## Star Wars Rule

For discussion of other cellular automata.

### Re: Star Wars Rule

This programmable gun uses a signal loop (more compact than a glider loop):
`x = 28, y = 11, rule = 345/2/414.A\$13.3A6.A\$14.A6.3A\$22.A\$26.A\$25.3A\$26.A\$3.CBA9.CBA\$.A2.A2.A2.A2.A2.A2.A2.A\$24A\$.A2.A2.A2.A2.A2.A2.A2.A!`

The memory loop is undisturbed as gliders are created from the signals as they pass by.
Minimum spacing for the signals is p12 as shown.

A slight variant produces two gliders at a time:
`x = 28, y = 11, rule = 345/2/415.A\$14.3A5.A\$15.A5.3A\$22.A\$26.A\$25.3A\$26.A\$3.CBA9.CBA\$.A2.A2.A2.A2.A2.A2.A2.A\$24A\$.A2.A2.A2.A2.A2.A2.A2.A!`

Here signals are extracted instead of gliders, making a true signal splitter:
`x = 34, y = 17, rule = 345/2/415.A\$14.3A15.A\$15.A15.3A\$15.A16.A\$14.2A16.A\$15.A16.2A\$15.A16.A\$14.3A5.A9.A\$15.A5.3A8.2A\$22.A9.A\$26.A5.A\$25.9A\$26.A2.A2.A\$3.CBA9.CBA\$.A2.A2.A2.A2.A2.A2.A2.A\$24A\$.A2.A2.A2.A2.A2.A2.A2.A!`

Without the loop, convert a signal to/from a glider with more variants:
`x = 62, y = 16, rule = 345/2/456.A\$55.3A\$48.A7.A\$47.3A6.A\$15.A32.A6.3A\$14.3A39.A\$15.A6.A37.A\$15.A5.3A35.3A\$14.3A5.A37.A\$15.A10.A10.CBA\$25.3A7.A2.A2.A2.A2.A2.A2.A2.A\$26.A7.24A\$3.CBA29.A20.A\$.A2.A2.A2.A2.A2.A2.A2.A\$24A\$.A20.A!`
knightlife

Posts: 566
Joined: May 31st, 2009, 12:08 am

### Re: Star Wars Rule

`x = 88, y = 88, rule = 345/2/42.A\$.3A\$2A.2A\$.2A.2A\$2.2A.2A\$3.2A.2A\$4.2A.2A\$5.2A.2A\$6.2A.2A\$7.2A.2A\$8.2A.2A\$9.2A.2A\$10.2A.2A\$11.2A.2A\$12.2A.2A\$13.2A.2A\$14.2A.2A\$15.2A.2A\$16.2A.2A\$17.2A.2A\$18.2A.2A\$19.2A.2A\$20.2A.2A\$21.2A.2A\$22.2A.2A\$23.2A.2A\$24.2A.2A\$25.2A.2A\$26.2A.2A\$27.2A.2A\$28.2A.2A\$29.2A.2A\$30.2A.2A\$31.2A.2A\$32.2A.2A\$33.2A.2A\$34.2A.2A\$35.2A.2A\$36.2A.2A\$37.2A.2A\$38.2A.2A\$39.2A.2A\$40.2A.2A\$41.2A.2A\$42.2A.2A\$43.2A.2A\$44.2A.2A\$45.2A.2A\$46.2A.2A\$47.2A.2A\$48.2A.2A\$49.2A.2A\$50.2A.2A\$51.2A.2A\$52.2A.2A\$53.2A.2A\$54.2A.2A\$55.2A.2A\$56.2A.2A\$57.2A.2A\$58.2A.2A\$59.2A.2A\$60.2A.2A\$61.2A.2A\$62.2A.2A\$63.2A.3A.AB13.A\$64.2A.A2.A.C11.BCB\$65.2A.4A13.C\$65.A.A.A.A12.3A\$67.2A.2A.A.B7.BC2B\$65.3A.A.4A.C5.C2.A.C\$65.B.4A.A.2A5.B.4A\$66.C3.2A.A.2ABAC2.A2.A.A\$69.2A.A.A.A2.5A2.B\$70.2A.3A2.2A.A.2AC\$69.B.2A.A.2A.2A.A\$70.C.2A.A.3A.2AB\$72.B2.2A.A.2A\$72.A.A.2A.2A.2A.B\$72.C4A.A.2A.2AC\$73.A.A.4A.A.A\$71.B.2A.2A.A.2A.A\$70.C.2A.2A.A.2A.3A.C\$69.B.A.2A.B.2A2.A.A\$66.B.AC.A2.A4.5A.C\$65.A2CAB3A.C3.BC2.A.CB\$66.B.AB.A.B\$70.C.A9.C!`

Why hasn't a glider exploded yet?

12Glider

Posts: 79
Joined: December 17th, 2010, 4:56 pm

### Re: Star Wars Rule

`x = 88, y = 88, rule = 345/2/42.A\$.3A\$2A.2A\$.2A.2A\$2.2A.2A\$3.2A.2A\$4.2A.2A\$5.2A.2A\$6.2A.2A\$7.2A.2A\$8.2A.2A\$9.2A.2A\$10.2A.2A\$11.2A.2A\$12.2A.2A\$13.2A.2A\$14.2A.2A\$15.2A.2A\$16.2A.2A\$17.2A.2A\$18.2A.2A\$19.2A.2A\$20.2A.2A\$21.2A.2A\$22.2A.2A\$23.2A.2A\$24.2A.2A\$25.2A.2A\$26.2A.2A\$27.2A.2A\$28.2A.2A\$29.2A.2A\$30.2A.2A\$31.2A.2A\$32.2A.2A\$33.2A.2A\$34.2A.2A\$35.2A.2A\$36.2A.2A\$37.2A.2A\$38.2A.2A\$39.2A.2A\$40.2A.2A\$41.2A.2A\$42.2A.2A\$43.2A.2A\$44.2A.2A\$45.2A.2A\$46.2A.2A\$47.2A.2A\$48.2A.2A\$49.2A.2A\$50.2A.2A\$51.2A.2A\$52.2A.2A\$53.2A.2A\$54.2A.2A\$55.2A.2A\$56.2A.2A\$57.2A.2A\$58.2A.2A\$59.2A.2A\$60.2A.2A\$61.2A.2A\$62.2A.2A\$63.2A.3A.AB13.A\$64.2A.A2.A.C11.BCB\$65.2A.4A13.C\$65.A.A.A.A12.3A\$67.2A.2A.A.B7.BC2B\$65.3A.A.4A.C5.C2.A.C\$65.B.4A.A.2A5.B.4A\$66.C3.2A.A.2ABAC2.A2.A.A\$69.2A.A.A.A2.5A2.B\$70.2A.3A2.2A.A.2AC\$69.B.2A.A.2A.2A.A\$70.C.2A.A.3A.2AB\$72.B2.2A.A.2A\$72.A.A.2A.2A.2A.B\$72.C4A.A.2A.2AC\$73.A.A.4A.A.A\$71.B.2A.2A.A.2A.A\$70.C.2A.2A.A.2A.3A.C\$69.B.A.2A.B.2A2.A.A\$66.B.AC.A2.A4.5A.C\$65.A2CAB3A.C3.BC2.A.CB\$66.B.AB.A.B\$70.C.A9.C!`

