ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Star Wars Rule

For discussion of other cellular automata.

Re: Star Wars Rule

Postby knightlife » May 25th, 2011, 7:05 am

This programmable gun uses a signal loop (more compact than a glider loop):
x = 28, y = 11, rule = 345/2/4
14.A$13.3A6.A$14.A6.3A$22.A$26.A$25.3A$26.A$3.CBA9.CBA$.A2.A2.A2.A2.A
2.A2.A2.A$24A$.A2.A2.A2.A2.A2.A2.A2.A!

The memory loop is undisturbed as gliders are created from the signals as they pass by.
Minimum spacing for the signals is p12 as shown.

A slight variant produces two gliders at a time:
x = 28, y = 11, rule = 345/2/4
15.A$14.3A5.A$15.A5.3A$22.A$26.A$25.3A$26.A$3.CBA9.CBA$.A2.A2.A2.A2.A
2.A2.A2.A$24A$.A2.A2.A2.A2.A2.A2.A2.A!


Here signals are extracted instead of gliders, making a true signal splitter:
x = 34, y = 17, rule = 345/2/4
15.A$14.3A15.A$15.A15.3A$15.A16.A$14.2A16.A$15.A16.2A$15.A16.A$14.3A
5.A9.A$15.A5.3A8.2A$22.A9.A$26.A5.A$25.9A$26.A2.A2.A$3.CBA9.CBA$.A2.A
2.A2.A2.A2.A2.A2.A$24A$.A2.A2.A2.A2.A2.A2.A2.A!


Without the loop, convert a signal to/from a glider with more variants:
x = 62, y = 16, rule = 345/2/4
56.A$55.3A$48.A7.A$47.3A6.A$15.A32.A6.3A$14.3A39.A$15.A6.A37.A$15.A5.
3A35.3A$14.3A5.A37.A$15.A10.A10.CBA$25.3A7.A2.A2.A2.A2.A2.A2.A2.A$26.
A7.24A$3.CBA29.A20.A$.A2.A2.A2.A2.A2.A2.A2.A$24A$.A20.A!
knightlife
 
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Star Wars Rule

Postby 12Glider » June 20th, 2011, 3:14 pm

Arc ladder
x = 88, y = 88, rule = 345/2/4
2.A$.3A$2A.2A$.2A.2A$2.2A.2A$3.2A.2A$4.2A.2A$5.2A.2A$6.2A.2A$7.2A.2A$
8.2A.2A$9.2A.2A$10.2A.2A$11.2A.2A$12.2A.2A$13.2A.2A$14.2A.2A$15.2A.2A
$16.2A.2A$17.2A.2A$18.2A.2A$19.2A.2A$20.2A.2A$21.2A.2A$22.2A.2A$23.2A
.2A$24.2A.2A$25.2A.2A$26.2A.2A$27.2A.2A$28.2A.2A$29.2A.2A$30.2A.2A$
31.2A.2A$32.2A.2A$33.2A.2A$34.2A.2A$35.2A.2A$36.2A.2A$37.2A.2A$38.2A.
2A$39.2A.2A$40.2A.2A$41.2A.2A$42.2A.2A$43.2A.2A$44.2A.2A$45.2A.2A$46.
2A.2A$47.2A.2A$48.2A.2A$49.2A.2A$50.2A.2A$51.2A.2A$52.2A.2A$53.2A.2A$
54.2A.2A$55.2A.2A$56.2A.2A$57.2A.2A$58.2A.2A$59.2A.2A$60.2A.2A$61.2A.
2A$62.2A.2A$63.2A.3A.AB13.A$64.2A.A2.A.C11.BCB$65.2A.4A13.C$65.A.A.A.
A12.3A$67.2A.2A.A.B7.BC2B$65.3A.A.4A.C5.C2.A.C$65.B.4A.A.2A5.B.4A$66.
C3.2A.A.2ABAC2.A2.A.A$69.2A.A.A.A2.5A2.B$70.2A.3A2.2A.A.2AC$69.B.2A.A
.2A.2A.A$70.C.2A.A.3A.2AB$72.B2.2A.A.2A$72.A.A.2A.2A.2A.B$72.C4A.A.2A
.2AC$73.A.A.4A.A.A$71.B.2A.2A.A.2A.A$70.C.2A.2A.A.2A.3A.C$69.B.A.2A.B
.2A2.A.A$66.B.AC.A2.A4.5A.C$65.A2CAB3A.C3.BC2.A.CB$66.B.AB.A.B$70.C.A
9.C!
Image

Why hasn't a glider exploded yet?
User avatar
12Glider
 
Posts: 79
Joined: December 17th, 2010, 4:56 pm

Re: Star Wars Rule

Postby cloudy197 » June 22nd, 2011, 10:26 am

12Glider wrote:Arc ladder
x = 88, y = 88, rule = 345/2/4
2.A$.3A$2A.2A$.2A.2A$2.2A.2A$3.2A.2A$4.2A.2A$5.2A.2A$6.2A.2A$7.2A.2A$
8.2A.2A$9.2A.2A$10.2A.2A$11.2A.2A$12.2A.2A$13.2A.2A$14.2A.2A$15.2A.2A
$16.2A.2A$17.2A.2A$18.2A.2A$19.2A.2A$20.2A.2A$21.2A.2A$22.2A.2A$23.2A
.2A$24.2A.2A$25.2A.2A$26.2A.2A$27.2A.2A$28.2A.2A$29.2A.2A$30.2A.2A$
31.2A.2A$32.2A.2A$33.2A.2A$34.2A.2A$35.2A.2A$36.2A.2A$37.2A.2A$38.2A.
2A$39.2A.2A$40.2A.2A$41.2A.2A$42.2A.2A$43.2A.2A$44.2A.2A$45.2A.2A$46.
2A.2A$47.2A.2A$48.2A.2A$49.2A.2A$50.2A.2A$51.2A.2A$52.2A.2A$53.2A.2A$
54.2A.2A$55.2A.2A$56.2A.2A$57.2A.2A$58.2A.2A$59.2A.2A$60.2A.2A$61.2A.
2A$62.2A.2A$63.2A.3A.AB13.A$64.2A.A2.A.C11.BCB$65.2A.4A13.C$65.A.A.A.
A12.3A$67.2A.2A.A.B7.BC2B$65.3A.A.4A.C5.C2.A.C$65.B.4A.A.2A5.B.4A$66.
C3.2A.A.2ABAC2.A2.A.A$69.2A.A.A.A2.5A2.B$70.2A.3A2.2A.A.2AC$69.B.2A.A
.2A.2A.A$70.C.2A.A.3A.2AB$72.B2.2A.A.2A$72.A.A.2A.2A.2A.B$72.C4A.A.2A
.2AC$73.A.A.4A.A.A$71.B.2A.2A.A.2A.A$70.C.2A.2A.A.2A.3A.C$69.B.A.2A.B
.2A2.A.A$66.B.AC.A2.A4.5A.C$65.A2CAB3A.C3.BC2.A.CB$66.B.AB.A.B$70.C.A
9.C!

