Some fast 2 minutes sketch:

Code: Select all

`x = 948, y = 328, rule = HexBuss`

BA$A.A4$6.BA923.AB$5.2BA182.BA741.A$5.2AB.A179.2B.A$8.B.A178.A.AB550.

A180.AB$7.A.B181.2B733.A$8.A3.A180.A732.A3.AB$11.BAB178.A739.AB$10.4A

735.BA179.A2B.A$11.BAB188.2A138.AB404.2BA175.AB2.3AB$19.2A183.B139.A

403.4A174.A.4AB$21.B172.A9.A139.A192.AB211.A177.BAB14.AB$21.A172.A

344.AB388.3A13.A.A$195.BA145.AB193.A2B.A387.3A$344.AB191.A2.A383.A$

14.A328.AB.A191.2B202.BA180.B.A.2A6.A$14.A328.A.B171.A2.BA2.BA2.BA2.B

A2.BA2.A201.A182.3ABAB4.A.A$15.BA201.2A123.ABA174.A3.A3.A3.A3.B.3B

202.A182.A.3A5.AB$220.B119.AB.2ABA190.2A.A193.BA191.B2AB4.AB$220.A

119.A.2AB2A386.2B.A14.BA$341.A.A.A186.A200.A.2A14.A.A$342.6A184.B201.

ABA15.A$344.B.A.B184.A382.A$337.2A4.BA.A.A194.A192.A179.B23.A$337.B2A

5.A182.A13.A.A.AB369.A21.A.A$338.3A10.A176.B7.A4.A.AB.A.A389.A.AB$

339.BA11.B176.A7.BA.AB397.AB$202.A149.A$202.A321.A$203.BA149.2A273$

365.A$365.A.A$366.BA2$363.BA4.AB$363.A7.A3$381.A$363.A$363.B5.2B$364.

A5.2A5.A$370.A.B5.B$371.2A5.A$367.A4.A$368.BA.AB5$367.A10.A$368.BA7.A

B!

And the question: can you make some pattern in HexBuss to not explode?

Code: Select all

`@RULE HexBuss`

Author: Andrew Trevorrow (andrew@trevorrow.com), Oct 2009.

The following Python transition function implements Frank Buss's

3-state rule on a hexagonal grid, as described here:

http://www.frank-buss.de/automaton/hexautomaton.html

The @TREE data was created by copying the Python code to the

clipboard and then running Golly's make-ruletree.py script.

-------------------- start copying

name = "HexBuss"

n_states = 3

n_neighbors = 8

def transition_function(s):

# s[0..8] are cell states in the order NW, NE, SW, SE, N, W, E, S, C

# but we ignore the NE and SW corners to emulate a hexagonal grid:

# NW N NE NW N

# W C E -> W C E

# SW S SE S SE

# set n1 and n2 to the number of neighbors in states 1 and 2

n1 = 0

n2 = 0

for i in xrange(8):

# ignore s[1] and s[2]

if i < 1 or i > 2:

if s[i] == 1: n1 += 1

if s[i] == 2: n2 += 1

if s[8] == 0 and n1 == 0 and n2 == 1:

return 2

elif n1 == 1 and n2 == 1:

return 1

elif n2 == 2:

return 1

elif n2 == 3:

return 2

else:

return 0

-------------------- end copying

@TREE

# Automatically generated by make-ruletree.py.

num_states=3

num_neighbors=8

num_nodes=44

1 0 0 0

1 2 0 0

2 0 0 1

1 1 1 1

2 0 0 3

2 1 3 3

3 2 4 5

2 0 0 0

2 3 0 3

3 4 7 8

1 2 2 2

2 3 3 10

3 5 8 11

4 6 9 12

3 7 7 4

3 8 4 11

4 9 14 15

2 10 10 0

3 11 11 17

4 12 15 18

5 13 16 19

3 4 4 11

4 14 14 21

4 15 21 18

5 16 22 23

3 17 17 7

4 18 18 25

5 19 23 26

6 20 24 27

7 28 28 28

8 29 29 29

4 21 21 18

5 22 22 31

5 23 31 26

6 24 32 33

7 34 34 34

8 35 35 35

3 7 7 7

4 25 25 37

5 26 26 38

6 27 33 39

7 40 40 40

8 41 41 41

9 30 36 42

@COLORS

0 48 48 48

1 0 255 255 (cyan)

2 255 255 0 (yellow)

@ICONS

hexagons