## Arcane Circuitry (B2ci3aikr/S1e2-a3i)

For discussion of other cellular automata.

### Arcane Circuitry (B2ci3aikr/S1e2-a3i)

This rule might have potential. I'm not sure though.

`x = 10, y = 18, rule = B2ci3aikr/S1e2-a3i8b2o2\$6bo\$5bobo\$4bo3bo\$5bobo\$6bo2\$4bo\$3bobo\$2bo3bo\$3bobo\$4bo4\$bo\$3o!`

`x = 29, y = 15, rule = B2ci3aikr/S1e2-a3i21b2o5bo\$28bo\$25bo\$3b2o19bobo\$7bo10bo4bo3bo\$6bobo8bobo4bobo\$5bo3bo3bo2bo3bo4bo\$6bobo3bobo2bobo7b2o\$3bo3bo3bo3bo2bo\$2bobo7bobo\$bo3bo2bo4bo\$2bobo3bo\$3bo2\$2o!`
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik

Posts: 3248
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

### Re: Arcane Circuitry (B2ci3aikr/S1e2-a3i)

I don't know about potential, but it has all oscillators with periods ≥36 due to this repeat time 36 signal turn reaction:
`x = 13, y = 13, rule = B2ci3aikr/S1e2-a3i7bo\$7bo\$2o\$4bo\$3bobo\$2bo3bo3bo\$3bobo3bobo\$4bo3bo3bo\$2bo6bobo\$bobo6bo\$o3bo\$bobo\$2bo!`

various low-period oscillators (including p36 and p37 as a demonstration of the signal turns) and a 2c/4 ship:
`x = 231, y = 86, rule = B2ci3aikr/S1e2-a3i37bo47bo\$10bo26bo46b3o\$10bo19b2o2bo\$3b2o27b2obo47b2obo\$16bo15bo3bo50bo\$7bo8bo16bobo4bo\$34bo4bobo\$7bo6bo23bo3bo4bo\$27b2o10bobo4bobo\$2o12bo17bo7bo4bo6bo\$5bo25bobo12bo6bo\$17b2o11bo3bo2bo9bo6bo3bo\$5bo25bobo2bobo12bobo3bobo\$32bo2bo3bo4bo7bo3bo3bo3bo\$10bo18bo6bobo4bobo11bobo3bobo\$2bo26bo7bo4bo3bo3bo7bo3bo3bo4bo\$2bo7bo32bobo3bobo11bobo4bo\$14b2o28bo3bo3bo3bo7bo4bo\$8bo40bobo3bobo12bo6bo\$8bo41bo3bo3bo19bo3bo\$55bobo2b3o14bo3bobo\$56bo3bobo13bo3bo3bo3bo\$60b3o4b3o11bobo3bobo\$67bobo4bo7bo3bo3bo\$67b3o3bobo11bobo4bo\$72bo3bo3bo7bo4bobo\$73bobo3bobo\$74bo3bo3bo17bobo3bo\$79bobo3bo15bo3bobo\$80bo3b3o17bo3bo3bo\$85bo6bo12bobo3bobo\$91b3o4bo7bo3bo3bo\$92bo4bobo11bobo4bo\$7bo5bo4b2o4bo6b2o9b2o8b2o42bo3bo3bo7bo\$7bo5bo10bo72bobo3bobo12bo6bo\$10bo10bo12bo10bo9bo42bo3bo3bo23bo\$9bobo8bobo10bobo8bobo7bobo46bobo19bo3bobo\$8bo3bo6bo3bo8bo3bo6bo3bo5bo3bo46bo3b3o17bo3bo3bo\$9bobo8bobo10bobo8bobo7bobo72bobo3bobo\$7bo2bo2bo4bo2bo2bo6bo2bo2bo3b2o2bo9bo59b3o4bo7bo3bo3bo\$7bo5bo4bo5bo6bo5bo9b2o3b2o67bobo11bobo\$120bo3bo3bo7bo4b3o\$121bobo3bobo\$122bo3bo3bo17b3o3bo\$127bobo3bo19bobo\$128bo23bo3bo3bo\$133bo6bo12bobo3bobo\$146bo7bo3bo3bo\$51bo88bo4bobo11bobo4bo\$50bobo91bo3bo3bo7bo4b3o\$49bo3bo91bobo3bobo12bo6bo\$5b2o3b2o11bobo22bo5bo91bo3bo3bo17b3o3bo\$4bo7bo9bobo22bo3bo3bo95bobo3bo15bo3bobo\$5b2o3b2o34bo3bobo3bo95bo3bobo17bo3bo3bo\$47bo3bo3bo121bobo3bobo\$48bo5bo108bobo4bo7bo3bo3bo\$49bo3bo110bo4bobo11bobo3b3o\$50bobo115bo3bo3bo7bo4bobo\$51bo117bobo3bobo11b3o4b3o\$170bo3bo3bo3bo13bobo3bo\$175bobo3bo14b3o2bobo\$176bo3bo19bo3bo3bo\$181bo6bo12bobo3bobo\$5b2o3b3o176bo4bo7bo3bo3bo3bo\$4bo2bo180bo4bobo11bobo3bobo\$5b2o3b3o174bo4bo3bo3bo7bo3bo3bo4bo7bo\$193bobo3bobo11bobo4bobo6bo\$194bo3bo3bo3bo7bo4bo3bo2bo\$199bobo3bobo12bobo2bobo\$200bo3bo6bo9bo2bo3bo\$205bo6bo12bobo\$206bo6bo4bo7bo\$210bobo4bobo10bo\$211bo4bo3bo9bo\$217bobo4bo\$218bo4bobo\$222bo3bo\$9bo13bo199bob2o\$224bo2bo\$11bo9bo198b2o5bo\$5b2o19b2o\$4bo6bo9bo6bo\$5b2o19b2o\$11bo9bo2\$9bo13bo!`