Smaller one (and also a plus used to make this a gun):
x = 77, y = 84, rule = 345/2/4
10.A$9.3A$10.A5$2.A$.3A$2A.2A$.2A.2A$2.2A.2A$3.2A.2A$4.2A.2A$5.2A.2A$
6.2A.2A$7.2A.2A$8.2A.2A$9.2A.2A$10.2A.2A$11.2A.2A$12.2A.2A$13.2A.2A$
14.2A.2A$15.2A.2A$16.2A.2A$17.2A.2A$18.2A.2A$19.2A.2A$20.2A.2A$21.2A.
2A$22.2A.2A$23.2A.2A$24.2A.2A$25.2A.2A$26.2A.2A$27.2A.2A$28.2A.2A$29.
2A.2A$30.2A.2A$31.2A.2A$32.2A.2A$33.2A.2A$34.2A.2A$35.2A.2A$36.2A.2A$
37.2A.2A$38.2A.2A$39.2A.2A$40.2A.2A$41.2A.2A$42.2A.2A$43.2A.2A$44.2A.
2A$45.2A.2A$46.2A.2A$47.2A.2A$48.2A.2A$49.2A.2A$50.2A.2A$51.2A.2A$52.
2A.2A$53.2A.2A$54.2A.2A$55.2A.2A$56.2A.2A$57.2A.2A$58.2A.2A$59.2A.2A$
60.2A.2A$61.2A.2A$62.2A.2A$63.2A.3A.AB$64.2A.A2.A.C$65.2A.4A$65.A.A.A
.A$67.2A.2A.A.B$65.3A.A.4A.C$65.B.4A2.A$66.C3.A.A$69.3A$70.A$69.B$70.
C!
cloudy197
 
Posts: 21
Joined: April 16th, 2011, 10:35 pm

Re: Star Wars Rule

Postby flipper77 » June 25th, 2011, 5:30 am

After a lot of work and searching, I found the most possible, useful and basic reaction that could create the glider salvo that could create long crystals made of plusses:
x = 39, y = 46, rule = 345/2/4
23.2C$23.2B$23.2A14$2.A$.3A.A$2A.2AB$.3A.C$2.A$12.2C23.A$12.2B22.3A$
12.2A4.ABC16.A$18.ABC2$12.2A$12.2B$12.2C15$16.2A$16.2B$16.2C!

All I need to finally be able to make this reaction completely out gliders, is a glider construction for the large plus, which isn't too far out of reach. I'd like to see improvements in this as I further my searches.
User avatar
flipper77
 
Posts: 197
Joined: October 24th, 2010, 3:25 am
Location: Spokane, WA

Re: Star Wars Rule

Postby flipper77 » June 25th, 2011, 10:03 pm

After some more searching, I've found a much more basic, but messier, but I believe there's a chance to clean it up:
x = 25, y = 22, rule = 345/2/4
.A$3A$.A6$18.CBA$18.CBA$17.CBA$16.CBA$21.2A$20.A2BA$20.B2CB$19.AC2.CA
$19.B4.B$19.C4.C2$19.2A$19.2B$19.2C!

In the meantime, I'll begin to do more to improve on this.
User avatar
flipper77
 
Posts: 197
Joined: October 24th, 2010, 3:25 am
Location: Spokane, WA

Re: Star Wars Rule

Postby cloudy197 » June 26th, 2011, 10:33 am

flipper77 wrote:After some more searching, I've found a much more basic, but messier, but I believe there's a chance to clean it up:
x = 25, y = 22, rule = 345/2/4
.A$3A$.A6$18.CBA$18.CBA$17.CBA$16.CBA$21.2A$20.A2BA$20.B2CB$19.AC2.CA
$19.B4.B$19.C4.C2$19.2A$19.2B$19.2C!

In the meantime, I'll begin to do more to improve on this.


That plus some cleanup gliders:
x = 125, y = 253, rule = 345/2/4
118.2C$118.2B$118.2A30$117.2C$117.2B$117.2A85$101.A$100.3A$101.A4$CBA
$CBA$118.CBA$118.CBA$117.CBA$116.CBA$121.2A$59.CBA58.A2BA$59.CBA58.B
2CB$119.AC2.CA$119.B4.B$119.C4.C2$119.2A$119.2B$45.CBA71.2C$45.CBA41$
117.2A$117.2B$117.2C20$115.2A$115.2B$115.2C44$115.2A$115.2B$115.2C!
cloudy197
 
Posts: 21
Joined: April 16th, 2011, 10:35 pm

Re: Star Wars Rule

Postby knightlife » July 3rd, 2011, 1:46 pm

flipper77 wrote:All I need to finally be able to make this reaction completely out gliders, is a glider construction for the large plus


To make a large plus with gliders:
x = 41, y = 50, rule = 345/2/4
39.2C$26.CBA10.2B$26.CBA10.2A$5.2C$5.2B$.2C2.2A25.2C$.2B29.2B$.2A29.
2A3$CBA28.CBA$CBA28.CBA19$8.CBA$9.CBA9.CBA$9.CBA9.CBA$20.CBA$25.2A$
24.A2B$24.B2C$24.C9$25.2A$25.2BA$25.2CB$27.C!


Found by accident, there is probably a better way, better than 12 gliders.
The four-glider synthesis does not require a "tight salvo" like the three-glider synthesis does.
knightlife
 
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Star Wars Rule

Postby knightlife » August 7th, 2011, 4:25 pm

A single glider is converted to any length p24 stream using a stable pattern:
x = 47, y = 108, rule = 345/2/4
43.A$42.3A$41.2A.2A$42.2A.2A$43.3A$44.A$29.A$28.3A$27.2A.2A$26.2A.2A$
27.3A$28.A3$12.A2.A$11.6A$12.A3.2A$12.A4.2A$11.2A5.2A$12.2A5.2A8.A$
13.2A5.2A6.3A$14.2A5.2A6.A$15.2A5.2A$16.2A5.2A$17.2A5.2A13.A$18.2A5.
2A11.3A$19.2A5.2A9.2A.2A$CBA17.2A5.2A9.2A.2A$CBA18.2A5.2A9.3A$22.2A5.
2A9.A$23.2A4.A$24.2A3.A$25.6A$26.A2.A45$34.3C$36.C$34.3C$27.A6.C$26.A
.A5.3C$27.A7$34.3C$36.C$35.2C$27.A8.C$26.3A5.3C$27.A8$34.C.C$34.C.C$
27.A6.3C$26.A.A7.C$27.A8.C2.C.C.C!

A backrake is created and destroyed, but luckily the original pattern is restored, for repeated use.

