2b3o3b3o5bo3b2obo2b7ob3ob4o3b6ob
2obo$o2b2o3bobo2b4o7b3o5b3obo2bo2b4o2bo4b3ob7o$o5bobobob2obo2bob2ob2ob
o2b2o8b2ob2o3bobo5b2o3b4o$bob2ob3obob2ob3obo2b3ob2o2b5obobo5bob4obo3bo
3bobobo$o3b4obobob2o3b3o4bob2o2bob3obob2obob4o2bob2obo2b2ob3o$o4b2obob
2obo6bo2bo2b2ob2ob4o6bob2o4bobo3b4o2bo$3b3o2b3o3bo3bo8b2ob2o3bob2ob4ob
4ob4o2bo2bo3bo$bobobo5b6ob3o2b2o3bob2o7b3obo2b4o3bo4bobo$2o3bo3b2ob7o
3b3o2b2obobo3bobob3obob2obob2o5b3obo$obob2o3b2obo4b2o2bob4o2bo4bob2o3b
4ob2obo2bo3bo2b2ob2o$bo4b3o2b2obobob2obo4bo2bo2b3obo2bob2ob3o4b2obo2b
4obo!

A stable example:
x = 64, y = 64, rule = B2ekn3ceir4ajrtw5a6ce7c/S02-ei3akn4az5c6aen7e
b2obobob2obo2b5o2bo5b5ob3o3bo2b2obo2bob2obob2o3b3o$3bobo2b3ob4o3bob2ob
obo2b8obo5b5o2bobo3b4ob2o$2bob2o2bo4bobo3b2ob2o7bo2b2ob3ob3o2b4o2b3o2b
2o3b2o$3bo3bobo4b2o2b2ob2o2b2o2bo2bo8b2obo2bo2b2o4b4ob2o$b2ob3obob3ob
2ob2ob5ob2ob3o4bo2b2ob3o2b2obob3ob2o2b4o$o2b3o2bo2bo2bo2b4ob2o2bobob2o
bobo3bobob2obob2o2b5obob3o$bo2bo4b3o3bobo4b3o3b2o3bo4b5ob2o2bo2bob2obo
3bo2bo$4obo5b5o2b3o2bo2bo2bo2b2o3bobo4b2o2b4o2b3ob3o$2ob7o4b2o2bo2bobo
3b2ob5obob2o5b2ob5obo2bo3b3o$2o3bob6obo2bo2b7obob2ob2obobob4obo6bo2bob
ob3obo$o2b4ob3ob2ob2ob2ob2o4b4obob2o2bob2o2bob3o10bo2bo$b4obobo2b4obob
2obobobo2bobo2b3obo2bo6b4obo5b2o$2bo7bo3bo2bo3b3o2b3o4bobobob2o7b2o2bo
2b3o2b3o$2obobo2bo3bo3b3obob3o2bo4bobo3b2o4b2o4bo2b3o3b2obo$5obo2b2o2b
obobo5bo2bobo2bo3b4o3bo3bobobob2ob2obob2o$b6o4bob3obo2bob2ob2obobo3b2o
bo4b2o7bob2o2b2o$2obo4b3obo2bob4obo3bo3bob2o2bo2bo4b3obob7ob2o2bo$2bo
4bobob3o3b5obob2o3bo3bobo2bo3bobo3b4o2bo6b2o$obo2b2o3b3obob4o3bo2b4o3b
2o2b2o4bo6b2ob2o2bob3o$3o2b2obo4b2ob2o2b2obo3b2obob2o2bob2obob2o5b2ob
3o2bo2bobo$6b4obo3bo2b2obob2o4b2obob3o2b2o3bob2o4b2o2b2o3bobo$bob2obo
3bobo2bo5b2obo7bo2bo2b5obo3b3obobo3b3o$2ob4o2bo3bo3bobobo3bob4ob2ob3o
3bo3b2obob3o7bob2o$5bo2bo4bo5b2o2bobo2bo2b3obob4o2bob2o3b3o2b4o3b2o$5b
o3bobob2ob3obo2b6ob2ob2o4b2o5bo2bo2bo7bo$obo3bo2b2o2b4obo3bobo4b2o2b2o
2bob2obob3ob6ob2o2b4o$5b4ob2o2bob3ob2o2bo2bob2obo6bobob2obobo4b5o2b4o$
