ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

For discussion of other cellular automata.

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby Hdjensofjfnen » July 22nd, 2018, 5:55 pm

I thought this quite interesting...
x = 7, y = 8, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
2b3o$3bo$b5o$bo3bo$2o3b2o$bo3bo$b5o$3bo!
Life is hard. Deal with it.
This is my new favorite spaceship:
x = 8, y = 4, rule = B3-ek/S023
bobo$2obo3bo$bobo$3bo!
User avatar
Hdjensofjfnen
 
Posts: 629
Joined: March 15th, 2016, 6:41 pm
Location: (394234, -234231)

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby Goldtiger997 » July 28th, 2018, 9:14 am

I've completed a salvo for the 3 leftmost reflectors:

x = 2221, y = 47, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
2140b2o58b2o8b2o$2141bo59bo9bo5bo$2140b2o58b2o8b2o3b5o$2180b2o33bo3bo$
2181bo8b2o22b2obob2o$2160b2o8b2o8b2o9bo23bo3bo$960b2o8b2o1178b2o9bo9bo
18b2o23b5o$961bo9bo28b2o1149bo8b2o8b2o45bo$960b2o8b2o29bo1148b2o$950b
2o48b2o38b2o8b2o$951bo89bo9bo1058b2o$950b2o88b2o8b2o1059bo$850b2o168b
2o8b2o1078b2o18b2o$851bo8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o38b2o28b2o
9bo9bo1099bo$850b2o9bo9bo9bo9bo9bo9bo9bo9bo9bo39bo29bo8b2o8b2o1048b2o
8b2o38b2o$810b2o8b2o38b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o38b2o28b2o
1069bo9bo$800b2o9bo9bo1258b2o8b2o$730b2o69bo8b2o8b2o8b2o8b2o1218b2o38b
2o$380b2o58b2o8b2o218b2o59bo68b2o29bo9bo788b2o58b2o8b2o359bo39bo$381bo
59bo9bo68b2o8b2o139bo58b2o48b2o48b2o8b2o789bo59bo9bo358b2o38b2o$380b2o
58b2o8b2o18b2o49bo9bo48b2o8b2o78b2o8b2o88b2o9bo848b2o58b2o8b2o368b2o$
420b2o38b2o9bo38b2o8b2o8b2o49bo9bo48b2o8b2o29bo38b2o18b2o29bo8b2o888b
2o38b2o359bo$421bo8b2o29bo8b2o39bo28b2o28b2o8b2o8b2o49bo9bo28b2o8b2o
29bo19bo28b2o899bo8b2o29bo8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o
8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b
2o8b2o8b2o8b2o8b2o8b2o18b2o$400b2o8b2o8b2o9bo28b2o18b2o28b2o29bo29bo
28b2o28b2o8b2o8b2o39bo28b2o18b2o8b2o8b2o888b2o8b2o8b2o9bo28b2o9bo9bo9b
o9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo
9bo9bo9bo9bo9bo9bo9bo9bo$390b2o9bo9bo18b2o49bo58b2o18b2o8b2o29bo29bo
28b2o28b2o8b2o8b2o39bo9bo408b2o8b2o458b2o9bo9bo18b2o38b2o8b2o8b2o8b2o
8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b
2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o$391bo8b2o8b2o68b2o
8b2o8b2o59bo38b2o18b2o8b2o29bo39bo9bo38b2o8b2o409bo9bo28b2o429bo8b2o8b
2o$390b2o99bo9bo48b2o8b2o59bo38b2o38b2o8b2o458b2o8b2o29bo428b2o$490b2o
8b2o49bo58b2o8b2o538b2o48b2o38b2o8b2o$550b2o59bo549bo89bo9bo338b2o$
610b2o548b2o88b2o8b2o138b2o8b2o189bo$320b2o48b2o688b2o168b2o8b2o98b2o
8b2o38b2o9bo9bo18b2o168b2o18b2o$321bo8b2o8b2o29bo689bo8b2o8b2o8b2o8b2o
8b2o8b2o8b2o8b2o8b2o38b2o28b2o9bo9bo88b2o9bo9bo18b2o8b2o9bo8b2o8b2o19b
o189bo$320b2o9bo9bo28b2o688b2o9bo9bo9bo9bo9bo9bo9bo9bo9bo39bo29bo8b2o
8b2o78b2o9bo8b2o8b2o19bo9bo8b2o28b2o8b2o188b2o$280b2o8b2o38b2o8b2o728b
2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o38b2o28b2o99bo8b2o28b2o8b2o8b2o39bo$
270b2o9bo9bo1008b2o8b2o8b2o39bo58b2o28b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o
8b2o8b2o8b2o8b2o8b2o8b2o8b2o$20b2o88b2o159bo8b2o8b2o8b2o8b2o968b2o19bo
9bo48b2o78b2o9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo$21bo89bo
128b2o28b2o29bo9bo958b2o9bo18b2o8b2o129bo8b2o8b2o8b2o8b2o8b2o8b2o8b2o
8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o$20b2o88b2o118b2o9bo58b2o8b2o38b2o919b
o8b2o8b2o148b2o$150b2o79bo8b2o8b2o99bo918b2o19bo$151bo8b2o68b2o19bo98b
2o938b2o$2o98b2o48b2o9bo48b2o38b2o$bo8b2o18b2o48b2o19bo18b2o8b2o28b2o
8b2o39bo$2o9bo19bo49bo18b2o19bo9bo39bo8b2o28b2o8b2o$10b2o18b2o48b2o8b
2o28b2o8b2o38b2o9bo8b2o8b2o19bo$40b2o8b2o8b2o8b2o19bo88b2o9bo9bo18b2o$
41bo9bo9bo9bo18b2o98b2o8b2o$40b2o8b2o8b2o8b2o! [[ THEME 7 STEP 8 PAUSE 1 ZOOM 3 X 1100 ]]


There are a few useful reactions in there. I'm thinking though, that in the future these very long salvos should be posted as several steps, akin to how glider syntheses are often shown in CGoL.

That's a fair portion of the work done now, so I think I can probably make some "crackpot" estimates, like dvgrn does. The pattern I posted contains 214 Gs. Each G has to come around a bend via a snowflake, which needs to be pushed or pulled into the right position first. I'm guessing that on average 9 Gs will be needed to put the snowflake in the right place. 214*9 = 1926. But also each one of those Gs has to be converted from several more Gs via the circuitry. Always one of 18, 21, or 24 Gs are needed for every G in the salvo, so an average of 21 Gs. 1926*21 = 40446. So an estimated 40000 Gs being stored in the two streams will be needed for just the pattern I posted.

However, I'd estimate that I've only completed about 2 ninths of the entire construction salvo. This suggests that a puffer orthogonoid would have something like 180000 Gs in its storage! Adding on the self destruction Gs, I'd guess that there would be 240000 Gs in the storage of the completed orthogonoid.

But I'm probably wrong :) .
Last edited by Goldtiger997 on July 31st, 2018, 5:50 am, edited 1 time in total.
Things to work on:
  • Work on the snowflakes orthogonoid
User avatar
Goldtiger997
 
Posts: 459
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby danny » July 28th, 2018, 9:38 am

Wonderful work! I may have something done later but I am very tired from summer camp and haven't had access to a computer with Golly for the past week. (I also may not have my computer working, it shut down weirdly last time.)
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 724
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby Goldtiger997 » July 29th, 2018, 7:46 am

Thanks! Here's my attempt at a salvo-to-position-list python script:

#salvo-rle-to-position-list
#Requires an input file "in.txt" and an output file "out.txt"
#The rle in in.txt must have the first line and any newlines removed
with open("in.txt","r") as infile:
    rle = "9$" + infile.read()

position_list = []
i = 0
while i < len(rle):
    if rle[i] == "9" and rle[i+1] == "$":
        position = ""
        while rle[i+2] != "b":
            position += rle[i+2]
            i += 1
        if position == "":
            position = "1";
        position_list.append(int(position.replace("o","0")))
        i += 6
    i += 1

with open("out.txt","w") as outfile:
    outfile.write(str(position_list))


The script actually runs outside of golly, as I realized that the positions of the Gs could be found from just looking at the rle. It reads from a text file "in.txt", which should contain the rle of the salvo pointing south, but with the first line and all newlines removed. It writes to "out.txt".

For example inputting the salvo from my previous post returns this list:

[40, 41, 35, 41, 44, 44, 44, 44, 41, 43, 40, 35, 41, 41, 38, 39, 41, 42, 43, 43, 40, 42, 37, 36, 38, 34, 33, 33, 35, 35, 30, 31, 31, 37, 30, 18, 24, 23, 23, 21, 22, 18, 18, 21, 20, 23, 25, 25, 21, 19, 19, 22, 26, 24, 22, 20, 20, 23, 27, 25, 23, 21, 21, 24, 18, 20, 22, 24, 24, 21, 17, 21, 23, 23, 20, 19, 16, 15, 15, 17, 17, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 9, 6, 6, 13, 7, 13, 12, 12, 9, 9, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 27, 24, 24, 31, 25, 31, 30, 30, 27, 27, 36, 35, 37, 34, 34, 32, 31, 30, 30, 33, 31, 31, 30, 29, 29, 32, 30, 35, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 28, 30, 18, 24, 23, 23, 21, 22, 18, 18, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 17, 20, 14, 14, 17, 10, 12, 0, 6, 5, 5, 3, 4, 0, 0]


The next thing that needs to be done in terms of scripting is working out how to make a script that converts a list like the one above into a salvo that turns 90 degrees through the pushing and pulling of a snowflake into the correct positions. The script would need to know the most efficient ways of pushing and pulling a snowflake a particular distance. However, note that to increase efficiency the pushes and pulls do not actually have to maintain the vertical position.
Things to work on:
  • Work on the snowflakes orthogonoid
User avatar
Goldtiger997
 
Posts: 459
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby Goldtiger997 » July 31st, 2018, 6:09 am

Yay, I made a script to convert a salvo round a 90 degree bend!:

# salvo-bender.py
# Goldtiger997, July 2018

import golly as g

# Input this list from salvo-rle-to-position-list.py
salvo = [40, 41, 35, 41, 44, 44, 44, 44, 41, 43, 40, 35, 41, 41, 38, 39, 41, 42, 43, 43, 40, 42, 37, 36, 38, 34, 33, 33, 35, 35, 30, 31, 31, 37, 30, 18, 24, 23, 23, 21, 22, 18, 18, 21, 20, 23, 25, 25, 21, 19, 19, 22, 26, 24, 22, 20, 20, 23, 27, 25, 23, 21, 21, 24, 18, 20, 22, 24, 24, 21, 17, 21, 23, 23, 20, 19, 16, 15, 15, 17, 17, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 9, 6, 6, 13, 7, 13, 12, 12, 9, 9, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 27, 24, 24, 31, 25, 31, 30, 30, 27, 27, 36, 35, 37, 34, 34, 32, 31, 30, 30, 33, 31, 31, 30, 29, 29, 32, 30, 35, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 28, 30, 18, 24, 23, 23, 21, 22, 18, 18, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 17, 20, 14, 14, 17, 10, 12, 0, 6, 5, 5, 3, 4, 0, 0]