Smaller one (and also a plus used to make this a gun):
`x = 77, y = 84, rule = 345/2/410.A\$9.3A\$10.A5\$2.A\$.3A\$2A.2A\$.2A.2A\$2.2A.2A\$3.2A.2A\$4.2A.2A\$5.2A.2A\$6.2A.2A\$7.2A.2A\$8.2A.2A\$9.2A.2A\$10.2A.2A\$11.2A.2A\$12.2A.2A\$13.2A.2A\$14.2A.2A\$15.2A.2A\$16.2A.2A\$17.2A.2A\$18.2A.2A\$19.2A.2A\$20.2A.2A\$21.2A.2A\$22.2A.2A\$23.2A.2A\$24.2A.2A\$25.2A.2A\$26.2A.2A\$27.2A.2A\$28.2A.2A\$29.2A.2A\$30.2A.2A\$31.2A.2A\$32.2A.2A\$33.2A.2A\$34.2A.2A\$35.2A.2A\$36.2A.2A\$37.2A.2A\$38.2A.2A\$39.2A.2A\$40.2A.2A\$41.2A.2A\$42.2A.2A\$43.2A.2A\$44.2A.2A\$45.2A.2A\$46.2A.2A\$47.2A.2A\$48.2A.2A\$49.2A.2A\$50.2A.2A\$51.2A.2A\$52.2A.2A\$53.2A.2A\$54.2A.2A\$55.2A.2A\$56.2A.2A\$57.2A.2A\$58.2A.2A\$59.2A.2A\$60.2A.2A\$61.2A.2A\$62.2A.2A\$63.2A.3A.AB\$64.2A.A2.A.C\$65.2A.4A\$65.A.A.A.A\$67.2A.2A.A.B\$65.3A.A.4A.C\$65.B.4A2.A\$66.C3.A.A\$69.3A\$70.A\$69.B\$70.C!`
cloudy197

Posts: 21
Joined: April 16th, 2011, 10:35 pm

### Re: Star Wars Rule

After a lot of work and searching, I found the most possible, useful and basic reaction that could create the glider salvo that could create long crystals made of plusses:
`x = 39, y = 46, rule = 345/2/423.2C\$23.2B\$23.2A14\$2.A\$.3A.A\$2A.2AB\$.3A.C\$2.A\$12.2C23.A\$12.2B22.3A\$12.2A4.ABC16.A\$18.ABC2\$12.2A\$12.2B\$12.2C15\$16.2A\$16.2B\$16.2C!`

All I need to finally be able to make this reaction completely out gliders, is a glider construction for the large plus, which isn't too far out of reach. I'd like to see improvements in this as I further my searches.

flipper77

Posts: 197
Joined: October 24th, 2010, 3:25 am
Location: Spokane, WA

### Re: Star Wars Rule

After some more searching, I've found a much more basic, but messier, but I believe there's a chance to clean it up:
`x = 25, y = 22, rule = 345/2/4.A\$3A\$.A6\$18.CBA\$18.CBA\$17.CBA\$16.CBA\$21.2A\$20.A2BA\$20.B2CB\$19.AC2.CA\$19.B4.B\$19.C4.C2\$19.2A\$19.2B\$19.2C!`

In the meantime, I'll begin to do more to improve on this.

flipper77

Posts: 197
Joined: October 24th, 2010, 3:25 am
Location: Spokane, WA

### Re: Star Wars Rule

flipper77 wrote:After some more searching, I've found a much more basic, but messier, but I believe there's a chance to clean it up:
`x = 25, y = 22, rule = 345/2/4.A\$3A\$.A6\$18.CBA\$18.CBA\$17.CBA\$16.CBA\$21.2A\$20.A2BA\$20.B2CB\$19.AC2.CA\$19.B4.B\$19.C4.C2\$19.2A\$19.2B\$19.2C!`

In the meantime, I'll begin to do more to improve on this.

That plus some cleanup gliders:
`x = 125, y = 253, rule = 345/2/4118.2C\$118.2B\$118.2A30\$117.2C\$117.2B\$117.2A85\$101.A\$100.3A\$101.A4\$CBA\$CBA\$118.CBA\$118.CBA\$117.CBA\$116.CBA\$121.2A\$59.CBA58.A2BA\$59.CBA58.B2CB\$119.AC2.CA\$119.B4.B\$119.C4.C2\$119.2A\$119.2B\$45.CBA71.2C\$45.CBA41\$117.2A\$117.2B\$117.2C20\$115.2A\$115.2B\$115.2C44\$115.2A\$115.2B\$115.2C!`
cloudy197

Posts: 21
Joined: April 16th, 2011, 10:35 pm

### Re: Star Wars Rule

flipper77 wrote:All I need to finally be able to make this reaction completely out gliders, is a glider construction for the large plus

To make a large plus with gliders:
`x = 41, y = 50, rule = 345/2/439.2C\$26.CBA10.2B\$26.CBA10.2A\$5.2C\$5.2B\$.2C2.2A25.2C\$.2B29.2B\$.2A29.2A3\$CBA28.CBA\$CBA28.CBA19\$8.CBA\$9.CBA9.CBA\$9.CBA9.CBA\$20.CBA\$25.2A\$24.A2B\$24.B2C\$24.C9\$25.2A\$25.2BA\$25.2CB\$27.C!`

Found by accident, there is probably a better way, better than 12 gliders.
The four-glider synthesis does not require a "tight salvo" like the three-glider synthesis does.
knightlife

Posts: 566
Joined: May 31st, 2009, 12:08 am

### Re: Star Wars Rule

A single glider is converted to any length p24 stream using a stable pattern:
`x = 47, y = 108, rule = 345/2/443.A\$42.3A\$41.2A.2A\$42.2A.2A\$43.3A\$44.A\$29.A\$28.3A\$27.2A.2A\$26.2A.2A\$27.3A\$28.A3\$12.A2.A\$11.6A\$12.A3.2A\$12.A4.2A\$11.2A5.2A\$12.2A5.2A8.A\$13.2A5.2A6.3A\$14.2A5.2A6.A\$15.2A5.2A\$16.2A5.2A\$17.2A5.2A13.A\$18.2A5.2A11.3A\$19.2A5.2A9.2A.2A\$CBA17.2A5.2A9.2A.2A\$CBA18.2A5.2A9.3A\$22.2A5.2A9.A\$23.2A4.A\$24.2A3.A\$25.6A\$26.A2.A45\$34.3C\$36.C\$34.3C\$27.A6.C\$26.A.A5.3C\$27.A7\$34.3C\$36.C\$35.2C\$27.A8.C\$26.3A5.3C\$27.A8\$34.C.C\$34.C.C\$27.A6.3C\$26.A.A7.C\$27.A8.C2.C.C.C!`

A backrake is created and destroyed, but luckily the original pattern is restored, for repeated use.