A stream of three gliders is launched on the same track as the single glider input in this case. To increase the number of gliders by n, move the southernmost plus further south by 12n cells. Ghosted pluses show positions for a salvo of two or four, but any finite number of gliders is possible. Even the positions for zero and one will work, though zero is just an eater and one is a simple delay. The 90 degree reflector here is one of my favorite Star Wars 90 degree stable reflectors (and new to this forum, I think) although recovery time is slow. Of course, the three reflectors are not really necessary, unless you want the output on the same track as the input.

EDIT:
Here is a salvo gun made from the mechanism:
x = 104, y = 47, rule = 345/2/4
8.A$7.3A73.A$8.A73.3A$5.A.2A74.A$4.6A73.2A.A$5.A2.A73.6A$2.A.2A.2A74.
A2.A$.9A73.2A.2A.A$2.A2.A2.A73.9A$83.A2.A2.A4$89.2C$89.2B$89.2A9$99.A
2.A$98.6A$97.2A3.A$96.2A4.A$95.2A5.2A$.A2.A2.A86.2A5.2A$9A84.2A5.2A$.
A.2A.2A84.2A5.2A$4.A2.A83.2A5.2A$3.6A81.2A5.2A$4.A.2A81.2A5.2A$7.A80.
2A5.2A$6.3A78.2A5.2A$7.A78.2A5.2A$85.2A5.2A$84.2A5.2A$85.A4.2A$20.A2.
A61.A3.2A6.A$19.6A59.6A6.3A$20.A2.A61.A2.A8.A$20.A2.A$19.6A$20.A2.A!


Stretch it vertically to increase the overall period, stretch it horizontally for larger salvos.
knightlife
 
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Star Wars Rule

Postby knightlife » September 5th, 2011, 12:42 pm

Synthesize a large plus with 6 gliders:
x = 65, y = 45, rule = 345/2/4
10.2C48.2C$10.2B48.2B$10.2A48.2A7$5.2C48.2C$5.2B48.2B$5.2A48.2A7$5.2A
48.2A$5.2B48.2B$5.2C48.2C$2A48.2A$2B48.2B$2C48.2C$13.2A48.2A$13.2B48.
2B$13.2C48.2C10$61.2A$61.2B$61.2C4$11.2A$11.2B$11.2C!


Puffer for large plus:
x = 38, y = 32, rule = 345/2/4
15.BC$14.C7.C2.AC$23.CB.B2.A$23.AC2.5A$18.C2.BC.B.2AC3A$17.B.B.A.C.A
2.A.A$17.AC2A.B.B2.BC$18.B.ACB2.C4.C$21.A.2A5.ABA.A$9.C10.CBCBCB3.BCA
.B.B$19.AB2.B2.C2.AC.2AC3A$20.BCA2.2A2CABC.AC3A$21.A.3A.2A4.B.A$15.C
4.AB.3A.2A4.B.A$16.BA.2ACB2.2A2CABC.AC3A$17.CBCB2.C2.C2.AC.2AC3A$20.B
A3.BC2.BCA.B.B$18.2CA9.ABA.A$18.2B10.C$18.2A8.CB$28.2A$27.ABA$25.ABCA
CB$25.BC.B.CA$23.AC2.A3.BA.A$19.A3.B4A2.C2.B.B$2.A15.A.B4.A.2A2.3AC3A
$.3A13.3AC4.2ACA.BA.5A$2A.2A11.2A.A5.C.B.CA.A2.A$.3A11.A.2A13.C$2.A
13.BC.C$19.CB2.C!
knightlife
 
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Star Wars Rule

Postby cloudy197 » September 7th, 2011, 7:01 am

flipper77 wrote:After a lot of work and searching, I found the most possible, useful and basic reaction that could create the glider salvo that could create long crystals made of plusses:
x = 39, y = 46, rule = 345/2/4
23.2C$23.2B$23.2A14$2.A$.3A.A$2A.2AB$.3A.C$2.A$12.2C23.A$12.2B22.3A$
12.2A4.ABC16.A$18.ABC2$12.2A$12.2B$12.2C15$16.2A$16.2B$16.2C!

All I need to finally be able to make this reaction completely out gliders, is a glider construction for the large plus, which isn't too far out of reach. I'd like to see improvements in this as I further my searches.

Combining things in the previous posts, I created that reaction completely out of 17 gliders:
x = 69, y = 183, rule = 345/2/4
26.2C$26.2B$26.2A10$28.2C$28.2B$28.2A19$46.2C$46.2B$46.2A19$35.2C$35.
2B$35.2A4$47.2C$47.2B$47.2A$43.2C$43.2B$43.2A11$29.2C$29.2B$29.2A7$
24.2C$24.2B$24.2A6$67.A$24.2A40.3A$24.2B41.A$24.2C$19.2A$19.2B$19.2C$
32.2A$32.2B$32.2C16$30.2A$30.2B$30.2C9$46.2A$46.2B$46.2C6$35.2A$35.2B
$35.2C15$39.2A$39.2B$39.2C12$2A$2B$2C10$25.2A$25.2B$25.2C!
cloudy197
 
Posts: 21
Joined: April 16th, 2011, 10:35 pm

Re: Star Wars Rule

Postby 12Glider » September 9th, 2011, 7:29 am

The p5 oscillator can be chained once and still retain its period.
p5, chained once:
x = 8, y = 5, rule = 345/2/4
5.A$.A3.3A$.6A$3A3.A$2.A!


Chaining it more than once changes its period to 20.
p20 (p5 chained twice):
x = 12, y = 6, rule = 345/2/4
9.A$5.A3.3A$.A3.6A$.6A3.A$3A3.A$2.A!
Image

Why hasn't a glider exploded yet?
User avatar
12Glider
 
Posts: 79
Joined: December 17th, 2010, 4:56 pm

Re: Star Wars Rule

Postby knightlife » September 11th, 2011, 10:18 pm

A small "plus" puffer, perhaps the smallest:
x = 19, y = 11, rule = 345/2/4
5.ABC$5.ABC$6.3A$6.AB.B2ABC$6.BCACBAC2.BCA$5.A.C.A4.AB2A$.A.A2.B2.3A
5.AB$2AB3A2.2A.3ABC.CA$4A.2AC.C2A.CBA$.A.C.C.B.B.B$4.B3.A.A!


Smallest precursor I have found so far is 26 cells, fits in a 9 x 12 bounding box:
x = 9, y = 12, rule = 345/2/4
5.AB$5.AB5$2.A$5A.A$3A.3A.A$2.BA2BA$3.A3.A$6.A!
knightlife
 
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Star Wars Rule

Postby knightlife » September 28th, 2011, 3:45 pm

Interesting growing spaceship:
x = 26, y = 14, rule = 345/2/4
.B3.C11.A3.B$C.CA.A3.B2.ACA.B.B.C.C.A$.C.BA.3A.3A.3A.3A.4A$.B2.3A.3A.
3A.3A.3AB2A$.CBCA.B.B.C.C2.A3.B2.A.A$7.A3.B3.C3$7.A3.B3.C$.CBCA.B.B.C
.C2.A3.B2.A.A$.B2.3A.3A.3A.3A.3AB2A$.C.BA.3A.3A.3A.3A.4A$C.CA.A3.B2.A
CA.B.B.C.C.A$.B3.C11.A3.B!

