ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Thread For Your Unrecognised CA

For discussion of other cellular automata.

Re: Thread For Your Unrecognised CA

Postby LaundryPizza03 » May 1st, 2018, 2:10 am

wildmyron wrote:I like those puffers. As an aside, "photon" traditionally refers to light-speed ships.

Here's a B2a rule which really likes odd period spaceships. It's fairly explosive, but I thought the prevalence of odd periods was interesting. When I say 'rule', this is actually the minimal rule supporting all the odd period patterns below. Together they work in 2^61 rules, so I suppose there's a reasonable chance of dampening the dynamics somewhat.

c
x = 12, y = 4, rule = B2ae3er4a/S2cn3enq
o4bo$bo4bo2bobo$bo2bobo4bo$o!

3c/3
x = 4, y = 3, rule = B2ae3er4a/S2cn3enq
3o$3bo$bobo!

7c/7
x = 4, y = 2, rule = B2ae3er4a/S2cn3enq
bobo$o2bo!

3c/3 puffer
x = 5, y = 4, rule = B2ae3er4a/S2cn3enq
b3o$o3bo$4bo$3bo!

7c/7 rake (emits the 3c/3 photon)
x = 6, y = 2, rule = B2ae3er4a/S2cn3enq
bobobo$obo2bo!


There's also a p6 photon
x = 8, y = 8, rule = B2ae3er4a/S2cn3enq
5bobo$7bo$5b2o3$2bo$4bo$obobo!

and this interesting sawtooth
x = 8, y = 3, rule = B2ae3er4a/S2cn3enq
bo$o6bo$7bo!

I accidentally discovered this Sierpiński generator:
x = 11, y = 6, rule = B2ae3er4a/S2cn3enq
b2o6b2o$o2bo$3bo6bo$3bo5bo$2bo7bo$9bo!

EDIT: ?!!
x = 4, y = 3, rule = B2ae3er4ai5-k678/S2cn3enq5678
b2o$o2bo$b2o!


P.S. If interested in finding a stable rule in the rulespace (or the closely related one with S4e), I'd suggest B2ae3r4i5-ky678/S2n5678 as a model. In other words, use B4i and as many of B5678/S5678 as possible. Photics 1 attempted to use a similar model.
x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!

LaundryPizza03 at Wikipedia
User avatar
LaundryPizza03
 
Posts: 231
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Thread For Your Unrecognised CA

Postby LaundryPizza03 » May 1st, 2018, 10:36 pm

B3-n5ir6ai/S124a6a7e has an infinite family of wickstretcher-based c/2 spaceships and puffers.
x = 167, y = 20, rule = B3-n5ir6ai/S124a6a7e
55b2o3b2o16b2o19b2o26b2o3b2o22b2o$54b4ob4o14b4o17b4o24b4ob4o20b4o$55b
2o3b2o16b2o19b2o26b2o3b2o22b2o$54b4ob4o14b4o17b4o24b4ob4o20b4o$55b2o3b
2o16b2o19b2o26b2o3b2o22b2o$12b4o39b2o3b2o16b2o19b2o4b4o18b2o3b2o22b2o
2$6b4o2b4o38b4ob4o14b4o17b4o3b4o17b4ob4o20b4o2$4o2b4o2b4o2b4o2b4o2b4o
2b4o2b4o2b4o2b4ob4o6b4o4b4o4b4o3b4o2b4o3b4o6b4ob4o2b4ob4o6b4o4b4o2b4o
4b4o2$b2o4b2o4b2o3bo2bo3b3o3b3o3b2o4b2o4b2o4b3ob3o7bob2o4bob2o4bob2o3b
2obo2bob2o3b2obo7b2o3b2o4b2o3b2o7b2obo4bob2o2b2obo4bob2o$115bo7bo2bo7b
o$27bo5bo3b2o4b2o4b2o6bobo9bo2bo4bo2bo4bo2bo3bo2bo2bo2bo3bo2bo33bo8bo
4bo8bo$36b4o2b4o2b4o20bo7bo7bo3bo8bo3bo40b2o12b2o$37b2o4b2o4b2o$37b2o
3b4o2b4o$42bo2bo3b2o$49b3o$51bo!

From left to right: p2, p12, p14, and p40.

There is also a way to stabilize the end of a wickstretcher, resulting in p8 single-ended wickstretchers and oscillators:
x = 40, y = 16, rule = B3-n5ir6ai/S124a6a7e
37b2o$39bo$39bo$29b2o3b4o$31bo$8b4o9b2o8bo2b4o$23bo2b4o$9b2o12bo11b2o$
9b2o7b4o4b4o5b2o2$8b4o6b4o4b4o4b4o2$4o4b4o6b4o4b4o4b4o$5bo7bo9bo7bo7bo
$5bo7bo9bo7bo7bo$3b2o6b2o8b2o6b2o6b2o!


The stabilizer could probably be used to make an eater for the most common ship, but all my attempts have failed. I have not found any guns yet.

Here are some oscillators (including the p8s above):
x = 41, y = 48, rule = B3-n5ir6ai/S124a6a7e
bobo2$4bo11b2o$9b2o$bobo13bo$10bo6bo2b2o$4bo6bobo$13bo2b2o$bobo5$o3bo
2$o3bo20bo2bo2bo2bo2bo2bo$9bobo4bobobo4bobobobo2bobobobo$obobo6bo4bo3b
o$9bobo4bobobo$4bo20b2o3b2o5bo$37bo$4bo5$3bo$bo$9b2o5b2o2b2o$o10bo6bo$
2bo7b3o4b3o$o3bo6b3o4b3o$12bo6bo$o3bo$2bo5$bobo2$o3bo7bobobo8bobo4bobo
$12bobobo8bobob2obobo$bobo8bobobo8bobob2obobo$9bo2bobobo2bo2bo2bobo4bo
bo2bo$o3bo4bo9bo2bo14bo$10b2o5b2o4b2o10b2o$bobo!
x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!

LaundryPizza03 at Wikipedia
User avatar
LaundryPizza03
 
Posts: 231
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Thread For Your Unrecognised CA

Postby danny » May 1st, 2018, 10:52 pm

An amuzing almost-eater:
x = 13, y = 6, rule = B3-n5ir6ai/S124a6a7e
3b2o2$bo8bo$obo7bobo$obo7bobo$bo8bo!
I prefer Dani now, but Danny is fine seeing as it's my username and I've already made 4 too many accounts.
User avatar
danny
 
Posts: 775
Joined: October 27th, 2017, 3:43 pm
Location: i love to eat bees

Re: Thread For Your Unrecognised CA

Postby jimmyChen2013 » May 3rd, 2018, 9:11 am

These rules that I call Spilled-paint because they have a paint-like or map-like feature, and kinda looks artistic

paint1:
@RULE Spilledpaint
@TABLE
n_states:3
neighborhood:Moore
symmetries:permute

var a = {0,1,2}
var b = {a}
var c = {a}
var d = {a}
var e = {a}
var f = {a}
var g = {a}
var h = {a}

1,2,2,2,2,2,a,b,c,0
2,1,1,1,1,1,a,b,c,0

1,1,1,1,1,2,2,2,2,2
2,2,2,2,2,1,1,1,1,1

1,1,1,1,1,1,a,b,2,1
2,2,2,2,2,2,a,b,1,2

1,2,a,b,c,d,e,1,2,2
2,1,a,b,c,d,e,2,1,1

0,1,1,1,1,1,a,b,c,1
0,2,2,2,2,2,b,b,c,2

0,1,1,2,0,0,0,0,0,2
0,1,2,2,0,0,0,0,0,1

@COLORS
1 170 50 255
2 248 255 0


paint2
@RULE Spilledpaint2
@TABLE
n_states:3
neighborhood:Moore
symmetries:permute

var a = {0,1,2}
var b = {a}
var c = {a}
var d = {a}
var e = {a}
var f = {a}
var g = {a}
var h = {a}

1,2,2,2,b,c,d,e,f,0
2,1,1,1,b,c,d,e,f,0

1,2,2,2,2,2,a,b,c,0
2,1,1,1,1,1,a,b,c,0

1,1,1,1,1,2,2,2,2,2
2,2,2,2,2,1,1,1,1,1

1,1,1,1,1,1,a,b,2,1
2,2,2,2,2,2,a,b,1,2

1,2,a,b,c,d,e,1,2,2
2,1,a,b,c,d,e,2,1,1

0,1,1,1,1,1,1,b,c,1
0,2,2,2,2,2,2,b,c,2

0,1,1,2,0,0,0,0,0,2
0,1,2,2,0,0,0,0,0,1

0,1,1,2,1,0,0,0,0,1
0,1,2,2,2,0,0,0,0,2

0,1,1,1,1,0,0,0,0,1
0,2,2,2,2,0,0,0,0,2



@COLORS
1 170 50 255
2 248 255 0


paint3
@RULE Spilledpaint3
@TABLE
n_states:3
neighborhood:Moore
symmetries:permute

var a = {0,1,2}
var b = {a}
var c = {a}
var d = {a}
var e = {a}
var f = {a}
var g = {a}
var h = {a}

1,2,2,2,b,c,d,e,f,0
2,1,1,1,b,c,d,e,f,0

1,2,2,2,2,2,a,b,c,0
2,1,1,1,1,1,a,b,c,0

1,1,1,1,1,2,2,2,2,2
2,2,2,2,2,1,1,1,1,1

1,1,1,1,1,1,a,b,2,1
2,2,2,2,2,2,a,b,1,2

1,2,a,b,c,d,e,1,2,2
2,1,a,b,c,d,e,2,1,1

0,1,1,1,1,1,1,b,c,1
0,2,2,2,2,2,2,b,c,2

0,1,1,2,0,0,0,0,0,2
0,1,2,2,0,0,0,0,0,1

0,1,1,2,1,0,0,0,0,1
0,1,2,2,2,0,0,0,0,2

0,1,1,1,1,0,0,0,0,1
0,2,2,2,2,0,0,0,0,2

0,0,1,1,1,1,2,2,2,2
0,0,2,2,2,2,1,1,1,1



@COLORS
1 170 50 255
2 248 255 0


personally prefer #2

the smallest seed to trigger most of them
x = 3, y = 3, rule = Spilledpaint2
2.A$B$2.B!


the two colors are switchable so in this the colors can be inverted:
x = 46, y = 3, rule = Spilledpaint2
2.A40.B$B44.A$2.B40.A!


When growing, the outer layer seems random but them quickly settles

There is also one that is chaotic but the "crystalizes" into the paint pattern:
@RULE Crystalization
@TABLE
n_states:4
neighborhood:Moore
symmetries:permute

var a = {0,1,2}
var b = {a}
var c = {a}
var d = {a}
var e = {a}
var f = {a}
var g = {a}
var h = {a}

1,2,2,2,b,c,d,e,f,0
2,1,1,1,b,c,d,e,f,0

1,2,2,2,2,2,a,b,c,0
2,1,1,1,1,1,a,b,c,0

1,1,1,1,1,2,2,2,2,2
2,2,2,2,2,1,1,1,1,1

1,1,1,1,1,1,a,b,2,1
2,2,2,2,2,2,a,b,1,2

1,2,a,b,c,d,e,1,2,2
2,1,a,b,c,d,e,2,1,1

0,1,1,1,1,1,1,b,c,1
0,2,2,2,2,2,2,b,c,2

0,1,1,2,0,0,0,0,0,2
0,1,2,2,0,0,0,0,0,1

0,1,1,2,1,0,0,0,0,2
0,1,2,2,2,0,0,0,0,1



@COLORS
1 170 50 255
2 248 255 0
3 128 128 128


I added a 3rd barrier state to contain it


EDIT:
Sponge paint:
@RULE Spongepaint
@TABLE
n_states:3
neighborhood:Moore
symmetries:permute

var a = {0,1,2}
var b = {a}
var c = {a}
var d = {a}
var e = {a}
var f = {a}
var g = {a}
var h = {a}

var o = {0,1}
var p = {o}
var q = {o}

var x = {0,2}
var y = {x}
var z = {x}

1,2,2,1,1,1,1,a,b,1
2,1,1,2,2,2,2,a,b,2

1,2,2,b,c,d,e,f,g,0
2,1,1,b,c,d,e,f,g,0

1,1,1,1,1,0,0,0,0,2
2,2,2,2,2,0,0,0,0,1

0,1,1,2,o,0,0,0,0,1
0,2,2,1,x,0,0,0,0,2

0,1,1,1,2,x,o,0,0,1
0,2,2,2,1,o,x,0,0,2



@COLORS
1 170 50 255
2 248 255 0
Failed Replicator!
x = 4, y = 4, rule = B34ce5cen67c8/S2-i3-jqry4cent5j67c8
bo$obo$bobo$2bo!