A stream of three gliders is launched on the same track as the single glider input in this case. To increase the number of gliders by n, move the southernmost plus further south by 12n cells. Ghosted pluses show positions for a salvo of two or four, but any finite number of gliders is possible. Even the positions for zero and one will work, though zero is just an eater and one is a simple delay. The 90 degree reflector here is one of my favorite Star Wars 90 degree stable reflectors (and new to this forum, I think) although recovery time is slow. Of course, the three reflectors are not really necessary, unless you want the output on the same track as the input.

EDIT:
Here is a salvo gun made from the mechanism:
`x = 104, y = 47, rule = 345/2/48.A\$7.3A73.A\$8.A73.3A\$5.A.2A74.A\$4.6A73.2A.A\$5.A2.A73.6A\$2.A.2A.2A74.A2.A\$.9A73.2A.2A.A\$2.A2.A2.A73.9A\$83.A2.A2.A4\$89.2C\$89.2B\$89.2A9\$99.A2.A\$98.6A\$97.2A3.A\$96.2A4.A\$95.2A5.2A\$.A2.A2.A86.2A5.2A\$9A84.2A5.2A\$.A.2A.2A84.2A5.2A\$4.A2.A83.2A5.2A\$3.6A81.2A5.2A\$4.A.2A81.2A5.2A\$7.A80.2A5.2A\$6.3A78.2A5.2A\$7.A78.2A5.2A\$85.2A5.2A\$84.2A5.2A\$85.A4.2A\$20.A2.A61.A3.2A6.A\$19.6A59.6A6.3A\$20.A2.A61.A2.A8.A\$20.A2.A\$19.6A\$20.A2.A!`

Stretch it vertically to increase the overall period, stretch it horizontally for larger salvos.
knightlife

Posts: 566
Joined: May 31st, 2009, 12:08 am

### Re: Star Wars Rule

Synthesize a large plus with 6 gliders:
`x = 65, y = 45, rule = 345/2/410.2C48.2C\$10.2B48.2B\$10.2A48.2A7\$5.2C48.2C\$5.2B48.2B\$5.2A48.2A7\$5.2A48.2A\$5.2B48.2B\$5.2C48.2C\$2A48.2A\$2B48.2B\$2C48.2C\$13.2A48.2A\$13.2B48.2B\$13.2C48.2C10\$61.2A\$61.2B\$61.2C4\$11.2A\$11.2B\$11.2C!`

Puffer for large plus:
`x = 38, y = 32, rule = 345/2/415.BC\$14.C7.C2.AC\$23.CB.B2.A\$23.AC2.5A\$18.C2.BC.B.2AC3A\$17.B.B.A.C.A2.A.A\$17.AC2A.B.B2.BC\$18.B.ACB2.C4.C\$21.A.2A5.ABA.A\$9.C10.CBCBCB3.BCA.B.B\$19.AB2.B2.C2.AC.2AC3A\$20.BCA2.2A2CABC.AC3A\$21.A.3A.2A4.B.A\$15.C4.AB.3A.2A4.B.A\$16.BA.2ACB2.2A2CABC.AC3A\$17.CBCB2.C2.C2.AC.2AC3A\$20.BA3.BC2.BCA.B.B\$18.2CA9.ABA.A\$18.2B10.C\$18.2A8.CB\$28.2A\$27.ABA\$25.ABCACB\$25.BC.B.CA\$23.AC2.A3.BA.A\$19.A3.B4A2.C2.B.B\$2.A15.A.B4.A.2A2.3AC3A\$.3A13.3AC4.2ACA.BA.5A\$2A.2A11.2A.A5.C.B.CA.A2.A\$.3A11.A.2A13.C\$2.A13.BC.C\$19.CB2.C!`
knightlife

Posts: 566
Joined: May 31st, 2009, 12:08 am

### Re: Star Wars Rule

flipper77 wrote:After a lot of work and searching, I found the most possible, useful and basic reaction that could create the glider salvo that could create long crystals made of plusses:
`x = 39, y = 46, rule = 345/2/423.2C\$23.2B\$23.2A14\$2.A\$.3A.A\$2A.2AB\$.3A.C\$2.A\$12.2C23.A\$12.2B22.3A\$12.2A4.ABC16.A\$18.ABC2\$12.2A\$12.2B\$12.2C15\$16.2A\$16.2B\$16.2C!`

All I need to finally be able to make this reaction completely out gliders, is a glider construction for the large plus, which isn't too far out of reach. I'd like to see improvements in this as I further my searches.

Combining things in the previous posts, I created that reaction completely out of 17 gliders:
`x = 69, y = 183, rule = 345/2/426.2C\$26.2B\$26.2A10\$28.2C\$28.2B\$28.2A19\$46.2C\$46.2B\$46.2A19\$35.2C\$35.2B\$35.2A4\$47.2C\$47.2B\$47.2A\$43.2C\$43.2B\$43.2A11\$29.2C\$29.2B\$29.2A7\$24.2C\$24.2B\$24.2A6\$67.A\$24.2A40.3A\$24.2B41.A\$24.2C\$19.2A\$19.2B\$19.2C\$32.2A\$32.2B\$32.2C16\$30.2A\$30.2B\$30.2C9\$46.2A\$46.2B\$46.2C6\$35.2A\$35.2B\$35.2C15\$39.2A\$39.2B\$39.2C12\$2A\$2B\$2C10\$25.2A\$25.2B\$25.2C!`
cloudy197

Posts: 21
Joined: April 16th, 2011, 10:35 pm

### Re: Star Wars Rule

The p5 oscillator can be chained once and still retain its period.
p5, chained once:
`x = 8, y = 5, rule = 345/2/45.A\$.A3.3A\$.6A\$3A3.A\$2.A!`

Chaining it more than once changes its period to 20.
p20 (p5 chained twice):
`x = 12, y = 6, rule = 345/2/49.A\$5.A3.3A\$.A3.6A\$.6A3.A\$3A3.A\$2.A!`

Why hasn't a glider exploded yet?