in case you want to know the periods, they include p2, p5, p6, p8, p14-18 pushers, and p64. This rule may be omniperiodic but i'm not sure.
Beehives are useful catalysts.
`x = 4, y = 2, rule = B3/S23ob2o\$2obo!`

(Check Gen 2)

toroidalet

Posts: 912
Joined: August 7th, 2016, 1:48 pm
Location: my computer

### Re: Arcane Circuitry (B2ci3aikr/S1e2-a3i)

EDIT/Note: These oscillators are from a variant rule with S3c by mistake.

Some possibly interesting oscillators from apgsearch:

p8:
`x = 7, y = 16, rule = B2ci3aikr/S1e2-a3ci3bo\$2bobo\$bo3bo\$2bobo\$3bo\$2b3o\$3bo\$2bobo\$bobobo\$bo3bo2\$o2bo2bo\$obobobo\$2bobo\$2bobo\$3bo!`

p20:
`x = 6, y = 12, rule = B2ci3aikr/S1e2-a3cio\$o2bo\$3bo\$3bobo\$5bo2\$o\$o\$o2\$2bo\$2bo!`

p27:
`x = 11, y = 9, rule = B2ci3aikr/S1e2-a3ci3b2o\$2bo4bo\$bobo3bo\$obo4bo\$o2\$9b2o\$3bo\$3bo!`

This rule also supports the same one-dimensional XOR oscillators as B2ci3ai/S2-i3, which is logical considering the similarities between their rulestrings.
Last edited by 77topaz on June 27th, 2018, 2:51 am, edited 1 time in total.

77topaz

Posts: 1340
Joined: January 12th, 2018, 9:19 pm

### Re: Arcane Circuitry (B2ci3aikr/S1e2-a3i)

EDIT/Note: These oscillators are from a variant rule with S3c by mistake.

A new p7 oscillator from apgsearch:
`x = 9, y = 10, rule = B2ci3aikr/S1e2-a3ci4bo\$o2bobo2bo\$obo3bobo\$bo5bo2\$4bo\$4bo\$3bobo\$3bobo\$4bo!`

Also, a different p20:
`x = 12, y = 13, rule = B2ci3aikr/S1e2-a3ci8b2o\$10bo\$11bo\$11bo\$2o6bo\$2bo\$bobo4bo\$2bobo\$3bobo\$4bo\$bobo\$obo\$bo!`

EDIT: p11:
`x = 9, y = 4, rule = B2ci3aikr/S1e2-a3cibobobobo\$obobobobo\$obobobobo\$bobobobo!`

p38:
`x = 11, y = 11, rule = B2ci3aikr/S1e2-a3cio9bo\$o4bo4bo\$4bobo\$3bobobo\$4bobo\$4bobo\$4bobo3\$o4bo4bo\$o9bo!`

A nicely sparky p8:
`x = 11, y = 10, rule = B2ci3aikr/S1e2-a3cio9bo\$o9bo\$4bobo\$4bobo\$4bobo3\$5bo\$4bobo\$5bo!`

And a large, D8_1-symmetrical p7:
`x = 25, y = 25, rule = B2ci3aikr/S1e2-a3ci12bo\$11bobo\$11bobo\$12bo\$11b3o\$11b3o\$11bobo\$11b3o\$11b3o\$11b3o2\$b2ob6o5b6ob2o\$o2b3ob3o5b3ob3o2bo\$b2ob6o5b6ob2o2\$11b3o\$11b3o\$11b3o\$11bobo\$11b3o\$11b3o\$12bo\$11bobo\$11bobo\$12bo!`

EDIT 2: a non-diamond-hassling p16:
`x = 6, y = 13, rule = B2ci3aikr/S1e2-a3cib2o\$o\$bo3bo\$obo2bo\$2bo\$3bo\$bo2bo\$3bo\$2bo\$obo2bo\$bo3bo\$o\$b2o!`

