ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

For discussion of other cellular automata.

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby 2718281828 » May 21st, 2018, 6:25 pm

danny wrote:Can it gun?:
x = 14, y = 16, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
4bo$2b3o$2bo5$b2o2b3o3b2o$2bo2bobo3bo$o4b3o5bo4$2bo$2b3o$4bo!


Yes, kind of possible:
x = 37, y = 37, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
2$24bo$22b3o$22bo$25b3o$25bobo$25b3o$20bo$22bo8b2o$21b2o2b3o3bo$25bobo
5bo2$25bo2bo$14bo11b3o$6bo5b5o10bo$8bo3bo3bo$7b2o2b2obob2o$12bo3bo$12b
5o$14bo5bo11bo$19b3o8b3o$19bobo8bo$20bo2$16bo$14bo13bo$16b3o$16b3o$17b
o10bo2$15bo3bo$26bobobo$24b2ob3ob2o$25bo2bo2bo$25b2o3b2o!

Still, larger than e.g.:
x = 33, y = 22, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
2$10b2o$11bo5bo3bo2bo$9bo3b3o3b2obob3o$6b2o5bobo3bob2o3bo$4bo2bo5b3o3b
2obobo$4b2ob2o8bo3bo2b2o2$5b3o$bo4bo$3b7o$3bo2bo2bo$3b2o3b2o2$6bo$5b3o
2$2b2ob3ob2o$3bo2bo2bo$3b2o3b2o!


I found this interesting thinning salvo (illustrated for p32 G, p48 R):
x = 212, y = 194, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
9$188bo$186bobo$186b3o22$188bo$186bobo$186b3o22$188bo$186bobo$186b3o
22$188bo$186bobo$186b3o22$188bo$186bobo$186b3o22$188bo$186bobo$186b3o
22$188bo$186bobo$186b3o22$188bo$186bobo$7b2o14b2o14b2o14b2o14b2o14b2o
14b2o14b2o14b2o14b2o14b2o14b2ob3o$6bob2o12bob2o12bob2o12bob2o12bob2o
12bob2o12bob2o12bob2o12bob2o12bob2o12bob2o12bob2o$7b2o14b2o14b2o14b2o
14b2o14b2o14b2o14b2o14b2o14b2o14b2o14b2o!


The p16 G and p24 special case
x = 115, y = 106, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
10$107bo$105bobo$105b3o10$107bo$105bobo$105b3o10$107bo$105bobo$105b3o
10$107bo$105bobo$105b3o10$107bo$105bobo$105b3o10$107bo$105bobo$105b3o
10$107bo$105bobo$105b3o10$107bo$105bobo$14b2o6b2o6b2o6b2o6b2o6b2o6b2o
6b2o6b2o6b2o6b2o6b2ob3o$13bob2o4bob2o4bob2o4bob2o4bob2o4bob2o4bob2o4bo
b2o4bob2o4bob2o4bob2o4bob2o$14b2o6b2o6b2o6b2o6b2o6b2o6b2o6b2o6b2o6b2o
6b2o6b2o!

allows for this small p96 G gun:
x = 25, y = 24, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
5b2o$3bo2bo$3b2ob2o2$4b3o$o4bo$2b7o$2bo2bo2bo$2b2o3b2o2$5bo14bo$4b3o
15bo2$b2ob3ob2o6bo2b2o2bo$2bo2bo2bo8b2obo$2b2o3b2o7bo7bo$17bo3bo$13bo
2bo5bo$17b2ob2o2bo$17b3o2bo2$16bo$18bo$20bo!
User avatar
2718281828
 
Posts: 342
Joined: August 8th, 2017, 5:38 pm

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby AbhpzTa » May 25th, 2018, 5:45 pm

2718281828 wrote:A slightly smaller p17 gun (new:top, old:bottom) - but not uniformly smaller:
x = 52, y = 61, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
$4bo5bo2bo2bo$38bo3bo2$4bo11bo$39b3o$35b2o2bobo2b2o$4bo11bo13bo4bo3b3o
3bo$28bo3bo4bo5bo$28b5o3b2o5b2o$4bo11bo13bo$24bo2b2o$26bo6bo6bo$4bo11b
o9bo6bo4b4o$26bo6bo6bo$24bo2b2o$30bo$28b5o3b2o5b2o$28bo3bo4bo5bo$30bo
4bo3b3o3bo$35b2o2bobo2b2o$39b3o3$38bo3bo9$43bo2$41bo2$36b2o3bo$37bo$
35bo5bo$30bo15bo$32bo4b2o5bo$31b2o2bo2bo5b2o$35b2o2$31bo$30b2o3b2o$31b
o$27bo$35b2o$35bo2bo5b2o$37b2o5bo$46bo$35bo5bo$37bo$36b2o3bo2$41bo2$
43bo!

I makes use of different sparkers.


Much smaller:
x = 20, y = 23, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
12bo3bo2$9bo2$10bo2bobo2b2o$3bo15bo$5bo3b3o5bo$4b2o3bobo5b2o$8b2o4bo$
10bo2bobo2$4bobobobo2$o9bo2bobo$8b2o4bo$9bobo5b2o$9b3o5bo$19bo$10bo2bo
bo2b2o2$9bo2$12bo3bo!


2718281828 wrote:
danny wrote:Can it gun?:
x = 14, y = 16, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
4bo$2b3o$2bo5$b2o2b3o3b2o$2bo2bobo3bo$o4b3o5bo4$2bo$2b3o$4bo!


Yes, kind of possible:
x = 37, y = 37, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
2$24bo$22b3o$22bo$25b3o$25bobo$25b3o$20bo$22bo8b2o$21b2o2b3o3bo$25bobo
5bo2$25bo2bo$14bo11b3o$6bo5b5o10bo$8bo3bo3bo$7b2o2b2obob2o$12bo3bo$12b
5o$14bo5bo11bo$19b3o8b3o$19bobo8bo$20bo2$16bo$14bo13bo$16b3o$16b3o$17b
o10bo2$15bo3bo$26bobobo$24b2ob3ob2o$25bo2bo2bo$25b2o3b2o!

Still, larger than e.g.:
x = 33, y = 22, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
2$10b2o$11bo5bo3bo2bo$9bo3b3o3b2obob3o$6b2o5bobo3bob2o3bo$4bo2bo5b3o3b
2obobo$4b2ob2o8bo3bo2b2o2$5b3o$bo4bo$3b7o$3bo2bo2bo$3b2o3b2o2$6bo$5b3o
2$2b2ob3ob2o$3bo2bo2bo$3b2o3b2o!


Smaller:
x = 17, y = 20, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
4bo$2bo2$4bobo$o$2bo$b2o3$4bo4b3o$2bo6bobobo$4b2o3bo4b2o$5bo8bo$3bo5bo
6bo3$9bo$5bo8bo$5b3o4bo$7bo!
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa
 
Posts: 440
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby 2718281828 » June 4th, 2018, 10:42 am

A new p27 from a C1 soup (https://catagolue.appspot.com/object/xp ... 4iz5ar6i7e):
x = 13, y = 15, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
3b2o$3bo$2b2o3$7bo3bo$6b2o$7bo$12bo2$3bo2$2o$bo$b2o!

I looks very close to a gun, as we have e.g.:
x = 20, y = 14, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
10b2o$10bo$9b2o3$14bo3bo$13b2o$2bo11bo$3obo14bo$o4bo$2bo7bo$2bo2bo$2bo
$o!