2b2ob2o2bob2ob2obob4obo2b4obo2bobob4o3bobo3bo2bob2obo2bo$3ob3o3bo3bobo
6b2ob3obob4obobob4o2bo2b4ob2obo2bo$2b3ob2o4b2o3b2obob2o6b3obo2bo2b2ob
2obo2b2o2b7obobo$2bo2bob2obob2obob2o3b2obo4b3ob2o2bo2b2o2b3o2b2o3bo2b
2obobo$2b4o2b2obobo3bob6o5b2ob3obo4bo4b2obobo4b2o2bobo$o4b3obobob6o3b
2o2bo2b2o5bob2o4bo4bob7ob4o$b2o2bob7ob2obob2ob3o2b2obobo3b4obo2b2o2b2o
bob2ob7o$o5bo2bob2o3b3o2bo3b5ob2ob2ob2o3bo4bo2b3o2bo3bob2o$bo2bobo6bob
3ob5ob3obo2b3o2b2o2b2o3bo2b2o2bo2bo2b2o$obobo3bobobob5o2bob3ob4obobob
2o2bo2b4obo2b9ob2o$3bo4b3ob5ob2o3b3ob8obob3obob2ob2o2b2ob3ob5o$bo2b2ob
o2bo3bo2b2o3bo2b3ob4ob7o3bobo4b2obo2bob3obo$4o7bobob2o2b2o3bob2o2bo2b
3ob2o5bobob3o4b2o3bo2bo$5o4b2ob4o10bobob2ob2o3b2obo2b7ob2ob5ob2o$2bo3b
obob2o3bobo2bob3o4bo3b3o4b2obo4bo5b2o6bo$3b4o2bo3b3obobo6bobo4bobo2bob
ob7obo2bob3obo2b2o$2b3ob5ob3o2b2o2bob3o2b3o2bo2bo4b6o6b6o3bo$5bob6obob
obo3bo2bobo2b3obo3bob2ob2ob2obo2b4obob4o$2ob2obobo3b2obob2o7b2ob3ob2ob
o2bo2b2o2b3o4b2o5bobo$obo3b2ob4o2bob2o2b2ob3obobob4o4b5o8b3obob5o$2bo
3bo3b2ob3o2bo4bob3obo2bobobob2o2b2o2b5obobobob2o2b2o$o3bo4bob2ob2obo2b
3o3b3obo2b4ob3o3b3obobo2b2obob3o$o2bob2ob2o2b2o4b2ob2o3bob2ob2o2bo2bo
2bo5b2obobob2obo4b2o$6o2bo2bobobo3bo2b3o2bob4ob2obo3b7obo2bob2obob2o2b
o$bobobob2o3bobobo2bob4obob2ob3o5b2o2b2o3b3ob2ob5o$2bobo3b7o2bobob3o2b
3ob2o2b2ob2o4bob5o3bob3o3bobo$bobobobo2b3o3b3o5bo3b2obo2b7ob3ob4o3b6ob
2obo$o2b2o3bobo2b4o7b3o5b3obo2bo2b4o2bo4b3ob7o$o5bobobob2obo2bob2ob2ob
o2b2o8b2ob2o3bobo5b2o3b4o$bob2ob3obob2ob3obo2b3ob2o2b5obobo5bob4obo3bo
3bobobo$o3b4obobob2o3b3o4bob2o2bob3obob2obob4o2bob2obo2b2ob3o$o4b2obob
2obo6bo2bo2b2ob2ob4o6bob2o4bobo3b4o2bo$3b3o2b3o3bo3bo8b2ob2o3bob2ob4ob
4ob4o2bo2bo3bo$bobobo5b6ob3o2b2o3bob2o7b3obo2b4o3bo4bobo$2o3bo3b2ob7o
3b3o2b2obobo3bobob3obob2obob2o5b3obo$obob2o3b2obo4b2o2bob4o2bo4bob2o3b
4ob2obo2bo3bo2b2ob2o$bo4b3o2b2obobob2obo4bo2bo2b3obo2bob2ob3o4b2obo2b
4obo!
x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!

