ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Thread For Your Unrecognised CA

For discussion of other cellular automata.

Re: Thread For Your Unrecognised CA

Postby shouldsee » April 10th, 2016, 4:01 am

I am excited to share this new half-wolf.

Modifying the state 2 in "lifebf7" to undergo the same transitions as state0, I obtained this variant called "flashb7a". This rule inherits many features of lifebf7 (spaceships, chaotic growth, etc.), but also exhibits extraordinary growth of higher order structure, allowing it to combine features of ordered automata and chaotic automata.

flashb7a rule table
@RULE flashb7a
@TABLE
# rules: 61
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,2}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,1,2,3}
var e={0,2,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,1,2,3}
var i={0,3}
var j={0,2,3}
var k={0,2,3}
var l={0,3}
var m={0,1,3}
var n={0,3}
var o={0,3}
var p={0,3}
var q={1,2}
var r={0,1,3}
var s={0,1,3}
var t={1,3}
var u={0,1}
var v={0,1}
var w={0,2,3}
var x={0,2,3}
var y={0,2,3}
var z={0,2,3}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,1,2}
var E={0,2}
var F={1,2}
var G={0,2}
var H={0,2}
var I={0,3}
a,b,c,d,e,f,g,h,2,1
a,i,e,j,k,l,1,1,1,1
a,e,i,j,k,1,l,1,1,1
a,e,j,i,k,1,1,l,1,1
a,e,b,c,1,m,d,f,2,1
a,i,l,e,1,n,o,1,1,1
a,i,l,n,1,o,1,p,1,1
a,i,l,n,q,1,o,p,1,1
a,m,e,r,2,1,s,b,1,1
a,i,e,1,l,n,1,j,1,1
a,m,e,1,r,t,s,2,1,1
0,0,0,1,1,0,1,2,1,1
a,i,u,1,m,1,r,2,1,1
a,i,u,m,2,1,v,1,1,1
0,0,0,1,2,1,1,0,1,1
0,0,0,2,1,0,1,1,1,1
0,0,0,2,1,1,0,1,1,1
a,u,1,v,1,i,2,1,m,1
0,0,1,0,2,1,0,1,1,1
u,e,1,1,1,1,1,1,1,2
1,e,j,k,w,x,y,z,b,0
1,b,c,d,e,f,g,h,3,0
1,e,b,u,c,A,d,3,f,0
1,A,u,B,C,e,3,b,D,0
1,a,u,b,v,A,B,C,3,0
q,i,l,n,o,m,p,3,r,0
1,0,0,0,u,1,q,0,3,0
1,a,E,A,b,1,1,1,1,0
q,i,l,n,o,m,3,0,r,0
1,u,0,0,0,3,0,q,F,0
1,u,0,0,0,3,F,0,q,0
1,0,0,0,1,0,A,F,3,0
F,i,l,n,1,o,u,p,3,0
1,E,A,B,1,a,1,1,1,0
F,i,l,n,u,1,o,p,3,0
1,e,A,b,1,1,j,1,1,0
1,e,A,B,t,1,1,E,1,0
F,i,l,0,3,n,o,1,u,0
F,i,0,l,3,n,1,o,1,0
F,i,l,n,3,1,0,0,1,0
1,E,a,1,G,H,1,1,1,0
1,E,G,1,H,1,a,1,1,0
1,E,G,1,H,1,1,a,1,0
1,E,G,1,1,H,a,1,1,0
1,E,G,1,1,H,1,a,1,0
1,E,1,G,1,H,1,a,1,0
F,1,1,1,1,1,1,1,1,0
2,i,l,n,o,p,I,m,r,0
2,I,0,i,0,l,1,n,1,0
2,I,i,l,0,1,0,0,1,0
2,I,i,m,r,1,1,1,1,0
2,I,i,l,1,n,o,p,1,0
2,I,m,r,1,i,1,1,1,0
2,I,m,r,1,1,i,1,1,0
2,I,m,r,1,1,1,i,1,0
2,I,i,1,l,n,1,1,1,0
2,I,i,1,l,1,n,1,1,0
2,I,i,1,l,1,1,n,1,0
2,I,i,1,1,l,n,1,1,0
2,I,i,1,1,l,1,n,1,0
2,I,1,i,1,l,1,n,1,0