But I wasn't able to make use of it, still I constructed this p27 gun:
x = 52, y = 32, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
10b2o$10bo$9b2o$11bo2$40b2o3b2o$14bobobo21bo2bo2bo$2bo36b2ob3ob2o$3obo
14bo$o41b3o$2b2o38b3o$bobo4bobo3bo34bo$2b2o4b3o2bo12b2o12b2o3b2o$o11b
2o12bo12b2o2bo2b2o$13b2o11b3o11bo5bo$41bobobo4$49bo$8bobo38b3o$8b3o14b
o22bo2bo$5b2o2bo2b2o12bo11b4o7bo$5bo3bo3bo12b2o12b3o2bo2b3o$5b3o3b3o
11b2o12b3o7bo$9bo38bo2bo$49b3o$49bo2$5b2ob3ob2o31bo$6bo2bo2bo$6b2o3b2o
!
User avatar
2718281828
 
Posts: 342
Joined: August 8th, 2017, 5:38 pm

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby Redstoneboi » June 5th, 2018, 12:09 am

R + G reflect thingy that's probably useless
(not a heisenburp)
x = 9, y = 4, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
6bo$2o3b3o$bo3bo2bo$2o!
c(>^x^<c)~
This is Fluffy the cat.
Fluffy wants to discover new things that everyone likes.
Fluffy likes to watch spaceship guns in Golly.

There’s one problem,

Fluffy doesn’t exist :(
User avatar
Redstoneboi
 
Posts: 283
Joined: May 14th, 2018, 3:57 am

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby 2718281828 » June 6th, 2018, 2:29 am

A trivial (likely) known stable 2-thinning mechanism:
x = 39, y = 31, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
3$24bo$14bo7b5o$22bo3bo3b2o$21b2obob2o2bo$22bo3bo5bo$22b5o$24bo$17b3o$
17bobo11$17b3o$17bobo!

It works for p23 to p30:
x = 343, y = 79, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
5$16bo30bo30bo30bo30bo30bo30bo30bo30bo30bo30bo$6bo7b5o18bo7b5o18bo7b5o
18bo7b5o18bo7b5o18bo7b5o18bo7b5o18bo7b5o18bo7b5o18bo7b5o18bo7b5o$14bo
3bo3b2o21bo3bo3b2o21bo3bo3b2o21bo3bo3b2o21bo3bo3b2o21bo3bo3b2o21bo3bo
3b2o21bo3bo3b2o21bo3bo3b2o21bo3bo3b2o21bo3bo3b2o$13b2obob2o2bo21b2obob
2o2bo21b2obob2o2bo21b2obob2o2bo21b2obob2o2bo21b2obob2o2bo21b2obob2o2bo
21b2obob2o2bo21b2obob2o2bo21b2obob2o2bo21b2obob2o2bo$14bo3bo5bo20bo3bo
5bo20bo3bo5bo20bo3bo5bo20bo3bo5bo20bo3bo5bo20bo3bo5bo20bo3bo5bo20bo3bo
5bo20bo3bo5bo20bo3bo5bo$14b5o26b5o26b5o26b5o26b5o26b5o26b5o26b5o26b5o
26b5o26b5o$16bo30bo30bo30bo30bo30bo30bo30bo30bo30bo30bo$9b3o28b3o28b3o
28b3o28b3o28b3o28b3o28b3o28b3o28b3o28b3o$9bobo28bobo28bobo28bobo28bobo
28bobo28bobo28bobo28bobo28bobo28bobo10$10bo$9b3o28b3o29bo$9bobo28bobo
28b3o28b3o29bo61bo$10bo60bobo28bobo28b3o28b3o28b3o28b3o29bo$72bo60bobo
28bobo28bobo28bobo28b3o28b3o29bo$134bo61bo60bobo28bobo28b3o$258bo60bob
o$320bo12$288b3o$288bobo28b3o$319bobo14$320bo$319b3o$319bobo$320bo13$
319b3o$319bobo!

for p31 it deletes every third one (last one).
User avatar
2718281828
 
Posts: 342
Joined: August 8th, 2017, 5:38 pm

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby Goldtiger997 » June 23rd, 2018, 9:49 am

I've been looking into creating a self-constructing spaceship in snowflakes.

I almost found a working construction arm... (Key: left is PUSH, right is PULL/FIRE)

x = 41, y = 73, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
3bo29bo$b5o25b5o$bo3bo25bo3bo$2obob2o23b2obob2o$bo3bo25bo3bo$b5o25b5o$
3bo29bo6$2b3o27b3o$2bobo27bobo19$3bo34b3o$2b3o33bobo$2bobo$3bo6$33bo$
32b3o$32bobo$33bo10$8b3o$8bobo12$2b3o$2bobo2$32b3o$32bobo$32bo!


... But in the PULL/FIRE section, one of the spaceships is an R. Does anybody more experienced in Snowflakes have an idea how to make this work?
Things to work on:
  • Work on the snowflakes orthogonoid
User avatar
Goldtiger997
 
Posts: 459
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby danny » June 23rd, 2018, 2:42 pm

Does this work?
x = 41, y = 85, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
3bo29bo$b5o25b5o$bo3bo25bo3bo$2obob2o23b2obob2o$bo3bo25bo3bo$b5o25b5o$
3bo29bo6$2b3o27b3o$2bobo27bobo19$3bo34b3o$2b3o33bobo$2bobo$3bo6$33bo$
32b3o$32bobo$33bo10$8b3o$8bobo12$2b3o$2bobo$33b3o$33bobo4$31b3o$31bobo
3$25b3o$25bobo4$24b3o$24bobo!
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 740
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby 2718281828 » June 23rd, 2018, 7:20 pm

In the C1 soups this p35 popped up:
x = 21, y = 12, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
3bo$b5o$bo3bo$2obob2o$bo3bo2bo$b5o$3bo8bo5b2o$7bo10bo$5bo6bo7bo$19b2o$8bo$6bo!
https://catagolue.appspot.com/object/xp35_8u2b2u80gz01131904y0ay16iozy2201/b2ci3ai4c8s02ae3eijkq4iz5ar6i7e

The interesting part is the stable way to push the snowflake back, as illustrated there:
x = 16, y = 30, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
$4b2o4bo$5bo$3bo6bo$3b3o$5bo7$10bo$4b2o$5bo4bo$3bo5$4bo$6bo$3bo$10bo$
5bo$3bo6bo2$6bo$4bo!

The push-back takes 1 tick longer than for the standard reflector, allowing for these p35 and p36 oscillators:
x = 16, y = 22, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
bo$3bo$o14bo$7bo5bo$2bo10b2o$o6bo2$3bo$bo5$bo12bo$3bo8bo$o$7bo7bo$2bo
10bo$o6bo$15bo$3bo8bo$bo12bo!

It also allows for this dotty p35 G-gun:
x = 19, y = 25, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
12bo3bo$14bo2$14bo4$10bo7bo$bo12bo$3bo$o$7bo$2bo$o6bo2$3bo$bo$10bo7bo$
14bo$11bo5bo2$14bo3$12bo3bo!

Not sure if it is of more use.

Edit1:
It also allows for these p31:
x = 30, y = 30, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
2$14bo2bo$11bo7bo$15bo$12bo5bo4$14bobo$4bo21bo$6bo17bo$3bo$10bo9bo6bo$
5bo19bo$3bo6bo9bo$27bo$6bo17bo$4bo21bo$14bobo4$12bo5bo$15bo$11bo7bo$
13bo2bo!
x = 43, y = 25, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
11bo2bo14bo2bo$8bo7bo9bo7bo$12bo17bo$9bo5bo11bo5bo3$20bo$11bobo8bo6bob
o$bo19b2o18bo$3bo35bo$o$7bo9bo7bo9bo6bo$2bo37bo$o6bo9bo7bo9bo$42bo$3bo
35bo$bo19b2o18bo$11bobo8bo6bobo$20bo3$9bo5bo11bo5bo$12bo17bo$8bo7bo9bo
7bo$10bo2bo14bo2bo!

but I can't be used as a gun:
x = 25, y = 25, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
11bo2bo$8bo7bo$12bo$9bo5bo5$bo9bobo$3bo$o$8bo7bo$2bo$o7bo7bo2$3bo$bo9b
obo3$23bo$22b3o$9bo5bo6bobo$12bo10bo$8bo7bo$10bo2bo!
User avatar
2718281828
 
Posts: 342
Joined: August 8th, 2017, 5:38 pm

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby danny » June 24th, 2018, 2:24 am

The new catalyst supports this pi->Snowflake:
x = 9, y = 9, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
bo$3bo$o$6b3o$2bo5bo$o5b3o2$3bo$bo!