LaundryPizza03 at Wikipedia
User avatar
LaundryPizza03
 
Posts: 457
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Rules with interesting dynamics

Postby Majestas32 » January 10th, 2018, 7:19 pm

The island effect occurs pretty frequently with gliders in Life (and especially tlife) for that matter. At least in huge soups
Please, stop spam searching Snowflakes.
User avatar
Majestas32
 
Posts: 524
Joined: November 20th, 2017, 12:22 pm
Location: 'Merica

Re: Rules with interesting dynamics

Postby gmc_nxtman » January 15th, 2018, 3:34 pm

B2c3-kqry6-k78/S2c4ace5678, another rule that generates crystal-like structures:

x = 224, y = 5, rule = B2c3-kqry6-k78/S2c4ace5678
b3o3b2ob2ob3o4bob4obob7ob4o2bobob4o2b3ob4o3b2ob6obobo2b2ob11obob6o2bob
ob2ob2ob2ob6obo2b5ob7ob2ob4ob2ob3o3b7obobob4ob7ob6obob5ob4ob2ob7ob2obo
b4o$2ob14o2b4ob4ob2o2b3ob7obob5ob5ob6o3b2obob3ob9ob10ob9ob21ob2ob5ob2o
bob2o2bobob9ob10obo2b5ob4obobob11o2bobob16o$bob2o2b2ob4obob2o3b2ob2ob
2ob14obobo4b3o2b5o2bob7o2b2ob14ob3o2b3ob4ob2obo3b2ob17obob6ob7obobob2o
b2ob7ob9ob13ob2obo2b7ob2o2bo2b5obo$5ob2ob3ob3ob2o2b2ob13o2bob10ob2obo
2b3ob2ob4o2b4ob15ob4ob2ob6obob4ob2o2b3ob6ob5o3bob3o2b3obob2ob2ob2ob5o
4bob15o2bob2o2b4obobo2b4o2b2ob3o3bob4o$ob3obobob4ob4ob2ob6ob4o2b3o4bo
4bob5o4b2obob7obob3obob5ob2obobob3ob3o2bob6ob2ob6o3b5obo2b2ob3ob4obobo
bob3ob8ob2ob19obobo2b2obo3b4ob2ob10ob4obo!


EDIT: Rules like this generate vein-like structures:

x = 8, y = 6, rule = B3ai5i6a/S3-i4ar5aci6ac78
bo$b6o$8o$b6o$bo2b3o$5b2o!
User avatar
gmc_nxtman
 
Posts: 1147
Joined: May 26th, 2015, 7:20 pm

Re: Rules with interesting dynamics

Postby danny » January 15th, 2018, 10:18 pm

Weird growth:
x = 100, y = 3, rule = B2-a3aey4in5ae6i/S12i3-aij4akr5iy6i
2o$99bo$2o97bo!
she/they // Please stop using my full name. Refer to me as dani.

"I'm always on duty, even when I'm off duty." -Cody Kolodziejzyk, Ph.D.
User avatar
danny
 
Posts: 966
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA

Re: Rules with interesting dynamics

Postby Saka » January 19th, 2018, 6:24 am

B2ci3-ij4air5ain678/S2aei3-ijn4air5aiy6ac78 and nearby rules are highly chaotic rules with wicks and fuses that "sets things on fire"
x = 30, y = 30, rule = B2ci3-ij4air5ain678/S2aei3-ijn4air5aiy6ac78
4o4bo3b8o6bobo$o3bo2bo3bo3b2o4bob2ob3o$2o2b5obob2o4b2obo2b2ob3o$o2b3o
2b5obob3o2bo4b4o$3bo2b5o2bo2bobo3bobo2b3o$4obob3ob2o6bo5bobobo$ob9ob2o
bob2o3b2o3b2o$o2bob3obo4bo3bo2b2o5b2o$b3obobo2bo2bob2o4b2ob4obo$4bobob
2obo2b5obo2bob2obo$2b2o3b3ob3obo2b6o4b2o$2obo5bob3o3bob2o2b3obobo$ob3o
2bobobo5bo2b2o2bo3b2o$2b2obob3o2b3obo4b4o2bobo$4o3b2obob2ob3o2b2o2bob
2obo$2b3o3b3ob2obo2bobobo2b2obo$o7b2obo2b6obobobob2o$b2obob3o2b2obobo
2bo2b4ob3o$obo5bobobob3ob3o2bo2bob2o$b2o3b2obo2bob5o2b4ob2obo$2bobo3bo
b2o3bo3b2obobo3bo$o4bo2b3o2b2o2b2ob3o4b2o$b3obob4o2bobo2bo2b2o4b2o$2b
2ob3obo2b2o2bo2bo2b2ob2o$ob2o3bo2b2ob3obo2bob5obo$o6b2ob2obo2b2o3bo3b
2o$4b2o3b3o2b3o3b2o2bobo2bo$b2o2b5o2b3ob3obo3bob3o$4ob2o2bo2bob6o2bob
2ob2o$2bob5o5bobo3b6obobo!
If you're the person that uploaded to Sakagolue illegally, please PM me.
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 3106
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Rules with interesting dynamics