Each half is a rake, but the two halves combine to make a clean growing spaceship.

Interesting oscillator:
x = 135, y = 12, rule = 345/2/4
102.A2.A24.A2.A$101.34A$.A2.A24.A2.A69.A3.A2.A2.A2.A2.A.A2.A2.A2.A3.A
$34A$.A3.A2.A2.A2.A2.A.A2.A2.A2.A3.A5$129.A$128.3A$129.A!
knightlife
 
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Star Wars Rule

Postby beebop » October 15th, 2011, 10:46 pm

This has probably already been discovered, but here's a breeder:

x = 96, y = 58, rule = StarWars
6.BC13.2A$6.C13.A2B$19.AB2CA$18.ABC2.BA$17.ABC2.ACB$16.ABC3.B.C$15.AB
C4.C$14.ABC$13.ABC13.2A$12.ABC13.A2B$11.ABC13.AB2CA$10.ABC13.ABC2.BA$
9.ABC13.ABC2.ACB$8.ABC13.ABC3.B.C$8.ABC13.ABC3.C3.AB$9.ABC21.CBC$22.B
9.BC3.2A$21.C.C.ABC2.C6.AB$14.A6.A.A.CBA2C3.2A.2ACA$4.A.C6.BCBA3.BC3A
2.A3.CBCB2A.2AC2.C2.BC.A$4.BA.B4.C3.CB3.A2.CB2.BC.B2.AC.A.B2.A2.AC.AB
2A$5.3A4.ABC.C2A2.2A6.C2.2A4.A2.2ABCAB.AB2A$5.A.C2.B2.A2.CBA2.A7.A.A.
A3.A.A.A.A.A.A.A$4.C2A.A.C5A.B.31A$6.ABA2B.A.A.C2ABC.A.A.A.A.A.A3.A.A
.A.A.A.A.A$5.C.2A2.C.A2.B5.C.C2.A.2A.A.2CB.B.C2.2A$7.C2.BAB.BC7.BABCB
2A.CB2A2.ACBABCA$7.C.C4.B7.A.A.2A.A3.CBA4.3ABA$8.BABC.CBA5.BC10.CBA6.
2A$9.A.ABA8.C8.CB$22.C9.BA$21.C.B8.C$24.C4.BC.C$6.C18.B.C2.C2.C$5.CB
12.C3.CAC.ABA.BA$3.2CBA15.B.B3.A.2A$3.2BA16.CA2.ABCBCBA.ABC.ABC.ABC.A
$C2.2A13.BC6.AB5.ABC.ABC.ABC.AB2A$B2C13.CABC8.C4.ABC.ABC.ABC.AB2A$A2B
15.ABC11.C.ABC.ABC.ABC.A$.2A2$3.CA$3.CA11$81.ABC.ABC.ABC.A$80.ABC.ABC
.ABC.AB2A$80.ABC.ABC.ABC.AB2A$81.ABC.ABC.ABC.A!


It's relatively compact and is capable of emerging from soup. I found it without the bottom rake that deletes some stray spaceships, but that is also known to arise naturally.

Also, I noticed that if you take a random pattern and run it for a while, there are a lot of breeders that just show up, so if I'm not the only one who cares, we can expect an inundation of similar patterns.