Also, I want to draw attention to this:
danny wrote:I'm not sure if this is known, but a weird 'sqrtgun'-type thing:
x = 46, y = 32, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
3bo21bo$b5o19b3o$bo3bo21bo$2obob2o14bobobob2o$bo3bo21bo$b5o19b3o$3bo
21bo5$18bo21bo$16b5o19b3o$16bo3bo8b3o10bo$15b2obob2o7bobo4bobobob2o$
16bo3bo21bo$16b5o19b3o$18bo21bo3$6bo6b2o$5b3o4bob2o13bobo$6bo6b2o3$16b
o25bo$14b5o9b2o10b5o$14bo3bo8b2obo9bo3bo$13b2obob2o8b2o9b2obob2o$14bo
3bo21bo3bo$14b5o21b5o$16bo25bo!


Do you think anything useful could come out of it? maybe some spartan (basically made of snowflake and dots haha) glider duplicators could be placed on the side and be used to push the snowflakes forward
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 740
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby Goldtiger997 » June 24th, 2018, 5:27 am

danny wrote:Does this work?
x = 41, y = 85, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
3bo29bo$b5o25b5o$bo3bo25bo3bo$2obob2o23b2obob2o$bo3bo25bo3bo$b5o25b5o$
3bo29bo6$2b3o27b3o$2bobo27bobo19$3bo34b3o$2b3o33bobo$2bobo$3bo6$33bo$
32b3o$32bobo$33bo10$8b3o$8bobo12$2b3o$2bobo$33b3o$33bobo4$31b3o$31bobo
3$25b3o$25bobo4$24b3o$24bobo!


Unfortunately it doesn't. The issue is that your pattern has Gs in several different lanes, whereas if you look at my previous pattern the Gs are only in two lanes. Luckily, I found a different way of creating a construction arm with only two channels (I also found a 3 channel way which may be useful if this one doesn't work). Here it is:

x = 188, y = 1001, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
27bo$29bo$28b2o3$28bo$26b5o$26bo3bo$25b2obob2o$26bo3bo$26b5o$28bo15$
187bo67$8bo$6b5o$o5bo3bo$2bo2b2obob2o$b2o3bo3bo$6b5o$8bo20bo$27b5o130b
o$27bo3bo132bo$22b2o2b2obob2o130b2o$23bo3bo3bo$21bo5b5o$29bo134bo$162b
5o$43b2o3b2o112bo3bo$28b2o13bo2bo2bo111b2obob2o$28bo13b2ob3ob2o111bo3b
o12bo$30bo131b5o$164bo5bo$168b5o$29bo16bo121bo3bo$21bo5b5o135b2obob2o
2b2o$23bo3bo3bo136bo3bo3bo$22b2o2b2obob2o13bo121b5o5bo$27bo3bo138bo$
27b5o$29bo5bo101bo$33b5o101bo$33bo3bo100b2o$32b2obob2o$33bo3bo$33b5o
101bo$35bo101b5o$20b2o3b2o110bo3bo$20bo2bo2bo109b2obob2o$19b2o5b2o7b2o
100bo3bo12bo$23bo11bo101b5o$22bobo12bo101bo5bo$143b5o$8bo14bo119bo3bo$
o5b5o131b2obob2o2b2o$2bo3bo3bo132bo3bo3bo$b2o2b2obob2o11bo119b5o5bo$6b
o3bo134bo$6b5o$8bo5bo$12b5o112bo$12bo3bo114bo$11b2obob2o112b2o$12bo3bo
$12b5o$14bo115bo$128b5o$128bo3bo$14b2o111b2obob2o$14bo113bo3bo$16bo
111b5o$130bo14bo$143b5o$143bo3bo3b2o$142b2obob2o2bo$143bo3bo5bo$143b5o
$145bo6$142bo$140bo$140b2o3$141bo$139b5o$139bo3bo$138b2obob2o$139bo3bo
$139b5o$124bo16bo$122b5o$117b2o3bo3bo$118bo2b2obob2o$116bo5bo3bo$122b
5o$124bo11$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b
3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo
20$22b3o$22bobo20$22b3o$22bobo26$22b3o$22bobo38$22b3o$22bobo20$22b3o$
22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo
18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo96$23bo$22b3o$22bobo$
23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b
3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo
32$22b3o$22bobo38$22b3o$22bobo20$22b3o$22bobo24$23bo$22b3o$22bobo$23bo
11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo
$45b3o$45bobo$46bo! [[ STEP 2 T 80 ZOOM 2 Y -400 T 2500 PAUSE 1 ZOOM -2 Y 100 ]]


The circuitry can probably be simplified by someone more experienced in snowflakes. However, the construction arm is not quite universal because it can only release Gs on one out of three lanes. This can be fixed by replacing the p3 splitters with p1 splitters, but I didn't know where to find them.

So...
@Snowflakes experts, what are some examples of p1 splitters (hopefully they have low repeat time)
@dvgrn and other macro-spaceship engineers, can this design work or have I missed something. Or should I find an easier rule.
Things to work on:
  • Work on the snowflakes orthogonoid
User avatar
Goldtiger997
 
Posts: 459
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby danny » June 24th, 2018, 11:52 am

Goldtiger997 wrote:@Snowflakes experts, what are some examples of p1 splitters (hopefully they have low repeat time)

Well, you might want to look at toroidalet's r.t.-68 splitter:

x = 117, y = 62, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
13bo$15bo$14b2o3$14bo$12b5o$12bo3bo$11b2obob2o$12bo3bo$12b5o$14bo23bo$
36b5o$36bo3bo5bo$35b2obob2o2bo$36bo3bo3b2o$36b5o$38bo3$48b2o32b2o$48bo
33bo$48b2o32b2o2$32bo$30b5o46bo$30bo3bo44b5o22bo$29b2obob2o37bo5bo3bo
5bo14bo$30bo3bo36b5o2b2obob2o2b5o12b2o$30b5o30bo5bo3bo3bo3bo3bo3bo5bo$
32bo30b5o2b2obob2o2b5o2b2obob2o2b5o$57bo5bo3bo3bo3bo5bo5bo3bo3bo3bo5bo
7bo$34bo20b5o2b2obob2o2b5o11b5o2b2obob2o2b5o3bo$26bo5b5o12bo5bo3bo3bo
3bo5bo15bo5bo3bo3bo3bo3b2o$28bo3bo3bo10b5o2b2obob2o2b5o27b5o2b2obob2o$
27b2o2b2obob2o3bo5bo3bo3bo3bo5bo31bo5bo3bo$32bo3bo2b5o2b2obob2o2b5o43b
5o$32b5o2bo3bo3bo3bo5bo47bo$34bo3b2obob2o2b5o56bo$39bo3bo5bo56b5o5bo$
39b5o62bo3bo3bo$32b2o7bo59bo3b2obob2o2b2o$33bo65b5o2bo3bo$31bo61bo5bo
3bo2b5o$68bo22b5o2b2obob2o3bo$70bo14bo5bo3bo3bo3bo$69b2o12b5o2b2obob2o
2b5o$77bo5bo3bo3bo3bo5bo7b2o$75b5o2b2obob2o2b5o13bo$61bo7bo5bo3bo3bo3b
o5bo17bo$63bo3b5o2b2obob2o2b5o$62b2o3bo3bo3bo3bo5bo$66b2obob2o2b5o$67b
o3bo5bo$67b5o$8bo60bo$6b5o$o5bo3bo$2bo2b2obob2o$b2o3bo3bo$6b5o$8bo!

However, it does (sadly) have a lot of snowflakes in it, which may be a bit difficult.