IF you need any methuselahs, please refer to lifebf7a patterns:
x = 540, y = 376, rule = flashb7a
390.C$540C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C
88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.
2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C
88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.
2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C
88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C14.2A32.C$C88.
2C88.2C88.2C88.2C88.2C39.C14.A2.A30.C$C88.2C88.2C88.2C88.2C88.2C39.C
10.4A2.B.A3.2A24.C$C88.2C88.2C88.2C88.2C88.2C39.C3.5A2.A7.2A.A2.A23.C
$C88.2C88.2C88.2C88.2C88.2C39.C3.AB.3A2.2A5.2A.AB.A23.C$C88.2C88.2C
88.2C88.2C88.2C39.C3.6A4.2A.A7.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C2.
2A.A12.2A.A.A24.C$C88.2C88.2C88.2C88.2C88.2C39.C2.AB2A42.C$C88.2C88.
2C88.2C88.2C88.2C39.C3.3A4.3A35.C$C88.2C88.2C88.2C88.2C88.2C39.C3.3A
7.A6.A27.C$C88.2C88.2C88.2C88.2C88.2C39.C3.A5.2A.2A5.A.A26.C$C88.2C
88.2C88.2C88.2C88.2C39.C6.A7.A4.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.
C8.7A5.A27.C$C88.2C88.2C88.2C88.2C88.2C39.C5.2A6.2A33.C$C88.2C88.2C
88.2C88.2C88.2C39.C9.2A4.2A31.C$C88.2C88.2C88.2C88.2C88.2C39.C11.B2.A
.A31.C$C88.2C88.2C88.2C88.2C88.2C39.C.3A7.2A.A33.C$C88.2C88.2C88.2C
88.2C88.2C39.C3.BA.A41.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A.A3.A2.2A2.
2A.2A26.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.A2.A2.A3.2A3.A2.A25.C$C
88.2C88.2C88.2C88.2C88.2C39.C3A.A5.A6.A2.2A26.C$C88.2C88.2C45.B42.2C
88.2C88.2C39.C.A2.A5.A4.2A31.C$C88.2C88.2C42.B45.2C88.2C41.3A7.3A34.
2C39.C.A2.2A8.5A29.C$C88.2C88.2C88.2C88.2C42.A.A5.A.A35.2C39.C3.B2A2.
A2.B6.2A28.C$C88.2C88.2C44.B43.2C88.2C36.2A.3A11.3A.2A29.2C39.C.A2.A
3.A2.B.A3.3A28.C$C88.2C44.B43.2C41.B46.2C88.2C36.A3.2A2.BA3.AB2.2A3.A
29.2C39.C3.B4.A3.A35.C$C88.2C88.2C88.2C88.2C37.A7.A3.A7.A30.2C39.C4.A
4.3A3.A32.C$C88.2C88.2C88.2C88.2C40.A13.A33.2C39.C2.3A43.C$C88.2C88.
2C88.2C47.B40.2C40.A.2A7.2A.A33.2C39.C48.C$C42.B3.B41.2C45.B42.2C88.
2C88.2C41.A11.A34.2C39.C2.3A43.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A4.
3A3.A32.C$C88.2C88.2C88.2C88.2C88.2C39.C3.B4.A3.A35.C$C88.2C88.2C88.
2C88.2C88.2C39.C.A2.A3.A2.B.A3.3A28.C$C88.2C88.2C88.2C41.B46.2C88.2C
39.C3.B2A2.A2.B6.2A28.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.2A8.5A29.C$
C88.2C88.2C88.2C88.2C88.2C39.C.A2.A5.A4.2A31.C$C88.2C88.2C88.2C88.2C
88.2C39.C3A.A5.A6.A2.2A26.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.A2.A2.A
3.2A3.A2.A25.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A.A3.A2.2A2.2A.2A26.C$
C88.2C88.2C88.2C88.2C88.2C39.C3.BA.A41.C$C88.2C88.2C88.2C88.2C88.2C
39.C.3A7.2A.A33.C$C88.2C88.2C88.2C88.2C88.2C39.C11.B2.A.A31.C$C88.2C
88.2C88.2C88.2C88.2C39.C9.2A4.2A31.C$C88.2C88.2C88.2C88.2C88.2C39.C5.
2A6.2A33.C$C88.2C88.2C88.2C88.2C88.2C39.C8.7A5.A27.C$C88.2C88.2C88.2C
88.2C88.2C39.C6.A7.A4.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.C3.A5.2A.
2A5.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.C3.3A7.A6.A27.C$C88.2C88.2C
88.2C88.2C88.2C39.C3.3A4.3A35.C$C88.2C88.2C88.2C88.2C88.2C39.C2.AB2A
42.C$C88.2C88.2C88.2C88.2C88.2C39.C2.2A.A12.2A.A.A24.C$C88.2C88.2C88.
2C88.2C88.2C39.C3.6A4.2A.A7.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C3.AB.
3A2.2A5.2A.AB.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C3.5A2.A7.2A.A2.A23.
C$C88.2C88.2C88.2C88.2C88.2C39.C10.4A2.B.A3.2A24.C$C88.2C88.2C88.2C
88.2C88.2C39.C14.A2.A30.C$C88.2C88.2C88.2C88.2C88.2C39.C14.2A32.C$C
88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$
C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C
$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.
C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C
48.C$540C$540C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C41.2A45.2C88.2C88.2C88.2C88.2C88.C$C
30.2A8.A2.2A43.2C88.2C88.2C88.2C88.2C88.C$C30.2A7.3A2.A43.2C88.2C88.
2C88.2C88.2C88.C$C31.A.A5.A4.A43.2C29.A58.2C44.2A42.2C88.2C88.2C88.C$
C33.A5.5A44.2C26.5A57.2C42.A3.A41.2C88.2C88.2C88.C$C88.2C25.2AB.3A56.
2C41.A2.B.A41.2C88.2C88.2C88.C$C33.A5.5A44.2C25.6A57.2C42.A3.A41.2C
46.A41.2C88.2C88.C$C31.A.A5.A4.A43.2C26.2A.A58.2C44.2A42.2C45.2A41.2C
88.2C88.C$C30.2A7.3A2.A43.2C88.2C88.2C44.4A40.2C88.2C88.C$C30.2A8.A2.
2A43.2C88.2C88.2C43.3A.A40.2C88.2C88.C$C41.2A45.2C88.2C88.2C44.4A40.
2C88.2C88.C$C88.2C88.2C88.2C46.A41.2C88.2C88.C$C88.2C88.2C88.2C46.A
41.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C
88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C
88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C
88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C
88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C
88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C
88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$540C$361C$C88.2C88.2C88.2C
88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.
2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$
C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C
88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.
2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C
88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.
2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C
88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C
88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.
2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C28.B59.2C88.2C88.2C
88.2C$C36.B51.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C
88.2C$C88.2C38.B8.B40.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C
88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C
88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.
2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$
C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C
88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.
2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C
88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.
2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C
88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.
2C88.2C$361C35$38.A$35.5A$35.A2.3A$35.5A$38.A101$40.A$37.5A$38.B.3A$
37.5A$40.A!


Since flashbf7a is rather interesting and contain many spaceships, I am updating it in a separate post.
shouldsee
 
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Postby shouldsee » April 22nd, 2016, 5:06 pm

I conducted a search of 4-state rulespace named flashbfAdfB , where A indicates state1 neighbors required to produce a state2 spark (birthforcers,bf) and B indicates state2 neighbors required to produce state3 spark(deathforcers,df).

A table showing some highlights
I have problem obtaining an img url so post this google drive photo instead.

Rules of interest:
flashbf2df0--explosive pattern on a death-forcer background
flashbf3df1--biphasic chaotic. One phase contain only state2 and the other contain no state2. Probably relate to some 1-state rule.
flashbf7df3- non-explosive life-like chaotic behavior with enhanced survival.
flahbf8df7--form lots of state2-cored colonies and emit tracked spaceships.