12Glider

Posts: 79
Joined: December 17th, 2010, 4:56 pm

### Re: Star Wars Rule

A small "plus" puffer, perhaps the smallest:
`x = 19, y = 11, rule = 345/2/45.ABC\$5.ABC\$6.3A\$6.AB.B2ABC\$6.BCACBAC2.BCA\$5.A.C.A4.AB2A\$.A.A2.B2.3A5.AB\$2AB3A2.2A.3ABC.CA\$4A.2AC.C2A.CBA\$.A.C.C.B.B.B\$4.B3.A.A!`

Smallest precursor I have found so far is 26 cells, fits in a 9 x 12 bounding box:
`x = 9, y = 12, rule = 345/2/45.AB\$5.AB5\$2.A\$5A.A\$3A.3A.A\$2.BA2BA\$3.A3.A\$6.A!`
knightlife

Posts: 566
Joined: May 31st, 2009, 12:08 am

### Re: Star Wars Rule

Interesting growing spaceship:
`x = 26, y = 14, rule = 345/2/4.B3.C11.A3.B\$C.CA.A3.B2.ACA.B.B.C.C.A\$.C.BA.3A.3A.3A.3A.4A\$.B2.3A.3A.3A.3A.3AB2A\$.CBCA.B.B.C.C2.A3.B2.A.A\$7.A3.B3.C3\$7.A3.B3.C\$.CBCA.B.B.C.C2.A3.B2.A.A\$.B2.3A.3A.3A.3A.3AB2A\$.C.BA.3A.3A.3A.3A.4A\$C.CA.A3.B2.ACA.B.B.C.C.A\$.B3.C11.A3.B!`

Each half is a rake, but the two halves combine to make a clean growing spaceship.

Interesting oscillator:
`x = 135, y = 12, rule = 345/2/4102.A2.A24.A2.A\$101.34A\$.A2.A24.A2.A69.A3.A2.A2.A2.A2.A.A2.A2.A2.A3.A\$34A\$.A3.A2.A2.A2.A2.A.A2.A2.A2.A3.A5\$129.A\$128.3A\$129.A!`
knightlife

Posts: 566
Joined: May 31st, 2009, 12:08 am

### Re: Star Wars Rule

This has probably already been discovered, but here's a breeder:

`x = 96, y = 58, rule = StarWars6.BC13.2A\$6.C13.A2B\$19.AB2CA\$18.ABC2.BA\$17.ABC2.ACB\$16.ABC3.B.C\$15.ABC4.C\$14.ABC\$13.ABC13.2A\$12.ABC13.A2B\$11.ABC13.AB2CA\$10.ABC13.ABC2.BA\$9.ABC13.ABC2.ACB\$8.ABC13.ABC3.B.C\$8.ABC13.ABC3.C3.AB\$9.ABC21.CBC\$22.B9.BC3.2A\$21.C.C.ABC2.C6.AB\$14.A6.A.A.CBA2C3.2A.2ACA\$4.A.C6.BCBA3.BC3A2.A3.CBCB2A.2AC2.C2.BC.A\$4.BA.B4.C3.CB3.A2.CB2.BC.B2.AC.A.B2.A2.AC.AB2A\$5.3A4.ABC.C2A2.2A6.C2.2A4.A2.2ABCAB.AB2A\$5.A.C2.B2.A2.CBA2.A7.A.A.A3.A.A.A.A.A.A.A\$4.C2A.A.C5A.B.31A\$6.ABA2B.A.A.C2ABC.A.A.A.A.A.A3.A.A.A.A.A.A.A\$5.C.2A2.C.A2.B5.C.C2.A.2A.A.2CB.B.C2.2A\$7.C2.BAB.BC7.BABCB2A.CB2A2.ACBABCA\$7.C.C4.B7.A.A.2A.A3.CBA4.3ABA\$8.BABC.CBA5.BC10.CBA6.2A\$9.A.ABA8.C8.CB\$22.C9.BA\$21.C.B8.C\$24.C4.BC.C\$6.C18.B.C2.C2.C\$5.CB12.C3.CAC.ABA.BA\$3.2CBA15.B.B3.A.2A\$3.2BA16.CA2.ABCBCBA.ABC.ABC.ABC.A\$C2.2A13.BC6.AB5.ABC.ABC.ABC.AB2A\$B2C13.CABC8.C4.ABC.ABC.ABC.AB2A\$A2B15.ABC11.C.ABC.ABC.ABC.A\$.2A2\$3.CA\$3.CA11\$81.ABC.ABC.ABC.A\$80.ABC.ABC.ABC.AB2A\$80.ABC.ABC.ABC.AB2A\$81.ABC.ABC.ABC.A!`

It's relatively compact and is capable of emerging from soup. I found it without the bottom rake that deletes some stray spaceships, but that is also known to arise naturally.

Also, I noticed that if you take a random pattern and run it for a while, there are a lot of breeders that just show up, so if I'm not the only one who cares, we can expect an inundation of similar patterns.