Otherwise, you may want to take a look at searching 'splitter' in this thread. I found quite a few snowflake-signal-splitters, as well as other G->2R/2G's, but I don't know how useful those would be.
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 740
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby danny » June 24th, 2018, 9:40 pm

I accidentally made a p67 gun:
x = 16, y = 13, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
7bo$2bo2bo3b2o$o4b2o2bo2bo$2o9b2o2$8b2o$9bo5bo$8b2o2$2o9b2o$o4b2o2bo2b
o$2bo2bo3b2o$7bo!

This is the smallest gun at p67, if I recall correctly, unless there's some smaller adjustable gun...which is very likely.

EDIT: Likely a c/18 partial candidate:
x = 15, y = 7, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
11bo$9b5o$9bo3bo$o2bo2bob2obob2o$9bo3bo$9b5o$11bo!
#C [[ STOP 18 ]]

I'm surprised none of these reactions have yielded puffers yet...but I guess that's my fault for letting the rule die a little over the last couple months ^^;;

EDIT2: Wow, this might be even closer:
x = 14, y = 7, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
10bo$8b5o$o7bo3bo$2bo2bob2obob2o$8bo3bo$8b5o$10bo!
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 740
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby 2718281828 » June 25th, 2018, 7:01 am

danny wrote:I accidentally made a p67 gun:
x = 16, y = 13, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
7bo$2bo2bo3b2o$o4b2o2bo2bo$2o9b2o2$8b2o$9bo5bo$8b2o2$2o9b2o$o4b2o2bo2b
o$2bo2bo3b2o$7bo!

This is the smallest gun at p67, if I recall correctly, unless there's some smaller adjustable gun...which is very likely.

This part close to a stable splitter:
x = 19, y = 12, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
o$3o2b2o$2bo2bo2bo$7b2o9bo$16bo$4b2o10b2o$5bo5bo$4b2o2$7b2o$5bo2bo$5b
2o!


Parts of it can be used to build a reflector
x = 146, y = 36, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
$130bo$64bo62bo4bo$64b3o2b2o58bob2o$66bo2bo2bo55b2o$71b2o9bo$80bo$b2o
65b2o10b2o25b2o18b2o13bo$ob2o65bo5bo32bo19bo11bo$b2o65b2o37b2o18b2o5bo
5b2o2$71b2o$69bo2bo59b2o3b2o$69b2o61bo4bo$84bo49bo4bo$82b5o$82bo3bo$
81b2obob2o2b2o$82bo3bo3bo$82b5o5bo$64bo13bo5bo$62b5o9b5o$62bo3bo9bo3bo
$61b2obob2o7b2obob2o$62bo3bo9bo3bo$62b5o9b5o$64bo13bo3$63b2o13b2o$64bo
13bo$62bo17bo!

but it is useless, as toroidalet 2-R splitter has a smaller repeat time of 110:
x = 73, y = 14, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
27bo$19bo2b2o5bo$12b2o3bo4bo5b2o$10bo2bo3b2o2b2o$10b2o2$b2o10b2o56b2o$
2bo4bo5bo57bo$o12b2o56b2o2$10b2o$10bo2bo3b2o4b2o$12b2o3bo5bo$19bo5bo!
User avatar
2718281828
 
Posts: 342
Joined: August 8th, 2017, 5:38 pm

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby 2718281828 » June 25th, 2018, 8:23 am

danny wrote:I accidentally made a p67 gun:
x = 16, y = 13, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
7bo$2bo2bo3b2o$o4b2o2bo2bo$2o9b2o2$8b2o$9bo5bo$8b2o2$2o9b2o$o4b2o2bo2b
o$2bo2bo3b2o$7bo!

This is the smallest gun at p67, if I recall correctly, unless there's some smaller adjustable gun...which is very likely

reduced it slightly (bounding box by 2 in x-direction):
x = 16, y = 13, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
7bo$5bo3b2o$bo3b2o2bo2bo$11b2o$o$8b2o$9bo5bo$8b2o2$2o9b2o$o4b2o2bo2bo$
2bo2bo3b2o$7bo!
I don't think that there is a smaller p67 gun based on adjustable guns. This one is already quite small.
User avatar
2718281828
 
Posts: 342
Joined: August 8th, 2017, 5:38 pm

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby 2718281828 » June 25th, 2018, 9:01 am

A new family of adjustable R-guns (p4n, n>8), here p36, p40, p44, p48:
x = 39, y = 137, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
9$25bo$27bo$22bo3b2o$24bo6bo$23b2o8bo4$10b2o$11bo4b3o8bobo$9bo2$28bo$
21b2o4b3o$22bo4bobo$20bo7bo5$25bo$27bo2bo$24b3ob3o$25bo2bo$23bo3b2o9$
25bo$27bo$22bo3b2o$24bo6bo$23b2o8bo4$9b2o$10bo4b3o9bobo$8bo2$28bo$27b
3o$27bobo$28bo6$25bo$27bo2bo$24b3ob3o$25bo2bo$23bo3b2o4$25bo$27bo$22bo
3b2o$24bo6bo$23b2o8bo4$8b2o$9bo4b3o10bobo$7bo2$28bo$19b2o6b3o$20bo6bob
o$18bo9bo7$25bo$27bo2bo$24b3ob3o$25bo2bo$23bo3b2o11$25bo$27bo$22bo3b2o
$24bo6bo$23b2o8bo4$7b2o$8bo4b3o11bobo$6bo2$28bo$27b3o$27bobo$28bo8$25b
o$27bo2bo$24b3ob3o$25bo2bo$23bo3b2o!

Other periods might be possible as well using other 180° R-to-G reflectors.
User avatar
2718281828
 
Posts: 342
Joined: August 8th, 2017, 5:38 pm

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby Goldtiger997 » June 25th, 2018, 9:02 am

Don't worry about stable splitters; I came to the fairly obvious realization that the snowflakes could be pushed before being fired off. So here's a demonstration. It's too large to run in LifeViewer, so it should be run in Golly at 10^2, zoomed in at the top:

x = 188, y = 21179, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
27bo$29bo$28b2o3$28bo$26b5o$26bo3bo$25b2obob2o$26bo3bo$26b5o$28bo14$
187bo68$8bo$6b5o$o5bo3bo$2bo2b2obob2o$b2o3bo3bo$6b5o$8bo20bo$27b5o130b
o$27bo3bo132bo$22b2o2b2obob2o130b2o$23bo3bo3bo$21bo5b5o$29bo134bo$162b
5o$43b2o3b2o112bo3bo$28b2o13bo2bo2bo111b2obob2o$28bo13b2ob3ob2o111bo3b
o12bo$30bo131b5o$164bo5bo$168b5o$29bo16bo121bo3bo$21bo5b5o135b2obob2o
2b2o$23bo3bo3bo136bo3bo3bo$22b2o2b2obob2o13bo121b5o5bo$27bo3bo138bo$
27b5o$29bo5bo101bo$33b5o101bo$33bo3bo100b2o$32b2obob2o$33bo3bo$33b5o
101bo$35bo101b5o$20b2o3b2o110bo3bo$20bo2bo2bo109b2obob2o$19b2o5b2o7b2o
100bo3bo12bo$23bo11bo101b5o$22bobo12bo101bo5bo$143b5o$8bo14bo119bo3bo$
o5b5o131b2obob2o2b2o$2bo3bo3bo132bo3bo3bo$b2o2b2obob2o11bo119b5o5bo$6b
o3bo134bo$6b5o$8bo5bo$12b5o112bo$12bo3bo114bo$11b2obob2o112b2o$12bo3bo
$12b5o$14bo115bo$128b5o$128bo3bo$14b2o111b2obob2o$14bo113bo3bo$16bo
111b5o$130bo14bo$143b5o$143bo3bo3b2o$142b2obob2o2bo$143bo3bo5bo$143b5o
$145bo6$142bo$140bo$140b2o3$141bo$139b5o$139bo3bo$138b2obob2o$139bo3bo
$139b5o$124bo16bo$122b5o$117b2o3bo3bo$118bo2b2obob2o$116bo5bo3bo$122b
5o$124bo11$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b
3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo
20$22b3o$22bobo20$22b3o$22bobo26$22b3o$22bobo38$22b3o$22bobo20$22b3o$
22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo
18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo36$23bo$22b3o$22bobo$
23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b
3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo
38$22b3o$22bobo38$22b3o$22bobo21$23bo$22b3o$22bobo$23bo20$22b3o$22bobo
20$22b3o$22bobo8$45b3o$45bobo11$22b3o$22bobo24$23bo$22b3o$22bobo$23bo
11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo
$45b3o$45bobo$46bo108$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$
22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo38$22b3o$22bobo38$22b3o$22bo
bo21$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bob
o11$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$
22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo48$23bo$
22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o
$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo32$22b3o$22bobo38$22b3o$22bobo20$22b3o$22bobo24$23bo$22b3o
$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bob
o$23bo6$46bo$45b3o$45bobo$46bo60$23bo$22b3o$22bobo$23bo17$22b3o$22bobo
20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$
22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo32$22b3o$22bobo38$
22b3o$22bobo20$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$
23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46b
o60$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bob
o20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$
22bobo20$22b3o$22bobo38$22b3o$22bobo38$22b3o$22bobo21$23bo$22b3o$22bob
o$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo15$23bo$22b3o$22bobo
$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo14$22b3o$22bobo24$23b
o$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b
3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b
3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo
20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo32$22b3o$
22bobo38$22b3o$22bobo20$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$
45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$
45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bo
bo20$22b3o$22bobo20$22b3o$22bobo44$22b3o$22bobo38$22b3o$22bobo20$22b3o
$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23b
o18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo48$23bo$22b3o$22bobo
$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bo
bo44$22b3o$22bobo38$22b3o$22bobo20$22b3o$22bobo24$23bo$22b3o$22bobo$
23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$
46bo$45b3o$45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o
$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo44$22b3o$22bobo38$22b3o$22bo
bo20$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$
22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo48$23bo$
22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o
$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo44$22b3o$22bobo38$22b3o$22bobo20$22b3o$22bobo24$23bo$22b3o
$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bob
o$23bo6$46bo$45b3o$45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo
20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$
22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo44$22b3o$22bobo38$
22b3o$22bobo20$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$
23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46b
o48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bob
o20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$
22bobo20$22b3o$22bobo44$22b3o$22bobo38$22b3o$22bobo20$22b3o$22bobo24$
23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$
22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo48$23bo$22b3o$22bobo$23bo17$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bo
bo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo44$22b3o
$22bobo38$22b3o$22bobo20$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o
$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$
45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bo
bo20$22b3o$22bobo20$22b3o$22bobo44$22b3o$22bobo38$22b3o$22bobo20$22b3o
$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23b
o18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo48$23bo$22b3o$22bobo
$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bo
bo50$22b3o$22bobo38$22b3o$22bobo21$23bo$22b3o$22bobo$23bo20$22b3o$22bo
bo20$22b3o$22bobo8$45b3o$45bobo15$23bo$22b3o$22bobo$23bo20$22b3o$22bob
o20$22b3o$22bobo8$45b3o$45bobo14$22b3o$22bobo24$23bo$22b3o$22bobo$23bo
11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo
$45b3o$45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22b
obo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b
3o$22bobo20$22b3o$22bobo20$22b3o$22bobo56$22b3o$22bobo38$22b3o$22bobo
20$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$
22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo48$23bo$
22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o
$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo56$22b3o$22bobo38$22b3o$22bobo20$22b3o$22bobo24$23bo$22b3o
$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bob
o$23bo6$46bo$45b3o$45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo
20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$
22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo56$22b3o$22bobo38$
22b3o$22bobo21$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$
45b3o$45bobo15$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$
45b3o$45bobo14$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$
23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46b
o48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bob
o20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$
22bobo20$22b3o$22bobo56$22b3o$22bobo38$22b3o$22bobo21$23bo$22b3o$22bob
o$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo15$23bo$22b3o$22bobo
$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo14$22b3o$22bobo24$23b
o$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b
3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b
3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo
20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo56$22b3o$
22bobo38$22b3o$22bobo21$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$
22bobo8$45b3o$45bobo11$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$
45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$
45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bo
bo20$22b3o$22bobo20$22b3o$22bobo56$22b3o$22bobo38$22b3o$22bobo21$23bo$
22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo15$23bo$
22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo14$22b3o$
22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo
18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo48$23bo$22b3o$22bobo$
23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b
3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo
68$22b3o$22bobo38$22b3o$22bobo21$23bo$22b3o$22bobo$23bo20$22b3o$22bobo
20$22b3o$22bobo8$45b3o$45bobo15$23bo$22b3o$22bobo$23bo20$22b3o$22bobo
20$22b3o$22bobo8$45b3o$45bobo14$22b3o$22bobo24$23bo$22b3o$22bobo$23bo
11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo
$45b3o$45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22b
obo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b
3o$22bobo20$22b3o$22bobo20$22b3o$22bobo68$22b3o$22bobo38$22b3o$22bobo
21$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo
15$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo
14$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$
22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo48$23bo$
22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o
$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo68$22b3o$22bobo38$22b3o$22bobo21$23bo$22b3o$22bobo$23bo20$
22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo15$23bo$22b3o$22bobo$23bo20$
22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo14$22b3o$22bobo24$23bo$22b3o$
22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo
$23bo6$46bo$45b3o$45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo
20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$
22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo68$22b3o$22bobo38$
22b3o$22bobo21$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$
45b3o$45bobo15$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$
45b3o$45bobo14$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$
23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46b
o48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bob
o20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$
22bobo20$22b3o$22bobo68$22b3o$22bobo38$22b3o$22bobo21$23bo$22b3o$22bob
o$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo15$23bo$22b3o$22bobo
$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo14$22b3o$22bobo24$23b
o$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b
3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b
3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo
20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo68$22b3o$
22bobo38$22b3o$22bobo21$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$
22bobo8$45b3o$45bobo15$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$
22bobo8$45b3o$45bobo14$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$
45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$
45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bo
bo20$22b3o$22bobo20$22b3o$22bobo68$22b3o$22bobo38$22b3o$22bobo21$23bo$
22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo15$23bo$
22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo14$22b3o$
22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo
18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo48$23bo$22b3o$22bobo$
23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b
3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo
68$22b3o$22bobo38$22b3o$22bobo21$23bo$22b3o$22bobo$23bo20$22b3o$22bobo
20$22b3o$22bobo8$45b3o$45bobo15$23bo$22b3o$22bobo$23bo20$22b3o$22bobo
20$22b3o$22bobo8$45b3o$45bobo14$22b3o$22bobo24$23bo$22b3o$22bobo$23bo
11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo
$45b3o$45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22b
obo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b
3o$22bobo20$22b3o$22bobo20$22b3o$22bobo68$22b3o$22bobo38$22b3o$22bobo
21$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo
11$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$
22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo48$23bo$
22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o
$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo32$22b3o$22bobo38$22b3o$22bobo20$22b3o$22bobo24$23bo$22b3o
$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bob
o$23bo6$46bo$45b3o$45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo
20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$
22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo44$22b3o$22bobo38$
22b3o$22bobo21$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$
45b3o$45bobo15$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$
45b3o$45bobo14$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$
23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46b
o42$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bob
o20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$
22bobo20$22b3o$22bobo38$22b3o$22bobo38$22b3o$22bobo20$22b3o$22bobo24$
23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$
22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo42$23bo$22b3o$22bobo$23bo17$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bo
bo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo32$22b3o
$22bobo38$22b3o$22bobo20$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o
$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$
45bobo$46bo48$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bo
bo20$22b3o$22bobo20$22b3o$22bobo44$22b3o$22bobo38$22b3o$22bobo20$22b3o
$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23b
o18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo42$23bo$22b3o$22bobo
$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bo
bo44$22b3o$22bobo38$22b3o$22bobo20$22b3o$22bobo24$23bo$22b3o$22bobo$
23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$
46bo$45b3o$45bobo$46bo42$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o
$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo50$22b3o$22bobo38$22b3o$22bo
bo21$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bob
o15$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo
14$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$
22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo42$23bo$
22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o
$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo56$22b3o$22bobo38$22b3o$22bobo20$22b3o$22bobo24$23bo$22b3o
$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bob
o$23bo6$46bo$45b3o$45bobo$46bo42$23bo$22b3o$22bobo$23bo17$22b3o$22bobo
20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$
22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo38$22b3o$22bobo38$
22b3o$22bobo21$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$22bobo8$
45b3o$45bobo11$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$
23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46b
o108$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bo
bo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o
$22bobo20$22b3o$22bobo50$22b3o$22bobo38$22b3o$22bobo21$23bo$22b3o$22bo
bo$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo15$23bo$22b3o$22bob
o$23bo20$22b3o$22bobo20$22b3o$22bobo8$45b3o$45bobo14$22b3o$22bobo24$
23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23bo18$23bo$
22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo42$23bo$22b3o$22bobo$23bo17$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bo
bo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo56$22b3o
$22bobo38$22b3o$22bobo21$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o
$22bobo8$45b3o$45bobo15$23bo$22b3o$22bobo$23bo20$22b3o$22bobo20$22b3o$
22bobo8$45b3o$45bobo14$22b3o$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$
45bobo6$23bo$22b3o$22bobo$23bo18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$
45bobo$46bo42$23bo$22b3o$22bobo$23bo17$22b3o$22bobo20$22b3o$22bobo20$
22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bobo20$22b3o$22bo
bo20$22b3o$22bobo20$22b3o$22bobo38$22b3o$22bobo38$22b3o$22bobo20$22b3o
$22bobo24$23bo$22b3o$22bobo$23bo11$45b3o$45bobo6$23bo$22b3o$22bobo$23b
o18$23bo$22b3o$22bobo$23bo6$46bo$45b3o$45bobo$46bo!