x = 0
y = 0

fire = [g.parse("11$2o$bo$2o!"), "No", 1, 1]
push1 = [g.parse("2$20b2o8b2o$2o19bo9bo$bo18b2o8b2o$2o3$10b2o$11bo$10b2o!"), g.parse("2$10b2o$11bo$10b2o3$2o$bo18b2o8b2o$2o19bo9bo$20b2o8b2o!"), 4, 0]
push2 = [g.parse("2$2o8b2o18b2o8b2o$bo9bo19bo9bo$2o8b2o18b2o8b2o2$20b2o$21bo$20b2o!"), g.parse("4$20b2o$21bo$20b2o2$2o8b2o18b2o8b2o$bo9bo19bo9bo$2o8b2o18b2o8b2o!"), 5, 0]
push3 = [g.parse("5$2o$bo$2o!"), g.parse("5$2o$bo$2o!"), 1, 0]
push4 = [g.parse("4$2o$bo$2o!"), g.parse("6$2o$bo$2o!"), 1, 1]
pull1 = [g.parse("10b2o8b2o8b2o$2o9bo9bo9bo$bo8b2o8b2o8b2o38b2o$2o69bo$70b2o$40b2o$41bo$40b2o$50b2o8b2o$51bo9bo$50b2o8b2o!"), g.parse("2$50b2o8b2o$51bo9bo$50b2o8b2o$40b2o$41bo$40b2o$70b2o$2o69bo$bo8b2o8b2o8b2o38b2o$2o9bo9bo9bo$10b2o8b2o8b2o!"), 8, 4]
pull2 = [g.parse("10b2o8b2o$2o9bo9bo$bo8b2o8b2o38b2o$2o59bo$60b2o$30b2o$31bo$30b2o$40b2o8b2o$41bo9bo$40b2o8b2o!"), g.parse("2$40b2o8b2o$41bo9bo$40b2o8b2o$30b2o$31bo$30b2o$60b2o$2o59bo$bo8b2o8b2o38b2o$2o9bo9bo$10b2o8b2o!"), 7, 4]
pull3 = [g.parse("10b2o$2o9bo$bo8b2o38b2o$2o49bo$50b2o$20b2o$21bo$20b2o$30b2o8b2o$31bo9bo$30b2o8b2o!"), g.parse("2$30b2o8b2o$31bo9bo$30b2o8b2o$20b2o$21bo$20b2o$50b2o$2o49bo$bo8b2o38b2o$2o9bo$10b2o!"), 6, 4]
pull4 = [g.parse("$2o$bo38b2o$2o39bo$40b2o$10b2o$11bo$10b2o$20b2o8b2o$21bo9bo$20b2o8b2o!"), g.parse("2$20b2o8b2o$21bo9bo$20b2o8b2o$10b2o$11bo$10b2o$40b2o$2o39bo$bo38b2o$2o!"), 5, 4]
pull5 = [g.parse("10b2o$11bo$10b2o28b2o8b2o$41bo9bo$2o28b2o8b2o8b2o$bo29bo$2o28b2o2$20b2o$21bo$20b2o!"), g.parse("2$20b2o$21bo$20b2o2$2o28b2o$bo29bo$2o28b2o8b2o8b2o$41bo9bo$10b2o28b2o8b2o$11bo$10b2o!"), 6, 1]
#format is [rle that pushes up, rle that pushes down, number of Gs invloved, upward push distance]
pushes = [push1, push2, push3, push4]
pulls = [pull1, pull2, pull3, pull4, pull5]

def getPullSequence(n):
    seq = []
    if n in range(1,5):
        seq = [n]
    elif n in range(6,9):
        seq = [4, n-4]
    else:
        fours = (0-n)%5
        for i in range(0,fours):
            seq.append(4)
        for i in range(0,(n - 4 * fours)/5):
            seq.append(5)
    return seq

def getPushSequence(n):
    if n == 1:
        seq = [1]
    else:
        seq = [2]
   for i in range(1,n):
      seq.append(3)
   seq.append(4)
    return seq

def placeGs(value):
   global x
   global y
   if value == "fire":
      sequence = [1]
      p = [fire]
   elif value > 0:
      sequence = getPullSequence(value)
      p = pulls
   elif value < 0:
      sequence = getPushSequence(0-value)
      p = pushes
   else:
      sequence = [];
      p = []
   for item in sequence:
      if y > -4 or len(p) == 1:
         direction = 0
      else:
         direction = 1
      x -= p[item-1][2]*10
      g.putcells(p[item-1][direction], x, y, 1, 0, 0, 1, "or")
      y += (p[item-1][3]) * (2*direction - 1)

i = len(salvo) - 1
while i > 0:
   placeGs("fire")
   x -= 10
   placeGs(salvo[i] - salvo[i-1])
   i -= 1
placeGs("f")

g.putcells(g.parse("$3bo$b5o$bo3bo$2obob2o$bo3bo$b5o$3bo!"), 0, 2, 1, 0, 0, 1, "or")


To use it you first need to run salvo-rle-to-position-list.py (my previous script) to generate the position list for the salvo you want to convert. Paste the result into the "salvo" variable. Run it in Golly, and hopefully it works!

Using the list from my above post gave this output very quickly (but I has to add the target snowflake in the south):