And a large, D8_1-symmetrical p20:
`x = 31, y = 31, rule = B2ci3aikr/S1e2-a3ci15bo\$14bobo\$13bobobo\$13bo3bo2\$9b2o9b2o4\$5bo5bobo3bobo5bo\$5bo19bo\$9bo11bo2\$2b2o5bo11bo5b2o\$bo27bo\$obo25bobo\$bo27bo\$2b2o5bo11bo5b2o2\$9bo11bo\$5bo19bo\$5bo5bobo3bobo5bo4\$9b2o9b2o2\$13bo3bo\$13bobobo\$14bobo\$15bo!`

EDIT 3: a different, dual-diamond-hassling p16 (there's a similar dual-hassler at p17):
`x = 16, y = 7, rule = B2ci3aikr/S1e2-a3ci2o12b2o2\$4bo2b2o2bo2\$4bo6bo\$o14bo\$o14bo!`

Plus, another p7 with an amusing apgcode (xp7_3weeeaeweaeeew3):
`x = 18, y = 4, rule = B2ci3aikr/S1e2-a3cio16bo\$o2b5o2b5o2bo\$3b3obo2bob3o\$3b5o2b5o!`
Last edited by 77topaz on June 27th, 2018, 2:51 am, edited 1 time in total.

77topaz

Posts: 1340
Joined: January 12th, 2018, 9:19 pm

### Re: Arcane Circuitry (B2ci3aikr/S1e2-a3i)

I just realised that all those oscillators in my last two posts were actually in a different rule than the OP - B2ci3aikr/S1e2-a3ci. I'd been apgsearching the wrong rule...

Here are some things from apgsearch in the correct rule:

A definitely Snowflakes-esque 2c/27 orthogonal spaceship:
`x = 11, y = 9, rule = B2ci3aikr/S1e2-a3ibo\$3o\$bo\$9bo\$8bobo\$9bo\$bo\$3o\$bo!`

A p20 diamond hassler:
`x = 9, y = 11, rule = B2ci3aikr/S1e2-a3i4bo\$3bobo\$3bobo\$4bo3\$4bo2\$4bo3bo\$o7bo\$o!`

A p24 involving a p8 and a domino hassling a diamond:
`x = 12, y = 14, rule = B2ci3aikr/S1e2-a3ibo\$obo\$obo\$bo3\$obo\$obo\$obo2\$10b2o\$5b3o\$5bobo\$5b3o!`

A dual-diamond p13:
`x = 11, y = 9, rule = B2ci3aikr/S1e2-a3i5bo3b2o\$5bo\$5bo\$bo2\$9bo\$5bo\$5bo\$2o3bo!`

EDIT: A D4_x4-symmetric p10:
`x = 6, y = 6, rule = B2ci3aikr/S1e2-a3ib3o\$o\$o4bo\$o4bo\$5bo\$2b3o!`

A large, D8_1 symmetric p9:
`x = 21, y = 21, rule = B2ci3aikr/S1e2-a3i10bo\$9bobo\$9bobo\$10bo4\$9b3o2\$b2o4bo5bo4b2o\$o2bo3bo5bo3bo2bo\$b2o4bo5bo4b2o2\$9b3o4\$10bo\$9bobo\$9bobo\$10bo!`

EDIT 2: A p12 diamond hassler:
`x = 9, y = 10, rule = B2ci3aikr/S1e2-a3i2o5b2o\$4bo2\$4bo3\$o3bo3bo\$obobobobo\$2bobobo\$2bo3bo!`

A non-diamond-hassling p15:
`x = 11, y = 14, rule = B2ci3aikr/S1e2-a3i2bo5bo\$2bo5bo2\$3bo3bo\$3bo3bo2\$o2bo3bo2bo\$o2bo3bo2bo2\$3bo3bo\$3bo3bo2\$2bo5bo\$2bo5bo!`

A p33 consisting of a p7 and a diamond hassling and phase-shifting each other:
`x = 7, y = 15, rule = B2ci3aikr/S1e2-a3io5bo\$o5bo4\$2b3o2\$3bo2\$3bo2\$obobobo\$obobobo\$2bobo\$3bo!`

A p34 dual-diamond-hassler:
`x = 9, y = 13, rule = B2ci3aikr/S1e2-a3io7bo\$o7bo4\$bo3bo\$o3bo\$bo3bo4\$o7bo\$o7bo!`

EDIT 3: A p36 with just a single diamond:
`x = 8, y = 10, rule = B2ci3aikr/S1e2-a3ibo\$bo5bo\$7bo\$3bo2\$3bo2\$o\$o5bo\$6bo!`

77topaz

Posts: 1340
Joined: January 12th, 2018, 9:19 pm