flashbf2df0.table
# rules: 211
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2}
var b={0,1,3}
var c={0,1,3}
var d={0,1,3}
var e={0,1,3}
var f={0,1,3}
var g={0,1,3}
var h={0,1,3}
var i={0,1,3}
var j={0,2,3}
var k={0,2,3}
var l={0,2,3}
var m={0,2,3}
var n={0,2,3}
var o={0,2,3}
var p={0,2,3}
var q={0,1,2,3}
var r={0,3}
var s={0,3}
var t={0,3}
var u={0,3}
var v={0,1,2,3}
var w={0,1,2,3}
var x={0,1,2,3}
var y={0,3}
var z={0,3}
var A={1,3}
var B={0,2}
var C={0,2}
var D={0,2}
a,b,c,d,e,f,g,h,i,3
j,k,l,m,n,o,p,q,2,1
j,r,k,l,m,n,o,2,1,1
j,k,l,m,n,r,1,s,2,1
b,j,k,l,m,n,1,1,2,2
b,j,k,l,m,n,1,2,1,2
j,r,s,k,l,m,2,t,1,1
b,r,j,k,l,m,2,1,1,2
j,k,l,r,s,1,t,u,2,1
b,j,k,l,m,1,r,1,2,2
b,j,k,l,m,1,n,2,1,2
b,j,k,l,r,1,1,s,2,2
j,q,v,w,x,1,1,1,2,1
j,q,v,w,k,1,1,2,1,1
b,j,k,l,m,1,2,r,1,2
j,q,v,w,k,1,2,1,1,1
j,r,s,t,k,2,u,y,1,1
b,r,s,j,k,2,t,1,1,2
b,r,j,k,l,2,1,s,1,2
j,b,q,v,k,2,1,1,1,1
j,r,s,t,1,u,y,z,2,1
b,j,k,l,1,r,s,1,2,2
b,j,k,l,1,m,n,2,1,2
b,j,k,r,1,s,1,t,2,2
j,k,q,v,1,r,1,1,2,1
j,k,q,v,1,l,1,2,1,1
b,j,k,r,1,l,2,s,1,2
j,k,q,v,1,l,2,1,1,1
b,j,r,s,1,1,t,u,2,2
j,k,q,v,1,1,r,1,2,1
j,k,q,v,1,1,l,2,1,1
j,k,q,b,1,1,1,r,2,1
j,q,k,l,1,1,2,r,1,1
b,j,r,s,1,2,t,u,1,2
j,q,v,k,1,2,r,1,1,1
j,q,k,l,1,2,1,r,1,1
b,r,s,t,2,u,y,1,1,2
b,r,s,j,2,t,1,u,1,2
j,b,c,k,2,r,1,1,1,1
b,r,j,k,2,1,s,t,1,2
j,b,q,k,2,1,r,1,1,1
j,b,k,l,2,1,1,r,1,1
b,j,r,1,s,t,1,u,2,2
j,k,l,1,r,s,1,1,2,1
j,k,l,1,m,n,1,2,1,1
b,r,s,1,t,u,2,y,1,2
j,r,s,1,k,l,2,1,1,1
b,r,s,1,t,1,u,y,2,2
j,k,l,1,r,1,s,1,2,1
j,k,l,1,r,1,m,2,1,1
j,k,b,1,r,1,1,s,2,1
j,k,l,1,r,1,2,s,1,1
j,r,s,1,k,2,t,1,1,1
j,r,s,1,k,2,1,t,1,1
j,r,s,1,1,t,u,1,2,1
j,r,s,1,1,t,k,2,1,1
j,k,r,1,1,s,1,t,2,1
j,r,s,1,1,t,2,u,1,1
j,r,s,1,1,1,t,u,2,1
j,r,s,1,2,t,1,u,1,1
j,r,s,2,t,1,u,1,1,1
j,r,s,2,t,1,1,u,1,1
j,r,k,2,1,s,1,t,1,1
j,r,1,s,1,t,1,u,2,1
1,j,k,l,m,n,o,q,2,0
1,r,j,k,l,m,n,2,1,0
1,j,k,l,m,r,1,s,2,0
1,r,s,j,k,l,2,t,1,0
1,j,k,r,s,1,t,u,2,0
1,r,s,t,j,2,u,y,1,0
1,r,s,t,1,u,y,z,2,0
1,q,v,w,1,1,1,A,2,0
1,q,v,j,1,1,1,2,A,0
1,q,v,j,1,1,2,1,A,0
1,q,v,j,1,1,2,3,1,0
1,q,v,w,1,1,3,1,2,0
1,q,v,j,1,1,3,2,1,0
1,q,v,j,1,2,1,1,A,0
1,q,v,j,1,2,1,3,1,0
1,q,v,j,1,2,3,1,1,0
1,q,v,w,1,3,1,1,2,0
1,q,v,j,1,3,1,2,1,0
1,q,v,j,1,3,2,1,1,0
1,b,q,j,2,1,1,1,A,0
1,b,q,j,2,1,1,3,1,0
1,b,q,j,2,1,3,1,1,0
1,q,v,j,2,3,1,1,1,0
1,B,q,b,3,1,1,1,2,0
1,B,q,j,3,1,1,2,1,0
1,B,q,j,3,1,2,1,1,0
1,B,q,j,3,2,1,1,1,0
1,j,q,1,r,1,1,A,2,0
1,j,q,1,B,1,1,2,A,0
1,j,q,1,B,1,2,1,A,0
1,j,q,1,k,1,2,3,1,0
1,j,q,1,r,1,3,1,2,0
1,j,q,1,k,1,3,2,1,0
1,j,q,1,B,2,1,1,A,0
1,j,q,1,k,2,1,3,1,0
1,j,q,1,k,2,3,1,1,0
1,j,q,1,r,3,1,1,2,0
1,j,q,1,k,3,1,2,1,0
1,j,q,1,k,3,2,1,1,0
1,j,q,1,1,r,1,A,2,0
1,j,q,1,1,B,1,2,A,0
1,j,q,1,1,B,2,1,A,0
1,j,q,1,1,k,2,3,1,0
1,j,q,1,1,r,3,1,2,0
1,j,q,1,1,k,3,2,1,0
1,j,q,1,1,1,r,A,2,0
1,j,q,1,1,1,B,2,A,0
1,q,b,1,1,1,A,0,2,0
1,j,B,1,1,1,2,0,A,0
1,q,j,1,1,2,0,1,A,0
1,j,B,1,1,2,r,3,1,0
1,j,B,1,1,2,1,0,A,0
1,j,B,1,1,2,3,0,1,0
1,q,v,1,1,3,0,1,2,0
1,q,r,1,1,3,B,2,1,0
1,q,b,1,1,3,1,0,2,0
1,j,r,1,1,3,2,0,1,0
1,b,r,1,2,0,1,1,A,0
1,q,j,1,2,r,1,3,1,0
1,B,C,1,2,r,3,1,1,0
1,q,j,1,2,1,0,1,A,0
1,j,B,1,2,1,r,3,1,0
1,j,B,1,2,1,1,0,A,0
1,j,B,1,2,1,3,0,1,0
1,B,C,1,2,3,0,1,1,0
1,j,k,1,2,3,1,0,1,0
1,B,C,1,3,0,1,1,2,0
1,B,C,1,3,D,1,2,1,0
1,b,r,1,3,B,2,1,1,0
1,j,k,1,3,1,0,1,2,0
1,b,r,1,3,1,B,2,1,0
1,q,b,1,3,1,1,0,2,0
1,r,s,1,3,1,2,0,1,0
1,r,s,1,3,2,0,1,1,0
1,j,k,1,3,2,1,0,1,0
1,r,s,2,0,1,1,1,A,0
1,r,s,2,t,1,1,3,1,0
1,b,r,2,s,1,3,1,1,0
1,0,B,2,r,3,1,1,1,0
1,r,j,2,1,0,1,1,A,0
1,r,j,2,1,s,1,3,1,0
1,0,B,2,1,r,3,1,1,0
1,r,j,2,1,1,0,1,A,0
1,0,B,2,1,1,r,3,1,0
1,r,B,2,1,1,1,0,A,0
1,0,B,2,1,1,3,0,1,0
1,0,B,2,1,3,0,1,1,0
1,r,j,2,1,3,1,0,1,0
1,B,C,2,3,0,1,1,1,0
1,j,k,2,3,1,0,1,1,0
1,j,k,2,3,1,1,0,1,0
1,B,0,3,0,1,1,1,2,0
1,B,C,3,D,1,1,2,1,0
1,B,C,3,D,1,2,1,1,0
1,0,0,3,B,2,1,1,1,0
1,B,r,3,1,0,1,1,2,0
1,B,j,3,1,C,1,2,1,0
1,0,r,3,1,B,2,1,1,0
1,B,r,3,1,1,0,1,2,0
1,0,r,3,1,1,B,2,1,0
1,0,r,3,1,1,1,0,2,0
1,0,r,3,1,1,2,0,1,0
1,0,r,3,1,2,0,1,1,0
1,B,j,3,1,2,1,0,1,0
1,0,r,3,2,0,1,1,1,0
1,B,j,3,2,1,0,1,1,0
1,B,j,3,2,1,1,0,1,0
1,j,1,r,1,s,1,A,2,0
1,j,1,B,1,C,1,2,A,0
1,r,1,0,1,B,2,1,A,0
1,r,1,s,1,B,2,3,1,0
1,B,1,0,1,r,3,1,2,0
1,B,1,C,1,r,3,2,1,0
1,B,1,0,1,1,r,A,2,0
1,r,1,0,1,1,B,2,A,0
1,0,1,0,1,1,A,0,2,0
1,0,1,0,1,1,2,0,3,0
1,r,1,0,1,2,0,1,A,0
1,0,1,0,1,2,0,3,1,0
1,0,1,B,1,2,1,0,3,0
1,B,1,0,1,3,0,1,2,0
1,0,1,0,1,3,0,2,1,0
1,0,1,r,1,3,1,0,2,0
1,r,1,0,2,0,1,1,A,0
1,0,1,0,2,0,1,3,1,0
1,0,1,0,2,r,3,1,1,0
1,r,1,0,2,1,0,1,A,0
1,0,1,B,2,1,0,3,1,0
1,0,1,B,2,1,1,0,3,0
1,0,1,B,2,3,0,1,1,0
1,B,1,0,3,0,1,1,2,0
1,0,1,0,3,0,1,2,1,0
1,0,1,0,3,B,2,1,1,0
1,0,1,0,3,1,0,1,2,0
1,0,1,0,3,1,0,2,1,0
1,0,1,r,3,1,1,0,2,0
1,0,1,r,3,2,0,1,1,0
1,0,1,1,0,1,A,0,2,0
1,0,1,1,0,1,2,0,3,0
1,0,1,1,0,2,0,1,3,0
1,0,1,1,0,2,0,3,1,0
1,0,1,1,0,2,1,0,3,0
1,0,1,1,0,3,0,1,2,0
1,0,1,1,0,3,0,2,1,0
1,0,1,1,0,3,1,0,2,0
1,0,1,1,1,0,2,0,3,0
1,0,1,1,1,0,3,0,2,0