(That I wish was not failed D:)
User avatar
jimmyChen2013
 
Posts: 108
Joined: December 11th, 2017, 3:28 am

Re: Thread For Your Unrecognised CA

Postby _zM » May 5th, 2018, 2:17 pm

Some time ago I experimented with a rule which contains all rules from B0/S0 to B8/S8 (on their own lattices), and, as it turns out, it makes for a surprisingly good wiring rule.

@RULE Simpl

Wiring rule with states requiring any number of neighbouring cells to be ON - B0/S0 to B8/S8 all in one rule, essentially.

0, 1: permanently off

Bx/Sx | off | on
0     | 2   | 11
1     | 3   | 12
2     | 4   | 13
3     | 5   | 14
4     | 6   | 15
5     | 7   | 16
6     | 8   | 17
7     | 9   | 18
8     | 10  | 19

20: permanently on

@TABLE

n_states:21
neighborhood:Moore
symmetries:permute

var on = {11,12,13,14,15,16,17,18,19,20}
var ona = on
var onb = on
var onc = on
var ond = on
var one = on
var onf = on
var ong = on
var off = {0,1,2,3,4,5,6,7,8,9,10}
var offa = off
var offb = off
var offc = off
var offd = off
var offe = off
var offf = off
var offg = off
var any = {on,off}
var any2 = any
var any3 = any
var any4 = any
var any5 = any
var any6 = any
var any7 = any
var any8 = any

2,off,offa,offb,offc,offd,offe,offf,offg,11
11,off,offa,offb,offc,offd,offe,offf,offg,11
11,any,any2,any3,any4,any5,any6,any7,any8,2

3,on,offa,offb,offc,offd,offe,offf,offg,12
12,on,offa,offb,offc,offd,offe,offf,offg,12
12,any,any2,any3,any4,any5,any6,any7,any8,3

4,on,ona,offb,offc,offd,offe,offf,offg,13
13,on,ona,offb,offc,offd,offe,offf,offg,13
13,any,any2,any3,any4,any5,any6,any7,any8,4

5,on,ona,onb,offc,offd,offe,offf,offg,14
14,on,ona,onb,offc,offd,offe,offf,offg,14
14,any,any2,any3,any4,any5,any6,any7,any8,5

6,on,ona,onb,onc,offd,offe,offf,offg,15
15,on,ona,onb,onc,offd,offe,offf,offg,15
15,any,any2,any3,any4,any5,any6,any7,any8,6

7,on,ona,onb,onc,ond,offe,offf,offg,16
16,on,ona,onb,onc,ond,offe,offf,offg,16
16,any,any2,any3,any4,any5,any6,any7,any8,7

8,on,ona,onb,onc,ond,one,offf,offg,17
17,on,ona,onb,onc,ond,one,offf,offg,17
17,any,any2,any3,any4,any5,any6,any7,any8,8

9,on,ona,onb,onc,ond,one,onf,offg,18
18,on,ona,onb,onc,ond,one,onf,offg,18
18,any,any2,any3,any4,any5,any6,any7,any8,9

10,on,ona,onb,onc,ond,one,onf,ong,19
19,on,ona,onb,onc,ond,one,onf,ong,19
19,any,any2,any3,any4,any5,any6,any7,any8,10



@COLORS

0 128 128 128
1 0 0 0

2 110 0 0
3 110 72 0
4 72 110 0
5 0 110 0
6 0 110 72
7 0 72 110
8 0 0 110
9 72 0 110
10 110 0 72

11 255 200 200
12 255 236 200
13 236 255 200
14 200 255 200
15 200 255 236
16 200 236 255
17 200 200 255
18 236 200 255
19 255 200 236

20 255 255 255


There are at least seven distinct types of wires (the sixth was found by danny on the Discord and the seventh, in the second pattern, by blah, also on the Discord):
x = 83, y = 39, rule = Simpl
4.7DM48.CD2.CD3.DK$.C.10C21.C2D2C2D2CD15.LC2D2C2D2C$DCD.7DM21.2CD2.CD
2.C2D23.CE$DCD9.C19.D12.C23.CE$DCD8.DCD17.2D11.2C24.CE$DCD8.DCD17.2C
11.2D25.CE$DCD8.DCD18.C12.D26.CE3.CD2.CD$DCD8.DCD18.D12.C27.CE.2C2D2C
D$DCD8.DCD18.2M10.2C28.CE$DCD8.DCD18.2L10.2D27.C.CE$.C9.DCD18.C12.D
26.2C2.C$2.8D.DCD.8D10.2D2C2D2C2D2C.2C2D2C2D18.2D2.2C$.10C.C.10C10.DC
2.DC2.DC3.CD2.CD20.D2.2D$2.8D5.8D50.C2.D$72.2C2.C$72.2D2.2C$73.D2.2D$
73.C2.D2$35.7D$4.7EN21.CDM7D23.3CD$3.9CL16.2D.2CDM7D23.C.C2D$.C.C7EN
16.4D3.7D22.3C4.C$ECE9.2C14.4D10.C21.C.C3.4C$ECE9.ECE13.4D10.2C18.3C
8.C$ECE9.ECE13.4D10.2D18.C.C7.4C$ECE9.ECE13.4D9.4D16.2C12.C$ECE9.ECE
13.4D9.4D15.D.C11.4C$ECE9.ECE13.4D9.4D14.2D16.C$ECE9.ECE14.2D10.4D14.
2C15.2C$ECE9.ECE14.2C10.4D14.C16.2D$.2C9.ECE15.C10.4D14.4C11.C.D$3.8E
C.C.C8E7.7D3.4D3.7D6.C12.2C$2.10C3.10C5.9D2C.2D.2C9D5.4C7.C.C$3.8E5.
8E6.9DC6.C9D7.C8.3C$31.7D10.7D8.4C3.L.C$65.C4.L2C$66.2DC.L$67.D3C!

From top to bottom, left to right: VarLife wire 1, VarLife wire 2, almost-VarLife wire, 3-1-3 wire, optical fibre
blah's wire:
x = 23, y = 27, rule = Simpl
3.C2.C2.C2.C2.C2.C$2.2CE2CE2CE2CE2CE2CE$.C.C2.C2.C2.C2.C2.C.C$.E19.C$
3C17.3C$.C19.E$.E19.C$3C17.3C$.C19.E$.E19.C$3C17.3C$.C19.E$.E19.C$3C
17.3C$.C19.E$.N19.C$LCL17.3C$.C19.E$.E19.C$3L17.3C$.C19.E$.E19.C$3C
17.3C$.C19.E$2.C.C2.C2.C2.C2.C2.C.C$3.E2CE2CE2CE2CE2CE2C$4.C2.C2.C2.C
2.C2.C!


Crossovers:
The first uses a B2/S2 field to send photons across:
x = 16, y = 16, rule = Simpl
11.2E$10.C2L$11.EC.C$8.E2C2.ECE$8.ECE2.ECE$9.CE2.ECE$9.2C2.ECE$9.2D2.
ECE$3.2E3.4D.2C$3.4C6D$.C.C2EC6D$ECE5.4D$E2C6.2D$3.5EC$2.7C$3.5E!

The second I can't explain easily, but it allows signals offset by two generations to cross:
x = 13, y = 13, rule = Simpl
7.LCD$6.D.C2D$5.2D4.C$5.2C4.2C$6.C.C2.2D$2.DC3.D4.D$.2D2C.2C.D2C$C4.D
C.2DC$2C2.C2.D$2D4.2D$.D4.2C$2.2CD.C$3.C2D!

x = 38, y = 13, rule = Simpl
3.LD11.CD11.LD$2.CL2D9.2C2D9.CL2D$6.C12.C12.C$5.2C11.2C11.2C$5.2D11.
2D11.2D$5.D2.C9.D2.C9.D2.C$2.C2D.CD7.C2D.CD7.C2D.CD$.2CD.2C.2CD3.2CD.
2C.2CD3.2CD.2C.2CD$M4.D3.C2D.M4.D3.C2D.D4.D3.C2D$2D2.C.C6.2D2.C.C6.2D
2.C.C$2C4.2C5.2C4.2C5.2C4.2C$C5.2D5.C5.2D5.C5.2D$6.D12.D12.D!


Gates:
AND gate
x = 35, y = 18, rule = Simpl
3.6E17.6E$3.7C15.7C$.C.C5E17.5EC.C$ECE6.2CE11.ELC6.ECE$ECE6.ECE11.ELE
6.ECE$ECE6.ECE11.ECE6.ECE$ECE6.ECE11.ECE6.ECE$ELE6.ECE11.ECE6.ECE$ELC
6.ECE11.ECE6.2CE$3.5EC.C.C3E3.3EC.C.C5E$2.5C2L3.2L3C.3C2L3.2L5C$3.6E
3.4E3.4E3.6E$16.C.C$17.D$17.C$18.C16E$18.17C$18.17E!

XOR gate
x = 35, y = 18, rule = Simpl
3.6E17.6E$3.7C15.7C$.C.C5E17.5EC.C$ECE6.2CE11.ELC6.ECE$ECE6.ECE11.ELE
6.ECE$ECE6.ECE11.ECE6.ECE$ECE6.ECE11.ECE6.ECE$ELE6.ECE11.ECE6.ECE$ELC
6.ECE11.ECE6.2CE$3.5EC.C.C3E3.3EC.C.C5E$2.5C2L3.2L3C.3C2L3.2L5C$3.6E
3.4E3.4E3.6E$16.CLC$16.NCN$16.ELE$17.L.C11EN3E$19.13C2LC$19.12EN3E!

(The fact that AND and XOR gates are easier than others is because state 3 and 4 cells essentially act like them already.)

(way too large) Flip-flop (edit: massive size reduction):
x = 9, y = 28, rule = Simpl
6.D$6.2D$6.2C$6.C$6.D$6.2D$6.2C$6.C$2.L3.D$2.LC.D.D$.E2.2D.2D$2D2.2C.
2C$2C2.2C2.C$.C.C2.2D$.D4.2C$2D5.L$2C5.D$.C4.2D$.D4.2C$2D5.C$2C5.D$.L
4.2D$.D4.2C$2D5.C$2C5.D$.C4.2D$.D4.2C$2D5.L!


More memory:
x = 31, y = 74, rule = Simpl
25.NCN$25.ELE$25.ELE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE
$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.EC
E$25.ECE$25.ECE$25.ECE$25.ECE$25.NCN$25.ELE$25.ELE$25.ECE$25.ECE$25.E
CE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.
ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$25.ECE$17E8.ECE$
17C8.ECE$16EC.C.2C3.ECE$17.ECE2.3C.C.2CE$18.2C2.ECE3.ECE$17E3.2C.C4.E
CE$17C9.2C.C$16EC.C.2C3.ECE$17.ECE2.3C.C.2CE$18.2C2.ECE3.ECE$17E3.2C.
C4.ECE$17C9.2C.C$16EC.C.2C3.ECE$17.ECE2.3C.C.2CE$18.2C2.ECE3.ECE$17E
3.2C.C4.ECE$17C9.2C.C$16EC.C.2C3.ECE$17.ECE2.3C.C.2CE$18.2C2.ECE3.ECE
$17E3.2C.C4.ECE$17C9.2C.C$16EC.C.2C3.ECE$17.ECE2.3C.C$18.2C2.ECE$20.
2C.C!


Oscillators:
p6+n (these can also make guns)
x = 29, y = 12, rule = Simpl
.L.2C6.L.2C$NCN2.CL3.NCN2.CL$.LC2.NCN3.LC2.NCN$3.2C.L6.2C.L.C2EN5EN$
18.4C2L4CL$.C.LC6.C.LC3.3EN5EN$ECE2.2C3.ECE2.2C$ECE2.ECE2.ECE2.ECE$.
2C2.ECE3.2C2.ECE$3.CL.C6.CL.C.L4EN4E$18.6C2L3C$18.5EN4E!


p46
x = 7, y = 5, rule = Simpl
3.D$2.LDL$.DC.LM$2D3.2D$2C3.2C!


p218
x = 6, y = 6, rule = Simpl
2.DBC$2.MCL$.CDC2D$2C2DBD$LDMC2D$.4D!


Guns:
p9 and different signal splitter
x = 17, y = 13, rule = Simpl
4EN2E3.2EN4E$2C2L4C.4C2L2C$4EN2E.C.2EN4E$7.ECE$7.ECE$7.ELE$7.ELE$7.NC
N$7.ECE$7.2CE$L6E$D2C2LCLC$L6E!