Postby gmc_nxtman » January 20th, 2018, 5:34 pm

B2-ai3cj4i5678/S125678 and some nearby rules are very difficult to predict, forming large yet temporary structures with 100% density, and meandering over the place. Small patterns sometimes wander all over the place before growing.
x = 3, y = 4, rule = B2-ai3cj4i5678/S125678
2bo$obo$2bo$2o!


EDIT: Nearby rule has a fascinating p124 oscillator:

x = 3, y = 5, rule = B2-ai3cj4i5678/S124j5678
o$b2o$b2o$b2o$o!


EDIT2: Very odd fluctuating diamond:

x = 16, y = 4, rule = B2c3aijn45aiy6acn78/S3inq4aiqr5aiy6acn78
16o$16o$16o$15o!
User avatar
gmc_nxtman
 
Posts: 1147
Joined: May 26th, 2015, 7:20 pm

Re: Rules with interesting dynamics

Postby KittyTac » January 21st, 2018, 7:35 am

B2-cn/S1e2e3e4e5e6e7e8

Lost of fascinating waves. Also spaceships with tagalongs.

x = 74, y = 32, rule = B2-cn/S1e2e3e4e5e6e7e8
6$44b5o$49b2o$51b3o$54b2o$56bo$57bo$31b15o12bo$31bo14bo11bo$31b2o13bo
11bo$33b2o10bo11b2o$6bo28b2o7bo10b2o$7bo29b2o2b3o6b5o$8b2o28b12o$10b2o
22b4o$12b4o13b5o$16b13o!


The triangles on the wave on the bottom-left appear to travel superluminously for some reason. Optical illusion?

On a related note, B2aei/S1e2e3e4e5e6e7e8:

x = 11, y = 9, rule = B2aei/S1e2e3e4e5e6e7e8
7o$7bo$7bo$7b2o$8b3o$4b7o$4bo3bo$4bob2o$4b3o!


Large swathes of still lives and oscillators.

A backrake!

x = 9, y = 7, rule = B2aei/S1e2e3e4e5e6e7e8
$6bo$7bo$b3ob3o$b3o!
User avatar
KittyTac
 
Posts: 533
Joined: December 21st, 2017, 9:58 am

Re: Rules with interesting dynamics

Postby gmc_nxtman » January 21st, 2018, 3:19 pm

This rule doesn't work very well with small starting configurations, but it has the capability to stabilize with very large final populations and lacks linear growth. Case in point, a pattern that stabilizes with 983,823,576 cells:

x = 48, y = 48, rule = B2c3an4a5ai6a78/S3i4a5ai6ac78
11ob5ob7ob21o$b14ob3ob28o$2ob10ob5ob28o$18ob29o$20ob27o$b20ob25o$48o$
19ob28o$48o$48o$48o$48o$48o$48o$48o$45o2bo$ob44obo$2ob45o$46obo$48o$
48o$48o$48o$48o$47o$45ob2o$ob46o$48o$47o$48o$48o$48o$12ob35o$48o$b2obo
b7o2b33o$5ob42o$ob10ob35o$2ob10ob30ob2o$2ob45o$b10ob34obo$48o$10ob37o$
5ob3ob38o$7ob40o$9ob38o$12ob17ob17o$4ob3o2b19ob14ob3o$14ob33o!
User avatar
gmc_nxtman
 
Posts: 1147
Joined: May 26th, 2015, 7:20 pm

Re: Rules with interesting dynamics

Postby Rhombic » January 21st, 2018, 7:36 pm

x = 11, y = 7, rule = B2ae4i/S1e2n
7ob3o2$7ob3o2$7ob3o2$7ob3o!
x = 75, y = 22, rule = B2ae4i/S1e2n
2$14bo$13bo9bo7bo7bo7bo7bo4bo$13bo2bo7bo7bo7bo7bo7bo4bo$8bo7bo7bo7bo7b
o7bo7bo$7bo4bo10bo7bo7bo7bo7bo$7bo3bo$8bo2bo$12bo$5bo$4bo$4bo21bo$5bo
19bo$25bo$18bo7bo$17bo$17bo$18bo!
Includes crystal growth:
x = 8, y = 8, rule = B2ae4i/S1e2n
2bobobo$o2b4o$2obo$3b5o$2bo$2o2bo$2o2b2o$o2b3o!