x = 13700, y = 140, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
9190b2o8b2o$9191bo9bo418b2o8b2o1958b2o8b2o$9040b2o8b2o138b2o8b2o88b2o
168b2o159bo9bo318b2o8b2o148b2o1479bo9bo$8710b2o8b2o319bo9bo48b2o78b2o
68b2o8b2o29bo108b2o59bo58b2o98b2o8b2o78b2o78b2o159bo9bo149bo68b2o1408b
2o8b2o$8711bo9bo48b2o268b2o8b2o49bo79bo58b2o9bo9bo28b2o78b2o29bo58b2o
59bo88b2o68b2o29bo79bo58b2o98b2o8b2o78b2o68b2o69bo1308b2o8b2o78b2o$
8710b2o8b2o49bo258b2o68b2o78b2o59bo8b2o8b2o98b2o9bo28b2o118b2o89bo58b
2o9bo28b2o78b2o59bo88b2o68b2o29bo138b2o1309bo9bo79bo$8700b2o68b2o208b
2o49bo178b2o28b2o28b2o8b2o18b2o8b2o49bo8b2o238b2o59bo8b2o168b2o89bo58b
2o9bo28b2o48b2o28b2o1158b2o8b2o198b2o8b2o78b2o$8660b2o8b2o29bo188b2o
89bo48b2o118b2o59bo59bo9bo19bo9bo48b2o18b2o8b2o18b2o8b2o28b2o188b2o28b
2o18b2o8b2o18b2o8b2o208b2o59bo8b2o79bo29bo888b2o8b2o259bo9bo188b2o128b
2o$7920b2o8b2o729bo9bo28b2o148b2o8b2o29bo88b2o78b2o28b2o59bo8b2o8b2o
38b2o58b2o8b2o18b2o8b2o69bo9bo19bo9bo29bo18b2o8b2o28b2o78b2o49bo49bo9b
o19bo9bo48b2o188b2o28b2o18b2o8b2o18b2o8b2o28b2o28b2o8b2o8b2o28b2o839bo
9bo48b2o208b2o8b2o98b2o89bo58b2o69bo$7921bo9bo728b2o8b2o58b2o28b2o78b
2o9bo9bo28b2o128b2o39bo29bo18b2o8b2o28b2o9bo9bo208b2o8b2o18b2o8b2o28b
2o19bo9bo29bo18b2o8b2o49bo8b2o38b2o48b2o8b2o18b2o8b2o49bo18b2o8b2o28b
2o78b2o49bo49bo9bo19bo9bo69bo9bo29bo18b2o8b2o808b2o8b2o49bo198b2o68b2o
8b2o8b2o29bo88b2o59bo8b2o8b2o8b2o38b2o$7920b2o8b2o508b2o8b2o198b2o38b
2o39bo29bo18b2o8b2o49bo8b2o8b2o98b2o28b2o29bo38b2o28b2o19bo9bo38b2o8b
2o58b2o98b2o138b2o8b2o28b2o19bo9bo48b2o9bo178b2o19bo9bo29bo18b2o8b2o
49bo8b2o38b2o48b2o8b2o18b2o8b2o38b2o28b2o8b2o28b2o19bo9bo798b2o68b2o
199bo58b2o9bo9bo9bo28b2o118b2o28b2o9bo9bo9bo$7820b2o8b2o78b2o529bo9bo
199bo39bo38b2o28b2o19bo9bo48b2o28b2o8b2o18b2o8b2o49bo29bo28b2o88b2o8b
2o109bo99bo18b2o88b2o88b2o8b2o58b2o58b2o88b2o48b2o8b2o28b2o19bo9bo48b
2o9bo169bo88b2o8b2o758b2o8b2o29bo178b2o88b2o59bo8b2o8b2o8b2o98b2o49bo
38b2o8b2o8b2o58b2o$7821bo9bo79bo528b2o8b2o118b2o78b2o38b2o88b2o8b2o79b
o9bo19bo9bo48b2o28b2o8b2o8b2o68b2o148b2o98b2o19bo89bo58b2o159bo89bo18b
2o88b2o8b2o58b2o58b2o88b2o18b2o58b2o799bo9bo28b2o148b2o29bo118b2o28b2o
38b2o8b2o18b2o8b2o49bo8b2o38b2o119bo18b2o$7820b2o8b2o78b2o518b2o68b2o
8b2o8b2o8b2o8b2o29bo108b2o68b2o118b2o8b2o18b2o8b2o89bo9bo69bo58b2o208b
2o88b2o59bo58b2o98b2o88b2o19bo58b2o159bo89bo79bo58b2o738b2o8b2o58b2o
28b2o78b2o9bo28b2o48b2o69bo69bo9bo19bo9bo48b2o9bo158b2o19bo18b2o$7810b
2o128b2o448b2o8b2o29bo58b2o9bo9bo9bo9bo9bo28b2o48b2o59bo69bo58b2o158b
2o28b2o8b2o68b2o59bo358b2o59bo18b2o188b2o59bo58b2o98b2o88b2o78b2o59bo
18b2o438b2o8b2o258b2o38b2o39bo29bo18b2o8b2o49bo8b2o79bo8b2o8b2o8b2o38b
2o68b2o8b2o18b2o8b2o58b2o58b2o118b2o19bo18b2o$7770b2o8b2o29bo58b2o69bo
449bo9bo28b2o59bo8b2o8b2o8b2o8b2o8b2o79bo8b2o8b2o38b2o68b2o59bo18b2o
98b2o39bo168b2o418b2o19bo248b2o59bo18b2o308b2o19bo18b2o419bo9bo259bo
39bo38b2o28b2o19bo9bo48b2o18b2o8b2o18b2o8b2o28b2o9bo9bo9bo269bo138b2o
19bo18b2o$7771bo9bo28b2o59bo8b2o8b2o8b2o38b2o448b2o8b2o58b2o28b2o58b2o
8b2o18b2o8b2o28b2o9bo9bo168b2o19bo99bo18b2o18b2o608b2o308b2o19bo328b2o
19bo18b2o398b2o8b2o178b2o78b2o38b2o88b2o8b2o69bo9bo19bo9bo38b2o8b2o8b
2o58b2o108b2o98b2o158b2o19bo18b2o$7770b2o8b2o58b2o28b2o9bo9bo9bo478b2o
38b2o39bo89bo9bo19bo9bo38b2o8b2o188b2o98b2o19bo958b2o348b2o19bo18b2o
368b2o68b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o29bo108b2o68b2o108b
2o8b2o18b2o8b2o119bo109bo18b2o258b2o19bo18b2o$7760b2o38b2o39bo38b2o8b
2o8b2o58b2o228b2o98b2o89bo39bo38b2o88b2o8b2o18b2o8b2o358b2o1328b2o19bo
18b2o349bo58b2o9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo28b2o48b2o59bo69bo58b
2o208b2o108b2o19bo278b2o19bo18b2o$7720b2o8b2o29bo39bo38b2o119bo18b2o
158b2o8b2o8b2o29bo58b2o8b2o29bo88b2o38b2o1878b2o19bo18b2o248b2o78b2o
59bo8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o79bo8b2o8b2o38b2o68b2o
59bo18b2o88b2o228b2o298b2o19bo18b2o$7721bo9bo28b2o38b2o158b2o19bo18b2o
128b2o9bo9bo9bo28b2o48b2o9bo9bo28b2o118b2o68b2o128b2o1708b2o19bo18b2o
158b2o8b2o8b2o8b2o8b2o29bo108b2o28b2o118b2o8b2o18b2o8b2o28b2o9bo9bo
168b2o19bo89bo548b2o19bo18b2o$6550b2o8b2o1158b2o8b2o58b2o68b2o118b2o
19bo18b2o109bo8b2o8b2o8b2o79bo8b2o8b2o98b2o49bo69bo129bo1728b2o19bo18b
2o128b2o9bo9bo9bo9bo9bo28b2o48b2o59bo149bo9bo19bo9bo38b2o8b2o188b2o88b
2o568b2o19bo18b2o$5860b2o8b2o679bo9bo1148b2o38b2o39bo69bo138b2o19bo18b
2o88b2o38b2o8b2o18b2o8b2o28b2o28b2o8b2o18b2o8b2o49bo8b2o38b2o68b2o128b
2o1748b2o19bo18b2o109bo8b2o8b2o8b2o8b2o8b2o79bo8b2o8b2o38b2o148b2o8b2o
18b2o8b2o918b2o19bo18b2o$5861bo9bo438b2o8b2o228b2o8b2o1108b2o8b2o29bo
39bo38b2o68b2o158b2o19bo18b2o109bo9bo19bo9bo59bo9bo19bo9bo48b2o9bo
2008b2o19bo18b2o88b2o58b2o8b2o18b2o8b2o28b2o9bo9bo1168b2o19bo18b2o$
5860b2o8b2o168b2o269bo9bo218b2o798b2o8b2o319bo9bo28b2o38b2o288b2o19bo
18b2o88b2o8b2o18b2o8b2o58b2o8b2o18b2o8b2o58b2o2028b2o19bo18b2o129bo9bo
19bo9bo38b2o8b2o58b2o188b2o938b2o19bo18b2o$5770b2o8b2o68b2o128b2o59bo
158b2o108b2o8b2o219bo799bo9bo48b2o268b2o8b2o58b2o318b2o19bo18b2o2318b
2o19bo18b2o108b2o8b2o18b2o8b2o109bo189bo958b2o19bo18b2o$5771bo9bo69bo
88b2o8b2o29bo58b2o98b2o59bo98b2o148b2o88b2o798b2o8b2o49bo258b2o38b2o
39bo338b2o19bo18b2o108b2o98b2o2108b2o19bo18b2o238b2o188b2o978b2o19bo
18b2o$5470b2o8b2o288b2o8b2o68b2o78b2o9bo9bo28b2o118b2o8b2o29bo58b2o99b
o88b2o8b2o8b2o8b2o29bo118b2o758b2o68b2o208b2o49bo39bo38b2o358b2o19bo
109bo99bo18b2o2108b2o19bo18b2o128b2o1278b2o19bo18b2o$5471bo9bo278b2o
118b2o49bo8b2o8b2o138b2o9bo9bo28b2o158b2o78b2o9bo9bo9bo9bo28b2o48b2o
69bo718b2o8b2o29bo188b2o89bo48b2o38b2o418b2o108b2o98b2o19bo2128b2o19bo
129bo1298b2o19bo18b2o$5470b2o8b2o279bo58b2o59bo48b2o28b2o8b2o18b2o8b2o
28b2o59bo8b2o8b2o218b2o49bo8b2o8b2o8b2o8b2o79bo8b2o8b2o8b2o38b2o719bo
9bo28b2o148b2o8b2o29bo88b2o78b2o658b2o2148b2o128b2o1318b2o19bo18b2o$
2290b2o8b2o388b2o8b2o938b2o8b2o1728b2o8b2o68b2o128b2o108b2o58b2o59bo8b
2o8b2o38b2o79bo9bo19bo9bo29bo18b2o8b2o28b2o28b2o8b2o18b2o8b2o28b2o78b
2o59bo48b2o48b2o8b2o18b2o8b2o28b2o9bo9bo9bo758b2o8b2o58b2o28b2o78b2o9b
o9bo28b2o128b2o39bo4278b2o19bo18b2o$410b2o8b2o908b2o8b2o668b2o8b2o269b
o9bo389bo9bo458b2o8b2o469bo9bo48b2o558b2o8b2o1109bo9bo69bo88b2o8b2o29b
o58b2o8b2o8b2o29bo88b2o28b2o9bo9bo118b2o8b2o18b2o8b2o28b2o19bo9bo59bo
9bo19bo9bo29bo18b2o8b2o49bo8b2o8b2o38b2o99bo9bo19bo9bo38b2o8b2o8b2o58b
2o228b2o98b2o148b2o8b2o198b2o38b2o39bo29bo18b2o8b2o49bo8b2o8b2o98b2o
28b2o29bo38b2o4298b2o19bo18b2o$411bo9bo909bo9bo669bo9bo158b2o108b2o8b
2o388b2o8b2o128b2o188b2o139bo9bo48b2o208b2o8b2o198b2o8b2o49bo559bo9bo
1108b2o8b2o68b2o78b2o9bo9bo28b2o48b2o9bo9bo9bo28b2o48b2o39bo38b2o8b2o
58b2o148b2o8b2o58b2o8b2o18b2o8b2o28b2o19bo9bo48b2o9bo9bo138b2o8b2o18b
2o8b2o119bo18b2o158b2o8b2o8b2o29bo58b2o8b2o29bo149bo9bo199bo39bo38b2o
28b2o19bo9bo48b2o28b2o8b2o18b2o8b2o49bo29bo28b2o4358b2o19bo18b2o858b2o
8b2o$60b2o8b2o338b2o8b2o238b2o8b2o658b2o8b2o188b2o8b2o198b2o8b2o258b2o
8b2o98b2o59bo98b2o148b2o248b2o68b2o8b2o8b2o8b2o8b2o8b2o29bo58b2o8b2o8b
2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o29bo58b2o8b2o68b2o8b2o49bo209bo9bo
188b2o68b2o168b2o8b2o378b2o8b2o78b2o88b2o88b2o758b2o8b2o68b2o118b2o49b
o8b2o8b2o79bo8b2o8b2o8b2o79bo38b2o109bo18b2o98b2o188b2o8b2o58b2o8b2o
58b2o238b2o19bo18b2o128b2o9bo9bo9bo28b2o48b2o9bo9bo28b2o78b2o68b2o8b2o
118b2o78b2o38b2o88b2o8b2o79bo9bo19bo9bo48b2o28b2o8b2o8b2o4388b2o19bo
18b2o378b2o8b2o218b2o8b2o219bo9bo318b2o8b2o$61bo9bo258b2o8b2o58b2o259b
o9bo348b2o8b2o208b2o8b2o68b2o68b2o8b2o8b2o119bo9bo199bo9bo168b2o78b2o
68b2o8b2o8b2o29bo58b2o99bo88b2o8b2o8b2o8b2o29bo58b2o8b2o8b2o128b2o8b2o
29bo58b2o9bo9bo9bo9bo9bo9bo28b2o48b2o9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo
28b2o48b2o9bo9bo58b2o68b2o208b2o8b2o98b2o89bo128b2o109bo9bo308b2o8b2o
48b2o68b2o29bo58b2o29bo58b2o29bo168b2o8b2o358b2o8b2o209bo9bo69bo58b2o
59bo48b2o28b2o8b2o18b2o8b2o28b2o38b2o8b2o18b2o8b2o28b2o148b2o19bo99bo
58b2o98b2o169bo18b2o118b2o118b2o19bo18b2o109bo8b2o8b2o8b2o79bo8b2o8b2o
98b2o9bo58b2o68b2o8b2o8b2o8b2o8b2o29bo108b2o68b2o118b2o8b2o18b2o8b2o
89bo9bo4408b2o19bo18b2o359bo9bo219bo9bo218b2o8b2o178b2o139bo9bo48b2o
208b2o8b2o$60b2o8b2o118b2o139bo9bo59bo258b2o8b2o88b2o118b2o139bo9bo
209bo9bo69bo58b2o9bo9bo9bo118b2o8b2o198b2o8b2o108b2o59bo79bo58b2o9bo9b
o9bo28b2o158b2o78b2o9bo9bo9bo9bo28b2o48b2o9bo9bo9bo129bo9bo28b2o59bo8b
2o8b2o8b2o8b2o8b2o8b2o79bo8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o