There are also more similar guns.

p883 (ironically using the p218)
x = 41, y = 41, rule = Simpl
2.DBC$2.M2C$.CDC2D$2CDMBM$C2DC2D$.2DMD$5.CN15EN6ENE$5.LCL2CL12C2L5C2L
$5.EN15EN6ENE$31.2CE$31.ECE$28.E2C.C.C3E$28.ECE3.5C$28.ECE3.4E$28.ECE
7.2CE$28.ECE7.ECE$28.ECE3.3EC.C$28.ECE2.5C$28.ECE3.4E$29.C.C.C$32.D$
32.C$22.9EC.2CE$21.11C.ECE$22.10E.ECE$19.E2C11.ECE$19.ECE11.ECE$20.C.
C7E3.ECE$22.9C2.ECE$22.8E3.ECE$30.C.C.C$31.D$32.C$33.2CE$33.ECE$33.EC
E$33.ECE$33.ECE$33.ECE$33.ECE$33.ECE!



Edit:
Turns out the serial adders were not timed correctly
Last edited by _zM on May 18th, 2018, 2:36 pm, edited 2 times in total.
stop drop and goll
User avatar
_zM
 
Posts: 163
Joined: June 26th, 2016, 3:07 pm

Re: Thread For Your Unrecognised CA

Postby Redstoneboi » May 14th, 2018, 6:57 am

I made a rule, It's a Moore neighborhood CA that I believe is turing-complete and construction-universal.
It's a Construct-While-You-Read CA, similar to langton's loops and hutton replicator, but using a stationary tape.
Right now I haven't made a replicator though, due to some tape replication problems.
There are only 3 signals:
5. extend and Scan. Extends the arm by one cell. If the scan finds a cell, return another Scan signal.
6. Toggle and retract. Toggles the cell in front of the arm and retracts.
7. Curve towards the arm.

@RULE Arms

@TABLE
n_states:8
neighborhood:Moore
symmetries:rotate4reflect

var a{0,1,2,3,4,5,6,7}
var b{a}
var c{a}
var d{a}
var e{a}
var f{a}
var g{a}
var h{a}

var n{0,3}
var N{0,3}
var w{1,2}
var W{1,2}
var r{1,2,5}
var s{5,6,7}
var S{5,6,7}

#Space
0,4,2,c,d,e,f,g,h,0
0,4,4,c,d,e,f,g,h,0
0,4,b,c,d,e,f,g,h,1
0,5,5,0,d,e,f,0,0,3
0,5,0,0,d,1,f,0,0,3
0,0,3,2,5,0,f,g,h,3
0,5,5,0,d,e,f,0,3,3
0,5,2,0,d,e,f,0,0,3
0,6,2,1,d,e,f,0,0,3
0,6,0,0,d,e,f,0,0,4
0,3,7,0,d,e,f,g,h,3
0,7,3,0,d,e,f,0,0,3
0,1,7,2,1,e,f,g,0,3

#Wire
1,1,1,s,1,1,0,1,0,5
1,4,b,c,d,e,f,g,h,0
1,5,b,c,d,5,f,g,h,6
1,6,b,c,d,6,f,g,h,7
1,0,s,0,s,0,f,g,h,s
1,n,1,s,2,N,f,g,h,1
1,s,b,s,d,e,f,g,h,1
1,s,b,c,d,e,f,g,h,s

#Tail
2,3,0,5,0,w,0,1,0,3
2,a,b,1,3,3,0,g,0,0
2,a,b,c,d,e,f,g,h,1

#Special
3,3,4,4,1,2,f,g,h,0
3,0,3,5,5,0,f,g,h,3
3,2,5,0,d,2,f,0,1,3
3,1,7,2,1,e,f,g,h,3
3,0,b,1,1,4,4,0,0,1
3,2,3,0,d,1,f,0,0,3
3,3,1,2,3,0,0,0,0,5
3,3,b,c,d,e,f,g,h,1
3,a,b,c,d,e,f,g,h,0

#Toggler
4,4,b,c,d,e,f,g,h,0
4,3,3,c,d,e,f,g,h,3
4,a,b,c,d,e,f,g,h,0

#Extend/Scan
5,s,0,3,0,0,0,3,0,s
5,5,2,0,d,2,f,0,1,3
5,2,0,5,0,1,0,1,0,3

#Place/Retract
6,2,1,0,0,0,0,0,0,4

#Signals
s,0,S,0,d,e,f,0,S,S
s,2,0,S,d,e,f,g,h,S
s,2,b,c,d,S,f,g,h,S
s,a,b,c,d,e,f,g,h,2

@COLORS
0 000 000 000
1 255 000 000
2 192 000 000
3 128 000 000
4 064 000 000
5 000 000 255
6 000 128 255
7 000 255 255


I've made some patterns:

Demo:
x = 55, y = 32, rule = Arms
34.2A$31.4A.4A$31.A2.2A3.A$31.A$31.A$31.A$31.A$31.A2.2A$30.5A.4A$30.A
.A.2A3.A$30.3A$31.A$31.A$17.3A11.A$8.6A5.A11.A2.2A$8.A4.A5.A10.5A.4A$
8.A4.A5.A10.A.A.2A3.A$8.A4.A5.A10.3A$8.A4.A2.A2.A6.2A3.A7.A.2A2.3A3.
4A$.EB11A2.A2.8A.4A$.A2.A3.A7.A2.2A5.2A3.A$3A.A3.A7.A3.A10.A$A.A.A3.A
7.A3.A10.A$3A.A3.A7.2A2.A10.A$.A.3A2.13A10.A$.A.3A2.A.2A8.A10.A$3A.A
3.A2.A8.A4.2A4.A$A.A.A3.A2.A8.6A.5A$3A.A3.4A8.2A3.2A$.A2.A3.2A11.A$.
4A3.A12.A$8.14A!


Construction Toolkit:
x = 12, y = 29, rule = Arms
EA3.FA3.GA$B4.B4.B$A4.A4.A$5.A4$FA3.F2A2.EA$B4.B.A2.B$A4.A4.A$A4.A4.G
$E4.G4.B$B4.B4.A$A4.A$F4.F$B4.B$A4.A$A4.A4$G2A$B.A$A$E.A$B.2A$A.3A$2.
A.A$2.3A!


Quadratic:
x = 265, y = 26, rule = Arms
249.A3.A3.A2.2A$BFABE2ABF2ABF2ABF3ABEABEABE4ABF2ABF2ABFABE2ABF3ABF3AB
EABEABEABEABEABGABE2ABF2ABF2ABFABE2ABF4ABF2ABF2ABFABEABEABEABEABEABGA
BE2ABF2ABF2ABF2ABF2ABFABE2ABF2ABFABEABEABEABEABEABGABE2ABF2ABFABE2ABF
2ABFABE2ABF2ABF2ABF2ABFABEABEABEABEABEABGABE2ABF3A.3A.3A.3A.3A$A245.A
.3A.3A.3A.2A2.A$2A2.3AEBA236.A4.A3.A3.A3.2A$4.2A.ABE236.A.3A.3A.3A.3A
.A$10.A235.A.A.A.A.A.A.A.A.A.A$246.A.A.A.A.A.A.A.A.A.A$246.A.A.A.A.A.
A.A.A.A.A$246.A.A.A.A.A.A.A.A.A.A$246.A.A.A.A.A.A.A.A.A.A$246.A.A.A.A
.A.A.A.A.A.A$246.A.A.A.A.A.A.A.A.A.A$246.A.A.A.A.A.A.A.A.A.A$246.A.A.
A.A.A.A.A.A.A.A$246.A.A.A.A.A.A.A.A.A.A$246.A.A.A.A.A.A.A.A.A.A$246.A
.A.A.A.A.A.A.A.A.A$246.A.A.A.A.A.A.A.A.A.A$246.A.A.A.A.A.A.A.A.A.A$
246.A.A.A.A.A.A.A.A.A.A$246.A.A.A.A.A.A.A.A.A.A$246.A.A.A.A.A.A.A.A.A
.A$246.A.A.A.A.A.A.A.A.A.A$246.A.A.A.A.A.A.A.A.A.A$246.3A.3A.3A.3A.3A
$249.A3.A3.A3.A!

x = 25, y = 25, rule = Arms
A$ABE2ABF9ABFABG2ABF$2.A21.A$2.ACAFB.AFB.B2A.GBA.B2A.B$2.G.B.A.A.A.F.
F.A.E.F.E.E$2.B.E.A.B.A.A.B.B.B.A.B.A$2.A.A.F.F.F.B.A.E.A.A.A.A$2.E.A
.B.A.B.E.A.A.E.B.G.B$2.B.B.A.B.A.A.F.A.B.F.B.F$2.A.F.A.E.A.B.B.B.A.A.
A.A$2.E.A.F.A.E.E.A.F.E.B.E.A$2.B.A.B.A.B.A.A.A.B.E.B.B$2.A.B.A.B.A.B
.F.A.A.A.A.F$2.E.F.A.F.G.E.B.B.E.A.E.A$2.B.A.F.A.B.A.A.F.B.B.B.A$2.A.
B.B.A.A.B.A.A.A.F.A.B$2.E.E.A.B.E.E.F.A.F.A.E.F$2.B.A.A.F.B.A.B.B.B.A
.B.A$2.A.B.F.A.A.B.A.F.A.B.A.B$2.E.E.B.A.E.E.A.A.A.F.F.E$2.B.A.A.B.B.
A.F.A.F.A.B.A$2.A.B.A.F.A.B.B.B.B.B.A.A$2.E.E.E.A.E.E.A.F.A.E.A.B$2.B
.A.B.A.B.A.A.A.A.A.F.F$.CAEBCAFBCAEBCFBA.FBA.B2A!