EDIT #1:
Here's another one that given infinite time will fill 1/2 of the space (the previous one fills 1/4 of the space) at a lower density:
x = 231, y = 159, rule = 345/2/4
59.2A11.2A$54.2A3.2A11.2B83.2A11.2A$54.2B2.A2BA9.A2CA82.2B11.2A3.2A$
53.A2C3.2A10.B2.B81.A2CA9.A2BA2.2B$53.B4.C2.C9.C2.CA80.B2.B10.2A3.2CA
$53.CA3.B2CB13.B79.AC2.C9.C2.C4.B$54.B.3A2BA12.AC79.B13.B2CB3.AC$53.A
C2A2.2A13.B80.CA12.A2B3A.B$52.AB2.2AC2.C12.CA80.B13.2A2.2ACA$51.ABC3A
2.2CB13.B79.AC12.C2.C2A2.BA$51.BC.A.3A2BA12.AC79.B13.B2C2.3ACBA$50.AC
.AC2A2.2A9.2A2.B80.CA12.A2B3A.A.CB$50.B2.BA.2AC2.C8.2B2.CA80.B2.2A9.
2A2.2ACA.CA$49.AC3A.2A.A2CB8.2C3.B79.AC2.2B8.C2.C2A.AB2.B$49.B.B4.2A
2.BA12.AC79.B3.2C8.B2CA.2A.3ACA$49.CAC3.2A.C11.2A2.B80.CA12.AB2.2A4.B
.B$56.2A3.C8.2B2.CA80.B2.2A11.C.2A3.CAC$50.2C2.C2A.A2CB8.2C3.B79.AC2.
2B8.C3.2A$51.B3A.2AC2.2A11.AC79.B3.2C8.B2CA.2AC2.2C$53.BC2A.A.2CB11.B
80.CA11.2A2.C2A.3AB$52.AB2.3A2.BA11.CA80.B11.B2C.A.2ACB$53.CB2A.B2.C
13.B79.AC11.AB2.3A2.BA$53.A2.2A3.C13.C79.B13.C2.B.2ABC$54.B2A.A2.C93.
C13.C3.2A2.A$53.AC.3AB.CBA105.C2.A.2AB$54.B2A.C.C.BA103.ABC.B3A.CA$
53.2A.3AB.C105.AB.C.C.2AB$45.ABC4.B3.A.A110.C.B3A.2A$44.A.A4.C.C2.2A
114.A.A3.B4.CBA$43.3ACA3.C3.2A.C114.2A2.C.C4.A.A$43.3AC2A.CB2.B.2A9.C
BA102.C.2A3.C3.AC3A$39.ABC3.B.B.BA4.2A.ABA6.CBA91.ABC9.2A.B2.BC.2AC3A
$39.ABC4.A.A7.2ACA101.ABC6.ABA.2A4.AB.B.B3.CBA$41.ABC9.CB2A2.BA110.AC
2A7.A.A4.CBA$44.ABC6.A2.3A.C19.2A88.AB2.2ABC9.CBA$44.ABC7.B2A.A21.2BA
66.2A19.C.3A2.A6.CBA$45.ABC6.C.2A.AB12.CBA4.2CB65.A2B21.A.2AB7.CBA$
54.3A.A.C12.CBA6.C65.B2C4.ABC12.BA.2A.C6.CBA$54.B.3A89.C6.ABC12.C.A.
3A$53.A.2A.C113.3A.B$52.BC2.2A114.C.2A.A$51.A.CB2A2.CB112.2A2.CB$52.B
A3.B2A19.CBA88.BC2.2ABC.A$33.A16.C.A2C2.A.A19.CBA67.ABC19.2AB3.AB$34.
B12.AB2CB5.C.2A88.ABC19.A.A2.2CA.C16.A$33.AC3.C6.A.A2.B2.C2.A.2A.A
108.2A.C5.B2CBA12.B$44.3ACA7.3A.B108.A.2A.A2.C2.B2.A.A6.C3.CA$34.C.C
7.5A3.A.C2A2.C.A108.B.3A7.AC3A$33.B12.A2.B.2BA2.2A.2B24.CBA81.A.C2.2A
C.A3.5A7.C.C$49.C.2C.B2A2.CA24.CBA55.ABC24.2B.2A2.A2B.B2.A12.B$35.C
15.B2.A.2A85.ABC24.AC2.2AB.2C.C$52.C2ACA.2A113.2A.A2.B15.C$54.A.2ABA
111.2A.AC2AC$54.ABA.C112.AB2A.A$53.AB.3A113.C.ABA$55.C2.B113.3A.BA$
57.C114.B2.C$51.C9.B111.C$56.C3.C.C106.B9.C$54.CB112.C.C3.C$175.BC$
34.CB2.C17.C3.C$34.BA18.C.BA6.CBA103.C3.C17.C2.BC$34.2C17.B.2A8.CBA
96.ABC6.AB.C18.AB$35.B18.A.3A6.CBA95.ABC8.2A.B17.2C$33.C17.C2.BCA.B
104.ABC6.3A.A18.B$54.A.2A114.B.ACB2.C17.C$52.C2A.A13.CBA9.CBA88.2A.A$
52.B.A.A.C9.CBA.CBA7.CBA61.ABC9.ABC13.A.2AC$54.B2A2.C13.CBA70.ABC7.AB
C.ABC9.C.A.A.B$54.A.3A16.CBA77.ABC13.C2.2AB$56.A.B17.CBA74.ABC16.3A.A
$56.3A19.CBA71.ABC17.B.A$55.2A21.CBA69.ABC19.3A$56.3A.A5.BA8.CBA71.AB
C21.2A$56.A.2AB4.C.CB6.CBA74.ABC8.AB5.A.3A$56.2A.A9.C2.BC.A77.ABC6.BC
.C4.B2A.A$45.2C9.A.ABA6.C.C.A.CBA79.A.CB2.C9.A.2A$45.2B9.A.CA8.BABC.A
B80.ABC.A.C.C6.ABA.A9.2C$45.2A8.2A12.A5.CBA78.BA.CBAB8.AC.A9.2B$56.A
19.CBA74.ABC5.A12.2A8.2A$56.A8.CBA9.CBA72.ABC19.A$42.ABC7.A3.2A7.CBA
10.CBA70.ABC9.ABC8.A$41.ABC.ABC4.3B2A6.BC.A.C.ABC.ABC.A.CBA67.ABC10.A
BC7.2A3.A7.CBA$39.ABC.ABC.ABC.A2C2.3A4.ACB4.CBA.CBA.CBA.CBA63.ABC.A.C
BA.CBA.C.A.CB6.2A3B4.CBA.CBA$39.ABC2.ABC2.ABC2.C2A.2A.C2.BA3.CBA.CBA.
CBA3.CBA60.ABC.ABC.ABC.ABC4.BCA4.3A2.2CA.CBA.CBA.CBA$45.ABC8.A.A.C2.C
A3.CBA.CBA.CBA5.CBA58.ABC3.ABC.ABC.ABC3.AB2.C.2A.2AC2.CBA2.CBA2.CBA$
46.ABC5.B2A.A.B.CB3.CBA.CBA.CBA7.CBA56.ABC5.ABC.ABC.ABC3.AC2.C.A.A8.C
BA$47.ABC3.CA.3ACA5.CBA.CBA.CBA9.CBA54.ABC7.ABC.ABC.ABC3.BC.B.A.2AB5.
CBA$48.ABC.B.AB.A.B26.CBA53.ABC9.ABC.ABC.ABC5.AC3A.AC3.CBA$49.ABCAC2.
C.A83.ABC26.B.A.BA.B.CBA$51.AB119.A.C2.CACBA$178.BA2$45.ABC$44.ABC
136.CBA$3.B19.ABC18.ABC137.CBA$.C182.CBA18.CBA19.B$229.C8$56.2A$55.A
2B115.2A$55.B2CA114.2BA$54.AC2.BA112.A2CB$54.B3.CB111.AB2.CA$53.AC4.C
111.BC3.B$53.B117.C4.CA$52.AC123.B$52.B3.2A119.CA$52.C3.2BA114.2A3.B$
55.A2CB14.CBA96.A2B3.C$55.B2.C16.CBA77.ABC14.B2CA$54.ACA19.CBA74.ABC
16.C2.B$53.AB.BA18.CBA73.ABC19.ACA$53.BC.CB16.CBA75.ABC18.AB.BA$52.2A
C.BC10.CBA.CBA79.ABC16.BC.CB$53.BC4.C6.C.A.CBA83.ABC.ABC10.CB.C2A$56.
CA2.B7.CBA87.ABC.A.C6.C4.CB$55.A2B.C100.ABC7.B2.AC$56.A114.C.2BA$56.A
117.A$55.2A117.A$56.A117.2A$ABC53.A117.A$BC51.AB.2A116.A53.CBA$2.BA.C
46.A.ABA116.2A.BA51.CB$BC2.B38.ABC6.B2A.3A115.ABA.A46.C.AB$.ABC38.ABC
6.A.A.2A.2A112.3A.2AB6.CBA38.B2.CB$40.ABC9.BC2.A.A112.2A.2A.A.A6.CBA
38.CBA$C39.ABC9.AB.2A.A113.A.A2.CB9.CBA$BC16.2A21.ABC.ABC6.C.3AC112.A
.2A.BA9.CBA39.C$ABC15.2B23.ABC.A.C5.B.A.B111.C3A.C6.CBA.CBA21.2A16.CB
$.ABC14.2C25.ABC8.A.A112.B.A.B5.C.A.CBA23.2B15.CBA$3.ABC40.ABC123.A.A
8.CBA25.2C14.CBA$47.ABC132.CBA40.CBA$48.ABC130.CBA$49.AB2C127.CBA$50.
A2B125.2CBA$51.2A125.2BA$178.2A$55.C$55.B2C117.C$55.A2B115.2CB$56.2A
115.2BA$11.2A160.2A$11.2B43.2C160.2A$11.2C43.2B115.2C43.2B$53.5A115.
2B43.2C$53.2B118.5A$52.A2CA120.2B$52.B2.B119.A2CA$52.C2.C119.B2.B$
175.C2.C!