79bo8b2o8b2o38b2o19bo158b2o8b2o18b2o8b2o68b2o68b2o8b2o8b2o29bo88b2o
118b2o9bo108b2o8b2o309bo9bo49bo58b2o9bo28b2o48b2o9bo28b2o48b2o9bo28b2o
78b2o89bo9bo359bo9bo208b2o8b2o68b2o59bo8b2o8b2o38b2o79bo9bo19bo9bo69bo
9bo19bo9bo88b2o108b2o98b2o59bo99bo58b2o108b2o19bo119bo138b2o19bo18b2o
88b2o38b2o8b2o18b2o8b2o28b2o28b2o8b2o18b2o8b2o49bo8b2o38b2o19bo58b2o9b
o9bo9bo9bo9bo28b2o48b2o59bo69bo58b2o158b2o28b2o8b2o4428b2o19bo18b2o
338b2o8b2o98b2o8b2o18b2o8b2o78b2o8b2o108b2o8b2o18b2o8b2o58b2o68b2o8b2o
8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o29bo58b2o8b2o68b2o8b2o49bo209bo9bo
$50b2o68b2o8b2o8b2o8b2o8b2o29bo58b2o8b2o68b2o8b2o58b2o148b2o8b2o18b2o
8b2o58b2o68b2o8b2o29bo58b2o8b2o8b2o8b2o29bo58b2o8b2o68b2o8b2o208b2o8b
2o68b2o59bo8b2o8b2o8b2o38b2o68b2o108b2o8b2o18b2o8b2o58b2o68b2o8b2o8b2o
8b2o29bo58b2o78b2o59bo8b2o8b2o8b2o218b2o49bo8b2o8b2o8b2o8b2o79bo8b2o8b
2o8b2o38b2o88b2o8b2o58b2o28b2o68b2o8b2o18b2o8b2o28b2o118b2o8b2o18b2o8b
2o28b2o59bo18b2o159bo9bo19bo9bo69bo58b2o9bo9bo9bo28b2o118b2o28b2o59bo
8b2o38b2o58b2o138b2o68b2o8b2o18b2o8b2o78b2o8b2o48b2o59bo8b2o79bo8b2o
79bo8b2o98b2o9bo88b2o8b2o78b2o88b2o68b2o8b2o18b2o8b2o78b2o8b2o98b2o8b
2o18b2o8b2o58b2o118b2o28b2o9bo9bo118b2o8b2o18b2o8b2o68b2o8b2o18b2o8b2o
89bo268b2o98b2o59bo18b2o108b2o118b2o158b2o19bo18b2o109bo9bo19bo9bo59bo
9bo19bo9bo48b2o49bo18b2o59bo8b2o8b2o8b2o8b2o8b2o79bo8b2o8b2o38b2o68b2o
59bo18b2o98b2o39bo4488b2o19bo18b2o218b2o8b2o18b2o8b2o48b2o119bo9bo19bo
9bo68b2o129bo9bo19bo9bo59bo58b2o9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo28b2o
48b2o9bo9bo58b2o68b2o208b2o8b2o78b2o8b2o18b2o8b2o$51bo58b2o9bo9bo9bo9b
o9bo28b2o48b2o9bo9bo58b2o108b2o119bo9bo19bo9bo59bo58b2o9bo9bo28b2o48b
2o9bo9bo9bo9bo28b2o48b2o9bo9bo58b2o108b2o8b2o18b2o8b2o68b2o118b2o28b2o
69bo69bo109bo9bo19bo9bo59bo58b2o9bo9bo9bo9bo28b2o168b2o28b2o38b2o8b2o
18b2o8b2o28b2o78b2o59bo48b2o48b2o8b2o18b2o8b2o28b2o69bo78b2o38b2o39bo
99bo9bo19bo9bo149bo9bo19bo9bo88b2o48b2o28b2o78b2o18b2o8b2o18b2o8b2o68b
2o59bo8b2o8b2o8b2o98b2o49bo29bo18b2o8b2o28b2o49bo59bo88b2o8b2o8b2o29bo
69bo9bo19bo9bo68b2o98b2o28b2o18b2o8b2o18b2o8b2o28b2o18b2o8b2o18b2o8b2o
28b2o18b2o8b2o18b2o8b2o49bo8b2o38b2o38b2o68b2o29bo58b2o29bo69bo9bo19bo
9bo68b2o119bo9bo19bo9bo59bo58b2o59bo38b2o8b2o58b2o298b2o428b2o19bo408b
2o19bo18b2o88b2o8b2o18b2o8b2o58b2o8b2o18b2o8b2o98b2o48b2o28b2o58b2o8b
2o18b2o8b2o28b2o9bo9bo168b2o19bo99bo18b2o18b2o4508b2o19bo18b2o199bo9bo
19bo9bo49bo58b2o58b2o8b2o18b2o8b2o69bo58b2o68b2o8b2o18b2o8b2o58b2o59bo
8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o79bo8b2o8b2o38b2o19bo158b
2o8b2o18b2o8b2o68b2o99bo9bo19bo9bo$50b2o59bo8b2o8b2o8b2o8b2o8b2o79bo8b
2o8b2o38b2o19bo58b2o49bo88b2o28b2o8b2o18b2o8b2o58b2o59bo8b2o8b2o79bo8b
2o8b2o8b2o8b2o79bo8b2o8b2o38b2o19bo109bo9bo19bo9bo69bo58b2o59bo98b2o
68b2o78b2o28b2o8b2o18b2o8b2o58b2o59bo8b2o8b2o8b2o8b2o138b2o59bo69bo9bo
19bo9bo29bo18b2o8b2o49bo8b2o8b2o38b2o99bo9bo19bo9bo98b2o79bo39bo38b2o
98b2o8b2o18b2o8b2o148b2o8b2o18b2o8b2o58b2o38b2o39bo29bo18b2o8b2o49bo8b
2o148b2o28b2o38b2o8b2o18b2o8b2o49bo8b2o38b2o28b2o19bo9bo78b2o58b2o78b
2o9bo9bo9bo28b2o48b2o18b2o8b2o18b2o8b2o69bo58b2o39bo49bo9bo19bo9bo49bo
9bo19bo9bo49bo9bo19bo9bo48b2o49bo39bo58b2o9bo28b2o48b2o9bo28b2o48b2o
18b2o8b2o18b2o8b2o69bo58b2o58b2o8b2o18b2o8b2o58b2o59bo8b2o8b2o38b2o
109bo18b2o98b2o108b2o518b2o428b2o19bo18b2o278b2o38b2o39bo89bo9bo19bo9b
o38b2o8b2o188b2o98b2o19bo4548b2o19bo18b2o128b2o48b2o8b2o18b2o8b2o48b2o
59bo8b2o8b2o8b2o8b2o8b2o118b2o59bo8b2o8b2o8b2o8b2o8b2o8b2o138b2o28b2o
118b2o8b2o18b2o8b2o28b2o59bo18b2o159bo9bo19bo9bo69bo58b2o38b2o8b2o18b
2o8b2o$80b2o28b2o58b2o8b2o18b2o8b2o28b2o59bo18b2o59bo8b2o38b2o89bo8b2o
8b2o138b2o28b2o28b2o8b2o18b2o8b2o28b2o48b2o8b2o18b2o8b2o28b2o59bo18b2o
78b2o28b2o8b2o18b2o8b2o68b2o59bo8b2o8b2o38b2o68b2o128b2o49bo8b2o8b2o
138b2o28b2o48b2o8b2o18b2o8b2o28b2o59bo8b2o8b2o38b2o68b2o8b2o18b2o8b2o
28b2o19bo9bo48b2o9bo9bo138b2o8b2o18b2o8b2o68b2o108b2o38b2o429bo39bo38b
2o28b2o19bo9bo48b2o9bo28b2o48b2o69bo69bo9bo19bo9bo48b2o9bo88b2o8b2o48b
2o118b2o49bo8b2o8b2o8b2o79bo8b2o118b2o59bo38b2o48b2o8b2o18b2o8b2o48b2o
8b2o18b2o8b2o48b2o8b2o18b2o8b2o98b2o38b2o59bo8b2o79bo8b2o79bo8b2o118b
2o59bo8b2o8b2o8b2o8b2o8b2o138b2o28b2o9bo9bo148b2o19bo99bo109bo968b2o
19bo18b2o108b2o98b2o49bo39bo38b2o88b2o8b2o18b2o8b2o358b2o4568b2o19bo
18b2o109bo8b2o8b2o8b2o8b2o128b2o28b2o9bo9bo9bo9bo9bo28b2o118b2o28b2o9b
o9bo9bo9bo9bo9bo28b2o48b2o59bo149bo9bo19bo9bo88b2o48b2o28b2o78b2o18b2o
8b2o18b2o8b2o68b2o59bo8b2o8b2o8b2o101bo$10b2o69bo89bo9bo19bo9bo88b2o
48b2o28b2o9bo128b2o9bo9bo28b2o48b2o59bo59bo9bo19bo9bo79bo9bo19bo9bo88b
2o48b2o49bo8b2o8b2o148b2o28b2o9bo9bo109bo58b2o69bo48b2o9bo9bo28b2o48b
2o59bo79bo9bo19bo9bo29bo18b2o8b2o28b2o9bo9bo198b2o8b2o58b2o8b2o58b2o
189bo138b2o68b2o138b2o188b2o38b2o38b2o88b2o8b2o58b2o29bo49bo8b2o8b2o8b
2o38b2o68b2o8b2o18b2o8b2o58b2o58b2o89bo58b2o59bo48b2o38b2o8b2o18b2o8b
2o28b2o9bo28b2o118b2o28b2o378b2o98b2o28b2o18b2o8b2o18b2o8b2o28b2o18b2o
8b2o18b2o8b2o28b2o9bo28b2o118b2o28b2o9bo9bo9bo9bo9bo28b2o48b2o59bo38b
2o8b2o58b2o108b2o98b2o108b2o988b2o19bo109bo99bo18b2o28b2o38b2o5118b2o
19bo18b2o88b2o9bo9bo9bo9bo28b2o48b2o49bo38b2o8b2o8b2o8b2o8b2o29bo68b2o
49bo38b2o8b2o8b2o8b2o8b2o8b2o29bo49bo8b2o8b2o38b2o148b2o8b2o18b2o8b2o
58b2o38b2o39bo29bo18b2o8b2o49bo8b2o148b2o28b2o9bo9bo9bo28b2o69b5o$11bo
8b2o8b2o8b2o38b2o88b2o8b2o18b2o8b2o58b2o38b2o39bo38b2o58b2o78b2o8b2o
29bo49bo8b2o8b2o38b2o58b2o8b2o18b2o8b2o78b2o8b2o18b2o8b2o58b2o38b2o39b
o48b2o9bo9bo28b2o48b2o69bo38b2o8b2o58b2o48b2o59bo8b2o8b2o8b2o38b2o58b
2o8b2o29bo49bo8b2o8b2o38b2o78b2o8b2o18b2o8b2o28b2o19bo9bo38b2o8b2o58b
2o108b2o169bo18b2o118b2o48b2o78b2o59bo69bo139bo189bo48b2o8b2o78b2o128b
2o48b2o9bo9bo9bo269bo58b2o28b2o59bo8b2o8b2o38b2o89bo9bo19bo9bo38b2o29b
o68b2o49bo88b2o88b2o88b2o88b2o49bo58b2o39bo49bo9bo19bo9bo49bo9bo19bo9b
o38b2o29bo68b2o49bo38b2o8b2o8b2o8b2o8b2o29bo49bo8b2o8b2o38b2o109bo
1328b2o108b2o98b2o19bo38b2o8b2o78b2o128b2o4948b2o19bo18b2o78b2o8b2o8b
2o8b2o29bo49bo8b2o38b2o108b2o69bo8b2o38b2o118b2o48b2o9bo9bo289bo39bo
38b2o28b2o19bo9bo48b2o9bo28b2o48b2o69bo38b2o8b2o8b2o29bo69bo3bo$10b2o
9bo9bo9bo229bo39bo38b2o99bo18b2o98b2o48b2o9bo9bo319bo39bo38b2o58b2o8b
2o29bo49bo8b2o8b2o8b2o38b2o109bo58b2o8b2o38b2o9bo9bo9bo138b2o48b2o9bo
9bo208b2o8b2o109bo109bo58b2o108b2o19bo119bo58b2o8b2o59bo8b2o8b2o38b2o
68b2o138b2o188b2o49bo9bo79bo58b2o128b2o8b2o8b2o58b2o108b2o98b2o59bo38b
2o8b2o38b2o9bo9bo128b2o8b2o18b2o8b2o68b2o69bo8b2o38b2o89bo89bo89bo89bo
18b2o28b2o59bo38b2o48b2o8b2o18b2o8b2o48b2o8b2o18b2o8b2o68b2o69bo8b2o
38b2o108b2o48b2o9bo9bo148b2o1558b2o39bo9bo79bo129bo4968b2o19bo18b2o
118b2o48b2o9bo218b2o9bo218b2o8b2o58b2o188b2o38b2o38b2o88b2o8b2o58b2o
29bo49bo8b2o8b2o8b2o38b2o88b2o68b2obob2o$20b2o8b2o8b2o58b2o128b2o38b2o
38b2o138b2o19bo18b2o138b2o8b2o58b2o98b2o118b2o38b2o38b2o138b2o48b2o9bo
9bo9bo148b2o59bo9bo48b2o8b2o8b2o58b2o138b2o8b2o58b2o118b2o148b2o108b2o
59bo18b2o108b2o118b2o59bo9bo58b2o9bo9bo488b2o8b2o78b2o59bo18b2o189bo
109bo18b2o138b2o39bo9bo48b2o8b2o58b2o248b2o9bo128b2o88b2o88b2o88b2o19b
o38b2o8b2o38b2o358b2o9bo208b2o8b2o58b2o1688b2o8b2o78b2o128b2o4988b2o
19bo18b2o158b2o58b2o168b2o58b2o229bo189bo48b2o8b2o78b2o128b2o48b2o9bo
9bo9bo199bo3bo$101bo129bo48b2o8b2o78b2o98b2o19bo18b2o189bo99bo119bo48b
2o8b2o78b2o138b2o8b2o8b2o58b2o148b2o8b2o129bo18b2o189bo119bo58b2o258b
2o19bo288b2o8b2o68b2o8b2o638b2o19bo188b2o108b2o19bo178b2o8b2o119bo18b
2o108b2o128b2o58b2o358b2o39bo9bo98b2o88b2o88b2o128b2o58b2o219bo6918b2o
19bo18b2o199bo229bo228b2o188b2o49bo9bo79bo58b2o128b2o8b2o8b2o58b2o139b
5o$100b2o128b2o49bo9bo79bo118b2o19bo188b2o98b2o118b2o49bo9bo79bo18b2o
199bo288b2o19bo188b2o118b2o59bo278b2o1038b2o88b2o228b2o308b2o19bo109bo
189bo398b2o8b2o99bo89bo89bo189bo218b2o6938b2o19bo198b2o128b2o98b2o138b
2o328b2o8b2o78b2o59bo18b2o189bo141bo$2o278b2o8b2o78b2o138b2o98b2o358b
2o8b2o78b2o19bo198b2o188b2o118b2o98b2o268b2o608b2o799bo448b2o108b2o
108b2o88b2o98b2o508b2o88b2o88b2o88b2o98b2o128b2o7048b2o118b2o209bo18b
2o219bo478b2o19bo188b2o108b2o$bo609bo468b2o98b2o289bo219bo879bo18b2o
778b2o449bo309bo18b2o518b2o339bo18b2o209bo7169bo208b2o19bo218b2o498b2o
88b2o209bo18b2o$2o608b2o569bo288b2o218b2o878b2o19bo1228b2o308b2o19bo
519bo338b2o19bo208b2o7168b2o228b2o809bo208b2o19bo$1180b2o1408b2o1558b
2o518b2o358b2o8418b2o228b2o84$13696bo$13694b5o$13694bo3bo$13693b2obob
2o$13694bo3bo$13694b5o$13696bo!