Here's the slow salvo that I used. It's very likely suboptimal but it demonstrates some useful reactions:

x = 64, y = 292, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
2$17bo3$17b3o$17bobo7$22b3o$22bobo6$22b3o$22bobo5$20b3o$20bobo5$20b3o$
20bobo5$21b3o$21bobo12$20b3o$20bobo3$26b3o$26bobo5$26b3o$26bobo5$26b3o
$26bobo5$26b3o$26bobo5$26b3o$26bobo5$26b3o$26bobo5$26b3o$26bobo5$26b3o
$26bobo5$27b3o$27bobo6$32b3o$32bobo6$32b3o$32bobo5$30b3o$30bobo5$30b3o
$30bobo5$31b3o$31bobo12$30b3o$30bobo3$36b3o$36bobo5$36b3o$36bobo5$36b
3o$36bobo5$36b3o$36bobo5$36b3o$36bobo5$36b3o$36bobo5$36b3o$36bobo5$36b
3o$36bobo5$37b3o$37bobo2$20b3o$20bobo4$24b3o$24bobo4$23b3o$23bobo10$
20b3o$20bobo2$26b3o$26bobo5$26b3o$26bobo5$27b3o$27bobo8$32b3o$32bobo2$
22b3o$22bobo4$27b3o$27bobo11$30b3o$30bobo3$23b3o$23bobo!


Here are the steps that I think need to be taken to construct a geminoid spaceship in Snowflakes:

1. Come up with a better method of duplicating the two widely separated streams and turning one half into two closely packed streams. Something that I think should be done but haven't tried yet is moving the snowflake target round 90 degrees.
2. Find slow salvo recipes for the creation of the above mentioned pattern.
3. Find slow salvo recipes for the destruction of the above mentioned pattern.
4. Create a script to convert those slow salvos into the two-streamed form. (I actually created the demonstration pattern by hand, but these salvos will be much larger)
5. Put everything together.
6. Celebrate.
Things to work on:
  • Work on the snowflakes orthogonoid
User avatar
Goldtiger997
 
Posts: 459
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby AforAmpere » June 25th, 2018, 10:10 am

danny wrote:EDIT: Likely a c/18 partial candidate:

There's also this C/18 extendable part:
x = 7, y = 154, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
3bo$b5o$bo3bo$2obob2o$bo3bo$b5o$3bo2$3bo5$2b3o$2bobo$2b3o4$3bo5$3bo$3b
o$3bo4$3bo4$3bo$b2ob2o$bobobo$2obob2o$3bo3$3bo4$3bo$b5o$bo3bo$2obob2o$
3bo$2b3o2$3bo$2o3b2o$bo3bo2$3bo$b5o$bo3bo$2obob2o$bo3bo$b5o3$2b3o$3bo
2$3bo$b5o$bo3bo$2obob2o$bo3bo$b5o$3bo2$3bo5$2b3o$2bobo$2b3o4$3bo5$3bo$
3bo$3bo4$3bo4$3bo$b2ob2o$bobobo$2obob2o$3bo3$3bo4$3bo$b5o$bo3bo$2obob
2o$3bo$2b3o2$3bo$2o3b2o$bo3bo2$3bo$b5o$bo3bo$2obob2o$bo3bo$b5o3$2b3o$
3bo2$3bo$b5o$bo3bo$2obob2o$bo3bo$b5o$3bo2$3bo5$2b3o$2bobo$2b3o4$3bo!

I haven't found a completion, but I am trying with ntqfind.
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 752
Joined: July 1st, 2016, 3:58 pm

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby danny » June 25th, 2018, 3:40 pm

2718281828 wrote:reduced it slightly (bounding box by 2 in x-direction)

Sorry:
x = 16, y = 13, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
7bo$5bo3b2o$5b2o2bo2bo$11b2o$o$8b2o$9bo5bo$8b2o2$2o9b2o$o4b2o2bo2bo$2b
o2bo3b2o$7bo!


Also, awesome work, goldtiger! Here's, from all directions, slow destructions of each different part (the X is impossible):
x = 128, y = 77, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
86b2o$86bo19b2o$86b2o18bo$106b2o$76b2o$76bo19b2o$76b2o18bo$36b2o58b2o$
b2o3b2o28bo16bo$bo2bo2bo8b2o18b2o13b5o$2ob3ob2o7bo34bo3bo$16b2o32b2obo
b2o$51bo3bo70b2o$26b2o23b5o70bo$4bo21bo26bo62b2o8b2o$26b2o38b2o48bo$
66bo49b2o$4bo61b2o7$16b2o$16bo$16b2o2$2bo33b2o13b2o$3o33bo15bo$o35b2o
12bo$2bo$b2o3bo2bo56b2o$2bo63bo$o45b2o18b2o$3o43bo$2bo43b2o2$26b2o22b
2o$26bo23bo15b2o$26b2o24bo13bo$66b2o3$26b2o$26bo$26b2o2$4bo3$4bo2$36b
2o$16b2o18bo$2ob3ob2o7bo19b2o$bo2bo2bo8b2o28b2o$b2o3b2o38bo$46b2o10$7b
o$7b3o$9bo2bo3bo$7bo5bobo$o2bo3b2o5bo$7bo5bobo$9bo2bo3bo$7b3o$7bo!


Here's a slow salvo for a Z, which may be less costly than building half-carriers (this works in two orientations too):
x = 70, y = 14, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
16b2o$15b2obo$16b2o49b2o$66b2obo$67b2o$10b2o$10bo$o9b2o2$43b2o$32b2o4b
2o3bo17b2o$21b2o4b2o3bo4b2obo2b2o16bo$21bo4b2obo2b2o4b2o21b2o$21b2o4b
2o!


It's still insufficient for two other orientations, hmm
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 740
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby 2718281828 » June 25th, 2018, 5:07 pm

danny wrote:Here's a slow salvo for a Z, which may be less costly than building half-carriers (this works in two orientations too):
x = 70, y = 14, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
16b2o$15b2obo$16b2o49b2o$66b2obo$67b2o$10b2o$10bo$o9b2o2$43b2o$32b2o4b
2o3bo17b2o$21b2o4b2o3bo4b2obo2b2o16bo$21bo4b2obo2b2o4b2o21b2o$21b2o4b
2o!