flashbf3df1.table
# rules: 507
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,2}
var b={0,1,3}
var c={0,1,3}
var d={0,1,3}
var e={0,1,3}
var f={0,1,3}
var g={0,1,3}
var h={0,1,3}
var i={0,2,3}
var j={0,1,2,3}
var k={0,2,3}
var l={0,2,3}
var m={0,2,3}
var n={0,2,3}
var o={0,1,2,3}
var p={0,3}
var q={0,3}
var r={0,3}
var s={0,3}
var t={0,3}
var u={1,2,3}
var v={0,3}
var w={0,3}
var x={0,2}
var y={0,2}
var z={0,2}
var A={2,3}
a,b,c,d,e,f,g,h,2,3
i,j,k,l,m,n,o,2,2,1
b,p,q,r,s,t,1,1,1,2
i,k,l,m,n,b,2,c,2,1
b,p,q,r,s,1,t,1,1,2
i,k,l,m,n,1,b,2,2,1
b,p,q,r,s,1,1,t,1,2
i,p,k,l,m,2,b,c,2,1
i,p,k,l,m,2,b,2,1,1
i,p,k,l,m,2,2,b,1,1
b,p,q,r,1,s,t,1,1,2
i,k,l,m,1,p,b,2,2,1
b,p,q,r,1,s,1,t,1,2
i,k,l,m,1,p,2,b,2,1
i,k,l,m,1,n,2,2,1,1
b,p,q,r,1,1,s,t,1,2
i,k,l,m,1,1,p,2,2,1
b,i,k,l,1,1,1,2,2,2
i,k,l,p,1,1,2,q,2,1
b,i,k,l,1,1,2,1,2,2
b,i,k,l,1,1,2,2,1,2
i,k,l,m,1,2,p,b,2,1
i,k,l,m,1,2,p,2,1,1
i,k,l,p,1,2,1,q,2,1
b,i,k,l,1,2,1,1,2,2
b,i,k,l,1,2,1,2,1,2
i,k,l,m,1,2,2,p,1,1
b,i,k,l,1,2,2,1,1,2
i,p,q,k,2,r,b,c,2,1
i,p,q,k,2,r,b,2,1,1
i,p,k,l,2,q,2,b,1,1
i,p,k,l,2,1,q,b,2,1
i,p,k,l,2,1,q,2,1,1
i,p,q,r,2,1,1,s,2,1
b,p,i,k,2,1,1,1,2,2
b,p,i,k,2,1,1,2,1,2
i,p,k,l,2,1,2,q,1,1
b,p,i,k,2,1,2,1,1,2
i,p,k,l,2,2,q,b,1,1
i,p,k,l,2,2,1,q,1,1
b,p,i,k,2,2,1,1,1,2
b,p,q,1,r,s,1,t,1,2
i,k,l,1,p,q,1,2,2,1
i,p,q,1,r,s,2,b,2,1
i,p,q,1,k,l,2,2,1,1
i,k,l,1,p,1,q,2,2,1
b,i,k,1,p,1,1,2,2,2
i,k,p,1,q,1,2,r,2,1
b,i,k,1,p,1,2,1,2,2
b,i,k,1,l,1,2,2,1,2
i,p,q,1,r,2,s,b,2,1
i,p,q,1,r,2,s,2,1,1
i,k,p,1,q,2,1,r,2,1
b,i,k,1,p,2,1,1,2,2
b,i,k,1,l,2,1,2,1,2
i,k,p,1,q,2,2,r,1,1
b,i,k,1,l,2,2,1,1,2
i,p,q,1,1,r,s,2,2,1
b,i,k,1,1,p,1,2,2,2
i,p,q,1,1,r,2,s,2,1
b,i,k,1,1,p,2,1,2,2
b,i,k,1,1,l,2,2,1,2
b,i,k,1,1,1,p,2,2,2
i,j,o,1,1,1,1,2,2,1
b,i,p,1,1,1,2,q,2,2
i,j,o,1,1,1,2,1,2,1
i,j,k,1,1,1,2,2,1,1
i,p,q,1,1,2,r,s,2,1
b,i,k,1,1,2,p,1,2,2
b,i,p,1,1,2,q,2,1,2
b,i,p,1,1,2,1,q,2,2
i,j,o,1,1,2,1,1,2,1
i,j,k,1,1,2,1,2,1,1
b,i,p,1,1,2,2,q,1,2
i,j,k,1,1,2,2,1,1,1
i,p,q,1,2,r,s,1,2,1
i,p,q,1,2,r,s,2,1,1
i,p,q,1,2,r,1,s,2,1
b,p,q,1,2,r,1,1,2,2
b,i,k,1,2,p,1,2,1,2
i,p,q,1,2,r,2,s,1,1
b,p,q,1,2,r,2,1,1,2
i,p,q,1,2,1,r,s,2,1
b,i,k,1,2,1,p,1,2,2
b,p,q,1,2,1,r,2,1,2
b,i,p,1,2,1,1,q,2,2
i,j,o,1,2,1,1,1,2,1
i,j,k,1,2,1,1,2,1,1
b,p,q,1,2,1,2,r,1,2
i,j,k,1,2,1,2,1,1,1
b,p,q,1,2,2,r,1,1,2
b,i,k,1,2,2,1,p,1,2
i,j,k,1,2,2,1,1,1,1
i,p,q,2,r,s,2,b,1,1
i,p,q,2,r,1,s,1,2,1
i,p,q,2,r,1,s,2,1,1
i,p,q,2,r,1,1,s,2,1
b,p,q,2,r,1,1,1,2,2
b,p,q,2,r,1,1,2,1,2
i,p,q,2,r,1,2,s,1,1
b,p,q,2,r,1,2,1,1,2
i,p,q,2,r,2,s,1,1,1
i,p,q,2,r,2,1,s,1,1
b,p,q,2,r,2,1,1,1,2
i,p,q,2,1,r,s,2,1,1
i,p,q,2,1,r,1,s,2,1
b,p,i,2,1,q,1,1,2,2
b,p,i,2,1,q,1,2,1,2
i,p,q,2,1,r,2,s,1,1
b,p,q,2,1,r,2,1,1,2
b,p,i,2,1,1,q,1,2,2
b,p,q,2,1,1,r,2,1,2
b,p,q,2,1,1,1,r,2,2
i,b,j,2,1,1,1,1,2,1
i,b,k,2,1,1,1,2,1,1
b,p,q,2,1,1,2,r,1,2
i,b,k,2,1,1,2,1,1,1
b,p,q,2,1,2,r,1,1,2
b,p,i,2,1,2,1,q,1,2
i,b,k,2,1,2,1,1,1,1
i,p,q,2,2,r,1,s,1,1
b,p,q,2,2,r,1,1,1,2
b,p,i,2,2,1,q,1,1,2
b,p,i,2,2,1,1,q,1,2
i,b,k,2,2,1,1,1,1,1
b,i,1,p,1,q,1,2,2,2
i,p,1,q,1,r,2,s,2,1
b,p,1,q,1,r,2,1,2,2
b,p,1,q,1,r,2,2,1,2
b,p,1,q,1,1,r,2,2,2
i,k,1,p,1,1,1,2,2,1
b,p,1,q,1,1,2,r,2,2
i,k,1,p,1,1,2,1,2,1
i,k,1,l,1,1,2,2,1,1
b,p,1,q,1,2,r,1,2,2
b,p,1,q,1,2,r,2,1,2
b,p,1,q,1,2,1,r,2,2
i,p,1,q,1,2,1,1,2,1
i,k,1,l,1,2,1,2,1,1
i,k,1,l,1,2,2,1,1,1
i,p,1,q,2,r,1,s,2,1
b,p,1,q,2,r,1,1,2,2
b,p,1,q,2,r,1,2,1,2
b,p,1,q,2,r,2,1,1,2
b,p,1,q,2,1,r,1,2,2
b,p,1,q,2,1,r,2,1,2
b,p,1,q,2,1,1,r,2,2
i,p,1,q,2,1,1,1,2,1
i,p,1,q,2,1,1,2,1,1
i,p,1,k,2,1,2,1,1,1
b,p,1,q,2,2,r,1,1,2
i,p,1,k,2,2,1,1,1,1
i,k,1,1,p,1,1,2,2,1
b,p,1,1,q,1,2,r,2,2
i,p,1,1,q,1,2,1,2,1