EDIT #1:
Here's another one that given infinite time will fill 1/2 of the space (the previous one fills 1/4 of the space) at a lower density:
`x = 231, y = 159, rule = 345/2/459.2A11.2A\$54.2A3.2A11.2B83.2A11.2A\$54.2B2.A2BA9.A2CA82.2B11.2A3.2A\$53.A2C3.2A10.B2.B81.A2CA9.A2BA2.2B\$53.B4.C2.C9.C2.CA80.B2.B10.2A3.2CA\$53.CA3.B2CB13.B79.AC2.C9.C2.C4.B\$54.B.3A2BA12.AC79.B13.B2CB3.AC\$53.AC2A2.2A13.B80.CA12.A2B3A.B\$52.AB2.2AC2.C12.CA80.B13.2A2.2ACA\$51.ABC3A2.2CB13.B79.AC12.C2.C2A2.BA\$51.BC.A.3A2BA12.AC79.B13.B2C2.3ACBA\$50.AC.AC2A2.2A9.2A2.B80.CA12.A2B3A.A.CB\$50.B2.BA.2AC2.C8.2B2.CA80.B2.2A9.2A2.2ACA.CA\$49.AC3A.2A.A2CB8.2C3.B79.AC2.2B8.C2.C2A.AB2.B\$49.B.B4.2A2.BA12.AC79.B3.2C8.B2CA.2A.3ACA\$49.CAC3.2A.C11.2A2.B80.CA12.AB2.2A4.B.B\$56.2A3.C8.2B2.CA80.B2.2A11.C.2A3.CAC\$50.2C2.C2A.A2CB8.2C3.B79.AC2.2B8.C3.2A\$51.B3A.2AC2.2A11.AC79.B3.2C8.B2CA.2AC2.2C\$53.BC2A.A.2CB11.B80.CA11.2A2.C2A.3AB\$52.AB2.3A2.BA11.CA80.B11.B2C.A.2ACB\$53.CB2A.B2.C13.B79.AC11.AB2.3A2.BA\$53.A2.2A3.C13.C79.B13.C2.B.2ABC\$54.B2A.A2.C93.C13.C3.2A2.A\$53.AC.3AB.CBA105.C2.A.2AB\$54.B2A.C.C.BA103.ABC.B3A.CA\$53.2A.3AB.C105.AB.C.C.2AB\$45.ABC4.B3.A.A110.C.B3A.2A\$44.A.A4.C.C2.2A114.A.A3.B4.CBA\$43.3ACA3.C3.2A.C114.2A2.C.C4.A.A\$43.3AC2A.CB2.B.2A9.CBA102.C.2A3.C3.AC3A\$39.ABC3.B.B.BA4.2A.ABA6.CBA91.ABC9.2A.B2.BC.2AC3A\$39.ABC4.A.A7.2ACA101.ABC6.ABA.2A4.AB.B.B3.CBA\$41.ABC9.CB2A2.BA110.AC2A7.A.A4.CBA\$44.ABC6.A2.3A.C19.2A88.AB2.2ABC9.CBA\$44.ABC7.B2A.A21.2BA66.2A19.C.3A2.A6.CBA\$45.ABC6.C.2A.AB12.CBA4.2CB65.A2B21.A.2AB7.CBA\$54.3A.A.C12.CBA6.C65.B2C4.ABC12.BA.2A.C6.CBA\$54.B.3A89.C6.ABC12.C.A.3A\$53.A.2A.C113.3A.B\$52.BC2.2A114.C.2A.A\$51.A.CB2A2.CB112.2A2.CB\$52.BA3.B2A19.CBA88.BC2.2ABC.A\$33.A16.C.A2C2.A.A19.CBA67.ABC19.2AB3.AB\$34.B12.AB2CB5.C.2A88.ABC19.A.A2.2CA.C16.A\$33.AC3.C6.A.A2.B2.C2.A.2A.A108.2A.C5.B2CBA12.B\$44.3ACA7.3A.B108.A.2A.A2.C2.B2.A.A6.C3.CA\$34.C.C7.5A3.A.C2A2.C.A108.B.3A7.AC3A\$33.B12.A2.B.2BA2.2A.2B24.CBA81.A.C2.2AC.A3.5A7.C.C\$49.C.2C.B2A2.CA24.CBA55.ABC24.2B.2A2.A2B.B2.A12.B\$35.C15.B2.A.2A85.ABC24.AC2.2AB.2C.C\$52.C2ACA.2A113.2A.A2.B15.C\$54.A.2ABA111.2A.AC2AC\$54.ABA.C112.AB2A.A\$53.AB.3A113.C.ABA\$55.C2.B113.3A.BA\$57.C114.B2.C\$51.C9.B111.C\$56.C3.C.C106.B9.C\$54.CB112.C.C3.C\$175.BC\$34.CB2.C17.C3.C\$34.BA18.C.BA6.CBA103.C3.C17.C2.BC\$34.2C17.B.2A8.CBA96.ABC6.AB.C18.AB\$35.B18.A.3A6.CBA95.ABC8.2A.B17.2C\$33.C17.C2.BCA.B104.ABC6.3A.A18.B\$54.A.2A114.B.ACB2.C17.C\$52.C2A.A13.CBA9.CBA88.2A.A\$52.B.A.A.C9.CBA.CBA7.CBA61.ABC9.ABC13.A.2AC\$54.B2A2.C13.CBA70.ABC7.ABC.ABC9.C.A.A.B\$54.A.3A16.CBA77.ABC13.C2.2AB\$56.A.B17.CBA74.ABC16.3A.A\$56.3A19.CBA71.ABC17.B.A\$55.2A21.CBA69.ABC19.3A\$56.3A.A5.BA8.CBA71.ABC21.2A\$56.A.2AB4.C.CB6.CBA74.ABC8.AB5.A.3A\$56.2A.A9.C2.BC.A77.ABC6.BC.C4.B2A.A\$45.2C9.A.ABA6.C.C.A.CBA79.A.CB2.C9.A.2A\$45.2B9.A.CA8.BABC.AB80.ABC.A.C.C6.ABA.A9.2C\$45.2A8.2A12.A5.CBA78.BA.CBAB8.AC.A9.2B\$56.A19.CBA74.ABC5.A12.2A8.2A\$56.A8.CBA9.CBA72.ABC19.A\$42.ABC7.A3.2A7.CBA10.CBA70.ABC9.ABC8.A\$41.ABC.ABC4.3B2A6.BC.A.C.ABC.ABC.A.CBA67.ABC10.ABC7.2A3.A7.CBA\$39.ABC.ABC.ABC.A2C2.3A4.ACB4.CBA.CBA.CBA.CBA63.ABC.A.CBA.CBA.C.A.CB6.2A3B4.CBA.CBA\$39.ABC2.ABC2.ABC2.C2A.2A.C2.BA3.CBA.CBA.CBA3.CBA60.ABC.ABC.ABC.ABC4.BCA4.3A2.2CA.CBA.CBA.CBA\$45.ABC8.A.A.C2.CA3.CBA.CBA.CBA5.CBA58.ABC3.ABC.ABC.ABC3.AB2.C.2A.2AC2.CBA2.CBA2.CBA\$46.ABC5.B2A.A.B.CB3.CBA.CBA.CBA7.CBA56.ABC5.ABC.ABC.ABC3.AC2.C.A.A8.CBA\$47.ABC3.CA.3ACA5.CBA.CBA.CBA9.CBA54.ABC7.ABC.ABC.ABC3.BC.B.A.2AB5.CBA\$48.ABC.B.AB.A.B26.CBA53.ABC9.ABC.ABC.ABC5.AC3A.AC3.CBA\$49.ABCAC2.C.A83.ABC26.B.A.BA.B.CBA\$51.AB119.A.C2.CACBA\$178.BA2\$45.ABC\$44.ABC136.CBA\$3.B19.ABC18.ABC137.CBA\$.C182.CBA18.CBA19.B\$229.C8\$56.2A\$55.A2B115.2A\$55.B2CA114.2BA\$54.AC2.BA112.A2CB\$54.B3.CB111.AB2.CA\$53.AC4.C111.BC3.B\$53.B117.C4.CA\$52.AC123.B\$52.B3.2A119.CA\$52.C3.2BA114.2A3.B\$55.A2CB14.CBA96.A2B3.C\$55.B2.C16.CBA77.ABC14.B2CA\$54.ACA19.CBA74.ABC16.C2.B\$53.AB.BA18.CBA73.ABC19.ACA\$53.BC.CB16.CBA75.ABC18.AB.BA\$52.2AC.BC10.CBA.CBA79.ABC16.BC.CB\$53.BC4.C6.C.A.CBA83.ABC.ABC10.CB.C2A\$56.CA2.B7.CBA87.ABC.A.C6.C4.CB\$55.A2B.C100.ABC7.B2.AC\$56.A114.C.2BA\$56.A117.A\$55.2A117.A\$56.A117.2A\$ABC53.A117.A\$BC51.AB.2A116.A53.CBA\$2.BA.C46.A.ABA116.2A.BA51.CB\$BC2.B38.ABC6.B2A.3A115.ABA.A46.C.AB\$.ABC38.ABC6.A.A.2A.2A112.3A.2AB6.CBA38.B2.CB\$40.ABC9.BC2.A.A112.2A.2A.A.A6.CBA38.CBA\$C39.ABC9.AB.2A.A113.A.A2.CB9.CBA\$BC16.2A21.ABC.ABC6.C.3AC112.A.2A.BA9.CBA39.C\$ABC15.2B23.ABC.A.C5.B.A.B111.C3A.C6.CBA.CBA21.2A16.CB\$.ABC14.2C25.ABC8.A.A112.B.A.B5.C.A.CBA23.2B15.CBA\$3.ABC40.ABC123.A.A8.CBA25.2C14.CBA\$47.ABC132.CBA40.CBA\$48.ABC130.CBA\$49.AB2C127.CBA\$50.A2B125.2CBA\$51.2A125.2BA\$178.2A\$55.C\$55.B2C117.C\$55.A2B115.2CB\$56.2A115.2BA\$11.2A160.2A\$11.2B43.2C160.2A\$11.2C43.2B115.2C43.2B\$53.5A115.2B43.2C\$53.2B118.5A\$52.A2CA120.2B\$52.B2.B119.A2CA\$52.C2.C119.B2.B\$175.C2.C!`