It's too big for LifeViewer, but it works well in Golly at 10^2.
Things to work on:
  • Work on the snowflakes orthogonoid
User avatar
Goldtiger997
 
Posts: 459
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby Goldtiger997 » August 18th, 2018, 4:47 am

I've made a script that converts the rle of a salvo into a very long two-stream salvo that works with the universal constructor. It reads a headerless, newline-less rle from "out.txt":

# salvo-to-double-stream-thing.py
# Goldtiger997, August 2018

import golly as g

num = g.getstring("slightly adjustable parameter: what number mod 3?","0")
g.show("Getting G positions...")
with open("in.txt","r") as infile:
    rle = "9$" + infile.read()

salvo = []
i = 0
while i < len(rle):
    if rle[i] == "9" and rle[i+1] == "$":
        position = ""
        while rle[i+2] != "b":
            position += rle[i+2]
            i += 1
        if position == "":
            position = "1";
        salvo.append(int(position.replace("o","0")))
        i += 6
    i += 1

g.show("G positions complete. Placing Gs...")
y = 0
maximum = max(salvo) + int(num)%3

getReady = [g.parse("bo$3o$obo$bo17$3o$obo20$3o$obo20$3o$obo20$3o$obo20$3o$obo20$3o$obo20$3o$obo20$3o$obo20$3o$obo!"),215]
makeDot = [g.parse("3o$obo!"),39]
fire0 = [g.parse("3o$obo20$3o$obo24$bo$3o$obo$bo14$56b3o$56bobo3$bo$3o$obo$bo18$bo$3o$obo$bo9$57bo$56b3o$56bobo$57bo!"),109]
fire1 = [g.parse("3o$obo20$3o$obo33$bo$3o$obo$bo32$3o53b3o$obo53bobo18$bo$3o$obo$bo23$3o$obo15$57bo$56b3o$56bobo$57bo2$3o$obo20$3o$obo11$56b3o$56bobo!"),196]
fire2 = [g.parse("3o$obo20$3o$obo33$bo$3o$obo$bo32$3o53b3o$obo53bobo24$bo$3o$obo$bo32$3o$obo33$bo55bo$3o53b3o$obo53bobo$bo55bo17$3o$obo24$bo$3o$obo$bo14$56b3o$56bobo3$bo$3o$obo$bo18$bo$3o$obo$bo9$57bo$56b3o$56bobo$57bo!"),292]
fires = [fire0,fire1,fire2]

def placeGs(pat):
    global y
    g.putcells(pat[0],0,y,1,0,0,1,"or")
    y += pat[1]

i = len(salvo) - 1
while i >= 0:
    extra = (salvo[i]- maximum)%3
    getReady[1] += 2 * (maximum - salvo[i] + extra)
    placeGs(getReady)
    placeGs(makeDot)
    placeGs(fires[extra])
    getReady[1] = 215
    i -= 1
g.show("Done!")


Here's the output using the pattern from my above post, with the universal constructor and a couple of snowflakes added:
scripts demo.rle
Over the character limit
(466.21 KiB) Downloaded 66 times

Hopefully this pattern further clarifies how the completed orthogonoid will work.
Things to work on:
  • Work on the snowflakes orthogonoid
User avatar
Goldtiger997
 
Posts: 459
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby danny » August 19th, 2018, 10:44 am

Oh gosh, this thing will be big (and slow)...

Just a question, is it still okay if I post unconverted salvos? I can't run Python on my new Windows 10 laptop, which is more of a hindrance than it is just plain strange.

I'm sorry I've been slacking off on this project but I'm still really excited for it and I think it will be very cool. How will the reflectors on the bottom get there, though?
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 724
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby Goldtiger997 » August 21st, 2018, 9:45 am

danny wrote:Oh gosh, this thing will be big (and slow)...

I'm sorry I've been slacking off on this project but I'm still really excited for it and I think it will be very cool. How will the reflectors on the bottom get there, though?


Yes it is going to be very big. It's likely there was a better design hiding somewhere, but we've definitely progressed far enough in this project to not backtrack like that.

I've made progress on the dense block near the centre. I was able to use a cost-reducing trick where I allowed sideways Gs to be released, but so that they are converted to dots out of the way of the universal constructor mechanism:

x = 434, y = 60, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
269b2o8b2o$239b2o29bo9bo$240bo8b2o8b2o8b2o8b2o149bo$239b2o9bo9bo167b5o
$30b2o217b2o8b2o61b2o104bo3bo$31bo267b2o22bo103b2obob2o$30b2o268bo11b
2o8b2o104bo3bo$299b2o12bo17b2o6b2o68b2o17b5o$312b2o18bo7bo28b2o8b2o29b
o19bo$90b2o239b2o6b2o29bo9bo28b2o10b2o$10b2o8b2o48b2o19bo78b2o8b2o187b
2o8b2o41bo$2o9bo9bo28b2o19bo18b2o79bo9bo177b2o38b2o20b2o$bo8b2o8b2o29b
o18b2o98b2o8b2o178bo39bo$2o48b2o108b2o47b2o148b2o38b2o$161bo48bo8b2o8b
2o158b2o$160b2o47b2o9bo9bo159bo$190b2o27b2o8b2o158b2o$150b2o39bo157b2o
$151bo38b2o158bo$150b2o197b2o$100b2o$101bo$100b2o18b2o$121bo18b2o$120b
2o19bo$140b2o23$416bo$414b5o$414bo3bo$413b2obob2o$414bo3bo$414b5o$416b
o3$416b2o$417bo$417b2o!


I've worked out how to add the p3 part but I haven't put it in just yet.
So @danny, here's a suggestion for a section you could do: Making the white cells, using the yellow cells as a base (Edit: fixed the pattern's missing reflectors):

x = 145, y = 173, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7eHistory
97.2D$97.D$96.2D3$96.D$94.5D$94.D3.D$93.2D.D.2D$94.D3.D$94.5D$96.D2$
90.D$88.5D$82.D5.D3.D$82.3D2.2D.D.2D$84.D3.D3.D$88.5D$90.D50$119.D$
117.5D$111.D5.D3.D$111.3D2.2D.D.2D$113.D3.D3.D$117.5D$119.D19$89.D$
87.5D$87.D3.D$86.2D.D.2D$87.D3.D$87.5D$89.D2.D$91.D$90.3D2.D2.D$91.D$
89.D2.D$87.5D$87.D3.D$86.2D.D.2D$87.D3.D$87.5D$89.D6$104.E$102.5E5.E$
102.E3.E3.E$101.2E.E.2E2.2E$3.D98.E3.E$.5D7.D88.5E$.D3.D5.5D49.C32.E
5.E$2D.D.3D3.D3.D47.5C7.C20.5E$.D3.D.D2.2D.D.2D46.C3.C5.5C18.E3.E$.5D
5.D3.D46.2C.C.2C2.C.C3.C17.2E.E.2E$3.D7.5D47.C3.C3.3C.C.2C17.E3.E$13.
D49.5C5.C3.C18.5E$65.C7.5C20.E6.E$75.C27.5E$103.E3.E$97.2E3.2E.E.2E$
97.E5.E3.E$96.2E.E.E.5E$99.3E3.E$99.E.E$141.A$53.A46.E30.A7.5A$51.5A
73.5A5.A3.A$45.A5.A3.A73.A3.A3.3A.A.2A$45.3A2.2A.A.2A43.E27.2A.A.2A2.
A.A3.A$47.A3.A3.A73.A3.A5.5A$51.5A73.5A7.A$53.A5.A65.A5.A$57.5A61.5A$
57.A3.A61.A3.A$56.2A.A.2A59.2A.A.2A$57.A3.A61.A3.A$57.5A61.5A$59.A65.
A3$59.2A64.2A$60.A65.A$60.2A64.2A7$100.A$98.5A$98.A3.A$97.2A.A.2A$98.
A3.A$98.5A$100.A3$100.2A$101.A$101.2A!


After you do that and I add the p3 part, not much will be left; only the red cells! One of those four objects is the most difficult of all though; the backwards p3 splitter.

One concern I do have is making sure the p3 splitters get hit at the right time modulo 3 while they are being constructed. I'm not sure how easy it is for the universal constructor to adjust the timing of its output Gs.

Edit: Here's all of what I have so far, made into a 3-stage slow-salvo-synthesis. The G that is released can be blocked by one of the reflectors:

x = 1406, y = 243, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
1290b2o58b2o8b2o$1291bo59bo9bo5bo$1290b2o58b2o8b2o3b5o$1330b2o33bo3bo$
1331bo8b2o22b2obob2o$1310b2o8b2o8b2o9bo23bo3bo$110b2o8b2o1178b2o9bo9bo
18b2o23b5o$111bo9bo28b2o1149bo8b2o8b2o45bo$110b2o8b2o29bo1148b2o$100b
2o48b2o38b2o8b2o$101bo89bo9bo1058b2o$100b2o88b2o8b2o1059bo$2o168b2o8b
2o1078b2o18b2o$bo8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o38b2o28b2o9bo9bo
1099bo$2o9bo9bo9bo9bo9bo9bo9bo9bo9bo39bo29bo8b2o8b2o1048b2o8b2o38b2o$
10b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o38b2o28b2o1069bo9bo$1230b2o8b2o$
1210b2o38b2o$780b2o58b2o8b2o359bo39bo$781bo59bo9bo358b2o38b2o$780b2o
58b2o8b2o368b2o$820b2o38b2o359bo$821bo8b2o29bo8b2o8b2o8b2o8b2o8b2o8b2o
8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b
2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o18b2o$800b2o8b2o8b2o9bo28b2o
9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo
9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo$320b2o8b2o458b2o9bo9bo18b2o38b2o8b2o
8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b
2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o$321bo9bo28b
2o429bo8b2o8b2o$320b2o8b2o29bo428b2o$310b2o48b2o38b2o8b2o$311bo89bo9bo
338b2o$310b2o88b2o8b2o138b2o8b2o189bo$210b2o168b2o8b2o98b2o8b2o38b2o9b
o9bo18b2o168b2o18b2o$211bo8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o38b2o28b
2o9bo9bo88b2o9bo9bo18b2o8b2o9bo8b2o8b2o19bo189bo$210b2o9bo9bo9bo9bo9bo
9bo9bo9bo9bo39bo29bo8b2o8b2o78b2o9bo8b2o8b2o19bo9bo8b2o28b2o8b2o188b2o
$220b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o38b2o28b2o99bo8b2o28b2o8b2o8b2o
39bo$450b2o8b2o8b2o39bo58b2o28b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o
8b2o8b2o8b2o8b2o8b2o$430b2o19bo9bo48b2o78b2o9bo9bo9bo9bo9bo9bo9bo9bo9b
o9bo9bo9bo9bo9bo9bo$420b2o9bo18b2o8b2o129bo8b2o8b2o8b2o8b2o8b2o8b2o8b
2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o$421bo8b2o8b2o148b2o$420b2o19bo$440b
2o26$1362b2o$1362bo$1361b2o3$1361bo$1359b5o$1359bo3bo$1358b2obob2o$
1359bo3bo$1359b5o$1361bo2$675b2o18b2o18b2o48b2o$676bo19bo19bo49bo$675b
2o18b2o18b2o48b2o3$1387b2o$1387bo$1386b2o3$1386bo$1384b5o$1384bo3bo$
1383b2obob2o$1384bo3bo$1384b5o$1386bo5bo$635b2o8b2o743b5o7bo$636bo9bo
743bo3bo5b5o$635b2o8b2o742b2obob2o2bobo3bo$615b2o773bo3bo3b3obob2o$
616bo298b2o415b2o8b2o46b5o5bo3bo$615b2o278b2o19bo416bo9bo48bo7b5o$896b
o18b2o395b2o18b2o8b2o28b2o28bo$875b2o18b2o416bo8b2o38b2o9bo$876bo435b
2o9bo39bo8b2o$875b2o445b2o38b2o$925b2o195b2o148b2o8b2o68b2o$926bo38b2o
156bo149bo9bo69bo$925b2o39bo155b2o148b2o8b2o68b2o$965b2o28b2o8b2o155b
2o98b2o38b2o$935b2o48b2o9bo9bo156bo99bo39bo$936bo49bo8b2o8b2o155b2o98b
2o38b2o$775b2o48b2o108b2o48b2o145b2o38b2o48b2o8b2o58b2o$776bo8b2o8b2o
29bo18b2o98b2o8b2o176bo39bo49bo9bo59bo$775b2o9bo9bo28b2o19bo18b2o79bo
9bo175b2o38b2o18b2o28b2o8b2o58b2o$785b2o8b2o48b2o19bo78b2o8b2o185b2o8b
2o39bo18b2o38b2o$865b2o237b2o6b2o29bo9bo28b2o8b2o19bo39bo$1085b2o18bo
7bo28b2o8b2o29bo28b2o38b2o$1075b2o9bo17b2o6b2o68b2o58b2o$805b2o269bo8b
2o8b2o105b2o39bo$806bo268b2o19bo106bo38b2o$805b2o218b2o8b2o58b2o105b2o
$1015b2o9bo9bo$1016bo8b2o8b2o8b2o8b2o$1015b2o29bo9bo$1045b2o8b2o61$
1362b2o$1362bo$1361b2o3$1361bo$1359b5o$1359bo3bo$1358b2obob2o$1359bo3b
o$1305b2o8b2o39bo2b5o$1295b2o9bo9bo44bo$1225b2o69bo8b2o8b2o8b2o8b2o8b
2o$445b2o18b2o408b2o58b2o8b2o218b2o59bo68b2o29bo9bo9bo$446bo19bo409bo
59bo9bo68b2o8b2o139bo58b2o48b2o48b2o8b2o8b2o$445b2o18b2o408b2o58b2o8b
2o18b2o49bo9bo48b2o8b2o78b2o8b2o88b2o9bo$915b2o38b2o9bo38b2o8b2o8b2o
49bo9bo48b2o8b2o29bo38b2o18b2o29bo8b2o$916bo8b2o29bo8b2o39bo28b2o28b2o
8b2o8b2o49bo9bo28b2o8b2o29bo19bo28b2o$895b2o8b2o8b2o9bo28b2o18b2o28b2o
29bo29bo28b2o28b2o8b2o8b2o39bo28b2o18b2o8b2o8b2o130b2o$885b2o9bo9bo18b
2o49bo58b2o18b2o8b2o29bo29bo28b2o28b2o8b2o8b2o39bo9bo130bo$886bo8b2o8b
2o68b2o8b2o8b2o59bo38b2o18b2o8b2o29bo39bo9bo38b2o8b2o129b2o$885b2o99bo
9bo48b2o8b2o59bo38b2o38b2o8b2o$985b2o8b2o49bo58b2o8b2o$1045b2o59bo279b
o$1105b2o277b5o$815b2o48b2o517bo3bo$816bo8b2o8b2o29bo516b2obob2o$815b
2o9bo9bo28b2o517bo3bo$775b2o8b2o38b2o8b2o547b5o$765b2o9bo9bo599bo5bo$
515b2o88b2o159bo8b2o8b2o8b2o8b2o583b5o7bo$516bo89bo128b2o28b2o29bo9bo
583bo3bo5b5o$515b2o88b2o118b2o9bo58b2o8b2o38b2o542b2obob2o2bobo3bo$
645b2o79bo8b2o8b2o99bo543bo3bo3b3obob2o$646bo8b2o68b2o19bo98b2o511bo
31b5o5bo3bo$495b2o98b2o48b2o9bo48b2o38b2o614bo30bo7b5o$496bo8b2o18b2o
48b2o19bo18b2o8b2o28b2o8b2o39bo695bo$495b2o9bo19bo49bo18b2o19bo9bo39bo
8b2o28b2o8b2o672bo$505b2o18b2o48b2o8b2o28b2o8b2o38b2o9bo8b2o8b2o19bo
642bobobo2bo$535b2o8b2o8b2o8b2o19bo88b2o9bo9bo18b2o640b2ob3ob5o$536bo
9bo9bo9bo18b2o98b2o8b2o661bo2bo2bo3bo$535b2o8b2o8b2o8b2o791b2o3b2obob
2o$1364bo3bo$1364b5o$1359bo6bo$1354bo2b5o$1357bo3bo$1356b2obob2o$1357b
o3bo$1357b5o$1359bo5bo$1363b5o7bo$1363bo3bo5b5o$1362b2obob2o2bobo3bo$
1363bo3bo3b3obob2o$1363b5o5bo3bo$1365bo7b5o$1375bo! [[ THEME 9 STEP 8 ZOOM 1.6 X 580 ]]


I've worked out how to get a G to appear at any time mod 3: you just need to shift the elbow snowflake up or down one unit. However, it seems difficult to make a script know whether or not to do this. I think I'll just have to manually enter the Gs that require mod 3 adjustment.
Things to work on:
  • Work on the snowflakes orthogonoid
User avatar
Goldtiger997
 
Posts: 459
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby danny » September 5th, 2018, 1:23 am

Wow, I'm frickin lazy:
x = 469, y = 58, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
156b2o8b2o92b2o8b2o92b2o8b2o$157bo9bo93bo9bo93bo9bo52bo$156b2o8b2o92b
2o8b2o92b2o8b2o50b5o5bo$136b2o38b2o62b2o38b2o62b2o38b2o40bo3bo3bo$76b
2o8b2o49bo39bo63bo39bo63bo39bo8b2o29b2obob2o2b2o$77bo9bo48b2o38b2o62b
2o38b2o62b2o38b2o9bo30bo3bo$76b2o8b2o18b2o8b2o28b2o50b2o50b2o50b2o50b
2o38b2o30b5o$30b2o8b2o65bo9bo29bo51bo51bo51bo51bo66bo5bo$10b2o19bo9bo
54b2o8b2o8b2o28b2o50b2o50b2o50b2o50b2o64b5o$2o9bo18b2o8b2o24b2o29bo28b
2o60b2o38b2o62b2o38b2o86bo3bo$bo8b2o8b2o34b2o9bo28b2o29bo61bo39bo63bo
39bo85b2obob2o$2o19bo35bo8b2o58b2o60b2o38b2o62b2o38b2o86bo3bo$20b2o34b
2o150b2o8b2o92b2o8b2o96b5o$209bo9bo93bo9bo98bo6bo$208b2o8b2o92b2o8b2o
103b5o$427bo3bo$421b2o3b2obob2o$421bo5bo3bo$420b2obobob5o$423b3o3bo$
423bobo$465bo$377bo46bo30bo7b5o$375b5o73b5o5bo3bo$369bo5bo3bo73bo3bo3b
3obob2o$369b3o2b2obob2o43bo27b2obob2o2bobo3bo$371bo3bo3bo73bo3bo5b5o$
375b5o73b5o7bo$377bo5bo65bo5bo$381b5o61b5o$381bo3bo61bo3bo$380b2obob2o
59b2obob2o$381bo3bo61bo3bo$381b5o61b5o$383bo65bo3$383b2o64b2o$384bo65b
o$384b2o64b2o7$424bo$422b5o$422bo3bo$421b2obob2o$422bo3bo$422b5o$424bo
3$424b2o$425bo$425b2o!

Hey, at least it's done! Let me know if I can ''''''''help'''''''' anymore, haha :P

EDIT: Potential p2 synth:
x = 64, y = 13, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
10b3o$12bo$10b3o$12bo$10b3o$61b2o$18b3o26b3o10b2obo$2b3o6bo6bobo26bobo
11b2o$12bo6bo28bo$o5bo2b5o2b3ob3o17bo2bob3ob3o$12bo6bo28bo$2b3o6bo6bob
o26bobo$18b3o26b3o!
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 724
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby Goldtiger997 » October 18th, 2018, 8:59 am

danny wrote:Wow, I'm frickin lazy:
salvo that builds a reflector

Hey, at least it's done! Let me know if I can ''''''''help'''''''' anymore, haha :P


Thanks for that. I hadn't done much for this project in a while, but recently I've made some progress. Here's where I'm up to in the synthesis salvo (Edit: added the missing step):