i,p,1,1,q,1,2,2,1,1
b,p,1,1,q,2,r,1,2,2
b,p,1,1,q,2,r,2,1,2
b,p,1,1,q,2,1,r,2,2
i,p,1,1,q,2,1,1,2,1
i,p,1,1,q,2,1,2,1,1
i,p,1,1,q,2,2,1,1,1
i,p,1,1,1,q,1,2,2,1
b,p,1,1,1,q,2,r,2,2
i,p,1,1,1,q,2,1,2,1
i,p,1,1,1,q,2,2,1,1
i,p,1,1,1,1,q,2,2,1
i,b,1,1,1,1,2,p,2,1
i,p,1,1,1,2,q,1,2,1
i,p,1,1,1,2,q,2,1,1
i,p,1,1,1,2,1,q,2,1
i,p,1,1,2,q,1,1,2,1
i,p,1,1,2,q,1,2,1,1
i,p,1,1,2,q,2,1,1,1
i,p,1,1,2,1,q,1,2,1
i,p,1,1,2,1,q,2,1,1
i,p,1,1,2,1,1,q,2,1
i,p,1,2,q,1,2,1,1,1
i,p,1,2,q,2,1,1,1,1
i,p,1,2,1,q,1,2,1,1
i,p,1,2,1,q,2,1,1,1
i,p,1,2,1,1,q,2,1,1
i,p,1,2,1,1,1,q,2,1
i,p,2,q,2,1,1,1,1,1
i,p,2,1,q,2,1,1,1,1
i,p,2,1,1,q,2,1,1,1
u,p,q,r,s,t,v,w,b,0
1,i,k,l,m,n,j,2,2,0
u,p,q,r,s,t,1,1,3,0
u,p,q,r,s,t,1,3,1,0
1,p,i,k,l,m,2,b,2,0
1,p,i,k,l,m,2,2,1,0
u,0,p,q,r,s,3,1,1,0
u,p,q,r,s,1,0,1,3,0
1,i,k,l,m,1,p,2,2,0
u,p,q,r,s,1,t,3,1,0
u,p,q,r,0,1,1,0,3,0
u,b,c,d,e,1,1,1,1,0
1,i,k,l,p,1,2,q,2,0
u,p,q,r,s,1,3,0,1,0
1,p,q,i,k,2,r,b,2,0
1,p,i,k,l,2,q,2,1,0
1,p,i,q,r,2,1,s,2,0
1,p,i,k,l,2,2,q,1,0
u,0,0,p,q,3,0,1,1,0
u,0,p,q,r,3,1,0,1,0
u,p,q,r,1,0,0,1,3,0
1,i,k,l,1,p,q,2,2,0
u,p,q,r,1,s,t,3,1,0
u,p,q,0,1,0,1,0,3,0
u,p,b,c,1,q,1,1,1,0
1,i,k,p,1,q,2,r,2,0
u,p,q,0,1,r,3,0,1,0
u,p,0,0,1,1,0,0,3,0
u,p,b,c,1,1,q,1,1,0
u,p,q,r,1,1,1,s,1,0
1,i,k,l,1,1,2,2,3,0
1,i,k,l,1,1,2,3,2,0
1,i,k,l,1,1,3,2,2,0
1,i,p,q,1,2,r,s,2,0
1,i,k,l,1,2,1,2,3,0
1,i,k,l,1,2,1,3,2,0
1,i,k,l,1,2,2,1,3,0
1,i,k,l,1,2,2,3,1,0
1,i,k,l,1,2,3,1,2,0
1,i,k,l,1,2,3,2,1,0
u,p,0,0,1,3,0,0,1,0
1,i,k,l,1,3,1,2,2,0
1,i,k,l,1,3,2,1,2,0
1,i,k,l,1,3,2,2,1,0
1,p,q,r,2,s,t,b,2,0
1,p,q,r,2,s,t,2,1,0
1,p,q,r,2,s,1,t,2,0
1,p,q,r,2,s,2,t,1,0
1,p,q,r,2,1,s,t,2,0
1,p,i,k,2,1,1,2,3,0
1,p,i,k,2,1,1,3,2,0
1,p,i,k,2,1,2,1,3,0
1,p,i,k,2,1,2,3,1,0
1,p,i,k,2,1,3,1,2,0
1,p,i,k,2,1,3,2,1,0
1,p,q,r,2,2,s,t,1,0
1,p,i,k,2,2,1,1,3,0
1,p,i,k,2,2,1,3,1,0
1,i,k,l,2,2,3,1,1,0
1,i,k,p,2,3,1,1,2,0
1,i,k,l,2,3,1,2,1,0
1,i,k,l,2,3,2,1,1,0
u,0,0,0,3,0,0,1,1,0
u,0,0,p,3,0,1,0,1,0
u,0,p,q,3,1,0,0,1,0
1,x,i,p,3,1,1,2,2,0
1,x,i,p,3,1,2,1,2,0
1,x,i,k,3,1,2,2,1,0
1,x,i,p,3,2,1,1,2,0
1,x,i,k,3,2,1,2,1,0
1,x,i,k,3,2,2,1,1,0
u,p,0,1,0,0,1,0,3,0
u,p,q,1,r,s,1,1,1,0
1,p,q,1,r,s,2,t,2,0
u,0,0,1,0,0,3,0,1,0
u,0,0,1,0,1,0,0,3,0
u,p,q,1,r,1,s,1,1,0
u,p,q,1,r,1,1,s,1,0
1,i,k,1,x,1,2,2,3,0
1,i,k,1,p,1,2,3,2,0
1,i,k,1,p,1,3,2,2,0
1,p,q,1,r,2,s,t,2,0
1,i,k,1,x,2,1,2,3,0
1,i,k,1,p,2,1,3,2,0
1,i,k,1,x,2,2,1,3,0
1,i,k,1,l,2,2,3,1,0
1,i,k,1,p,2,3,1,2,0
1,i,k,1,l,2,3,2,1,0
1,i,k,1,p,3,1,2,2,0
1,i,k,1,p,3,2,1,2,0
1,i,k,1,l,3,2,2,1,0
u,p,q,1,1,r,s,1,1,0
u,p,q,1,1,r,1,s,1,0
1,i,k,1,1,x,2,2,3,0
1,i,k,1,1,p,2,3,2,0
1,i,k,1,1,p,3,2,2,0
1,j,o,1,1,1,1,2,2,0
1,j,o,1,1,1,2,1,2,0
1,j,i,1,1,1,2,2,1,0
1,i,k,1,1,2,0,2,3,0
1,i,k,1,1,2,p,3,2,0
1,j,o,1,1,2,1,1,2,0
1,j,i,1,1,2,1,2,1,0
1,i,x,1,1,2,2,0,3,0
1,j,i,1,1,2,2,1,1,0
1,i,p,1,1,2,3,0,2,0
1,i,k,1,1,3,0,2,2,0
1,i,p,1,1,3,2,0,2,0
1,i,k,1,2,0,1,2,3,0
1,i,k,1,2,p,1,3,2,0
1,i,k,1,2,0,2,1,3,0
1,i,k,1,2,p,2,3,1,0
1,i,k,1,2,p,3,1,2,0
1,i,k,1,2,p,3,2,1,0
1,i,k,1,2,1,0,2,3,0
1,i,k,1,2,1,p,3,2,0
1,j,o,1,2,1,1,1,2,0
1,j,i,1,2,1,1,2,1,0
1,i,x,1,2,1,2,0,3,0
1,j,i,1,2,1,2,1,1,0
1,i,p,1,2,1,3,0,2,0
1,i,k,1,2,2,0,1,3,0
1,i,x,1,2,2,p,3,1,0
1,i,x,1,2,2,1,0,3,0
1,j,i,1,2,2,1,1,1,0
1,i,x,1,2,2,3,0,1,0
1,i,x,1,2,3,0,1,2,0
1,p,q,1,2,3,0,2,1,0
1,i,p,1,2,3,1,0,2,0
1,p,q,1,2,3,2,0,1,0
1,x,y,1,3,0,1,2,2,0
1,p,q,1,3,0,2,1,2,0
1,i,k,1,3,x,2,2,1,0
1,i,k,1,3,1,0,2,2,0
1,i,p,1,3,1,2,0,2,0
1,p,q,1,3,2,0,1,2,0
1,p,q,1,3,2,0,2,1,0
1,i,p,1,3,2,1,0,2,0
1,p,q,1,3,2,2,0,1,0
1,p,q,2,r,s,2,t,1,0
1,p,q,2,0,1,1,2,3,0
1,p,q,2,r,1,1,3,2,0
1,p,q,2,0,1,2,1,3,0
1,p,q,2,r,1,2,3,1,0
1,p,q,2,r,1,3,1,2,0