Oblique crawler!!!!!!!
x = 285, y = 310, rule = B2ae4i/S1e2n
7bo7bo9bo29bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo39bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo31bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo$2bo7bo7bo31bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo29bo9bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo$o7bo7bo29bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo21bo9bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
$2bo7bo7bo7bo4bo16bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo8bo22bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$
o7bo7bo7bo31bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo39bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo39b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo$7bo7bo7bo7bo21bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo21bo9bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo$3bo7bo7bo7bo31bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo23bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo$7bo7bo7bo9bo29bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo39bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo
7bo31bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo31bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo29bo9bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo$o7bo7bo7bo29bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo21bo9bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo$2bo7bo7bo7bo7bo4bo16bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo8bo22bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo$o7bo7bo7bo7bo31bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo39bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7b
o7bo7bo39bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo21bo9bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7b
o21bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo31bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo23b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo$7bo7bo7bo7bo9bo29bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo39bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo
7bo7bo7bo7bo31bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo31bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7b
o29bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo$o7bo7bo7bo7bo29bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo21bo9b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo$2bo7bo7bo7bo7bo7bo4bo16bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo8bo22bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo$o7bo7bo7bo7bo7bo31bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo39bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2b
o7bo7bo7bo7bo39bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo21bo9bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7b
o7bo7bo21bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo31bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo
7bo23bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo9bo29bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo39bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$
3bo7bo7bo7bo7bo7bo31bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo31bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7b
o7bo7bo29bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo29bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo
21bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo4bo16bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo8b
o22bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo$o7bo7bo7bo7bo7bo7bo31bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo39bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2b
o7bo7bo7bo7bo7bo39bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo21bo9bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7b
o7bo7bo7bo21bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo31bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo
7bo7bo23bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo9bo29bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo39bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$
3bo7bo7bo7bo7bo7bo7bo31bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo31bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7b
o7bo7bo7bo29bo9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo29bo9bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo
7bobo29bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo3bo27bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo
13bo17bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo11bo19bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo
23bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7b2o14bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo
7bo4bo2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo3bo3bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7b
o7bo7bo7bo7bo7bobo2bo3bo3bo10bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo10bobo5bobo
10bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo$7bo7bo7bo7bo7bo7bo7bo17bo13bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo17bo13bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo$3bo7bo7bo7bo7bo7bo7bo7bo17b3o11bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo13b3o
2b3o10bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo8bo2bo5bo5bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo
7bo7bo8bo2b2obobo6bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo11bobo9bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7b
o7bo7bo7bo7bo7bo7bo8bo3b2o9bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo12b2ob2o6bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$
o7bo7bo7bo7bo7bo7bo7bo7bo14b2o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$
2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$
2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$3bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$2bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo$7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo$o7bo7bo7bo7bo7bo7bo7bo7bo7bo7b
o7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo7bo
7bo7bo!
Appears naturally eventually:
x = 8, y = 8, rule = B2ae4i/S1e2n
2b4obo$2b2obobo$2obobo$3o$bobo2bo$o3b4o$3ob4o$5b2o!
SoL : FreeElectronics : DeadlyEnemies : 6a-ite : Rule X3VI
what is “sesame oil”?
User avatar
Rhombic
 
Posts: 1056
Joined: June 1st, 2013, 5:41 pm

Re: Rules with interesting dynamics

Postby vyznev » January 21st, 2018, 8:40 pm

KittyTac wrote:B2-cn/S1e2e3e4e5e6e7e8


Nice. It's got the definite B2 feel to it, but it's a lot less chaotic than Seeds or any other totalistic B2 rule that I can think of. Looks more like Brian's Brain or something similar, but with only two states.

KittyTac wrote:The triangles on the wave on the bottom-left appear to travel superluminously for some reason. Optical illusion?


I see what you mean. The apparent motion is indeed superluminal, with the pattern reappearing shifted 2 cells right and 4 down in 2 cycles. It's not causal, of course: if you perturb the pattern by toggling a cell on/off, the perturbation only spreads at 1c or slower.

Here's a simpler pattern that exhibits a similar effect:

x = 5, y = 5, rule = B2-cn/S1e2e3e4e5e6e7e8
o$o$bo$2bo$3b2o!