It's still insufficient for two other orientations, hmm

Some slow salvos for still lifes which can push back a snowflake (like half-carrier and Z)
x = 140, y = 23, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
4$135b2o$79b2o54bo$79bo55b2o$19b2o58b2o44b2o$18b2obo47b2o54bo$19b2o48b
o55b2o$69b2o41bo3b2o14b2o$56bo3b2o14b2o38bo15bo$13b2o45bo15bo39b2o14b
2o$13bo46b2o14b2o$3bo9b2o3$35b2o4b2o43b2o$24b2o4b2o3bo4b2obo42bo$24bo
4b2obo2b2o4b2o43b2o$24b2o4b2o!
User avatar
2718281828
 
Posts: 342
Joined: August 8th, 2017, 5:38 pm

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby danny » June 25th, 2018, 7:47 pm

Perhaps I spoke too soon with my X, here's an extremely inefficient way to destroy one of the Z's, which makes it quite easy to destroy the rest:
x = 130, y = 27, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
48b2o$49bo$48b2o3$59b2o$60bo$59b2o2$2o14b2o14b2o$bo15bo15bo$2o14b2o14b
2o32b2o$8b2o14b2o14b2o25bo$9bo15bo15bo24b2o$8b2o14b2o14b2o40b2o14b2o8b
2o$83bo15bo9bo4b2o$82b2o14b2o8b2o5bo$74b2o14b2o22b2o$75bo15bo30bo$74b
2o14b2o28b3o$120bo$122bo$121b2o3bo2bo$122bo$120bo$120b3o$122bo!

Very nice work on the salvos, ee9, I didn't quite notice that those still lifes could serve that purpose, it's good to see them doing such.
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 740
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby Goldtiger997 » June 26th, 2018, 9:49 am

Thanks for the salvos, danny and 2718281828. However, most of those salvos are not slow salvos. i.e, the gaps between successive spaceships cannot always be as large as desired. Slow salvos are required for this project, but there should be some complex ways of synchronising Gs if need be. Here is a final step for a slow salvo synthesis of the p3 oscillator used in the splitter:

x = 55, y = 132, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
27bo$25b5o$25bo3bo$24b2obob2o$25bo3bo$25b5o$9bo17bo$7b5o$7bo3bo$6b2obo
b2o$7bo3bo$7b5o$9bo4$22bo9bo$20b5o5b5o$20bo3bo2bo2bo3bo$19b2obob2o3b2o
bob2o$20bo3bo5bo3bo$20b5o5b5o$3bo18bo9bo18bo$b5o43b5o$bo3bo43bo3bo$2ob
ob2o41b2obob2o$bo3bo10b3o30bo3bo$b5o10bobo30b5o$3bo32b3o12bo$36bobo4$
16b3o$16bobo$36b3o$36bobo3$18b3o$18bobo$34b3o$34bobo3$18b3o$18bobo$34b
3o$34bobo3$17b3o$17bobo$35b3o$35bobo7$9b3o$9bobo$43b3o$43bobo$15b3o$
15bobo$37b3o$37bobo3$15b3o$15bobo$37b3o$37bobo3$15b3o$15bobo$37b3o$37b
obo3$15b3o$15bobo$37b3o$37bobo3$15b3o$15bobo$37b3o$37bobo3$15b3o$15bob
o$37b3o$37bobo3$15b3o$15bobo$37b3o$37bobo$24b3o$24bobo$28b3o$28bobo$8b
3o$8bobo$44b3o$44bobo18$14b3o$14bobo!


It should be easier from other directions. Perhaps in a redesign (which should be done before too much more slow salvo work is done) those spitters will face a different way
Things to work on:
  • Work on the snowflakes orthogonoid
User avatar
Goldtiger997
 
Posts: 459
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby danny » June 26th, 2018, 4:27 pm

Ah, sorry, for some reason I just assumed that sideways G's could always be annhilated 'slowly', but alas, I was wrong. Here's my most efficient snowflake destruction (a.k.a. not very good XD):
x = 81, y = 21, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
32b2o$31bob2o$32b2o$36b2o20b2o$37bo21bo4b2o$36b2o20b2o5bo$64b2o$77bo$
75b5o$10b2o4b2o3b2o4b2o22b2o22bo3bo$9bob2o4bo2bob2o4bo23bo21b2obob2o$
10b2o4b2o3b2o4b2o22b2o22bo3bo$2o73b5o$bo75bo$2o62b2o$36b2o20b2o5bo$37b
o21bo4b2o$36b2o20b2o$32b2o$31bob2o$32b2o!

A fun reaction based off of it:
x = 50, y = 11, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
2o13b2o10b2o$bo14bo11bo4b2o$2o13b2o10b2o5bo$6b2o25b2o$7bo38bo$6b2o36b
5o$20b2o22bo3bo$21bo21b2obob2o$20b2o22bo3bo$44b5o$46bo!
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 740
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby 2718281828 » June 26th, 2018, 5:05 pm

danny wrote:Ah, sorry, for some reason I just assumed that sideways G's could always be annhilated 'slowly', but alas, I was wrong. Here's my most efficient snowflake destruction (a.k.a. not very good XD):
RLE


Two way for destroying a snowflake using a 6G slow salvo:
x = 75, y = 42, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
6$52b2o5b2o$52bo6bo$19b2o10b2o19b2o5b2o5b2o$6bo12bo11bo34bo$4b5o10b2o
10b2o7b2o24b2o$4bo3bo31bo$3b2obob2o30b2o$4bo3bo$4b5o$6bo12$19b2o10b2o
18b2o4b2o4b2o$6bo12bo11bo19bo5bo5bo$4b5o10b2o10b2o18b2o4b2o4b2o$4bo3bo
$3b2obob2o31b2o$4bo3bo32bo$4b5o32b2o$6bo!

And a 3G way for a getting a front-snowflake-pushback still life (above I used 4G):
x = 45, y = 16, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
4$24b2o6b2o$6bo17bo7bo$4b5o15b2o6b2o$4bo3bo32b2o$3b2obob2o31bo$4bo3bo
32b2o$4b5o$6bo!

Edit1:
Slightly better snowflake destruction (5G):
x = 36, y = 15, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
3$10b2o4b2o$4bo5bo5bo$2b5o3b2o4b2o$2bo3bo16b2o$b2obob2o15bo$2bo3bo16b
2o7b2o$2b5o11b2o12bo$4bo13bo13b2o$18b2o!

10G for a side- and back-snowflake-pushback (3/4 snow-flake) still life and a Z out of it:
x = 134, y = 31, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
3$52b2o$52bo$19b2o10b2o19b2o36b2o$6bo12bo11bo26b2o4b2o4b2o4b2o4b2o6bo$
4b5o10b2o10b2o7b2o16bo5bo5bo5bo5bo7b2o$4bo3bo31bo17b2o4b2o4b2o4b2o4b2o
$3b2obob2o30b2o$4bo3bo$4b5o$6bo4$127b2o$52b2o73bo$52bo74b2o$19b2o10b2o
19b2o36b2o12b2o$6bo12bo11bo26b2o4b2o4b2o4b2o4b2o6bo13bo$4b5o10b2o10b2o
7b2o16bo5bo5bo5bo5bo7b2o12b2o$4bo3bo31bo17b2o4b2o4b2o4b2o4b2o$3b2obob
2o30b2o$4bo3bo$4b5o$6bo!

Similarly, the sideways hooked snowflake:
x = 49, y = 13, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
$25b2o5b2o5b2o5b2o$10b2o13bo6bo6bo6bo$10bo14b2o5b2o5b2o5b2o$10b2o6b2o$
5bo12bo$3b5o10b2o$3bo3bo$2b2obob2o$3bo3bo$3b5o$5bo!