1,p,q,2,r,1,3,2,1,0
1,p,q,2,0,2,1,1,3,0
1,p,q,2,r,2,1,3,1,0
1,p,i,2,q,2,3,1,1,0
1,0,x,2,p,3,1,1,2,0
1,0,x,2,p,3,1,2,1,0
1,p,i,2,q,3,2,1,1,0
1,p,i,2,1,0,1,2,3,0
1,p,i,2,1,q,1,3,2,0
1,p,q,2,1,0,2,1,3,0
1,p,i,2,1,q,2,3,1,0
1,0,x,2,1,p,3,1,2,0
1,p,i,2,1,q,3,2,1,0
1,p,i,2,1,1,0,2,3,0
1,p,x,2,1,1,q,3,2,0
1,b,j,2,1,1,1,1,2,0
1,b,i,2,1,1,1,2,1,0
1,p,x,2,1,1,2,0,3,0
1,b,i,2,1,1,2,1,1,0
1,p,0,2,1,1,3,0,2,0
1,p,q,2,1,2,0,1,3,0
1,0,x,2,1,2,p,3,1,0
1,p,x,2,1,2,1,0,3,0
1,b,i,2,1,2,1,1,1,0
1,0,x,2,1,2,3,0,1,0
1,0,x,2,1,3,0,1,2,0
1,p,0,2,1,3,0,2,1,0
1,p,q,2,1,3,1,0,2,0
1,p,q,2,1,3,2,0,1,0
1,p,q,2,2,0,1,1,3,0
1,p,q,2,2,r,1,3,1,0
1,0,x,2,2,p,3,1,1,0
1,p,i,2,2,1,0,1,3,0
1,0,x,2,2,1,p,3,1,0
1,p,x,2,2,1,1,0,3,0
1,b,i,2,2,1,1,1,1,0
1,0,x,2,2,1,3,0,1,0
1,x,y,2,2,3,0,1,1,0
1,i,k,2,2,3,1,0,1,0
1,x,0,2,3,0,1,1,2,0
1,x,y,2,3,0,1,2,1,0
1,0,0,2,3,0,2,1,1,0
1,i,p,2,3,1,0,1,2,0
1,p,q,2,3,1,0,2,1,0
1,p,q,2,3,1,1,0,2,0
1,p,q,2,3,1,2,0,1,0
1,p,q,2,3,2,0,1,1,0
1,i,k,2,3,2,1,0,1,0
1,x,0,3,0,1,1,2,2,0
1,x,0,3,0,1,2,1,2,0
1,x,y,3,z,1,2,2,1,0
1,0,0,3,0,2,1,1,2,0
1,0,0,3,x,2,1,2,1,0
1,0,0,3,x,2,2,1,1,0
1,x,p,3,1,0,1,2,2,0
1,0,p,3,1,0,2,1,2,0
1,0,p,3,1,x,2,2,1,0
1,0,p,3,1,1,0,2,2,0
1,0,p,3,1,1,2,0,2,0
1,0,p,3,1,2,0,1,2,0
1,0,p,3,1,2,0,2,1,0
1,0,p,3,1,2,1,0,2,0
1,0,p,3,1,2,2,0,1,0
1,0,p,3,2,0,1,1,2,0
1,0,p,3,2,0,1,2,1,0
1,0,p,3,2,0,2,1,1,0
1,x,p,3,2,1,0,1,2,0
1,0,p,3,2,1,0,2,1,0
1,0,p,3,2,1,1,0,2,0
1,0,p,3,2,1,2,0,1,0
1,0,p,3,2,2,0,1,1,0
1,x,i,3,2,2,1,0,1,0
u,p,1,q,1,r,1,s,1,0
1,p,1,0,1,x,2,2,3,0
1,p,1,q,1,r,2,3,2,0
1,x,1,0,1,p,3,2,2,0
1,i,1,p,1,1,1,2,2,0
1,i,1,p,1,1,2,1,2,0
1,i,1,k,1,1,2,2,1,0
1,p,1,0,1,2,0,2,3,0
1,0,1,0,1,2,p,3,2,0
1,p,1,q,1,2,1,1,2,0
1,i,1,k,1,2,1,2,1,0
1,0,1,0,1,2,2,0,3,0
1,i,1,k,1,2,2,1,1,0
1,0,1,0,1,2,3,0,2,0
1,0,1,0,1,3,0,2,2,0
1,p,1,q,1,3,2,0,2,0
1,p,1,0,2,0,1,2,3,0
1,p,1,q,2,r,1,3,2,0
1,p,1,0,2,0,2,1,3,0
1,p,1,0,2,0,2,3,1,0
1,0,1,0,2,p,3,1,2,0
1,0,1,0,2,p,3,2,1,0
1,p,1,0,2,1,0,2,3,0
1,0,1,0,2,1,p,3,2,0
1,p,1,q,2,1,1,1,2,0
1,p,1,q,2,1,1,2,1,0
1,0,1,0,2,1,2,0,3,0
1,p,1,i,2,1,2,1,1,0
1,0,1,0,2,1,3,0,2,0
1,p,1,0,2,2,0,1,3,0
1,0,1,0,2,2,0,3,1,0
1,0,1,x,2,2,1,0,3,0
1,p,1,i,2,2,1,1,1,0
1,0,1,0,2,3,0,1,2,0
1,0,1,0,2,3,0,2,1,0
1,p,1,0,2,3,1,0,2,0
1,0,1,0,3,0,1,2,2,0
1,0,1,0,3,0,2,1,2,0
1,0,1,0,3,0,2,2,1,0
1,0,1,0,3,1,0,2,2,0
1,0,1,p,3,1,2,0,2,0
1,0,1,p,3,2,0,1,2,0
1,0,1,p,3,2,0,2,1,0
1,0,1,p,3,2,1,0,2,0
1,i,1,1,p,1,1,2,2,0
1,p,1,1,q,1,2,1,2,0
1,p,1,1,q,1,2,2,1,0
1,p,1,1,0,2,0,2,3,0
1,0,1,1,0,2,p,3,2,0
1,p,1,1,q,2,1,1,2,0
1,p,1,1,q,2,1,2,1,0
1,0,1,1,0,2,2,0,3,0
1,p,1,1,q,2,2,1,1,0
1,0,1,1,0,2,3,0,2,0
1,0,1,1,0,3,0,2,2,0
1,0,1,1,p,3,2,0,2,0
1,p,1,1,1,q,1,2,2,0
1,p,1,1,1,q,2,1,2,0
1,p,1,1,1,q,2,2,1,0
1,p,1,1,1,1,q,2,2,0
1,b,1,1,1,1,2,p,2,0
1,p,1,1,1,2,q,1,2,0
1,p,1,1,1,2,q,2,1,0
1,p,1,1,1,2,1,q,2,0
1,p,1,1,2,q,1,1,2,0
1,p,1,1,2,q,1,2,1,0
1,0,1,1,2,0,2,0,3,0
1,p,1,1,2,q,2,1,1,0
1,0,1,1,2,0,3,0,2,0
1,p,1,1,2,1,q,1,2,0
1,p,1,1,2,1,q,2,1,0
1,p,1,1,2,1,1,q,2,0
1,0,1,1,3,0,2,0,2,0
1,0,1,2,0,1,2,0,3,0
1,p,1,2,q,1,2,1,1,0
1,0,1,2,0,1,3,0,2,0
1,0,1,2,0,2,0,1,3,0
1,0,1,2,0,2,0,3,1,0
1,0,1,2,0,2,1,0,3,0
1,p,1,2,q,2,1,1,1,0
1,0,1,2,0,3,0,2,1,0
1,0,1,2,0,3,1,0,2,0
1,p,1,2,1,q,1,2,1,0
1,0,1,2,1,0,2,0,3,0
1,p,1,2,1,q,2,1,1,0
1,0,1,2,1,0,3,0,2,0
1,p,1,2,1,1,q,2,1,0
1,p,1,2,1,1,1,q,2,0
1,0,1,3,0,2,0,2,1,0
1,0,1,3,0,2,1,0,2,0
1,0,1,3,1,0,2,0,2,0
1,0,2,0,2,0,3,1,1,0
1,0,2,0,2,1,0,3,1,0
1,0,2,0,2,1,1,0,3,0
1,p,2,q,2,1,1,1,1,0
1,0,2,0,3,0,2,1,1,0
1,0,2,0,3,1,0,2,1,0
1,0,2,1,0,2,1,0,3,0
1,p,2,1,q,2,1,1,1,0
1,p,2,1,1,q,2,1,1,0
A,0,0,0,0,0,0,1,1,0
A,0,0,0,0,0,1,0,1,0
A,0,0,0,0,1,0,0,1,0
A,0,0,0,1,0,0,0,1,0