x = 1434, y = 597, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
1290b2o58b2o8b2o$1291bo59bo9bo5bo$1290b2o58b2o8b2o3b5o$1330b2o33bo3bo$
1331bo8b2o22b2obob2o$1310b2o8b2o8b2o9bo23bo3bo$110b2o8b2o1178b2o9bo9bo
18b2o23b5o$111bo9bo28b2o1149bo8b2o8b2o45bo$110b2o8b2o29bo1148b2o$100b
2o48b2o38b2o8b2o$101bo89bo9bo1058b2o$100b2o88b2o8b2o1059bo$2o168b2o8b
2o1078b2o18b2o$bo8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o38b2o28b2o9bo9bo
1099bo$2o9bo9bo9bo9bo9bo9bo9bo9bo9bo39bo29bo8b2o8b2o1048b2o8b2o38b2o$
10b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o38b2o28b2o1069bo9bo$1230b2o8b2o$
1210b2o38b2o$780b2o58b2o8b2o359bo39bo$781bo59bo9bo358b2o38b2o$780b2o
58b2o8b2o368b2o$820b2o38b2o359bo$821bo8b2o29bo8b2o8b2o8b2o8b2o8b2o8b2o
8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b
2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o18b2o$800b2o8b2o8b2o9bo28b2o
9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo
9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo$320b2o8b2o458b2o9bo9bo18b2o38b2o8b2o
8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b
2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o$321bo9bo28b
2o429bo8b2o8b2o$320b2o8b2o29bo428b2o$310b2o48b2o38b2o8b2o$311bo89bo9bo
338b2o$310b2o88b2o8b2o138b2o8b2o189bo$210b2o168b2o8b2o98b2o8b2o38b2o9b
o9bo18b2o168b2o18b2o$211bo8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o38b2o28b
2o9bo9bo88b2o9bo9bo18b2o8b2o9bo8b2o8b2o19bo189bo$210b2o9bo9bo9bo9bo9bo
9bo9bo9bo9bo39bo29bo8b2o8b2o78b2o9bo8b2o8b2o19bo9bo8b2o28b2o8b2o188b2o
$220b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o38b2o28b2o99bo8b2o28b2o8b2o8b2o
39bo$450b2o8b2o8b2o39bo58b2o28b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o
8b2o8b2o8b2o8b2o8b2o$430b2o19bo9bo48b2o78b2o9bo9bo9bo9bo9bo9bo9bo9bo9b
o9bo9bo9bo9bo9bo9bo$420b2o9bo18b2o8b2o129bo8b2o8b2o8b2o8b2o8b2o8b2o8b
2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o$421bo8b2o8b2o148b2o$420b2o19bo$440b
2o26$1362b2o$1362bo$1361b2o3$1361bo$1359b5o$1359bo3bo$1358b2obob2o$
1359bo3bo$1359b5o$1361bo2$672b2o18b2o18b2o48b2o$673bo19bo19bo49bo$672b
2o18b2o18b2o48b2o3$1387b2o$1387bo$1386b2o3$1386bo$1384b5o$1384bo3bo$
1383b2obob2o$1384bo3bo$1384b5o$1386bo5bo$632b2o8b2o746b5o7bo$633bo9bo
746bo3bo5b5o$632b2o8b2o745b2obob2o2bobo3bo$612b2o776bo3bo3b3obob2o$
613bo298b2o418b2o8b2o46b5o5bo3bo$612b2o278b2o19bo419bo9bo48bo7b5o$893b
o18b2o398b2o18b2o8b2o28b2o28bo$872b2o18b2o419bo8b2o38b2o9bo$873bo438b
2o9bo39bo8b2o$872b2o448b2o38b2o$922b2o198b2o148b2o8b2o68b2o$923bo38b2o
159bo149bo9bo69bo$922b2o39bo158b2o148b2o8b2o68b2o$962b2o28b2o8b2o158b
2o98b2o38b2o$932b2o48b2o9bo9bo159bo99bo39bo$933bo49bo8b2o8b2o158b2o98b
2o38b2o$792b2o28b2o108b2o48b2o148b2o38b2o48b2o8b2o58b2o$793bo29bo18b2o
98b2o8b2o179bo39bo49bo9bo59bo$792b2o28b2o19bo18b2o79bo9bo178b2o38b2o
18b2o28b2o8b2o58b2o$842b2o19bo78b2o8b2o188b2o8b2o39bo18b2o38b2o$862b2o
238b2o8b2o29bo9bo28b2o8b2o19bo39bo$1082b2o19bo9bo28b2o8b2o29bo28b2o38b
2o$1072b2o9bo18b2o8b2o68b2o58b2o$802b2o269bo8b2o8b2o108b2o39bo$803bo
268b2o19bo109bo38b2o$802b2o218b2o8b2o58b2o108b2o$1012b2o9bo9bo$1013bo
8b2o8b2o8b2o8b2o$1012b2o29bo9bo$1042b2o8b2o61$1362b2o$1362bo$1361b2o3$
1361bo$1359b5o$1359bo3bo$1358b2obob2o$1359bo3bo$1305b2o8b2o39bo2b5o$
1295b2o9bo9bo44bo$1225b2o69bo8b2o8b2o8b2o8b2o8b2o$205b2o18b2o648b2o58b
2o8b2o218b2o59bo68b2o29bo9bo9bo$206bo19bo649bo59bo9bo68b2o8b2o139bo58b
2o48b2o48b2o8b2o8b2o$205b2o18b2o648b2o58b2o8b2o18b2o49bo9bo48b2o8b2o
78b2o8b2o88b2o9bo$915b2o38b2o9bo38b2o8b2o8b2o49bo9bo48b2o8b2o29bo38b2o
18b2o29bo8b2o$916bo8b2o29bo8b2o39bo28b2o28b2o8b2o8b2o49bo9bo28b2o8b2o
29bo19bo28b2o$895b2o8b2o8b2o9bo28b2o18b2o28b2o29bo29bo28b2o28b2o8b2o8b
2o39bo28b2o18b2o8b2o8b2o130b2o$685b2o8b2o188b2o9bo9bo18b2o49bo58b2o18b
2o8b2o29bo29bo28b2o28b2o8b2o8b2o39bo9bo130bo$686bo9bo28b2o159bo8b2o8b
2o68b2o8b2o8b2o59bo38b2o18b2o8b2o29bo39bo9bo38b2o8b2o129b2o$685b2o8b2o
29bo158b2o99bo9bo48b2o8b2o59bo38b2o38b2o8b2o$675b2o48b2o38b2o8b2o208b
2o8b2o49bo58b2o8b2o$676bo89bo9bo68b2o198b2o59bo279bo$675b2o88b2o8b2o
69bo258b2o277b5o$575b2o168b2o8b2o58b2o8b2o18b2o18b2o517bo3bo$576bo8b2o
8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o38b2o28b2o9bo9bo59bo9bo39bo516b2obob2o
$575b2o9bo9bo9bo9bo9bo9bo9bo9bo9bo39bo29bo8b2o8b2o58b2o8b2o38b2o517bo
3bo$535b2o8b2o38b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o38b2o28b2o58b2o38b
2o547b5o$525b2o9bo9bo249bo39bo549bo5bo$275b2o88b2o159bo8b2o8b2o8b2o8b
2o228b2o38b2o553b5o7bo$276bo89bo128b2o28b2o29bo9bo238b2o583bo3bo5b5o$
275b2o88b2o118b2o9bo58b2o8b2o239bo582b2obob2o2bobo3bo$405b2o79bo8b2o8b
2o278b2o18b2o583bo3bo3b3obob2o$406bo8b2o68b2o19bo279bo571bo31b5o5bo3bo
$255b2o98b2o48b2o9bo48b2o38b2o278b2o574bo30bo7b5o$256bo8b2o18b2o48b2o
19bo18b2o8b2o28b2o8b2o39bo935bo$255b2o9bo19bo49bo18b2o19bo9bo39bo8b2o
28b2o8b2o912bo$265b2o18b2o48b2o8b2o28b2o8b2o38b2o9bo8b2o8b2o19bo882bob
obo2bo$295b2o8b2o8b2o8b2o19bo88b2o9bo9bo18b2o880b2ob3ob5o$296bo9bo9bo
9bo18b2o98b2o8b2o901bo2bo2bo3bo$295b2o8b2o8b2o8b2o1031b2o3b2obob2o$
1364bo3bo$1364b5o$1357bo8bo$1355b5o$1355bo3bo$1354b2obob2o$1355bo3bo$
1355b5o$1357bo7bo$1363b5o7bo$1363bo3bo5b5o$1362b2obob2o2bobo3bo$1363bo
3bo3b3obob2o$1363b5o5bo3bo$1365bo7b5o$1375bo21$1378b2o$1378bo$1377b2o
3$1377bo$1375b5o$1375bo3bo$1374b2obob2o$1375bo3bo$1375b5o$1377bo7$
1337b2o64b2o$1337bo65bo$1336b2o64b2o3$1336bo65bo$1334b5o61b5o$1334bo3b
o61bo3bo$1333b2obob2o59b2obob2o$1334bo3bo61bo3bo$1334b5o61b5o$1330bo5b
o65bo5bo$1328b5o73b5o7bo$1322bo5bo3bo73bo3bo5b5o$1322b3o2b2obob2o43bo
27b2obob2o2bobo3bo$1324bo3bo3bo73bo3bo3b3obob2o$1328b5o73b5o5bo3bo$
1330bo46bo30bo7b5o$1418bo2$1375bobobo2bo$1373b2ob3ob5o$1374bo2bo2bo3bo
$1374b2o3b2obob2o$1380bo3bo$1380b5o$1373bo8bo$1371b5o$1371bo3bo$1370b
2obob2o$1371bo3bo$1371b5o$1373bo7bo$1379b5o7bo$1379bo3bo5b5o$1378b2obo
b2o2bobo3bo$1379bo3bo3b3obob2o$1364b2o13b5o5bo3bo$1334b2o8b2o19bo15bo
7b5o$1335bo9bo18b2o8b2o15bo$1334b2o8b2o29bo$1314b2o38b2o18b2o$1315bo
39bo$1314b2o38b2o$1284b2o8b2o28b2o$1285bo9bo29bo$432b2o850b2o8b2o28b2o
$433bo8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o740b2o38b2o$432b2o9bo9bo9bo
9bo9bo9bo9bo9bo9bo741bo39bo$442b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o740b
2o38b2o$1274b2o$582b2o8b2o500b2o179bo$552b2o29bo9bo501bo8b2o8b2o8b2o8b
2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o18b2o$412b2o8b2o108b
2o19bo8b2o8b2o8b2o8b2o500b2o9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo
9bo9bo$392b2o19bo9bo109bo18b2o9bo9bo98b2o380b2o8b2o38b2o8b2o8b2o8b2o8b
2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o$393bo18b2o8b2o108b2o28b
2o8b2o38b2o59bo8b2o8b2o300b2o8b2o38b2o9bo9bo$392b2o208b2o9bo58b2o9bo9b
o301bo9bo39bo8b2o8b2o8b2o8b2o$603bo8b2o68b2o8b2o300b2o8b2o38b2o29bo9bo
$602b2o98b2o270b2o38b2o58b2o8b2o$402b2o299bo8b2o8b2o8b2o8b2o231bo39bo
8b2o$403bo258b2o38b2o9bo9bo9bo9bo230b2o38b2o9bo$402b2o218b2o8b2o8b2o
19bo48b2o8b2o8b2o8b2o20b2o178b2o8b2o28b2o38b2o$623bo9bo9bo18b2o101bo
179bo9bo29bo$622b2o8b2o8b2o120b2o178b2o8b2o28b2o$754b2o38b2o128b2o38b
2o$755bo39bo8b2o119bo39bo$754b2o38b2o9bo118b2o38b2o$774b2o8b2o18b2o
128b2o$775bo9bo149bo$774b2o8b2o38b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b2o8b
2o18b2o$814b2o9bo9bo9bo9bo9bo9bo9bo9bo9bo9bo$815bo8b2o8b2o8b2o8b2o8b2o
8b2o8b2o8b2o8b2o8b2o$814b2o22$1381b2o$1381bo$1380b2o3$1380bo$1378b5o$
1378bo3bo$1377b2obob2o$1378bo3bo$1378b5o$1380bo7$1340b2o64b2o$1340bo
65bo$1339b2o64b2o3$1339bo65bo$1337b5o61b5o$1337bo3bo61bo3bo$1336b2obob
2o59b2obob2o$1337bo3bo61bo3bo$1337b5o61b5o$1333bo5bo65bo5bo$1331b5o73b
5o7bo$1325bo5bo3bo73bo3bo5b5o$1325b3o2b2obob2o43bo27b2obob2o2bobo3bo$
1327bo3bo3bo73bo3bo3b3obob2o$1331b5o73b5o5bo3bo$1333bo46bo30bo7b5o$
1421bo2$1378bobobo2bo$1376b2ob3ob5o$1377bo2bo2bo3bo$1377b2o3b2obob2o$
1290b2o91bo3bo$1140b2o8b2o88b2o49bo84b2o5b5o$1141bo9bo89bo48b2o84bo8bo
$830b2o28b2o168b2o8b2o98b2o8b2o88b2o132b5o$810b2o19bo29bo8b2o58b2o99bo
9bo78b2o38b2o212bo3bo$811bo8b2o8b2o28b2o9bo28b2o29bo98b2o8b2o79bo39bo
118b2o91b2obob2o$810b2o9bo18b2o8b2o18b2o29bo28b2o78b2o38b2o68b2o38b2o
68b2o49bo18b2o8b2o62bo3bo$820b2o19bo9bo48b2o8b2o8b2o38b2o38b2o9bo39bo
28b2o48b2o48b2o49bo18b2o8b2o18b2o19bo9bo62b5o$840b2o8b2o59bo9bo39bo39b
o8b2o38b2o29bo49bo49bo48b2o19bo9bo38b2o8b2o64bo7bo$880b2o8b2o18b2o8b2o
38b2o38b2o18b2o38b2o18b2o48b2o48b2o38b2o28b2o8b2o120b5o7bo$881bo9bo48b
2o8b2o38b2o29bo39bo8b2o38b2o58b2o38b2o9bo108b2o50bo3bo5b5o$880b2o8b2o
49bo9bo39bo28b2o38b2o9bo39bo59bo39bo8b2o109bo49b2obob2o2bobo3bo$940b2o
8b2o38b2o78b2o38b2o58b2o38b2o118b2o50bo3bo3b3obob2o$970b2o8b2o108b2o8b
2o88b2o8b2o180b5o5bo3bo$971bo9bo109bo9bo89bo9bo182bo7b5o$970b2o8b2o
108b2o8b2o88b2o8b2o192bo5$1369bo$1367b5o$1367bo3bo$1366b2obob2o$1367bo
3bo$1367b5o15bo$1369bo15b5o$1385bo3bo$1370bo13b2obob2o$1385bo3bo$1369b
o15b5o$1367b5o15bo$1367bo3bo$1366b2obob2o$1367bo3bo$1367b5o$1369bo4$
1370b2o$1371bo$1370b2o2$1381bo$1379b5o$1379bo3bo$1378b2obob2o$1379bo3b
o$1379b5o$1381bo27$1390b2o$1390bo$1389b2o3$1389bo$1387b5o$1387bo3bo$
1386b2obob2o$1387bo3bo$1387b5o$1389bo7$1349b2o64b2o$1349bo65bo$1348b2o
64b2o3$1348bo65bo$1346b5o61b5o$1346bo3bo61bo3bo$1345b2obob2o59b2obob2o
$1346bo3bo61bo3bo$1346b5o61b5o$1342bo5bo65bo5bo$1340b5o73b5o7bo$1334bo
5bo3bo73bo3bo5b5o$1334b3o2b2obob2o43bo27b2obob2o2bobo3bo$1336bo3bo3bo
73bo3bo3b3obob2o$1340b5o73b5o5bo3bo$1342bo46bo30bo7b5o$1430bo2$1387bob
obo2bo$1385b2ob3ob5o$1386bo2bo2bo3bo$1386b2o3b2obob2o$1392bo3bo$1364bo
27b5o$1354bo7b5o20bo6bo$1352b5o5bo3bo18b5o$1352bo3bo3b3obob2o17bo3bo$
1351b2obob2o2bobo3bo17b2obob2o$1352bo3bo5b5o18bo3bo$1352b5o7bo20b5o$
1354bo32bo5bo$1391b5o7bo$1391bo3bo5b5o$1385bo4b2obob2o2bobo3bo$1391bo
3bo3b3obob2o$1391b5o5bo3bo$1393bo7b5o$1403bo5$1378bo$1376b5o$1376bo3bo
$1375b2obob2o$1376bo3bo$1376b5o4bo11bo$1378bo2bo13b5o$1380bo14bo3bo$
1379b3o2bo9b2obob2o$1380bo14bo3bo$1378bo2bo13b5o$1376b5o16bo$1376bo3bo
$1375b2obob2o$1376bo3bo$1376b5o$1378bo5$1319b2o$1239b2o79bo$1240bo78b
2o$1079b2o158b2o98b2o$1059b2o19bo198b2o59bo49bo$1060bo18b2o199bo58b2o
47b5o$969b2o88b2o218b2o107bo3bo$949b2o19bo168b2o246b2obob2o$479b2o8b2o
8b2o8b2o418b2o19bo18b2o128b2o8b2o29bo188b2o57bo3bo$480bo9bo9bo9bo18b2o
98b2o8b2o138b2o149bo18b2o138b2o9bo9bo28b2o128b2o59bo18b2o8b2o27b5o$
479b2o8b2o8b2o8b2o19bo88b2o9bo9bo18b2o119bo148b2o88b2o69bo8b2o8b2o159b
o18b2o8b2o28b2o19bo9bo29bo$449b2o18b2o48b2o8b2o28b2o8b2o38b2o9bo8b2o8b
2o19bo118b2o208b2o29bo68b2o28b2o8b2o18b2o8b2o108b2o19bo9bo48b2o8b2o$
439b2o9bo19bo49bo18b2o19bo9bo39bo8b2o28b2o8b2o318b2o9bo28b2o99bo9bo19b
o9bo128b2o8b2o$440bo8b2o18b2o48b2o19bo18b2o8b2o28b2o8b2o39bo68b2o8b2o
18b2o8b2o68b2o8b2o18b2o8b2o109bo8b2o128b2o8b2o18b2o8b2o$439b2o98b2o48b
2o9bo48b2o69bo9bo19bo9bo69bo9bo19bo9bo108b2o18b2o8b2o18b2o8b2o$590bo8b
2o68b2o48b2o8b2o18b2o8b2o28b2o38b2o8b2o18b2o8b2o129bo9bo19bo9bo$589b2o
79bo8b2o8b2o8b2o8b2o79bo8b2o8b2o8b2o178b2o8b2o18b2o8b2o$459b2o88b2o
118b2o9bo9bo9bo9bo28b2o48b2o9bo9bo9bo28b2o$460bo89bo128b2o8b2o8b2o8b2o
29bo58b2o8b2o8b2o29bo$459b2o88b2o188b2o108b2o! [[ THEME 9 STEP 8 ZOOM -1.5 X 500 ]]