Printer:
x = 3016, y = 34, rule = Arms
8.2A$8.A$5.4A$5.A.3A$5.A3.A$5.A2.3A$5.A2.A.A$5.A2.3A$4.2A3.A$4.A.4A$
3.2A.A.3A$3.A.3A2.A$3.A.A.A.2A$3.A.3A.A$3.A2.A2.A$3.A.3A.A$3.7A$3.A2.
A2.A$3.A.A.A.A2.3A$2.2A.3A.2A.A.A.3A$2.A3.A3.A.A.A.A.A$2.4A.4A.A.A.A.
A$5.A.A4.A.3A.A$5.A.6A5.A$5.A7.A4.A$E11A2.2A.2A$5.A3.6A.5A$5.4A2.2A.
2A4.A$8.A2.A$8.A.3A16.A29.7A.2A.2A.2A.4A.2A.2A.2A.2A.2A.6A.2A.2A.2A.
2A.2A.2A.4A.A29.7A.2A.2A.2A.4A.2A.2A.2A.2A.2A.6A.2A.2A.2A.2A.2A.2A.4A
.A27.3A.2A.2A.2A.4A.2A.4A.2A.4A.2A.4A.2A.2A.2A.2A.2A.2A.4A.A27.3A.2A.
2A.2A.4A.2A.4A.2A.4A.2A.4A.2A.2A.2A.2A.2A.2A.4A.A27.3A.2A.2A.2A.4A.2A
.4A.2A.2A.2A.6A.2A.2A.2A.2A.2A.2A.4A.A27.3A.2A.2A.2A.4A.2A.4A.2A.2A.
2A.6A.2A.2A.2A.2A.2A.2A.4A.A27.3A.2A.2A.2A.4A.2A.4A.2A.4A.2A.4A.2A.2A
.2A.2A.2A.2A.4A.A27.3A.2A.2A.2A.4A.2A.4A.2A.4A.2A.4A.2A.2A.2A.2A.2A.
2A.4A.A29.7A.2A.2A.2A.4A.2A.2A.2A.2A.2A.6A.2A.2A.2A.2A.2A.2A.4A.A29.
7A.2A.2A.2A.4A.2A.2A.2A.2A.2A.6A.2A.2A.2A.2A.2A.2A.4A4.A22.2A.3A.3A.
3A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.4A.A37.5A.2A.2A.2A.2A.2A
.2A.2A.2A.2A.3A.3A.3A.3A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.4A.2A.3A.A37.
5A.2A.2A.2A.2A.2A.2A.3A.3A.3A.3A.3A.3A.3A.3A.2A.2A.2A.2A.2A.4A.2A.3A.
A39.3A.2A.2A.2A.2A.2A.2A.2A.2A.2A.5A.3A.2A.2A.2A.3A.4A.3A.2A.2A.2A.2A
.2A.2A.4A.2A.3A.A39.3A.2A.2A.2A.2A.2A.2A.2A.2A.5A.3A.3A.7A.3A.3A.3A.
2A.2A.2A.4A.2A.3A.A37.3A.2A.2A.2A.2A.2A.3A.3A.3A.3A.2A.3A.3A.5A.4A.2A
.2A.2A.2A.2A.2A.5A.A37.3A.2A.2A.2A.2A.3A.3A.3A.3A.13A.3A.3A.2A.2A.2A.
5A.A35.3A.2A.2A.2A.3A.2A.2A.3A.3A.2A.3A.3A.3A.4A.2A.3A.2A.2A.2A.4A.2A
.3A.A35.3A.2A.2A.3A.3A.3A.3A.11A.5A.3A.2A.4A.2A.3A.A39.5A.2A.2A.2A.2A
.2A.3A.3A.3A.3A.4A.4A.2A.3A.5A.2A.2A.2A.2A.2A.5A.A39.5A.2A.2A.2A.2A.
3A.3A.3A.3A.7A.9A.3A.2A.2A.2A.5A.A27.3A.2A.3A.2A.3A.3A.3A.3A.3A.2A.2A
.2A.2A.2A.2A.2A.2A.2A.2A.4A.A28.4A.3A.13A.3A.2A.2A.2A.2A.2A.2A.2A.2A.
4A.A25.2A.3A.2A.3A.3A.3A.3A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.4A.A
26.2A.3A.11A.3A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.4A.A23.2A.3A.2A.5A.2A.
2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.4A.A24.2A.3A.7A.3A.2A.2A.2A.2A
.2A.2A.2A.2A.2A.2A.2A.2A.4A.A20.2A.3A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.
2A.2A.2A.2A.2A.2A.4A.A22.6A.3A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A
.2A.4A2.A20.2A.3A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.2A.4A$
8.A.A.A15.31A7.A2.A2.A2.A4.A2.A2.A2.A2.A2.A6.A2.A2.A2.A2.A2.A2.A2.A.
31A7.A2.A2.A2.A4.A2.A2.A2.A2.A2.A6.A2.A2.A2.A2.A2.A2.A2.A.29A3.A2.A2.
A2.A4.A2.A4.A2.A4.A2.A4.A2.A2.A2.A2.A2.A2.A2.A.29A3.A2.A2.A2.A4.A2.A
4.A2.A4.A2.A4.A2.A2.A2.A2.A2.A2.A2.A.29A3.A2.A2.A2.A4.A2.A4.A2.A2.A2.
A6.A2.A2.A2.A2.A2.A2.A2.A.29A3.A2.A2.A2.A4.A2.A4.A2.A2.A2.A6.A2.A2.A
2.A2.A2.A2.A2.A.29A3.A2.A2.A2.A4.A2.A4.A2.A4.A2.A4.A2.A2.A2.A2.A2.A2.
A2.A.29A3.A2.A2.A2.A4.A2.A4.A2.A4.A2.A4.A2.A2.A2.A2.A2.A2.A2.A.31A7.A
2.A2.A2.A4.A2.A2.A2.A2.A2.A6.A2.A2.A2.A2.A2.A2.A2.A.31A7.A2.A2.A2.A4.
A2.A2.A2.A2.A2.A6.A2.A2.A2.A2.A2.A2.A2.A.27A2.A3.A3.A3.A2.A2.A2.A2.A
2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A.39A5.A2.A2.A2.A2.A2.A2.A2.A2.A2.A3.
A3.A3.A3.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A4.A2.A3.39A5.A2.A2.A2.A2.A2.A
2.A3.A3.A3.A3.A3.A3.A3.A3.A2.A2.A2.A2.A2.A4.A2.A3.41A3.A2.A2.A2.A2.A
2.A2.A2.A2.A2.A5.A3.A2.A2.A2.A3.A4.A3.A2.A2.A2.A2.A2.A2.A4.A2.A3.41A
3.A2.A2.A2.A2.A2.A2.A2.A2.A5.A3.A3.A7.A3.A3.A3.A2.A2.A2.A4.A2.A3.39A
3.A2.A2.A2.A2.A2.A3.A3.A3.A3.A2.A3.A3.A5.A4.A2.A2.A2.A2.A2.A2.A5.39A
3.A2.A2.A2.A2.A3.A3.A3.A3.A13.A3.A3.A2.A2.A2.A5.37A3.A2.A2.A2.A3.A2.A
2.A3.A3.A2.A3.A3.A3.A4.A2.A3.A2.A2.A2.A4.A2.A3.37A3.A2.A2.A3.A3.A3.A
3.A11.A5.A3.A2.A4.A2.A3.41A5.A2.A2.A2.A2.A2.A3.A3.A3.A3.A4.A4.A2.A3.A
5.A2.A2.A2.A2.A2.A5.41A5.A2.A2.A2.A2.A3.A3.A3.A3.A7.A9.A3.A2.A2.A2.A
5.29A3.A2.A3.A2.A3.A3.A3.A3.A3.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A.30A
4.A3.A13.A3.A2.A2.A2.A2.A2.A2.A2.A2.A2.A.27A2.A3.A2.A3.A3.A3.A3.A2.A
2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A.28A2.A3.A11.A3.A2.A2.A2.A2.A2.A
2.A2.A2.A2.A2.A2.A.25A2.A3.A2.A5.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.
A2.A2.A2.A.26A2.A3.A7.A3.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A.22A
2.A3.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A.24A6.A3.A2.
A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A.23A2.A3.A2.A2.A2.A2.A2.A
2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A2.A$8.A2.A$8.A.2A8.A$8.13A!


A memory cell:
1. Toggle, first operation, toggles the bit on and off
2. Scan, second operation, if the bit is 1, outputs at #4
3. Reset, third operation, sets the bit to 0.
4. Output from Scan
5. The actual memory cell

Runs 1 tick every 4 gens, if you don't use the reset.
Resetting requires an 8 gen gap if the cell is off, otherwise weird stuff happen.
x = 21, y = 30, rule = Arms
x = 21, y = 30, rule = Arms
10.A.A$10.A.A$10.3A$3A9.A$A11.A$3A$2.A8.A$3A8.A$4.A6.A$5.A.A3.A$6.2A
3.A$5.3A3.A$11.A$9.2A.A$7.4A.A$7.A.2A.A$7.2A.A.A$3A5.A.A.A5.3A$2.A5.A
.A.A7.A$3A.E4A.A.4AE.3A$2.A7.A7.A$3A7.A7.3A$10.A$10.E2$10.A$9.2A$10.A
$10.A$9.3A!
c(>^x^<c)~
This is Fluffy the cat.
Fluffy wants to discover new things that everyone likes.
Fluffy likes to watch spaceship guns in Golly.

There’s one problem,

Fluffy doesn’t exist :(
User avatar
Redstoneboi
 
Posts: 300
Joined: May 14th, 2018, 3:57 am

Re: Thread For Your Unrecognised CA

Postby LaundryPizza03 » May 18th, 2018, 2:00 am

The inverse of any Generations rule is one where a cell that is born stays alive for at least G-1 generations.

A 2c/11 anti-spaceship from 01234678/12345678/3:
x = 64, y = 64, rule = 01234678/12345678/3:T64,64
64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$
64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$33A.30A$31ABAB30A
$31A.AB30A$31ABAB30A$33A.30A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$
64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$64A$
64A$64A!
x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!

LaundryPizza03 at Wikipedia
User avatar
LaundryPizza03
 
Posts: 231
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Thread For Your Unrecognised CA

Postby 77topaz » May 18th, 2018, 2:06 am

Ah, and the difference with regular Generations rules is that the "dying" cells do count for "birth" and "survival" conditions, right?
User avatar
77topaz
 
Posts: 864
Joined: January 12th, 2018, 9:19 pm

Re: Thread For Your Unrecognised CA

Postby LaundryPizza03 » May 19th, 2018, 11:23 pm

B2e3iy4j7e/S23-r has four small spaceships (3 c/2o and a c/4d), a 4c/9o replicator, a 3c/6 orthogonal duoplet puffer, a p18 4-barrelled gun for the first c/2 on the left, and a larger 4c/9 spaceship based on the replicator.
x = 22, y = 75, rule = B2e3iy4j7e/S23-r
bo4bo4b2o6bo$obo2bobo2bo2bo4bobo$o4bobo2bo2bo7bo6$11bo$10bobo$10bobo$
11bo7$9bo$8bo$11bo$10bobo$11bo$8bo$9bo6$10bo$11bo4$10b2o$9bo2bo$10b2o
13$10b2o$9bo2bo$10b2o4$10bo$11bo8$8bo$7bo$6bo$7bo3bo$8bo3bo$8bo3bo$7bo
3bo$6bo$7bo$8bo!

Other, less remarkable features include a blinker push reaction, the tub, a one-time glider duplicator, and a one-time shift reaction that preserves phase and forward movement:
x = 31, y = 19, rule = B2e3iy4j7e/S23-r
15bo$14bobo$15bo2$bo$bo$bo4$bo$obo$2bo$28b3o3$27bo$26bobo$26bo!


EDIT: I'm not sure if this is apgsearchable. B2e3iy4j7e/S23-r5n contains everything listed above except the puffer, so it should be somewhat easier to search. Both rules also have this p22 gun for the even-width c/2:
x = 14, y = 12, rule = B2e3iy4j7e/S23-r
4bo4bo$2ob2o4b2ob2o$bo10bo2$4bo$4bo$4bo$4bo2$bo10bo$2ob2o4b2ob2o$4bo4b
o!


EDIT2: Yet more guns, a new c/2, and an 8c/18 rake, all in both rules:
x = 20, y = 5, rule = B2e3iy4j7e/S23-r
7bo$6bobo$o5bobo$o6bo9b3o$o!

x = 69, y = 8, rule = B2e3iy4j7e/S23-r
o67bo$2o65b2o3$38bo7bo7bo7bo$37bobo5bobo5bobo5bobo$37bobo5bobo5bobo5bo
bo$38bo7bo7bo7bo!

x = 27, y = 10, rule = B2e3iy4j7e/S23-r
bo23bo$2o23b2o2$21bo$2o18bobo2b2o$2o18bobo2b2o$21bo2$2o23b2o$bo23bo!

x = 25, y = 7, rule = B2e3iy4j7e/S23-r
bo21bo$2o21b2o2$16bo$15bobo$15bobo$16bo!

x = 5, y = 4, rule = B2e3iy4j7e/S23-r
2bo$bobo$o3bo$2bo!

x = 8, y = 12, rule = B2e3iy4j7e/S23-r
2bo$bo$o3$5b3o$5b3o3$o$bo$2bo!

These rules need a new thread.
x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!

LaundryPizza03 at Wikipedia
User avatar
LaundryPizza03
 
Posts: 231
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Thread For Your Unrecognised CA

Postby LaundryPizza03 » June 3rd, 2018, 5:50 am

A battleship-like rule featuring the same c/4 diagonal glider and a 12c/24 failed-replicator ship:
x = 3, y = 11, rule = B2-a3q4c5a/S12e3ay4q6a
bo$2bo$bo7$2bo$obo!


A block can be used to catalyze many reactions. Here's a p24 glider gun:
x = 21, y = 23, rule = B2-a3q4c5a/S12e3ay4q6a
2b2o$2b2o3$2o10bo$2o11bo$12bo3$19bo$18bobo9$14b2o$14b2o$18b2o$18b2o!

and a period 168 failed-repship gun:
x = 14, y = 3, rule = B2-a3q4c5a/S12e3ay4q6a
bo2bo8bo$o4bo6bo$bo2bo8bo!
x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!

LaundryPizza03 at Wikipedia
User avatar
LaundryPizza03
 
Posts: 231
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Thread For Your Unrecognised CA

Postby 77topaz » June 3rd, 2018, 5:07 pm

Hm, that failed-repship gun is almost like a replicator itself.
User avatar
77topaz
 
Posts: 864
Joined: January 12th, 2018, 9:19 pm

Re: Thread For Your Unrecognised CA

Postby AforAmpere » June 6th, 2018, 11:52 am

This is a rule where yellow cells are like Life, but can't be affected by the red cells. The yellow can push the red cells around and perturb objects, but can't be changed because of collisions:
@RULE Invincible

@TABLE
n_states:3
neighborhood:Moore
symmetries:permute

var a{0,1,2}
var b{a}
var c{a}
var d{a}
var e{a}
var f{a}
var g{a}
var h{a}
var i{a}
var j{0,1}
var k{j}
var l{j}
var m{j}
var n{j}
var o{j}

0,1,1,2,0,0,0,0,0,1
0,1,2,2,0,0,0,0,0,1
0,1,1,1,0,0,0,0,0,1
1,1,1,1,0,0,0,0,0,1
1,1,1,0,0,0,0,0,0,1
2,2,2,j,k,l,m,n,o,2
2,2,2,2,j,k,l,m,n,2
0,2,2,2,2,b,c,d,e,0
0,2,2,2,2,2,b,c,d,0
0,2,2,2,2,2,2,b,c,0
0,2,2,2,2,2,2,2,b,0
1,2,2,2,j,k,l,m,n,2
0,2,2,2,b,c,d,e,f,2
i,a,b,c,d,e,f,g,h,0


What's weird are things like this, where the glider brings along a red dot:
x = 3, y = 3, rule = Invincible
3B$B$AB!