flashbf7df3.table
# rules: 84
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,2,3}
var b={0,1,3}
var c={0,1,3}
var d={0,1,3}
var e={0,3}
var f={0,1,3}
var g={0,1,3}
var h={0,1,2,3}
var i={0,2,3}
var j={0,2,3}
var k={0,3}
var l={0,3}
var m={0,3}
var n={1,2}
var o={0,1,2,3}
var p={0,1,2,3}
var q={0,1,2,3}
var r={0,3}
var s={0,2,3}
var t={0,2,3}
var u={0,2,3}
var v={0,2,3}
var w={0,1,2,3}
var x={0,1,2,3}
var y={0,1}
var z={0,1,2}
var A={0,1,2}
var B={0,1,2}
var C={0,1,2}
var D={0,2}
var E={0,1}
var F={1,2,3}
var G={0,2}
var H={1,2}
var I={1,3}
var J={0,2}
var K={0,2}
var L={2,3}
var M={0,3}
a,b,c,d,e,f,g,h,2,1
a,i,j,e,k,l,1,1,1,1
a,b,e,c,d,f,h,g,2,1
0,b,c,d,f,g,2,2,2,3
a,i,e,k,l,1,m,1,n,1
a,e,k,l,i,1,1,m,n,1
a,b,e,c,d,2,f,g,h,1
0,b,c,d,f,2,g,2,2,3
0,b,c,d,f,2,2,g,2,3
a,h,o,p,q,2,2,2,2,1
a,b,e,c,1,d,f,h,2,1
a,e,k,l,1,m,r,1,1,1
a,e,k,l,1,m,1,r,1,1
a,e,k,l,1,1,m,r,1,1
a,e,b,c,n,d,f,g,2,1
0,b,c,d,2,f,g,2,2,3
a,b,e,c,2,d,n,f,1,1
0,b,c,d,2,f,2,g,2,3
a,b,h,o,2,c,2,2,2,1
0,b,c,d,2,2,f,g,2,3
a,b,h,o,2,2,c,2,2,1
a,b,c,d,2,2,2,f,2,1
a,e,k,1,l,m,1,r,1,1
a,b,c,2,d,f,i,g,1,1
0,b,c,2,d,f,2,g,2,3
a,b,c,2,d,f,2,2,2,1
a,b,i,2,c,1,d,1,f,1
a,b,c,2,d,2,f,2,2,1
a,b,c,2,d,2,2,f,2,1
a,b,c,2,1,d,f,2,1,1
a,b,c,2,2,d,f,2,2,1
0,0,b,2,2,c,1,d,1,1
a,b,c,2,2,d,2,f,2,1
a,b,1,c,1,d,2,f,2,1
b,a,1,1,1,1,1,1,1,2
a,b,2,c,2,d,2,f,2,1
1,a,i,j,s,t,u,v,h,0
1,h,o,p,a,q,w,x,3,0
1,a,h,y,o,z,p,3,q,0
1,z,y,A,B,a,3,h,C,0
1,D,y,h,E,A,B,C,3,0
F,e,k,l,m,b,r,3,c,0
1,0,0,0,E,1,n,0,3,0
1,D,G,A,h,1,1,1,1,0
F,e,k,l,m,b,3,0,c,0
1,E,0,0,0,3,0,n,H,0
1,E,0,0,0,3,H,0,n,0
1,0,0,0,1,0,A,H,3,0
F,e,k,l,1,m,E,r,3,0
1,D,A,B,1,G,1,1,1,0
F,e,k,l,E,1,m,r,3,0
1,a,A,h,1,1,i,1,1,0
1,a,A,B,I,1,1,D,1,0
F,e,k,0,3,l,m,1,E,0
F,e,0,k,3,l,1,m,1,0
F,e,k,l,3,1,0,0,1,0
1,D,G,1,J,K,1,1,1,0
1,D,G,1,J,1,K,1,1,0
1,D,G,1,J,1,1,K,1,0
1,D,G,1,1,J,K,1,1,0
1,D,G,1,1,J,1,K,1,0
1,D,1,G,1,J,1,K,1,0
F,1,1,1,1,1,1,1,1,0
L,e,k,l,m,r,M,b,c,0
L,M,0,e,0,k,1,l,1,0
2,b,c,d,f,g,2,2,2,1
L,M,e,k,0,1,0,0,1,0
L,M,e,b,c,1,1,1,1,0
2,b,c,d,f,2,g,2,2,1
2,b,c,d,f,2,2,g,2,1
L,M,e,k,1,l,m,r,1,0
L,M,b,c,1,e,1,1,1,0
L,M,b,c,1,1,e,1,1,0
L,M,b,c,1,1,1,e,1,0
2,b,c,d,2,f,g,2,2,1
2,b,c,d,2,f,2,g,2,1
2,b,c,d,2,2,f,g,2,1
L,M,e,1,k,l,1,1,1,0
L,M,e,1,k,1,l,1,1,0
L,M,e,1,k,1,1,l,1,0
L,M,e,1,1,k,l,1,1,0
L,M,e,1,1,k,1,l,1,0
2,b,c,2,d,f,2,g,2,1
L,M,1,e,1,k,1,l,1,0