For some breeders it is simpler to calculate the filled area than others; in particular, isosceles, right, and equilateral triangles are easy, but scalene triangles are hard, and other polygons are much harder.
beebop

Posts: 44
Joined: October 13th, 2011, 9:53 pm

### Re: Star Wars Rule

Both your density calculations are incorrect. The first breeder fills half the plane (everything above the center line) with a density of 3/16. The second fills the entire plane, with density 1/32.

For some breeders it is simpler to calculate the filled area than others; in particular, isosceles, right, and equilateral triangles are easy, but scalene triangles are hard, and other polygons are much harder.

The portion of the plane filled is any area that will eventually be encompassed. For most breeders, this is everything beyond a certain line (which is ALWAYS half the plane). If there are more than two boundary lines, the filled area will be reduced accordingly.
For triangles with two boundary lines, the filled portion of the plane is the angle between them/(2 Pi).
137ben

Posts: 343
Joined: June 18th, 2010, 8:18 pm

### Re: Star Wars Rule

137ben wrote:The first breeder fills half the plane (everything above the center line) with a density of 3/16. The second fills the entire plane, with density 1/32

OK, thanks. I guess I wasn't thinking when I made those calculations, and thanks for correcting them.
beebop

Posts: 44
Joined: October 13th, 2011, 9:53 pm

### Re: Star Wars Rule

but scalene triangles are hard, and other polygons are much harder

For a polygon with vertices {(x1,y1),(x2,y2), ... ,(xn,yn)}, you can use this formula:

Area = ((x1y2 - x2y1) + (x2y3 - x3y2) + ... + (xny1 - x1yn))/2.

Keen observers will notice that for n = 3, this reduces to the determinant formula for calculating the area of a triangle.
What do you do with ill crystallographers? Take them to the mono-clinic!

calcyman

Posts: 1956
Joined: June 1st, 2009, 4:32 pm

### Re: Star Wars Rule

Binary counter!!!
`x = 25, y = 14, rule = 345/2/42.C4.C\$7.B9.C4.C\$7.AC8.B\$8.B7.CA\$7.CA7.B\$2.A4.B8.AC\$.BAB2.CA9.B4.A\$.3CA.B10.AC2.BAB\$C3.BCA11.B.A3C\$B3A.B12.ACB3.C\$A.2B2A13.B.3AB\$.3A15.2A2B.A\$2.2A17.3A\$21.2A!`

Lowest glider is not counted, each number is readed diagonally (from SW to NE) and each bit is two gliders.

Here is version without this not counted gliders:
`x = 32, y = 76, rule = 345/2/42B\$2A61\$9.C4.C\$14.B9.C4.C\$14.AC8.B\$15.B7.CA\$14.CA7.B\$9.A4.B8.AC\$8.BAB2.CA9.B4.A\$8.3CA.B10.AC2.BAB\$7.C3.BCA11.B.A3C\$7.B3A.B12.ACB3.C\$7.A.2B2A13.B.3AB\$8.3A15.2A2B.A\$9.2A17.3A\$28.2A!`

Edit:
I made mistake when copying code for pattern
First question ever. Often referred to as The Question. When this question is asked in right place in right time, no one can lie. No one can abstain. But when The Question is asked, silence will fall. Silence must fall. The Question is: Doctor Who?