A lot of oscillators function like this as well:
x = 4, y = 5, rule = Invincible
$.2BA$B2.B$.2BA$.A!


LWSS-based sparker:
x = 4, y = 7, rule = Invincible
.3B$B2.B$3.B$3.B$B.BA2$2.A!


MWSS-based puffer:
x = 5, y = 8, rule = Invincible
2.B$.3B$2B.B$3B$3B$.2B.A$3.A!


EDIT, loafer-based double rake:
x = 24, y = 97, rule = Invincible
19.B$18.B.B$17.B2.B$18.2B2$14.B5.B$13.B.B3.B$12.B2.BA.A2B$12.B2.2B3.B
2$16.A23$21.B$20.B.B$19.B2.B$20.2B2$16.B5.B$15.B.B3.B$14.B2.B3.2B$14.
B2.2B3.B25$18.B$17.B.B$16.B2.B$17.2B2$13.B5.B$12.B.B3.B$11.B2.B3.2B$
11.B2.2B3.B13$8.B$7.B.B$6.B2.B$7.2B2$3.B5.B$2.B.B3.B$.B2.B3.2B$.B2.2B
3.B!


EDIT 2, changed the ruletable so it more accurately matched the goal.
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 765
Joined: July 1st, 2016, 3:58 pm

Re: Thread For Your Unrecognised CA

Postby LaundryPizza03 » June 8th, 2018, 3:06 pm

B2-a5j/S12e3any6ai has 3 common spaceships:
x = 20, y = 8, rule = B2-a5j/S12e3any6ai
b2o7b2o6bo$o8bobo5bobo5$18bo$18bo!

From left to right, c/4 diagonal, c/8 orthogonal, and 11c/22 orthogonal. The c/8 is also a counterfeit glider (see generation 1), and the 11c/22 is based on a failed replicator. Here are some other spaceships:
x = 24, y = 6, rule = B2-a5j/S12e3any6ai
b2o$o6bo3bo6bo3bo$6bobobobo4bobobobo2$b2o3bo5bo4bo5bo$o20bo!

c/4d, c/2o, and 2c/4o

Not many useful reactions yet, but there are all of the known oscillators (excluding the hundreds of different p4's):
x = 67, y = 85, rule = B2-a5j/S12e3any6ai
17b2o2$20bo$20bo16bo$26bo3bo6bo$17b2o8bobo$28bo7bobo$15bo12bo7bobo$15b
o21bo$37bo$17b2o6$15bo4bo$15bo4bo23bo$28bo7bo7bobo8b2o5bo3bo$17b2o9bo
7bo7bobo7bo7bo3bo$28bo8b2o7bo5b2o8bo3bo$20bo$20bo6$17b2o2$15bo17b2o$
15bo17b2o2$17b2o12bo2$20bo7b2o$20bo7b2o2$17b2o$4bo$4bo2$2o24b2o$2bo14b
2o2$15bo$15bo$42bob2o$17b2o11bo3bo10bo$28b2o5b2o7bo$15bo4bo9bo3bo9b2ob
o$15bo4bo2$17b2o5$17b2o2$15bo4bo19bo$15bo4bo$40bo$17b2o9b3ob3o$30bobo$
15bo4bo8bo3bo6b3o$15bo4bo19b3o$40b3o2bobo$17b2o5$8b2o7b2o$34bo$6bo8bo
4bo$6bo8bo4bo13bo2$8b2o7b2o12bo$31bo$6bo4bo3bo4bo10bo$6bo4bo3bo4bo$31b
o$8b2o7b2o$31bo!

The p68 might be gunnable, but I haven't investigated this possibility yet.

There are two known puffers: an 11c/22 and a 13c/26:
x = 27, y = 17, rule = B2-a5j/S12e3any6ai
bo19bo3bo$obo17bobobobo2$20bo5bo$7bo$6bobo16b2o$bo$bo4bobo2$7bo$7bo4$
7bo$7bo$6bobo!
x = 4, y = 3, rule = B3-q4z5y/S234k5j
2b2o$b2o$2o!

LaundryPizza03 at Wikipedia
User avatar
LaundryPizza03
 
Posts: 231
Joined: December 15th, 2017, 12:05 am
Location: Unidentified location "https://en.wikipedia.org/wiki/Texas"

Re: Thread For Your Unrecognised CA

Postby AforAmpere » June 8th, 2018, 4:22 pm

LaundryPizza03 wrote:B2-a5j/S12e3any6ai


C/3, C/4, C/5 and C/6 orthogonal in that rule:
x = 64, y = 12, rule = B2-a5j/S12e3any6ai
3bo11bo3bo17bo13bo10bo$bo2bo11bobo16b2ob2o10bob2o6b2obo$bo12bo5bo30bob
o6bobo$b5o9bo3bo12b2o7b2o9bo8bo$2bo14bo15bo7bo$obo14bo12b2o4bobo4b2o$
2bo8bo3bo3bo3bo8b2o7b2o11bo4bo$10bo3bo5bo3bo4bob2ob2o3b2ob2obo8bo4bo$
14bo5bo31b2ob4ob2o$10bo13bo9b2o3b2o11bo8bo$33bo7bo13bo2bo$52bobo4bobo!
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 765
Joined: July 1st, 2016, 3:58 pm

Re: Thread For Your Unrecognised CA

Postby Majestas32 » June 19th, 2018, 5:40 pm

b2i3-c6s2-i3:

Oscillators:
x = 160, y = 290, rule = B2i3-c6/S2-i3
24b2ob2o$24b2ob2o2$30b2o31b2o$30b2o32bo$34b2o6bo4bo3b2o2b2o4b2o$27b2o
5bo6b2o2b2o4bo4bo$27b2o8bo3b2o4b2o3bobo4bobo$36b2o3bo4bo7bo4b2o$24b2o$
24b2o2$24b2ob2ob2o$24b2ob2ob2o7$24b2ob2o$24b2ob2o2$30b2o6b2o$30b2o7bo$
37bo$24b2ob2o7b2o$24b2ob2o7bo$34bo$30b2o2b2o$30b2o2$24b2ob2o$24b2ob2o
7$24b2o4b2o$24b2o4b2o2$24b2o4b2o2b2o4b2o$24b2o4b2o2bo6bo$36bob2o$24b2o
b2ob2o4bo$24b2ob2ob2o7bo$36b2obo$30b2o2bo6bo$30b2o2b2o4b2o2$30b2o$30b
2o7$27b2ob2o5b2o$27b2ob2o5b2o2$24b2o$24b2o10b4o$34b2o4b2o$24b2ob2o$24b
2ob2o6bo4bo2$24b2o4b2o2b2o4b2o$24b2o4b2o4b4o2$27b2ob2o$27b2ob2o5b2o$
37b2o6$24b2ob2ob2o$24b2ob2ob2o2$30b2o$30b2o$34b2obo$27b2o6bo$27b2o10bo
$37bob2o$27b2o$27b2o2$27b2o$27b2o7$12b2ob2o10b2o$12b2ob2o10b2o2$15b2o
7b2o4b2o2b2o8b2o$15b2o7b2o4b2o2bo3bo2bo3bo$35b3o4b3o$15b2o7b2o4b2o5bo
4bo$15b2o7b2o4b2o3b3o4b3o$34bo3bo2bo3bo$15b2o7b2o4b2o2b2o8b2o$15b2o7b
2o4b2o2$12b2ob2ob2o7b2o$12b2ob2ob2o7b2o7$12b2ob2o7b2ob2o27b2o$12b2ob2o
7b2ob2o26bo2bo2$15b2o10b2o9b2o3b2o$15b2o10b2o9bobobobo10bo2bo$39bo3bo
7bo2bob2obo2bo$15b2o10b2o10bo3bo6bo4bo2bo4bo$15b2o10b2o10bo3bo6bo4bo2b
o4bo$39bo3bo7bo2bob2obo2bo$15b2o10b2o9bobobobo10bo2bo$15b2o10b2o9b2o3b
2o2$12b2ob2ob2o4b2ob2ob2o23bo2bo$12b2ob2ob2o4b2ob2ob2o24b2o7$12b2ob2o
7b2o4b2o$12b2ob2o7b2o4b2o$48b3o$15b2o7b2o4b2o15bob2obo$15b2o7b2o4b2o5b
2o7bo6bo$36bo2bo8bo2bo2bo$15b2o7b2ob2ob2o4bo3bo4b2o6b2o$15b2o7b2ob2ob
2o5bo2bo4b2o6b2o$38b2o5bo2bo2bo$15b2o13b2o14bo6bo$15b2o13b2o15bob2obo$
49b3o$12b2ob2ob2o10b2o$12b2ob2ob2o10b2o7$12b2ob2o10b2ob2o$12b2ob2o10b
2ob2o$36b2o$15b2o7b2o10b3o$15b2o7b2o12bo$37b2o$15b2o7b2ob2o9bo$15b2o7b
2ob2o9bo$37b2o$15b2o7b2o4b2o6bo$15b2o7b2o4b2o4b3o$36b2o$12b2ob2ob2o7b
2ob2o$12b2ob2ob2o7b2ob2o7$12b2ob2o7b2ob2o$12b2ob2o7b2ob2o2$18b2o10b2o$
18b2o10b2o3b2o$37b2o$12b2ob2o10b2o$12b2ob2o10b2o6bo2b2o$35bo2bo$18b2o
4b2o11bo$18b2o4b2o2$12b2ob2o7b2ob2ob2o$12b2ob2o7b2ob2ob2o7$12b2o4b2o4b
2ob2ob2o$12b2o4b2o4b2ob2ob2o2$12b2o4b2o4b2o4b2o$12b2o4b2o4b2o4b2o4bo2b
2o$38bob2o$12b2ob2ob2o4b2ob2ob2o5bo$12b2ob2ob2o4b2ob2ob2o5bo2bo$37b3o$
18b2o4b2o4b2o$18b2o4b2o4b2o2$18b2o4b2ob2ob2o$18b2o4b2ob2ob2o7$2ob2o7b
2o4b2o4b2ob2ob2o23b3o$2ob2o7b2o4b2o4b2ob2ob2o22bo3bo$55bo2bo$3b2o7b2o
4b2o4b2o4b2o24bobo$3b2o7b2o4b2o4b2o4b2o25bo2$3b2o7b2ob2ob2o4b2ob2ob2o$
3b2o7b2ob2ob2o4b2ob2ob2o$47bo$3b2o13b2o4b2o4b2o14bobo$3b2o13b2o4b2o4b
2o14bo2bo$46bo3bo$2ob2ob2o10b2o4b2ob2ob2o15b3o$2ob2ob2o10b2o4b2ob2ob2o
18$2ob2ob2o4b2ob2o10b2ob2o$2ob2ob2o4b2ob2o10b2ob2o$66bo$2o10b2o4b2o4b
2o40b2o$2o10b2o4b2o4b2o29bo$54bobo4b2obo2bo$3b2o10b2ob2o4b2ob2o24bo2b
2o3bobo$3b2o10b2ob2o4b2ob2o25bobo4b2obo2bo$55bo$6b2o10b2o4b2o4b2o34b2o
$6b2o10b2o4b2o4b2o34bo2$2ob2o7b2ob2o10b2ob2o$2ob2o7b2ob2o10b2ob2o12$2o
b2ob2o7b2ob2o7b2o9b2o118b2o$2ob2ob2o7b2ob2o7b2o9b2o118b2o2$2o4b2o4b2o
10b2o4b2o50bo32bo$2o4b2o4b2o10b2o4b2o49bobo30bobo$80b2o34b2o$2ob2ob2o
4b2ob2o7b2o4b2o48bob2o30b2obo$2ob2ob2o4b2ob2o7b2o4b2o48b2o34b2o$81bobo
30bobo$2o4b2o4b2o4b2o4b2o4b2o50bo32bo$2o4b2o4b2o4b2o4b2o4b2o$38b2o118b
2o$2ob2ob2o7b2ob2o7b2o9b2o118b2o$2ob2ob2o7b2ob2o7b2o!