The waves behind the advancing diagonal again appear to move subluminally, although the effect is a bit less clear because they have an (apparent) period of 4. But what's actually happening is that they're just following the diagonal at lightspeed; if you delete a cell from one of the waves, the disturbance (in this particular case, creating a puffer) clearly moves behind the front wave:

x = 129, y = 129, rule = B2-cn/S1e2e3e4e5e6e7e8
64b2o$63bo2bo5$58b2o$57bo2bo5$52b2o$51bo2bo5$46b2o$45bo2bo5$40b2o$39bo
2bo5$34b2o$33bo2bo5$28b2o$27bo2bo5$22b2o$21bo2bo5$16b2o$15bo2bo5$10b2o
$9bo2bo5$4b2o6bobo11bo11bo27bobo$o24bo11bo$o3bobo5bobo51bobo58bo$bobob
obo3bobo114bo$2bobobobobo51bobo63bo$3bobo5bobo113bo$4bobo5bobo37bo9bob
o$5bobo5bobo37bo$6bobo3bobobo3bobobo96bo$7bobobobobo7bo98bo$8bobobobo
5bobo99bo$9bobo9bo99bo$10bobo$11bobo$12bobo3bo96bo$13bobobobo3bo7bo29b
o54bo$14bobobobobobo37bo53bo$15bobo5bobo89bo$16bobo5bobo$17bobo5bobo7b
o$18bobo3bobobo5bobo72bo$19bobobobobo7bo74bo$20bobobobo7bobo73bo$21bob
o9bobo73bo$22bobo$23bobo$24bobo3bo72bo$25bobobobo72bo$26bobobobobo69bo
$27bobo9bo63bo$28bobo7bo29bo$29bobo3bobo29bo$30bobo13bobo48bo$31bobobo
bo7bobobo48bo$32bobo5bo5bobo49bo$33bobo9bo51bo$34bobo3bo$35bobo3bo11bo
$36bobobobo48bo$37bobobo50bo$38bobo7bo43bo$39bobo5bobo41bo$40bobo3bobo
bo17bo$41bobo3bobobo15bo$42bobobobobobo7bo24bo$43bobobo3bobo5bo26bo$
44bobo5bo5bobo25bo$45bobo9bo27bo$46bobo3bo5bobo$47bobo3bo$48bobobobo
24bo$49bobobo26bo$50bobo7bo19bo$51bobo5bobo17bo$52bobo3bobobo3bobo$53b
obo3bobobobo$54bobobobobo3bobo4bo$55bobobo3bobo8bo$56bobo5bo9bo$57bobo
13bo$58bobo3bo$59bobo3bo$60bo3bobo$61bobobo2bo$62bobobobo$63bobo$64bo$
65bo$66b2o!
User avatar
vyznev
 
Posts: 27
Joined: April 23rd, 2016, 4:08 am

Re: Rules with interesting dynamics

Postby KittyTac » January 22nd, 2018, 12:13 am

Let's call it Dense Brain.
User avatar
KittyTac
 
Posts: 533
Joined: December 21st, 2017, 9:58 am

Re: Rules with interesting dynamics

Postby AforAmpere » January 22nd, 2018, 5:35 pm

Really weird explosion:
x = 128, y = 39, rule = B2ac3nq5ey/S01e4i
48bo$48bo$48bo$49bo$49bo$10b6o33bo$6b4o6b8o25bo$5bo18b6o19bo$4bo44bo$
3bo45bo$3bo44bo$2bo45bo$2bo45bo$bo45bo$bo45bo$bo45bo76bob2o$bo45bo78b
2o$o45bo79b2o$o45bo78bo$o45bo79b2o$o44bo80b2o$bo43bo78bob2o$bo43bo$2bo
41bo$3bo40bo$3bo40bo$4bo38bo$5bo37bo$6b2o34bo$8bo33bo$9bo31bo$10bo29bo
$11bo27bo$12b2o25bo$14b2o22bo$16b3o18bo$19b3o14bo$22b4o8b2o$26b8o!
I and wildmyron manage the 5S project, which collects all known spaceship speeds in Isotropic Non-totalistic rules.

Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule
- Finish a rule with ships with period >= f_e_0(n) (in progress)
AforAmpere
 
Posts: 1047
Joined: July 1st, 2016, 3:58 pm

PreviousNext

Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 5 guests