Wojowu

Posts: 210
Joined: October 1st, 2011, 1:24 pm

### Re: Star Wars Rule

Extendable backrake creates an array of gliders:
`x = 356, y = 136, rule = 345/2/410.ABC\$8.ABC.A3.A\$2.ABC.ABC2.BA.ABCBA\$ABC.ABC2.BA.CB2.CA\$ABC3.ABC.A.CB2.2A\$8.ABC2.BA.CA\$10.ABC.A.CB2.CB7.BA\$12.ABC2.BA.C2ACBA2.CACB\$14.ABC.A.CBA.CB2.B2.CA8.C\$16.ABC2.BA.C2AC2.CBA2.2A5.B\$18.ABC.A.CBA.2B2.B2.2B4.AC\$20.ABC2.BA.CA.2CA.2C2.C2.2BA\$22.ABC.A.CB2.B7.BACA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$24.ABC2.BA.CA.2C.2C2.CB21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$26.ABC.A.CBA.B.C4.BA\$28.ABC2.BA.CA4.AC\$30.ABC.A.CBA4.2BA\$32.ABC2.BA.CB.CA9.C\$34.ABC.A.CB2.CB9.BA\$36.ABC2.BA.C2ACBA2.C.BCBA\$38.ABC.A.CBA.CB5.CBA7.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$40.ABC2.BA.C2A3.CB.A7.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$42.ABC.A.CBA.AB2.B\$44.ABC2.BA.CB.2CA.C\$46.ABC.A.CB2.B9.CBA\$48.ABC2.BA.CA.2C5.CB\$50.ABC.A.CBA.B.C4.BA9.C\$52.ABC2.BA.CA4.AC\$54.ABC.A.CBA4.2BA8.2CB8.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$56.ABC2.BA.CB.CA10.BA8.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$58.ABC.A.CB2.CB6.BC.C\$60.ABC2.BA.C2ACBA2.C2.C\$62.ABC.A.CBA.CB5.CB8.C\$64.ABC2.BA.C2A3.CB.A8.B\$66.ABC.A.CBA.AB2.B8.AC\$68.ABC2.BA.CB.2CA.C6.2BA\$70.ABC.A.CB2.B9.CA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$72.ABC2.BA.CA.2C5.CB21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$74.ABC.A.CBA.B.C4.BA\$76.ABC2.BA.CA4.AC\$78.ABC.A.CBA4.2BA\$80.ABC2.BA.CB.CA9.C\$82.ABC.A.CB2.CB9.BA\$84.ABC2.BA.C2ACBA2.C.BCBA\$86.ABC.A.CBA.CB5.CBA7.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$88.ABC2.BA.C2A3.CB.A7.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$90.ABC.A.CBA.AB2.B\$92.ABC2.BA.CB.2CA.C\$94.ABC.A.CB2.B9.CBA\$96.ABC2.BA.CA.2C5.CB\$98.ABC.A.CBA.B.C4.BA9.C\$100.ABC2.BA.CA4.AC\$102.ABC.A.CBA4.2BA8.2CB8.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$104.ABC2.BA.CB.CA10.BA8.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$106.ABC.A.CB2.CB6.BC.C\$108.ABC2.BA.C2ACBA2.C2.C\$110.ABC.A.CBA.CB5.CB8.C\$112.ABC2.BA.C2A3.CB.A8.B\$114.ABC.A.CBA.AB2.B8.AC\$116.ABC2.BA.CB.2CA.C6.2BA\$118.ABC.A.CB2.B9.CA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$120.ABC2.BA.CA.2C5.CB21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$122.ABC.A.CBA.B.C4.BA\$124.ABC2.BA.CA4.AC\$126.ABC.A.CBA4.2BA\$128.ABC2.BA.CB.CA9.C\$130.ABC.A.CB2.CB9.BA\$132.ABC2.BA.C2ACBA2.C.BCBA\$134.ABC.A.CBA.CB5.CBA7.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$136.ABC2.BA.C2A3.CB.A7.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$138.ABC.A.CBA.AB2.B\$140.ABC2.BA.CB.2CA.C\$142.ABC.A.CB2.B9.CBA\$144.ABC2.BA.CA.2C5.CB\$146.ABC.A.CBA.B.C4.BA9.C\$148.ABC2.BA.CA4.AC\$150.ABC.A.CBA4.2BA8.2CB8.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$152.ABC2.BA.CB.CA10.BA8.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$154.ABC.A.CB2.CB6.BC.C\$156.ABC2.BA.C2ACBA2.C2.C\$158.ABC.A.CBA.CB5.CB8.C\$160.ABC2.BA.C2A3.CB.A8.B\$162.ABC.A.CBA.AB2.B8.AC\$164.ABC2.BA.CB.2CA.C6.2BA\$166.ABC.A.CB2.B9.CA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$168.ABC2.BA.CA.2C5.CB21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$170.ABC.A.CBA.B.C4.BA\$172.ABC2.BA.CA4.AC\$174.ABC.A.CBA4.2BA\$176.ABC2.BA.CB.CA9.C\$178.ABC.A.CB2.CB9.BA\$180.ABC2.BA.C2ACBA2.C.BCBA\$182.ABC.A.CBA.CB5.CBA7.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$184.ABC2.BA.C2A3.CB.A7.CBA21.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$186.ABC.A.CBA.AB2.B\$188.ABC2.BA.CB.2CA.C\$190.ABC.A.CB2.B9.CBA\$192.ABC2.BA.CA.2C5.CB\$194.ABC.A.CBA.B.C4.BA9.C\$196.ABC2.BA.CA4.AC\$198.ABC.A.CBA4.2BA8.2CB8.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$200.ABC2.BA.CB.CA10.BA8.CBA21.CBA21.CBA21.CBA21.CBA21.CBA\$202.ABC.A.CB2.CB6.BC.C\$204.ABC2.BA.C2ACBA2.C2.C\$206.ABC.A.CBA.CB5.CB8.C\$208.ABC2.BA.C2A3.CB.A8.B\$210.ABC.A.CBA.AB2.B8.AC\$212.ABC2.BA.CB.2CA.C6.2BA\$214.ABC.A.CB2.B9.CA21.CBA21.CBA21.CBA21.CBA21.CBA\$216.ABC2.BA.CA.2C5.CB21.CBA21.CBA21.CBA21.CBA21.CBA\$218.ABC.A.CBA.B.C4.BA\$220.ABC2.BA.CA4.AC\$222.ABC.A.CBA4.2BA\$224.ABC2.BA.CB.CA9.C\$226.ABC.A.CB2.CB9.BA\$228.ABC2.BA.C2ACBA2.C.BCBA\$230.ABC.A.CBA.CB5.CBA7.CBA21.CBA21.CBA21.CBA21.CBA\$232.ABC2.BA.C2A3.CB.A7.CBA21.CBA21.CBA21.CBA21.CBA\$234.ABC.A.CBA.AB2.B\$236.ABC2.BA.CB.2CA.C\$238.ABC.A.CB2.B9.CBA\$240.ABC2.BA.CA.2C5.CB\$242.ABC.A.CBA.B.C4.BA9.C\$244.ABC2.BA.CA4.AC\$246.ABC.A.CBA4.2BA8.2CB8.CBA21.CBA21.CBA21.CBA\$248.ABC2.BA.CB.CA10.BA8.CBA21.CBA21.CBA21.CBA\$250.ABC.A.CB2.CB6.BC.C\$252.ABC2.BA.C2ACBA2.C2.C\$254.ABC.A.CBA.CB5.CB8.C\$256.ABC2.BA.C2A3.CB.A8.B\$258.ABC.A.CBA.AB2.B8.C\$260.ABC2.BA.CB.2CA.C\$262.ABC.A.CB2.B\$264.ABC2.BA.CA.2C\$266.ABC.A.CB2.B\$268.ABC!`
knightlife

Posts: 566
Joined: May 31st, 2009, 12:08 am

### Re: Star Wars Rule

A quadratic backrake creates rakes in an unusual way:
`x = 91, y = 22, rule = 345/2/445.CBA\$11.ABC28.BC3.CBA\$11.ABC5.ABC19.C2.BCBA.CBA\$13.ABC.ABC2.BA16.BCBA.A3.A.CBA\$15.ABC2.BA.CBA15.A5.C.CB2.CBA\$17.ABC.A.CBA22.BA.ABA.CBA\$19.ABC31.C3.CBA\$20.ABC32.C.A.CBA\$53.C2.BC.A.CBA\$59.CBA.CBA\$34.2A29.CBA\$34.2B8.B22.CBA\$33.A2C7.2C24.CBA\$32.B4.AC.BCAB3.A19.A.A.A\$32.2A2.A.A.A.A.2A2B2A17.BA.2B2A13.CBA\$CBA28.C18A18.C5A13.CBA\$C.A\$C.AB87A\$C.AB87A\$C.A\$CBA84.CBA\$87.CBA!`

The backrake makes use of a moving wall.
The moving wall is great for cleanup tasks when making large spaceships or rakes.