For some breeders it is simpler to calculate the filled area than others; in particular, isosceles, right, and equilateral triangles are easy, but scalene triangles are hard, and other polygons are much harder.
beebop
 
Posts: 44
Joined: October 13th, 2011, 9:53 pm

Re: Star Wars Rule

Postby 137ben » October 16th, 2011, 10:36 am

Both your density calculations are incorrect. The first breeder fills half the plane (everything above the center line) with a density of 3/16. The second fills the entire plane, with density 1/32.

For some breeders it is simpler to calculate the filled area than others; in particular, isosceles, right, and equilateral triangles are easy, but scalene triangles are hard, and other polygons are much harder.

The portion of the plane filled is any area that will eventually be encompassed. For most breeders, this is everything beyond a certain line (which is ALWAYS half the plane). If there are more than two boundary lines, the filled area will be reduced accordingly.
For triangles with two boundary lines, the filled portion of the plane is the angle between them/(2 Pi).
137ben
 
Posts: 343
Joined: June 18th, 2010, 8:18 pm

Re: Star Wars Rule

Postby beebop » October 16th, 2011, 12:29 pm

137ben wrote:The first breeder fills half the plane (everything above the center line) with a density of 3/16. The second fills the entire plane, with density 1/32


OK, thanks. I guess I wasn't thinking when I made those calculations, and thanks for correcting them.
beebop
 
Posts: 44
Joined: October 13th, 2011, 9:53 pm

Re: Star Wars Rule

Postby calcyman » October 16th, 2011, 12:33 pm

but scalene triangles are hard, and other polygons are much harder


For a polygon with vertices {(x1,y1),(x2,y2), ... ,(xn,yn)}, you can use this formula:

Area = ((x1y2 - x2y1) + (x2y3 - x3y2) + ... + (xny1 - x1yn))/2.

Keen observers will notice that for n = 3, this reduces to the determinant formula for calculating the area of a triangle.
What do you do with ill crystallographers? Take them to the mono-clinic!
User avatar
calcyman
 
Posts: 1832
Joined: June 1st, 2009, 4:32 pm

Re: Star Wars Rule

Postby Wojowu » October 16th, 2011, 12:41 pm

Binary counter!!!
x = 25, y = 14, rule = 345/2/4
2.C4.C$7.B9.C4.C$7.AC8.B$8.B7.CA$7.CA7.B$2.A4.B8.AC$.BAB2.CA9.B4.A$.
3CA.B10.AC2.BAB$C3.BCA11.B.A3C$B3A.B12.ACB3.C$A.2B2A13.B.3AB$.3A15.2A
2B.A$2.2A17.3A$21.2A!

Lowest glider is not counted, each number is readed diagonally (from SW to NE) and each bit is two gliders.

Here is version without this not counted gliders:
x = 32, y = 76, rule = 345/2/4
2B$2A61$9.C4.C$14.B9.C4.C$14.AC8.B$15.B7.CA$14.CA7.B$9.A4.B8.AC$8.BAB
2.CA9.B4.A$8.3CA.B10.AC2.BAB$7.C3.BCA11.B.A3C$7.B3A.B12.ACB3.C$7.A.2B
2A13.B.3AB$8.3A15.2A2B.A$9.2A17.3A$28.2A!


Edit:
I made mistake when copying code for pattern
First question ever. Often referred to as The Question. When this question is asked in right place in right time, no one can lie. No one can abstain. But when The Question is asked, silence will fall. Silence must fall. The Question is: Doctor Who?
User avatar
Wojowu
 