Spaceships:
x = 10, y = 34, rule = B2i3-c6/S2-i3
3o$2bo$bo2$o$2o$o5$7bo$4bo2bo$2bo5bo$4bob2obo$2bo5bo$4bo2bo$7bo12$3o2b
o$3bob2o$3bobobo$o2bob2o$5bo!

From top to bottom, c/4d glide (glider), c/5o D2_+1 (T), c/5o p10 D2_+1, 5c/61o p122 glide

A 33c/986 odd symmetric puffer evolving from this:
x = 5, y = 18, rule = B2i3-c6/S2-i3
2b3o$4bo$4bo13$b2o$obo$b2o!
Please, stop spam searching Snowflakes.
User avatar
Majestas32
 
Posts: 516
Joined: November 20th, 2017, 12:22 pm
Location: 'Merica

Re: Thread For Your Unrecognised CA

Postby 2718281828 » July 1st, 2018, 2:58 pm

I discovered this rule B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8 an mentioned in in the RRO thread.

It has a very common p256 which is in fact like a RRO:
x = 184, y = 53, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
6$107b3o35bo28b3o$106b5o32b3o2b4o21b5o$105bob4o29b6o2b3o21bob4o$104b2o
bo2bo28b3obobobo2b2o19b2obo2bo$104b8o27b3ob4obobo20b8o$104b5ob2o27b9ob
obo19b5ob2o$105b8o27bo2b4o2b2o21b8o$106b3o32b5o27b3o$107bobo32b3o29bob
o$108bob2o63bob2o$106b2o2b2o61b2o2b2o$106bob4o61bob4o$107bobobo62bobob
o16$6bobobo62bobobo62bobobo$6b4obo61b4obo61b4obo$6b2o2b2o61b2o2b2o61b
2o2b2o$6b2obo63b2obo63b2obo$8bobo64bobo64bobo29b3o$9b3o64b3o64b3o27b5o
$5b8o59b8o59b8o21b2o2b4o2bo$6b2ob5o59b2ob5o59b2ob5o19bobob9o$6b8o59b8o
59b8o20bobob4ob3o$7bo2bob2o60bo2bob2o60bo2bob2o19b2o2bobobob3o$7b4obo
61b4obo61b4obo21b3o2b6o$7b5o62b5o62b5o21b4o2b3o$8b3o64b3o64b3o28bo!


These are a couple of natural space ships, most of them have speed c/2 orthorgonal:
x = 17, y = 175, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
4$5b3o$6b2o$5b4o$6b2o$5b3o4$6bo$6b2o$6b3o$7b2o$6b3o5$6bo$7b2o$7b2o$5b
5o$5b5o$7b2o$7b2o$6bo4$7bo$4bo2b2o$6b4o$5bo2b2o$7b4o$5bo2b2o$6b4o$4bo
2b2o$7bo9$9bo$7b3o$7b2o$7b2o$7bo4$7bo$7b2o$7b3o$6bob2o$7b4o$8b2o$7b3o$
7b2o$7bo9$8bo$8b2o$8b3o$9b2o$8b3o$9b2o$7b3o$8b2o$7bo5$6b4o$8b2o$6b2ob
2o$8b2o$6bob2o$7bo5$6b2o$5b4o$8bo$5b4o$6b2o6$8b2o$5bob3o$6b5o$5bo2b2o$
5b5o$5bobo6$7bo$7bobo$7b4o$9b2o$7b5o$9b2o$7b4o$7bobo$7bo9$5b5o$5bob3o$
5b2o2b2o$7b4o$5b2o2b2o$5bob3o$5b5o9$7bo$6b4o$6b4o$6bo2b2o$bo5b4o$6bo2b
2o$6b4o$6b4o$7bo9$5b5o$4bo3b3o$7b4o$4bo3b3o$5b5o!

The one at the bottom (the smoky 15c/30 ship) and the knight-ship are the most common ones.
There is also a very smoky natural spaceship which is 410c/920 orthogonal:
x = 13, y = 11, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
$6b2ob2o$obo3bob4o$5b2o3b2o$3bo5b4o$7bo2b2o$8b4o$9b2o$9bo!


There are not many natural still lifes, but the block is the most common (and smallest) one. Next to a couple of small period oscillators (p<20) there is this interesting p45:
x = 31, y = 29, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
2$15bo$13b5o$13b5o$15bo$14b3o3$14b3o$13b5o$13b5o$4b2o5b2ob3ob2o5b2o$4b
2obo2b4obob4o2bob2o$3b5o2b5ob5o2b5o$4b2obo2b4obob4o2bob2o$4b2o5b2ob3ob
2o5b2o$13b5o$13b5o$14b3o3$14b3o$15bo$13b5o$13b5o$15bo!

Even though there is no linear growth pattern in any catagolue soup so far, there are some.
I constructed the p90 gun of the 15c/30 ship (the small smoker) using three p45's:
x = 69, y = 94, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
5$47bo$45b5o$45b5o$47bo$46b3o3$46b3o$45b5o$45b5o$36b2o5b2ob3ob2o5b2o$
36b2obo2b4obob4o2bob2o$35b5o2b5ob5o2b5o$36b2obo2b4obob4o2bob2o$36b2o5b
2ob3ob2o5b2o$45b5o$45b5o$46b3o3$46b3o$47bo$45b5o$45b5o$47bo$22bo$20b5o
$20b5o$19bo2bo2bo$22bo3$22bo$20b5o$19b7o$12bo5bob5obo5bo$10b2o5b3ob3ob
3o5b2o$10b2o5b4obob4o5b2o$9b5o2b6ob6o2b5o$10b2o5b4obob4o5b2o$10b2o5b3o
b3ob3o5b2o$12bo5bob5obo5bo$19b7o$20b5o$22bo3$22bo$19bo2bo2bo$20b5o$20b
5o$22bo$47bo$45b5o$45b5o$47bo$46b3o3$46b3o$45b5o$45b5o$36b2o5b2ob3ob2o
5b2o$36b2obo2b4obob4o2bob2o$35b5o2b5ob5o2b5o$36b2obo2b4obob4o2bob2o$
36b2o5b2ob3ob2o5b2o$45b5o$45b5o$46b3o3$46b3o$47bo$45b5o$45b5o$47bo!

And this (my favorite gun) is a p256 gun of another ship using four RRO's:
x = 58, y = 49, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
5$15bo27bo$13b5o23b5o$12bob4o23b4obo$8bob2ob2o3b2o19b2o3b2ob2obo$11b9o
19b9o$12b2obob4o17b4obob2o$7b2o4bobob3o19b3obobo4b2o$8b2obo3b2ob2o19b
2ob2o3bob2o$9b2obob4o23b4obob2o$8b2o4bo29bo4b2o23$13bo31bo$7b4o2b3o27b
3o2b4o$8b3o2b6o21b6o2b3o$7b2o2bobobob3o19b3obobobo2b2o$8bobob4ob3o19b
3ob4obobo$7bobob9o19b9obobo$8b2o2b4o2bo21bo2b4o2b2o$13b5o23b5o$14b3o
25b3o!


There is also this wickstrecher:
x = 39, y = 29, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
6$10b2o$8b2obobobo2bo4bob4o$7b2obobobo2bo2bob2obobob2o$6b4ob16ob3o$6b
4ob2ob4ob2ob2ob2ob4o$5b5ob2ob4ob2ob2ob2ob4o$5b5ob2ob4ob2ob2ob2ob5o$4b
6ob2ob4ob2ob2ob8o$4b6ob2ob4ob2ob2ob8o$5b5ob2ob4ob2ob2ob2ob5o$5b5ob2ob
4ob2ob2ob2ob4o$6b4ob2ob4ob2ob2ob2ob4o$6b4ob16ob3o$7b2obobobo2bo2bob2ob
obob2o$8b2obobobo2bo4bob4o$10b2o!


And this quadratic growth pattern shows well, why apgsearch fails sometimes (use golly):
x = 79, y = 33, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
7$9bo$9bo$7bo6bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo6bo$8bobo
b2o2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bob2obo2b2o$6bo4b57ob
2o$6b2o2bob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob3o
$3bo2bo2bo2b2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob6o$
4bobob3ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob7o$3b3o
4bob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob7o$5bo2bo3b
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob7o$7b3o2b2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob7o$5bob4ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob6o$5bob4ob2ob2ob2ob2ob2ob2ob
2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob2ob3o$9bo2b56ob2o$11bobo2bo2bo2bo
2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo2bob2obo2b2o$11bo2bo2bo2bo2bo2bo2b
o2bo2bo2bo2bo2bo2bo2bo2bo2bo2bo6bo!
Last edited by 2718281828 on July 1st, 2018, 7:19 pm, edited 1 time in total.
User avatar
2718281828
 
Posts: 389
Joined: August 8th, 2017, 5:38 pm

Re: Thread For Your Unrecognised CA

Postby AforAmpere » July 1st, 2018, 3:11 pm

2718281828 wrote:I discovered this rule B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8 an mentioned in in the RRO thread.

There is definitely some growth. Some patterns that are even symmetric seem to explode, like this:
x = 46, y = 267, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
21bo2bo$21bo2bo$20bo4bo2$22b2o$20bo4bo$19bobo2bobo$18bobo4bobo$15bo2bo
b2o2b2obo2bo$14bob5o4b5obo$15b5o2b2o2b5o$14b4o2b6o2b4o$15b4ob6ob4o$16b
3o3b2o3b3o2$22b2o$21b4o$20bob2obo$20bo4bo$19bob4obo$21b4o$22b2o$19bo2b
2o2bo$19bobo2bobo$20b2o2b2o2$20b6o$22b2o$18b2o2b2o2b2o$20b2o2b2o$15bo
14bo$16bo2b2ob2ob2o2bo$14bo3b2ob4ob2o3bo$12bo5bo3b2o3bo5bo$11bob2o4b8o
4b2obo$11b3obo2bo8bo2bob3o$12b4ob2ob2o2b2ob2ob4o$13bo5b8o5bo$11bo6b3o
4b3o6bo$12bo4bobo6bobo4bo$12b5o5b2o5b5o$21b4o$17bo4b2o4bo$16bobo8bobo$
17b2obo4bob2o4$19bo6bo$18bo2bo2bo2bo$14b2o4b6o4b2o$14b3obo3b2o3bob3o$
13b3obob2o4b2obob3o$15b2o5b2o5b2o$13bobob3o6b3obobo$15bo2b3o4b3o2bo$
14bo4b8o4bo$14b2o4b2o2b2o4b2o$14bob3o3b2o3b3obo$12bobo2bobo2b2o2bobo2b
obo$9bobo4b5ob2ob5o4bobo$8bobo3bo2b3obo2bob3o2bo3bobo$9bo8bo8bo8bo$5b
2obo4b2o3bo8bo3b2o4bob2o$5b2obob3ob3obo8bob3ob3obob2o$4b3o3b2obo2b2o
10b2o2bob2o3b3o$4b6obo2b5obo4bob5o2bob6o$3b3obobo3bob2o12b2obo3bobob3o
$4b2o3b2ob2ob2obobo4bobob2ob2ob2o3b2o$4b3o3bo2bob2obo2bo2bo2bob2obo2bo
3b3o$5bobobo3b2o3b2o2b2o2b2o3b2o3bobobo$6b4obobobo3bo6bo3bobobob4o$6b
2o3bobo4bobob2obobo4bobo3b2o$7b3o3bo2b2obo2b2o2bob2o2bo3b3o$8b2o3bo4bo
8bo4bo3b2o$7b2o2bob2o3bo8bo3b2obo2b2o$9bo3b5o10b5o3bo$10b2obobo14bobob
2o$12b3o2bo10bo2b3o$12b2o18b2o$14bo16bo$16bo12bo$16b3o8b3o8$21b4o2$21b
o2bo$19b2o4b2o$18bo8bo$15bob2o3b2o3b2obo$16bo3b2o2b2o3bo$16bo3b6o3bo$
19bob4obo$19bob4obo$16bobobo4bobobo$16bo2bob4obo2bo$14bo2b2o2b4o2b2o2b
o$18bob6obo$15bo5b4o5bo$16b2o4b2o4b2o$18b2ob4ob2o$17bo2b6o2bo$17bob3o
2b3obo$18b2o6b2o$22b2o$20b2o2b2o$19bob4obo$19b2ob2ob2o$18bo3b2o3bo$20b
ob2obo$20b6o$21b4o$19b8o$18bobob2obobo$15bo14bo$15bo2b3o4b3o2bo$15b2o
2b3o2b3o2b2o$20b2o2b2o$16bo2b8o2bo$20b6o$17bo2b6o2bo$21bo2bo$18bo2b4o
2bo$19b8o$19bob4obo$20b6o$22b2o20$19bo6bo$19bobo2bobo$18bobo4bobo$20bo
4bo16$19b3o2b3o$17b2obob2obob2o$17bobobo2bobobo$18bo8bo$18bobo4bobo$
16bobob6obobo$13b2o2b12o2b2o$14b4o3b4o3b4o$21b4o$22b2o$17bob2ob2ob2obo
$18b3ob2ob3o$20b6o$18b2o2b2o2b2o$16bo3b6o3bo$5bo10bobo2b4o2bobo10bo$
11bobo5bob4obo5bobo$b2o2b2o6b3o2bobo4bobo2b3o6b2o2b2o$b2o2bo4bob4obo2b
ob2obo2bob4obo4bo2b2o$2o8b2ob2ob3ob2o2b2ob3ob2ob2o8b2o$b2o2bobo2b2ob4o
2bo2b2o2bo2b4ob2o2bobo2b2o$b2ob2o3bob7o2bo4bo2b7obo3b2ob2o$3b3o3bob5o
5b4o5b5obo3b3o$3b2o16b4o16b2o$20b6o$20b6o$20b6o$22b2o$21bo2bo$21bo2bo$
17bo3b4o3bo$19b2ob2ob2o$18b2o2b2o2b2o$18bo2b4o2bo$19bob4obo$17bobo6bob
o$15b7o2b7o$15b6o4b6o$17bo4b2o4bo$22b2o$19b2o4b2o$19b2o4b2o$19b8o$19bo
b4obo$19bobo2bobo$21b4o$20b6o$19bobo2bobo$21b4o$20b6o$21bo2bo$20b6o$
19b8o$21bo2bo$20b6o$19bob4obo$18bob6obo$20b2o2b2o$17b2obob2obob2o$17b
2o2b4o2b2o$19bob4obo$18b2obo2bob2o2$19bobo2bobo2$21bo2bo9$19b2o4b2o$
18bo3b2o3bo$18bo2bo2bo2bo$6b3o10b2o4b2o10b3o$5bob3o9bo2b2o2bo9b3obo$5b
5o11b4o11b5o$6b3ob2o22b2ob3o$b5obob4o20b4obob5o$3b2o2bob4o9b2o9b4obo2b
2o$3bo4b3o2bo8b2o8bo2b3o4bo$4bo4b2obo20bob2o4bo$3bo38bo9$22b2o$22b2o!