The following rake uses a moving wall that manages to repair itself:
`x = 86, y = 68, rule = 345/2/4.2A\$3A\$.2BA\$3A\$.A.C\$.C2B\$2.2A\$2.C\$C.BC8\$17.2A\$16.3A\$17.2BA\$16.3A\$17.A.C\$17.C2B\$18.2A\$18.C\$16.C.BC8\$33.2A\$32.3A\$33.2BA\$32.3A\$33.A.C\$31.2AC2B\$30.B.B3A\$29.A2CA.C\$30.B2.B24.CBA\$31.A2C24.CBA\$32.B23.CBA\$35.C4.ABC\$33.2CB4.ABC\$33.2BA5.ABC13.B\$33.2A8.BC3.C7.C.C\$34.C2.2A4.B.B.AB2.C\$36.A2BA2.ABCBAC.2A4.CB.CACBA\$33.C.CAC.CB.C4.B2.2A.C.C2.AB.ACB\$34.2A.A.A3.A.A.A.A.A.A.A.A.A.A.A.A\$35.B4ABCB25A\$34.CA12.A.A.A3.A.A.A.A.A.A.A\$40.B2AC2.CBA2.A.BCB.A2.C2.A.AC3A\$39.C.A.BAC2.A.ABC.A.ACABC.BC.AC3A\$41.C.CAB.B2.3A2.ABA.A3.2B.A.A\$42.B3.C2A2.BC.C.2A7.CBA\$46.A.BA2.CB.C7.CBA\$46.B.2C2.A2B\$45.2C.B2.C3A\$29.ABC13.AB3.CB30.CBA\$28.CB.C13.ABC34.CBA\$29.B.A\$29.BC55A\$29.BC55A\$29.B.A\$28.CBA51.CBA\$82.CBA!`
knightlife

Posts: 566
Joined: May 31st, 2009, 12:08 am

### Re: Star Wars Rule

Two moving walls
`x = 60, y = 14, rule = 345/2/456.CBA\$2.CBA51.CBA\$2.C.A\$2.C.AB54A\$2.C.AB54A\$A.B.B\$ABA53.CBA\$ABA53.CBA\$A.B.B\$2.C.AB54A\$2.C.AB54A\$2.C.A\$2.CBA51.CBA\$56.CBA!`

Three moving walls
`x = 60, y = 20, rule = 345/2/456.CBA\$2.CBA51.CBA\$2.C.A\$2.C.AB54A\$2.C.AB54A\$A.B.B\$ABA53.CBA\$ABA53.CBA\$A.B.B\$2.C.AB54A\$2.C.AB54A\$A.B.B\$ABA53.CBA\$ABA53.CBA\$A.B.B\$2.C.AB54A\$2.C.AB54A\$2.C.A\$2.CBA51.CBA\$56.CBA!`

And a stretcher
`x = 29, y = 8, rule = 345/2/425.CBA\$A24.CBA\$.A\$.28A\$.28A2\$25.CBA\$25.CBA!`

Hektor

Posts: 89
Joined: November 3rd, 2011, 2:37 pm

### Re: Star Wars Rule

Stretcher moving in two directions
`x = 3, y = 10, rule = 345/2/4.B\$.A\$.A2\$3A\$3A2\$.A\$.A\$.B!`

Stable, indestructible box
`x = 21, y = 21, rule = 345/2/4.A2.A2.A2.A2.A2.A2.A\$21A\$.A17.A\$.A17.A\$2A17.2A\$.A17.A\$.A17.A\$2A17.2A\$.A17.A\$.A17.A\$2A17.2A\$.A17.A\$.A17.A\$2A17.2A\$.A17.A\$.A17.A\$2A17.2A\$.A17.A\$.A17.A\$21A\$.A2.A2.A2.A2.A2.A2.A!`

Another one, almost indestructible even from outside (expect corners)
`x = 13, y = 13, rule = 345/2/42.A7.A\$.11A\$2A.7A.2A\$.2A7.2A\$.2A7.2A\$.2A7.2A\$.2A7.2A\$.2A7.2A\$.2A7.2A\$.2A7.2A\$2A.7A.2A\$.11A\$2.A7.A!`
First question ever. Often referred to as The Question. When this question is asked in right place in right time, no one can lie. No one can abstain. But when The Question is asked, silence will fall. Silence must fall. The Question is: Doctor Who?

Wojowu

Posts: 210
Joined: October 1st, 2011, 1:24 pm

### Re: Star Wars Rule

Found some AWESOME (and extendible) rakes!
`x = 3, y = 64, rule = 345/2/43A\$3A\$2A\$2A\$3A\$3A15\$3A\$3A\$2A\$2A\$3A\$3A\$2A\$2A\$3A\$3A21\$3A\$3A\$2A\$2A\$3A\$3A\$2A\$2A\$3A\$3A\$2A\$2A\$3A\$3A!`

`x = 72, y = 48, rule = 345/2/45\$18.3A\$18.3A\$5.CA11.2A\$5.2BA10.2A\$6.CBA9.3A\$6.CBA9.3A\$5.2BA10.2A\$5.CA11.2A\$18.3A\$18.3A\$18.2A\$18.2A\$18.3A\$18.3A\$18.2A\$18.2A\$18.3A\$18.3A46.3A\$18.2A47.3A\$18.2A22.CA23.2A\$18.3A21.2BA22.2A\$18.3A22.CBA21.3A\$18.2A23.CBA21.3A\$18.2A22.2BA22.2A\$18.3A21.CA23.2A\$18.3A46.3A\$18.2A47.3A\$18.2A\$18.3A\$18.3A\$18.2A\$18.2A\$18.3A\$18.3A\$.CA15.2A\$.2BA14.2A\$2.CBA13.3A\$2.CBA13.3A\$.2BA14.2A\$.CA15.2A\$18.3A\$18.3A!`

`x = 3, y = 23, rule = 345/2/43A\$3A\$2A\$2A\$3A\$3A\$2A\$2A\$3A\$3A4\$3A\$3A\$2A\$2A\$3A\$3A\$2A\$2A\$3A\$3A!`

Hektor

Posts: 89
Joined: November 3rd, 2011, 2:37 pm

### Re: Star Wars Rule

Here is a guaranteed indestructible box, where all initial cells are permanent. Though, it oscillates at the corners:
`x = 13, y = 13, rule = 345/2/4.11A\$2A.A2.A2.A.2A\$A2.A2.A2.A2.A\$13A\$A2.A5.A2.A\$A2.A5.A2.A\$4A5.4A\$A2.A5.A2.A\$A2.A5.A2.A\$13A\$A2.A2.A2.A2.A\$2A.A2.A2.A.2A\$.11A!`

flipper77

Posts: 197
Joined: October 24th, 2010, 3:25 am
Location: Spokane, WA

### Re: Star Wars Rule

After some thought and experimentation, I've finally found a much more plausible plus crystal reaction:
`x = 31, y = 80, rule = 345/2/422.2C\$22.2B\$22.2A29\$14.CBA\$14.CBA\$CBA\$CBA25.A\$27.3A\$28.A36\$22.2A\$22.2B\$22.2C2\$29.2A\$28.A2B\$28.B2C\$28.C!`

It can be adjusted so it contains a lot of flexibility.

flipper77

Posts: 197
Joined: October 24th, 2010, 3:25 am
Location: Spokane, WA

PreviousNext