Posts: 210
Joined: October 1st, 2011, 1:24 pm

Re: Star Wars Rule

Postby knightlife » November 12th, 2011, 5:50 pm

Extendable backrake creates an array of gliders:
x = 356, y = 136, rule = 345/2/4
10.ABC$8.ABC.A3.A$2.ABC.ABC2.BA.ABCBA$ABC.ABC2.BA.CB2.CA$ABC3.ABC.A.C
B2.2A$8.ABC2.BA.CA$10.ABC.A.CB2.CB7.BA$12.ABC2.BA.C2ACBA2.CACB$14.ABC
.A.CBA.CB2.B2.CA8.C$16.ABC2.BA.C2AC2.CBA2.2A5.B$18.ABC.A.CBA.2B2.B2.
2B4.AC$20.ABC2.BA.CA.2CA.2C2.C2.2BA$22.ABC.A.CB2.B7.BACA21.CBA21.CBA
21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA$
24.ABC2.BA.CA.2C.2C2.CB21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.C
BA21.CBA21.CBA21.CBA21.CBA21.CBA$26.ABC.A.CBA.B.C4.BA$28.ABC2.BA.CA4.
AC$30.ABC.A.CBA4.2BA$32.ABC2.BA.CB.CA9.C$34.ABC.A.CB2.CB9.BA$36.ABC2.
BA.C2ACBA2.C.BCBA$38.ABC.A.CBA.CB5.CBA7.CBA21.CBA21.CBA21.CBA21.CBA
21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA$40.ABC2.BA.C2A3.CB.A
7.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.C
BA21.CBA$42.ABC.A.CBA.AB2.B$44.ABC2.BA.CB.2CA.C$46.ABC.A.CB2.B9.CBA$
48.ABC2.BA.CA.2C5.CB$50.ABC.A.CBA.B.C4.BA9.C$52.ABC2.BA.CA4.AC$54.ABC
.A.CBA4.2BA8.2CB8.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA
21.CBA21.CBA21.CBA$56.ABC2.BA.CB.CA10.BA8.CBA21.CBA21.CBA21.CBA21.CBA
21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA$58.ABC.A.CB2.CB6.BC.C$60.A
BC2.BA.C2ACBA2.C2.C$62.ABC.A.CBA.CB5.CB8.C$64.ABC2.BA.C2A3.CB.A8.B$
66.ABC.A.CBA.AB2.B8.AC$68.ABC2.BA.CB.2CA.C6.2BA$70.ABC.A.CB2.B9.CA21.
CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA$72.AB
C2.BA.CA.2C5.CB21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA
21.CBA21.CBA$74.ABC.A.CBA.B.C4.BA$76.ABC2.BA.CA4.AC$78.ABC.A.CBA4.2BA
$80.ABC2.BA.CB.CA9.C$82.ABC.A.CB2.CB9.BA$84.ABC2.BA.C2ACBA2.C.BCBA$
86.ABC.A.CBA.CB5.CBA7.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA
21.CBA21.CBA21.CBA$88.ABC2.BA.C2A3.CB.A7.CBA21.CBA21.CBA21.CBA21.CBA
21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA$90.ABC.A.CBA.AB2.B$92.ABC2.BA.CB
.2CA.C$94.ABC.A.CB2.B9.CBA$96.ABC2.BA.CA.2C5.CB$98.ABC.A.CBA.B.C4.BA
9.C$100.ABC2.BA.CA4.AC$102.ABC.A.CBA4.2BA8.2CB8.CBA21.CBA21.CBA21.CBA
21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA$104.ABC2.BA.CB.CA10.BA8.CBA21.CB
A21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA$106.ABC.A.CB2.CB6.B
C.C$108.ABC2.BA.C2ACBA2.C2.C$110.ABC.A.CBA.CB5.CB8.C$112.ABC2.BA.C2A
3.CB.A8.B$114.ABC.A.CBA.AB2.B8.AC$116.ABC2.BA.CB.2CA.C6.2BA$118.ABC.A
.CB2.B9.CA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA$120.
ABC2.BA.CA.2C5.CB21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.C
BA$122.ABC.A.CBA.B.C4.BA$124.ABC2.BA.CA4.AC$126.ABC.A.CBA4.2BA$128.AB
C2.BA.CB.CA9.C$130.ABC.A.CB2.CB9.BA$132.ABC2.BA.C2ACBA2.C.BCBA$134.AB
C.A.CBA.CB5.CBA7.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA$
136.ABC2.BA.C2A3.CB.A7.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA
21.CBA$138.ABC.A.CBA.AB2.B$140.ABC2.BA.CB.2CA.C$142.ABC.A.CB2.B9.CBA$
144.ABC2.BA.CA.2C5.CB$146.ABC.A.CBA.B.C4.BA9.C$148.ABC2.BA.CA4.AC$
150.ABC.A.CBA4.2BA8.2CB8.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CB
A$152.ABC2.BA.CB.CA10.BA8.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.C
BA$154.ABC.A.CB2.CB6.BC.C$156.ABC2.BA.C2ACBA2.C2.C$158.ABC.A.CBA.CB5.
CB8.C$160.ABC2.BA.C2A3.CB.A8.B$162.ABC.A.CBA.AB2.B8.AC$164.ABC2.BA.CB
.2CA.C6.2BA$166.ABC.A.CB2.B9.CA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA
21.CBA$168.ABC2.BA.CA.2C5.CB21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CB
A$170.ABC.A.CBA.B.C4.BA$172.ABC2.BA.CA4.AC$174.ABC.A.CBA4.2BA$176.ABC
2.BA.CB.CA9.C$178.ABC.A.CB2.CB9.BA$180.ABC2.BA.C2ACBA2.C.BCBA$182.ABC
.A.CBA.CB5.CBA7.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA$184.ABC2.BA.C
2A3.CB.A7.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA$186.ABC.A.CBA.AB2.B
$188.ABC2.BA.CB.2CA.C$190.ABC.A.CB2.B9.CBA$192.ABC2.BA.CA.2C5.CB$194.
ABC.A.CBA.B.C4.BA9.C$196.ABC2.BA.CA4.AC$198.ABC.A.CBA4.2BA8.2CB8.CBA
21.CBA21.CBA21.CBA21.CBA21.CBA$200.ABC2.BA.CB.CA10.BA8.CBA21.CBA21.CB
A21.CBA21.CBA21.CBA$202.ABC.A.CB2.CB6.BC.C$204.ABC2.BA.C2ACBA2.C2.C$
206.ABC.A.CBA.CB5.CB8.C$208.ABC2.BA.C2A3.CB.A8.B$210.ABC.A.CBA.AB2.B
8.AC$212.ABC2.BA.CB.2CA.C6.2BA$214.ABC.A.CB2.B9.CA21.CBA21.CBA21.CBA
21.CBA21.CBA$216.ABC2.BA.CA.2C5.CB21.CBA21.CBA21.CBA21.CBA21.CBA$218.
ABC.A.CBA.B.C4.BA$220.ABC2.BA.CA4.AC$222.ABC.A.CBA4.2BA$224.ABC2.BA.C
B.CA9.C$226.ABC.A.CB2.CB9.BA$228.ABC2.BA.C2ACBA2.C.BCBA$230.ABC.A.CBA
.CB5.CBA7.CBA21.CBA21.CBA21.CBA21.CBA$232.ABC2.BA.C2A3.CB.A7.CBA21.CB
A21.CBA21.CBA21.CBA$234.ABC.A.CBA.AB2.B$236.ABC2.BA.CB.2CA.C$238.ABC.
A.CB2.B9.CBA$240.ABC2.BA.CA.2C5.CB$242.ABC.A.CBA.B.C4.BA9.C$244.ABC2.
BA.CA4.AC$246.ABC.A.CBA4.2BA8.2CB8.CBA21.CBA21.CBA21.CBA$248.ABC2.BA.
CB.CA10.BA8.CBA21.CBA21.CBA21.CBA$250.ABC.A.CB2.CB6.BC.C$252.ABC2.BA.
C2ACBA2.C2.C$254.ABC.A.CBA.CB5.CB8.C$256.ABC2.BA.C2A3.CB.A8.B$258.ABC
.A.CBA.AB2.B8.C$260.ABC2.BA.CB.2CA.C$262.ABC.A.CB2.B$264.ABC2.BA.CA.
2C$266.ABC.A.CB2.B$268.ABC!
knightlife
 
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Star Wars Rule

Postby knightlife » November 20th, 2011, 10:24 pm

A quadratic backrake creates rakes in an unusual way:
x = 91, y = 22, rule = 345/2/4
45.CBA$11.ABC28.BC3.CBA$11.ABC5.ABC19.C2.BCBA.CBA$13.ABC.ABC2.BA16.BC
BA.A3.A.CBA$15.ABC2.BA.CBA15.A5.C.CB2.CBA$17.ABC.A.CBA22.BA.ABA.CBA$
19.ABC31.C3.CBA$20.ABC32.C.A.CBA$53.C2.BC.A.CBA$59.CBA.CBA$34.2A29.CB
A$34.2B8.B22.CBA$33.A2C7.2C24.CBA$32.B4.AC.BCAB3.A19.A.A.A$32.2A2.A.A
.A.A.2A2B2A17.BA.2B2A13.CBA$CBA28.C18A18.C5A13.CBA$C.A$C.AB87A$C.AB
87A$C.A$CBA84.CBA$87.CBA!

The backrake makes use of a moving wall.
The moving wall is great for cleanup tasks when making large spaceships or rakes.

