`x = 28, y = 11, rule = 345/2/4`

14.A$13.3A6.A$14.A6.3A$22.A$26.A$25.3A$26.A$3.CBA9.CBA$.A2.A2.A2.A2.A

2.A2.A2.A$24A$.A2.A2.A2.A2.A2.A2.A2.A!

The memory loop is undisturbed as gliders are created from the signals as they pass by.

Minimum spacing for the signals is p12 as shown.

A slight variant produces two gliders at a time:

`x = 28, y = 11, rule = 345/2/4`

15.A$14.3A5.A$15.A5.3A$22.A$26.A$25.3A$26.A$3.CBA9.CBA$.A2.A2.A2.A2.A

2.A2.A2.A$24A$.A2.A2.A2.A2.A2.A2.A2.A!

Here signals are extracted instead of gliders, making a true signal splitter:

`x = 34, y = 17, rule = 345/2/4`

15.A$14.3A15.A$15.A15.3A$15.A16.A$14.2A16.A$15.A16.2A$15.A16.A$14.3A

5.A9.A$15.A5.3A8.2A$22.A9.A$26.A5.A$25.9A$26.A2.A2.A$3.CBA9.CBA$.A2.A

2.A2.A2.A2.A2.A2.A$24A$.A2.A2.A2.A2.A2.A2.A2.A!

Without the loop, convert a signal to/from a glider with more variants:

`x = 62, y = 16, rule = 345/2/4`

56.A$55.3A$48.A7.A$47.3A6.A$15.A32.A6.3A$14.3A39.A$15.A6.A37.A$15.A5.

3A35.3A$14.3A5.A37.A$15.A10.A10.CBA$25.3A7.A2.A2.A2.A2.A2.A2.A2.A$26.

A7.24A$3.CBA29.A20.A$.A2.A2.A2.A2.A2.A2.A2.A$24A$.A20.A!