These are the things I think need to be done next, roughly in order:
  • Complete the missing step (Edit: This is done now)
  • Synthesize the southern-most reflector
  • Turn the elbow snowflake around and make the eastern reflector (We will need to work out how far to put it out)
  • Work out a system for making the mod 3 adjustments to the Gs (I count 9 needing to be done)
  • Make the salvo so that it builds off the previous universal constructor
  • Run this salvo through all of the scripts
  • Place two very far apart universal constructors so that the salvo moves through one and then the other. This should create an adjustable-speed self constructing pattern, but it does not delete itself, meaning it would be a puffer
  • Update the salvo by adding a deletion recipe. A basic deletion recipe should be significantly smaller than the synthesis recipe, but it comes with extra difficulties because the UC fires out Gs in the wrong direction. An additional Snowflake would be required to reflect the Gs back. Hopefully this will require quite a bit less manual work than the synthesis recipe, and instead a but more scripting.
  • Place two pairs of far apart UCs, and we should have a working adjustable-speed Snowflakes Orthogonoid!
Things to work on:
  • Work on the snowflakes orthogonoid
User avatar
Goldtiger997
 
Posts: 459
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby Senso » November 6th, 2018, 6:55 am

This is not directly related to Snowflakes but I didn't think it warranted its own thread. As I was trying to better understand non-totalistic rules, I started tweaking the specs of b2ci3ai4c8s02ae3eijkq4iz5ar6i7e to "see what would happen", for example if I removed the last 7e.

It's obviously very similar but with some tiny differences, ex. the original reflector doesn't work when the glider is symmetrical with the snowflake but does when the glider is slightly off:
x = 12, y = 3, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i
10b2o$obo7bo$10b2o!

vs
x = 12, y = 3, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i
10b2o$10bo$obo7b2o!


Calcyman's second post guns also work as-is, ex:
x = 100, y = 68, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i
41b2o$42bo$42b2o3$43bo$41b5o$41bo3bo$40b2obob2o$41bo3bo$41b5o11b2o$8bo
34bo13bo$6b5o45b2o$6bo3bo14b2o15b2o$2bo2b2obob2ob3o10bo16bo$3o3bo3bo2b
obo9b2o15b2o12bo$o5b5o43b5o$8bo45bo3bo$53b2obob2o$54bo3bo$54b5o$56bo
34bo$89b5o$56b2o15b2o14bo3bo$56bo16bo10b3ob2obob2o2bo$42bobo11b2o15b2o
9bobo2bo3bo3b3o$42b3o44b5o5bo$91bo4$13b3o$13bobo3$55bobo$55b3o4$49bo$
47b5o32b3o$14b2o15b2o9bobo2bo3bo6b2o15b2o7bobo5b2o$14bo16bo10b3ob2obob
2o4bob2o13bob2o13bob2o$14b2o15b2o14bo3bo6b2o15b2o15b2o$47b5o$14bo34bo$
12b5o$12bo3bo$11b2obob2o$12bo3bo33bo$12b5o25bo5b5o$14bo27b3o3bo3bo2bob
o9b2o15b2o$44bo2b2obob2ob3o10bo16bo$48bo3bo14b2o15b2o$14b2o32b5o$15bo
34bo34bo$15b2o66b5o$83bo3bo$82b2obob2o$83bo3bo$83b5o$85bo3$84b2o$84bo$
83b2o!


It made me wonder how important was the 7e neighbourhood to the original Snowflakes, so I ended up searching a few million soups on b2ci3ai4c8s02ae3eijkq4iz5ar6i, for what it's worth. It's probably a pointless exercise but I wanted to get an idea of the process through which BlinkerSpawn and danny had came up with that particular rule string as opposed to a slightly-different "alternate reality".
User avatar
Senso
 
Posts: 5
Joined: November 1st, 2018, 11:36 am
Location: I call that one "shoving match"

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby danny » November 6th, 2018, 7:53 am

Senso wrote:It's probably a pointless exercise but I wanted to get an idea of the process through which BlinkerSpawn and danny had came up with that particular rule string as opposed to a slightly-different "alternate reality".


If you look at the symmetric reflector (which was the intended one), you'll see that S7e is integral to its evolution:
#C [[ STOP 8 ]]
x = 14, y = 7, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
10bo$8b5o$2o6bo3bo$bo5b2obob2o$2o6bo3bo$8b5o$10bo!

Now, as for S6i... good question EDIT: S6i also plays a part later on. However, removing S3k does nothing. Will search...
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 724
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby Senso » November 6th, 2018, 8:42 am

danny wrote: Now, as for S6i... good question EDIT: S6i also plays a part later on. However, removing S3k does nothing. Will search...


You're right, one step further, removing S3k and S3q does nothing to the original reflector (although removing both S3k and S3q does seem to produce mostly just linear-growths.
User avatar
Senso
 
Posts: 5
Joined: November 1st, 2018, 11:36 am
Location: I call that one "shoving match"

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby EvinZL » November 11th, 2018, 1:42 pm

If two gliders collide head-on, both of them turn around.
x=6, y=3, rule=B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
oobboo$bobbob$oobboo!

A different collision can cause them to 'annihilate'.
x=6, y=5, rule=B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
oo4b$bo4b$oobboo$4bob$4boo!
Evin Liang
EvinZL
 
Posts: 13
Joined: November 8th, 2018, 4:15 pm

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby BlinkerSpawn » November 11th, 2018, 6:12 pm

EvinZL wrote:If two gliders collide head-on, both of them turn around.
x=6, y=3, rule=B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
oobboo$bobbob$oobboo!

This is a fairly well-known interaction which was actually essential to a few older families of guns since its timing is different than that of most reflectors.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image
User avatar
BlinkerSpawn
 
Posts: 1788
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby danny » November 11th, 2018, 10:00 pm

What is the smallest set of patterns that can lead to arbitrary construction, kind of like integer constructions?

I'd like to consider this ''ternary' set, for example the number '12120102' would be:
x = 8, y = 3, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
4obobo2$bobo3bo!


Arbitrarily long empty space can be encoded in zeroes. The patterns ...00012002000...00020021000... showcases the left and right gliders:
x = 18, y = 3, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
2o2bo8bo2b2o2$bo2bo8bo2bo!


Firing an R sideways is yet to figure out cleanly:
x = 4, y = 3, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
o2bo2$3bo!


Square root growth can be expressed by 2000000020021002, which is the number 28702379 in decimal:
x = 16, y = 3, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
o7bo2b2o2bo2$o7bo2bo3bo!
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 724
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby EvinZL » November 12th, 2018, 1:04 pm

BlinkerSpawn wrote:
EvinZL wrote:If two gliders collide head-on, both of them turn around.
x=6, y=3, rule=B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
oobboo$bobbob$oobboo!

This is a fairly well-known interaction which was actually essential to a few older families of guns since its timing is different than that of most reflectors.


Do you think I have the time to read all 18 pages + a few websites?
Evin Liang
EvinZL
 
Posts: 13
Joined: November 8th, 2018, 4:15 pm

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby danny » November 12th, 2018, 2:29 pm

EvinZL wrote:Do you think I have the time to read all 18 pages + a few websites?

Yes. I've read this entire thread at least 5 times. Not to mention, I'm pretty sure the reaction you posted is on page 1.

If you dont have the patience to read the posts, then it isn't wise to post discoveries until you have done so. Or do a quick search.

EDIT: I believe this is the first of many posts it is mentioned in
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 724
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby M. I. Wright » November 12th, 2018, 4:09 pm

EvinZL wrote:Do you think I have the time to read all 18 pages + a few websites?

An oddly self-centered response. It's basic courtesy to become familiar with a thread's topic before posting something new to it, and, adding on to danny's response, there's a level of common sense in play as well: any rule with this many pages is really likely to have had its basic reactions (like 2-glider collisions) both enumerated and thoroughly explored already, because they tend to become building-blocks for the types of things going on in later stages of exploration. This can be surmised even without reading through every bit of information on the rule.
gamer54657 wrote:God save us all.
God save humanity.

hgkhjfgh

nutshelltlifeDiscord 'Conwaylife Lounge'
M. I. Wright
 
Posts: 364
Joined: June 13th, 2015, 12:04 pm

Previous

Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 2 guests