The following rake uses a moving wall that manages to repair itself:
x = 86, y = 68, rule = 345/2/4
.2A$3A$.2BA$3A$.A.C$.C2B$2.2A$2.C$C.BC8$17.2A$16.3A$17.2BA$16.3A$17.A
.C$17.C2B$18.2A$18.C$16.C.BC8$33.2A$32.3A$33.2BA$32.3A$33.A.C$31.2AC
2B$30.B.B3A$29.A2CA.C$30.B2.B24.CBA$31.A2C24.CBA$32.B23.CBA$35.C4.ABC
$33.2CB4.ABC$33.2BA5.ABC13.B$33.2A8.BC3.C7.C.C$34.C2.2A4.B.B.AB2.C$
36.A2BA2.ABCBAC.2A4.CB.CACBA$33.C.CAC.CB.C4.B2.2A.C.C2.AB.ACB$34.2A.A
.A3.A.A.A.A.A.A.A.A.A.A.A.A$35.B4ABCB25A$34.CA12.A.A.A3.A.A.A.A.A.A.A
$40.B2AC2.CBA2.A.BCB.A2.C2.A.AC3A$39.C.A.BAC2.A.ABC.A.ACABC.BC.AC3A$
41.C.CAB.B2.3A2.ABA.A3.2B.A.A$42.B3.C2A2.BC.C.2A7.CBA$46.A.BA2.CB.C7.
CBA$46.B.2C2.A2B$45.2C.B2.C3A$29.ABC13.AB3.CB30.CBA$28.CB.C13.ABC34.C
BA$29.B.A$29.BC55A$29.BC55A$29.B.A$28.CBA51.CBA$82.CBA!
knightlife
 
Posts: 566
Joined: May 31st, 2009, 12:08 am

Re: Star Wars Rule

Postby Hektor » February 10th, 2012, 9:21 am

Two moving walls
x = 60, y = 14, rule = 345/2/4
56.CBA$2.CBA51.CBA$2.C.A$2.C.AB54A$2.C.AB54A$A.B.B$ABA53.CBA$ABA53.CB
A$A.B.B$2.C.AB54A$2.C.AB54A$2.C.A$2.CBA51.CBA$56.CBA!

Three moving walls
x = 60, y = 20, rule = 345/2/4
56.CBA$2.CBA51.CBA$2.C.A$2.C.AB54A$2.C.AB54A$A.B.B$ABA53.CBA$ABA53.CB
A$A.B.B$2.C.AB54A$2.C.AB54A$A.B.B$ABA53.CBA$ABA53.CBA$A.B.B$2.C.AB54A
$2.C.AB54A$2.C.A$2.CBA51.CBA$56.CBA!

And a stretcher
x = 29, y = 8, rule = 345/2/4
25.CBA$A24.CBA$.A$.28A$.28A2$25.CBA$25.CBA!
User avatar
Hektor
 
Posts: 89
Joined: November 3rd, 2011, 2:37 pm

Re: Star Wars Rule

Postby Wojowu » February 10th, 2012, 9:48 am

Stretcher moving in two directions
x = 3, y = 10, rule = 345/2/4
.B$.A$.A2$3A$3A2$.A$.A$.B!

Stable, indestructible box
x = 21, y = 21, rule = 345/2/4
.A2.A2.A2.A2.A2.A2.A$21A$.A17.A$.A17.A$2A17.2A$.A17.A$.A17.A$2A17.2A$
.A17.A$.A17.A$2A17.2A$.A17.A$.A17.A$2A17.2A$.A17.A$.A17.A$2A17.2A$.A
17.A$.A17.A$21A$.A2.A2.A2.A2.A2.A2.A!

Another one, almost indestructible even from outside (expect corners)
x = 13, y = 13, rule = 345/2/4
2.A7.A$.11A$2A.7A.2A$.2A7.2A$.2A7.2A$.2A7.2A$.2A7.2A$.2A7.2A$.2A7.2A$
.2A7.2A$2A.7A.2A$.11A$2.A7.A!
First question ever. Often referred to as The Question. When this question is asked in right place in right time, no one can lie. No one can abstain. But when The Question is asked, silence will fall. Silence must fall. The Question is: Doctor Who?
User avatar
Wojowu
 
Posts: 210
Joined: October 1st, 2011, 1:24 pm

Re: Star Wars Rule

Postby Hektor » February 11th, 2012, 10:02 am

Found some AWESOME (and extendible) rakes!
x = 3, y = 64, rule = 345/2/4
3A$3A$2A$2A$3A$3A15$3A$3A$2A$2A$3A$3A$2A$2A$3A$3A21$3A$3A$2A$2A$3A$3A
$2A$2A$3A$3A$2A$2A$3A$3A!


x = 72, y = 48, rule = 345/2/4
5$18.3A$18.3A$5.CA11.2A$5.2BA10.2A$6.CBA9.3A$6.CBA9.3A$5.2BA10.2A$5.C
A11.2A$18.3A$18.3A$18.2A$18.2A$18.3A$18.3A$18.2A$18.2A$18.3A$18.3A46.
3A$18.2A47.3A$18.2A22.CA23.2A$18.3A21.2BA22.2A$18.3A22.CBA21.3A$18.2A
23.CBA21.3A$18.2A22.2BA22.2A$18.3A21.CA23.2A$18.3A46.3A$18.2A47.3A$
18.2A$18.3A$18.3A$18.2A$18.2A$18.3A$18.3A$.CA15.2A$.2BA14.2A$2.CBA13.
3A$2.CBA13.3A$.2BA14.2A$.CA15.2A$18.3A$18.3A!


x = 3, y = 23, rule = 345/2/4
3A$3A$2A$2A$3A$3A$2A$2A$3A$3A4$3A$3A$2A$2A$3A$3A$2A$2A$3A$3A!
User avatar
Hektor
 
Posts: 89
Joined: November 3rd, 2011, 2:37 pm

Re: Star Wars Rule

Postby flipper77 » July 5th, 2012, 3:56 am

Here is a guaranteed indestructible box, where all initial cells are permanent. Though, it oscillates at the corners:
x = 13, y = 13, rule = 345/2/4
.11A$2A.A2.A2.A.2A$A2.A2.A2.A2.A$13A$A2.A5.A2.A$A2.A5.A2.A$4A5.4A$A2.
A5.A2.A$A2.A5.A2.A$13A$A2.A2.A2.A2.A$2A.A2.A2.A.2A$.11A!
User avatar
flipper77
 
Posts: 197
Joined: October 24th, 2010, 3:25 am
Location: Spokane, WA

Re: Star Wars Rule

Postby flipper77 » July 23rd, 2012, 4:11 am

After some thought and experimentation, I've finally found a much more plausible plus crystal reaction:
x = 31, y = 80, rule = 345/2/4
22.2C$22.2B$22.2A29$14.CBA$14.CBA$CBA$CBA25.A$27.3A$28.A36$22.2A$22.
2B$22.2C2$29.2A$28.A2B$28.B2C$28.C!

It can be adjusted so it contains a lot of flexibility.
User avatar
flipper77
 
Posts: 197
Joined: October 24th, 2010, 3:25 am
Location: Spokane, WA

PreviousNext

Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 2 guests