A thread for this rule would be cool.

EDIT, a C/5:
x = 16, y = 53, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
7b2o$5b2o2b2o$5bob2obo$3b3o4b3o$3b2o2b2o2b2o2$b2o4b2o4b2o$4bobo2bobo$b
obob6obobo$2bob8obo$2b2o2b4o2b2o$4bob4obo$4bo6bo$b3obob2obob3o$bo2bobo
2bobo2bo$o3b8o3bo$2b3o2b2o2b3o$2ob3ob2ob3ob2o$2bob2ob2ob2obo$b2ob2o4b
2ob2o$3b3o4b3o$2b4ob2ob4o$2b2ob2o2b2ob2o$ob2o8b2obo$obo4b2o4bobo$bo4bo
2bo4bo$bobo3b2o3bobo$bo2bo6bo2bo$5b6o$bobob6obobo$3bobo4bobo$2bo10bo$
5bob2obo2$3bo2b4o2bo$3bo2b4o2bo$2bo3b4o3bo$5b6o$4bo2b2o2bo$3b10o$2b2o
8b2o$4bob4obo$5b6o$6b4o$7b2o$3b3ob2ob3o$2bob2o4b2obo$2b3o2b2o2b3o$2b3o
6b3o$3bo2b4o2bo$3bobob2obobo$6b4o$4bo6bo!


EDIT 2, a wide C/3:
x = 28, y = 18, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
6b2o5b2o5b2o$5b4o3b4o3b4o$4bo4bobo4bobo4bo$b2ob2o2b2ob2o2b2ob2o2b2ob2o
$b2o2bo4b2ob2ob2o4bo2b2o$obob2o2bo10bo2b2obobo$3b4ob4o4b4ob4o$2bo2bobo
12bobo2bo$b2ob3ob2o8b2ob3ob2o$11bob2obo$2b2o2b2o3b6o3b2o2b2o$3bo6bob4o
bo6bo$4bob2o3bob2obo3b2obo$8bob8obo$13b2o$7b2obo6bob2o$9bo2b4o2bo$12bo
2bo!
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 765
Joined: July 1st, 2016, 3:58 pm

Re: Thread For Your Unrecognised CA

Postby 2718281828 » July 1st, 2018, 3:33 pm

AforAmpere wrote:EDIT, a C/5:
x = 16, y = 53, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
7b2o$5b2o2b2o$5bob2obo$3b3o4b3o$3b2o2b2o2b2o2$b2o4b2o4b2o$4bobo2bobo$b
obob6obobo$2bob8obo$2b2o2b4o2b2o$4bob4obo$4bo6bo$b3obob2obob3o$bo2bobo
2bobo2bo$o3b8o3bo$2b3o2b2o2b3o$2ob3ob2ob3ob2o$2bob2ob2ob2obo$b2ob2o4b
2ob2o$3b3o4b3o$2b4ob2ob4o$2b2ob2o2b2ob2o$ob2o8b2obo$obo4b2o4bobo$bo4bo
2bo4bo$bobo3b2o3bobo$bo2bo6bo2bo$5b6o$bobob6obobo$3bobo4bobo$2bo10bo$
5bob2obo2$3bo2b4o2bo$3bo2b4o2bo$2bo3b4o3bo$5b6o$4bo2b2o2bo$3b10o$2b2o
8b2o$4bob4obo$5b6o$6b4o$7b2o$3b3ob2ob3o$2bob2o4b2obo$2b3o2b2o2b3o$2b3o
6b3o$3bo2b4o2bo$3bobob2obobo$6b4o$4bo6bo!


A smaller c/5 (not in width)
x = 24, y = 21, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
$8bo$3b3obo$2bob2ob2o3bo3bo$bob5o2bo3bobo$b2ob2o2bo2b2o5b2o$b2obobo6bo
bo2b2o$5b3obob2obo4b3o$11bob3o5bo$9b3ob2obobobobo$9b3ob2obobobobo$11bo
b3o5bo$5b3obob2obo4b3o$b2obobo6bobo2b2o$b2ob2o2bo2b2o5b2o$bob5o2bo3bob
o$2bob2ob2o3bo3bo$3b3obo$8bo!


AforAmpere wrote:There is definitely some growth. Some patterns that are even symmetric seem to explode, like this:

The 'fuse' above the burned witchstrecher is also an exploding pattern.

Edit1: a small c/6:
x = 17, y = 12, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
$bo5bo2bo$bo4bobo2b2o$obobo2b6obo$b11o$o2b9o3b2o$o2b9o3b2o$b11o$obobo
2b6obo$bo4bobo2b2o$bo5bo2bo!

and a c/7, so there seem to be a couple of speeds in this rule:
x = 274, y = 25, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
5$31bo42bobo33bobobo8bo18bobo6bobo11bo21bo17bo30b2o3bobob2o14bo$33bo
28bo5bobobo3b2o7b3o7bo10bobo2b2obo7bo2bo16bo6bobo2bo4bo3bo3bo17bobo4b
2obo8bob2o28bo4b3obo17bo$17bobobo5bo3b2obo10bobo5bo6b2o2bobobobob2o2b
3o8bo6bob2o6b2ob2ob2o3b2o5b3o2bobobo13bobo2bo2bob4o2bobo2b2o8b2o7bobo
4b2ob3obo4b2obo9bo5b5o3bob2o2bob3o6bo2bo5bo3b2obo$12b3o2b2o2b2o2b2obob
4o10bo2bo7bo4bo4b2obo5bob2ob3obobob2o3b2ob4o8b5o2b3obo2bobobo2bo4bo2b
3o2bob2o6b2o2bob2o7b3o6b7o4bo3b2ob5o5bob2o3bo2bo5bo3b2o2bobobobob2ob3o
4b3o3b2o2b2obob4o$4bo6bob2o3b7ob2obob3o4b2ob3o2b2o4bo2bob5o2b2o4bobo3b
2o3bobobob3o4bo4bo2b2o3bob2o2b4o9b2o2bo3bobobob4obo4bobobo2bo2bo6b6obo
2bobo4b5o3bob2o2bobo3b4o4b2obob2obob2o2bo2bo7b3obo4bo2b6ob2obob3o$2b2o
2bo3b2o2b3ob4o3b3o2bo9bob5ob2ob4o3b2obob4ob3ob6ob3o2b2o2bo2b3o2b3o2b2o
b4o4b5obo3bobo2bo2b2ob3o2b2o2bobobo2b4obo2bobobo2b6ob4obo6b7ob6obo3bo
2bobob7obobo2b2o2bo2bo6b2o3b2o6b3o3b3o2bo$2b5o3b4ob2ob4ob5obo7b2o3b6ob
ob4o3b2o3b5ob8o3b2o3b2o4bob3ob2o2bo6b2ob5ob4o2bob2ob4o3b5ob3ob2ob4ob3o
bo4b7ob5ob2obo3b5obob2o8bobo3b2o2bobo2bo8b2o12b4o2bo2b4ob5obo$2b5o3b4o
b2ob4ob5obo7b2o3b6obob4o3b2o3b5ob8o3b2o3b2o4bob3ob2o2bo6b2ob5ob4o2bob
2ob4o3b5ob3ob2ob4ob3obo4b7ob5ob2obo3b5obob2o8bobo3b2o2bobo2bo8b2o12b4o
2bo2b4ob5obo$2b2o2bo3b2o2b3ob4o3b3o2bo9bob5ob2ob4o3b2obob4ob3ob6ob3o2b
2o2bo2b3o2b3o2b2ob4o4b5obo3bobo2bo2b2ob3o2b2o2bobobo2b4obo2bobobo2b6ob
4obo6b7ob6obo3bo2bobob7obobo2b2o2bo2bo6b2o3b2o6b3o3b3o2bo$4bo6bob2o3b
7ob2obob3o4b2ob3o2b2o4bo2bob5o2b2o4bobo3b2o3bobobob3o4bo4bo2b2o3bob2o
2b4o9b2o2bo3bobobob4obo4bobobo2bo2bo6b6obo2bobo4b5o3bob2o2bobo3b4o4b2o
bob2obob2o2bo2bo7b3obo4bo2b6ob2obob3o$12b3o2b2o2b2o2b2obob4o10bo2bo7bo
4bo4b2obo5bob2ob3obobob2o3b2ob4o8b5o2b3obo2bobobo2bo4bo2b3o2bob2o6b2o
2bob2o7b3o6b7o4bo3b2ob5o5bob2o3bo2bo5bo3b2o2bobobobob2ob3o4b3o3b2o2b2o
bob4o$17bobobo5bo3b2obo10bobo5bo6b2o2bobobobob2o2b3o8bo6bob2o6b2ob2ob
2o3b2o5b3o2bobobo13bobo2bo2bob4o2bobo2b2o8b2o7bobo4b2ob3obo4b2obo9bo5b
5o3bob2o2bob3o6bo2bo5bo3b2obo$33bo28bo5bobobo3b2o7b3o7bo10bobo2b2obo7b
o2bo16bo6bobo2bo4bo3bo3bo17bobo4b2obo8bob2o28bo4b3obo17bo$31bo42bobo
33bobobo8bo18bobo6bobo11bo21bo17bo30b2o3bobob2o14bo!
Last edited by 2718281828 on July 1st, 2018, 4:00 pm, edited 2 times in total.
User avatar
2718281828
 
Posts: 389
Joined: August 8th, 2017, 5:38 pm

Re: Thread For Your Unrecognised CA

Postby AforAmpere » July 1st, 2018, 3:58 pm

That C/7's backend is actually its own spaceship:
x = 14, y = 33, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
2bo8bo$bob2o4b2obo$2b3o4b3o$ob3o4b3obo$3bobo2bobo$4bob2obo$3bo6bo$2bob
6obo$3b8o$3bob4obo$4bob2obo$4bob2obo$3b2o4b2o$2b10o$4b6o$2bob6obo$3b8o
$2b2o6b2o$5b4o$5b4o$3b3o2b3o$3b2ob2ob2o$3bo2b2o2bo$4b6o$5b4o4$5b4o$6b
2o$4bob2obo$5b4o$5b4o!
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 765
Joined: July 1st, 2016, 3:58 pm

Re: Thread For Your Unrecognised CA

Postby KittyTac » July 1st, 2018, 11:31 pm

AforAmpere wrote:That C/7's backend is actually its own spaceship:
x = 14, y = 33, rule = B2kn3aijnr4aciky/S2n3-cek4aijnt5-aky67c8
2bo8bo$bob2o4b2obo$2b3o4b3o$ob3o4b3obo$3bobo2bobo$4bob2obo$3bo6bo$2bob
6obo$3b8o$3bob4obo$4bob2obo$4bob2obo$3b2o4b2o$2b10o$4b6o$2bob6obo$3b8o
$2b2o6b2o$5b4o$5b4o$3b3o2b3o$3b2ob2ob2o$3bo2b2o2bo$4b6o$5b4o4$5b4o$6b
2o$4bob2obo$5b4o$5b4o!