And not sure if it is relevant but 4G for a snowflake pushback (without sending a G back) and 6G for a side-way push:
x = 29, y = 12, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
2$10b2o4b2o$4bo5bo5bo8b2o$2b5o3b2o4b2o7bo$2bo3bo18b2o$b2obob2o$2bo3bo$
2b5o11b2o$4bo13bo$18b2o!
x = 60, y = 20, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
5$5bo$3b5o$3bo3bo$2b2obob2o$3bo3bo$3b5o10b2o$5bo12bo38b2o$10b2o6b2o26b
2o9bo$10bo14b2o5b2o12bo10b2o$10b2o13bo6bo13b2o$25b2o5b2o!

Edit2:
improved 3/4 snowflake (7G) and Z (9G) on both directions:
x = 119, y = 70, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
6$20b2o4b2o53b2o$7bo12bo5bo54bo$5b5o10b2o4b2o53b2o$5bo3bo31b2o$4b2obob
2o22b2o6bo$5bo3bo23bo7b2o9b2o6b2o$5b5o23b2o17bo7bo10b2o$7bo44b2o6b2o9b
o$71b2o12$20b2o4b2o53b2o$7bo12bo5bo54bo$5b5o10b2o4b2o53b2o$5bo3bo31b2o
$4b2obob2o22b2o6bo$5bo3bo23bo7b2o9b2o6b2o$5b5o23b2o17bo7bo10b2o18b2o$
7bo44b2o6b2o9bo19bo$71b2o18b2o$113b2o$113bo$113b2o9$20b2o4b2o53b2o$7bo
12bo5bo54bo$5b5o10b2o4b2o53b2o$5bo3bo31b2o$4b2obob2o22b2o6bo$5bo3bo23b
o7b2o9b2o6b2o$5b5o23b2o17bo7bo10b2o$7bo44b2o6b2o9bo$71b2o4$91b2o$91bo$
91b2o2$108b2o$108bo$108b2o!


Edit3:
All 3 types of reflectors: 5G front, 13G sideways, 16 backwards:
x = 149, y = 74, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
5$18b2o6b2o$10bo7bo7bo18b2o$8b5o5b2o6b2o17bo12b2o$8bo3bo22b2o8b2o11bo$
7b2obob2o21bo22b2o$8bo3bo22b2o$8b5o$10bo11$23b2o4b2o53b2o$10bo12bo5bo
54bo$8b5o10b2o4b2o53b2o$8bo3bo31b2o$7b2obob2o22b2o6bo$8bo3bo23bo7b2o9b
2o6b2o$8b5o23b2o17bo7bo10b2o$10bo44b2o6b2o9bo$74b2o4$94b2o36b2o$94bo
18b2o4b2o11bo$94b2o17bo5bo12b2o$113b2o4b2o4$110b2o$110bo$110b2o10$98b
2o5b2o5b2o5b2o$83b2o13bo6bo6bo6bo$83bo14b2o5b2o5b2o5b2o$57b2o4b2o18b2o
6b2o35b2o5b2o$57bo5bo8b2o17bo36bo6bo6b2o$19b2o36b2o4b2o7bo18b2o35b2o5b
2o5bo$10bo8bo14b2o36b2o68b2o$8b5o6b2o13bo$8bo3bo21b2o$7b2obob2o51b2o
67b2o$8bo3bo52bo68bo$8b5o52b2o67b2o$10bo!


Edit4:
for the p3 we don't have to use the complicated 2Z-version - we can use the 2-snowflakes version:
x = 279, y = 37, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
5$255b2o$255bo$255b2o$243b2o$243bo$243b2o$152b2o15b2o47b2o$152bo16bo
48bo$152b2o6b2o7b2o47b2o$160bo$160b2o47b2o$119b2o88bo$59b2o4b2o4b2o4b
2o4b2o4b2o4b2o4b2o16bo89b2o$59bo5bo5bo5bo5bo5bo5bo5bo17b2o$59b2o4b2o4b
2o4b2o4b2o4b2o4b2o4b2o$194b2o$17b2o5b2o83b2o18b2o6b2o6b2o47bo68b2o11b
2o$17bo6bo17b2o65bo19bo7bo7bo34b2o12b2o67bo12bo$17b2o5b2o4b2o4b2o4bo
12b2o52b2o18b2o6b2o6b2o33bo82b2o11b2o$8bo21bo5bo5b2o11bo124b2o$6b5o19b
2o4b2o17b2o$6bo3bo$5b2obob2o$6bo3bo$6b5o$8bo!

and its destruction:
x = 117, y = 112, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
9$7bo$5b5o$5bo3bo10b2o$4b2obob2o9bo67b2o$5bo3bo10b2o66bo5b2o$5b5o78b2o
4bo$7bo86b2o$11bo$8bobo2bo$11bo36b2o10b2o36b2o$7bo27b2o11bo11bo37bo$5b
5o25bo12b2o10b2o7b2o27b2o$5bo3bo25b2o32bo$4b2obob2o58b2o10b2o6b2o$5bo
3bo71bo7bo$5b5o71b2o6b2o$7bo27$23b2o$11bo11bo$23b2o$10bobo55b2o10b2o
18b2o4b2o4b2o$6bo4bo4bo28b2o21bo11bo19bo5bo5bo$4b5o5b5o26bo22b2o10b2o
18b2o4b2o4b2o$4bo3bo2bo2bo3bo26b2o13b2o$3b2obob2o3b2obob2o40bo29b2o$4b
o3bo5bo3bo41b2o28bo$4b5o5b5o71b2o$6bo9bo18$20b2o4b2o$11bo8bo5bo$9b5o6b
2o4b2o$9bo3bo80b2o$8b2obob2o20b2o57bo$9bo3bo21bo50b2o6b2o$9b5o21b2o49b
o$11bo31b2o41b2o$7bo35bo$5bo2bobo32b2o$7bo$11bo$9b5o$9bo3bo64b2o$8b2ob
ob2o63bo$9bo3bo64b2o$9b5o$11bo51b2o4b2o17b2o4b2o4b2o$63bo5bo18bo5bo5bo
$63b2o4b2o17b2o4b2o4b2o!
User avatar
2718281828
 
Posts: 342
Joined: August 8th, 2017, 5:38 pm

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby danny » June 26th, 2018, 10:40 pm

On a vastly off topic, and a bit of a lighter one at that, 1xN constructions! Of course we have five cells for the glider bouncer, found by A for Awesome:
x = 10, y = 1, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
obob2o3bo!


However, newly found by yours truly is this 8-cell almost-puffer predecessor:
x = 18, y = 1, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
obo2bobo2bo2bobobo!

As well as this 6-cell R-flotilla predecessor:
x = 14, y = 1, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
o2bobo2bobo2bo!

And a slightly longer lasting almost-puffer predecessor at 9 cells:
x = 20, y = 1, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
obobo2bobo2bo2bobobo!

I have not found linear growth. Here is a curiosity that creates a pseudo still life:
x = 20, y = 3, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
2obobo2$14bobob2o!



Here is a 1x146 methuselah, 28-cells, and 1039861 generations:
x = 146, y = 1, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
obob2o3bo8bobo6bobo6bobo6bobo6bobo6bobo6bobo6bobo6bobo6bobo4bo36bobo!
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 740
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Postby 2718281828 » June 27th, 2018, 3:11 am

danny wrote:I have not found linear growth. Here is a curiosity that creates a pseudo still life:
x = 20, y = 3, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
2obobo2$14bobob2o!


13 and 12 cell linear growth, from the catagolue:
x = 103, y = 23, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
11$10b4obobobo2bobo2bo2bobobo35bobo2bobo2bo2bobob2o3b2obo!

And a gun-type 1-dimensional linear growth:
x = 44, y = 1, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
3obob4ob6obobobob5obob2o2bo2bobobo!

And something related to this off-topic:
8cell linear growth:
x = 14, y = 6, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e
o2bobo2bobo2bo5$6bobo!
User avatar
2718281828
 
Posts: 342
Joined: August 8th, 2017, 5:38 pm

PreviousNext

Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 2 guests