So the rest of the c/7 is a pushalong.
User avatar
KittyTac
 
Posts: 532
Joined: December 21st, 2017, 9:58 am

Re: Thread For Your Unrecognised CA

Postby Saka » July 6th, 2018, 12:25 am

A rule I made
@RULE Spin
#1: East
#2: West
#3: North
#4: South
#5: Spinner
#6: Boom
#7: Interrruptor
@TABLE
n_states:8
neighborhood:Moore
symmetries:none
var a={0,1,2,3,4,5,6,7}
var b=a
var c=a
var d=a
var e=a
var f=a
var g=a
var h=a
var i={1,2,3,4}
#SpinC
0,0,0,a,0,0,5,1,0,4
0,4,0,0,0,a,0,0,5,2
0,0,5,2,0,0,0,a,0,3
0,a,0,0,5,3,0,0,0,1
#SpinCC
0,0,0,2,5,0,0,a,0,4
0,4,5,0,0,a,0,0,0,1
0,0,0,a,0,0,0,1,5,3
0,a,0,0,0,3,5,0,0,2
#Boom
1,a,b,5,d,e,f,g,h,6
2,a,b,c,d,e,f,5,h,6
3,5,a,b,c,d,e,f,g,6
4,a,b,c,d,5,e,f,g,6
0,4,b,c,d,3,f,g,h,6
0,a,b,2,d,e,f,1,h,6
#BOOM
0,6,a,b,c,d,e,f,g,4
0,a,b,6,c,d,e,f,g,2
0,a,b,c,d,e,g,6,f,1
0,a,b,c,d,6,e,f,g,3
6,a,b,c,d,e,f,g,h,0
#Move
0,a,b,c,d,e,f,1,h,1
0,a,b,2,d,e,f,g,h,2
0,a,b,c,d,3,f,g,h,3
0,4,b,c,d,e,f,g,h,4
i,a,b,c,d,e,f,g,h,0

Quick demo of the mechanics
x = 27, y = 31, rule = Spin
12.A9.G$20.E2$22.E$26.G$24.E2$.E16.E.E.E$E.E$16.G3$16.E$E$14.G4$E.E$.
E11$15.G!

AND Gate
x = 8, y = 5, rule = Spin
A$7.E$6.G$7.E$A!

Nice rug pattern generator
x = 163, y = 4, rule = Spin
.E159GE$E161.E$EFE157.EFE$.E159.E!

This machine posts a strange sequence of numbers to the right
x = 163, y = 15, rule = Spin
.E159GE$E161.E$EFE157.EFE$.E159.E$161.G$161.G$.G159.G$3.157E$.G159.G$
161.G$161.G$.E159.E$EFE157.EFE$E161.E$.E159GE!

It appears that the first few terms are 1,4,7,1,7,2,6,3,2,4,5,5,2,1,10,7,1,2,6,2,1,5,4
What is it?
EDIT: Unfortunately, the pattern turns into a periodic gun :( B̶U̶T̶ ̶i̶t̶ ̶m̶i̶g̶h̶t̶ ̶g̶o̶ ̶l̶o̶n̶g̶e̶r̶ ̶i̶f̶ ̶t̶h̶e̶ ̶l̶e̶n̶g̶t̶h̶ ̶i̶s̶ ̶i̶n̶c̶r̶e̶a̶s̶e̶d̶.̶ Nope, the sequence changes. Oh well :(
Last edited by Saka on July 6th, 2018, 7:43 am, edited 3 times in total.
Proud owner and founder of Sakagolue
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 2578
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Thread For Your Unrecognised CA

Postby xanman12321 » July 6th, 2018, 1:03 am

x = 10, y = 11, rule = B2-ae3ai4a56c/S02in4i5i6-n
b2o$2o$b2o6$7b2o$6b2obo$7b2o!

A rule called "Cell City" (though i kind of want to make it more interesting while keeping most common patterns)
nothing to see here
User avatar
xanman12321
 
Posts: 11
Joined: June 19th, 2018, 10:35 pm

Re: Thread For Your Unrecognised CA

Postby Caenbe » July 16th, 2018, 4:50 pm

I had this idea for a Margolus version of WireWorld, but I can't figure out how to use the conversion script. Help?
@RULE MWW

@TABLE
n_states:3
neighborhood:Margolus
symmetries:rotate4reflect

# 0: empty
# 1: off
# 2: on

var a={0,1,2}
var b={1,2}
var c={b}
var d={b}
var e={b}

# 0 or 1 wires: nothing happens
0,0,0,a : 0,0,0,a
# 2 wires: they swap their bits
0,0,b,c : 0,0,c,b
0,b,c,0 : 0,c,b,0
# 3 wires: Fredkin gate
1,b,c,0 : 1,b,c,0
2,b,c,0 : 2,c,b,0
# 4 wires: crossing
b,c,d,e : e,d,c,b
0.1485̅
Caenbe
 
Posts: 51
Joined: September 20th, 2016, 4:24 pm
Location: Nowhere Land, USA

Re: Thread For Your Unrecognised CA

Postby AforAmpere » July 18th, 2018, 10:30 am

This one's weird:
x = 35, y = 35, rule = B2ce3cj6e/S12-n3-ci4ijkwy5k
31b4o$30b2o2bo$29b2obobo$28b2o3b2o$27b2o3b2o$26b2o3b2o$25b2o3b2o$24b2o
3b2o$23b2o3b2o$22b2o3b2o$21b2o3b2o$20b2o3b2o$19b2o3b2o$18b2o3b2o$17b2o
3b2o$16b2o3b2o$15b2obob2o$14b2o3b2o$13b2obob2o$12b2o3b2o$11b2o3b2o$10b
2o3b2o$9b2o3b2o$8b2o3b2o$7b2o3b2o$6b2o3b2o$5b2o3b2o$4b2o3b2o$3b2o3b2o$
2b2o3b2o$b2o3b2o$2o3b2o$obob2o$o2b2o$4o!


It has strangely growing and shrinking lines, that tend to eventually stabilize.The two common oscillators are the p46 above and this p1882:
x = 27, y = 27, rule = B2ce3cj6e/S12-n3-ci4ijkwy5k
23b4o$22b2o2bo$21b2o3bo$20b2o3b2o$19b2o3b2o$18b2o3b2o$17b2o3b2o$16b2o
3b2o$15b2o3b2o$14b2o3b2o$13b2o3b2o$12b2o3b2o$11b2o3b2o$10b2o3b2o$9b2o
3b2o$8b2o3b2o$7b2o3b2o$6b2o3b2o$5b2o3b2o$4b2obob2o$3b2o3b2o$2b2o3b2o$b
2o3b2o$2o3b2o$o3b2o$2ob2o$4o!


There are ships like this, here's the only one I've found, a 3c/131 diagonal:
x = 41, y = 41, rule = B2ce3cj6e/S12-n3-ci4ijkwy5k
37b4o$36b2o2bo$35b2o3bo$34b2o3b2o$33b2o3b2o$32b2obob2o$31b2o3b2o$30b2o
3b2o$29b2o3b2o$28b2obob2o$27b2o3b2o$26b2obob2o$25b2o3b2o$24b2obob2o$
23b2o3b2o$22b2o3b2o$21b2o3b2o$20b2o3b2o$19b2o3b2o$18b2o3b2o$17b2o3b2o$
16b2obob2o$15b2o3b2o$14b2obob2o$13b2o3b2o$12b2o3b2o$11b2o3b2o$10b2o3b
2o$9b2o3b2o$8b2o3b2o$7b2o3b2o$6b2obob2o$5b2o3b2o$4b2o3b2o$3b2o3b2o$2b
2o3b2o$b2o3b2o$2o3b2o$o3b2o$2ob2o$4o!


EDIT, this one turns into a stable pattern in 105,000,000 generations:
x = 133, y = 133, rule = B2ce3cj6e/S12-n3-ci4ijkwy5k
129bo$128b2o$127b2o$126b2obob2o$125b2o3b2o$124b2o3b2o$123b2o3b2o$122b
2o3b2o$121b2o3b2o$120b2o3b2o$119b2o3b2o$118b2o3b2o$117b2o3b2o$116b2o3b
2o$115b2o3b2o$114b2o3b2o$113b2o3b2o$112b2o3b2o$111b2o3b2o$110b2o3b2o$
109b2o3b2o$108b2o3b2o$107b2o3b2o$106b2o3b2o$105b2o3b2o$104b2o3b2o$103b
2o3b2o$102b2o3b2o$101b2o3b2o$100b2o3b2o$99b2o3b2o$98b2o3b2o$97b2o3b2o$
96b2o3b2o$95b2o3b2o$94b2o3b2o$93b2o3b2o$92b2o3b2o$91b2o3b2o$90b2o3b2o$
89b2o3b2o$88b2o3b2o$87b2o3b2o$86b2o3b2o$85b2o3b2o$84b2o3b2o$83b2o3b2o$
82b2o3b2o$81b2o3b2o$80b2o3b2o$79b2o3b2o$78b2o3b2o$77b2o3b2o$76b2o3b2o$
75b2o3b2o$74b2o3b2o$73b2o3b2o$72b2o3b2o$71b2o3b2o$70b2o3b2o$69b2o3b2o$
68b2o3b2o$67b2o3b2o$66b2o3b2o$65b2o3b2o$64b2o3b2o$63b2o3b2o$62b2o3b2o$
61b2o3b2o$60b2o3b2o$59b2o3b2o$58b2o3b2o$57b2o3b2o$56b2o3b2o$55b2o3b2o$
54b2o3b2o$53b2o3b2o$52b2o3b2o$51b2o3b2o$50b2o3b2o$49b2o3b2o$48b2o3b2o$
47b2o3b2o$46b2o3b2o$45b2o3b2o$44b2o3b2o$43b2o3b2o$42b2o3b2o$41b2o3b2o$
40b2o3b2o$39b2o3b2o$38b2o3b2o$37b2o3b2o$36b2o3b2o$35b2o3b2o$34b2o3b2o$
33b2o3b2o$32b2o3b2o$31b2o3b2o$30b2o3b2o$29b2o3b2o$28b2o3b2o$27b2o3b2o$
26b2o3b2o$25b2o3b2o$24b2o3b2o$23b2o3b2o$22b2o3b2o$21b2o3b2o$20b2o3b2o$
19b2o3b2o$18b2o3b2o$17b2o3b2o$16b2o3b2o$15b2o3b2o$14b2o3b2o$13b2o3b2o$
12b2o3b2o$11b2o3b2o$10b2o3b2o$9b2o3b2o$8b2o3b2o$7b2o3b2o$6b2o3b2o$5b2o
3b2o$4b2o3b2o$3b2o3b2o$2b2o3b2o$b2o3b2o$2o3b2o$4b2o$3b2o$3bo!


Quite the amount of time.

Can anyone find more ships?
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere
 
Posts: 765
Joined: July 1st, 2016, 3:58 pm

Re: Thread For Your Unrecognised CA

Postby Hdjensofjfnen » July 19th, 2018, 9:28 pm

AforAmpere wrote:Can anyone find more ships?


Yes, actually:
x = 3, y = 2, rule = B2ce3cj6e/S12-n3-ci4ijkwy5k
o$b2o!
Life is hard. Deal with it.
This is my new favorite spaceship:
x = 8, y = 4, rule = B3-ek/S023
bobo$2obo3bo$bobo$3bo!
User avatar
Hdjensofjfnen
 
Posts: 630
Joined: March 15th, 2016, 6:41 pm
Location: (394234, -234231)

PreviousNext

Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 4 guests