flashbf8df7.table
# rules: 65
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,2,3}
var b={0,1,2,3}
var c={0,1,2,3}
var d={0,1,3}
var e={0,1,3}
var f={0,1,2,3}
var g={0,1,2,3}
var h={0,1,2,3}
var i={0,3}
var j={0,3}
var k={0,3}
var l={0,3}
var m={0,3}
var n={0,1,2}
var o={0,2,3}
var p={0,2,3}
var q={0,2,3}
var r={0,2,3}
var s={0,1,2,3}
var t={0,2}
var u={0,2}
var v={0,1,2}
var w={0,1,2}
var x={0,1,2}
var y={1,2,3}
var z={0,2}
var A={0,1}
var B={0,2}
var C={1,3}
var D={1,2}
var E={1,2}
var F={2,3}
var G={0,3}
var H={0,1,3}
a,b,c,d,e,f,g,h,2,1
a,i,j,k,l,m,1,1,1,1
a,i,j,k,l,1,m,1,1,1
a,i,j,k,l,1,1,m,1,1
a,i,j,k,1,l,m,1,1,1
a,i,j,k,1,l,1,m,1,1
a,i,j,k,1,1,l,m,1,1
a,b,c,d,2,f,g,e,2,1
a,i,j,1,k,l,1,m,1,1
a,d,2,e,2,2,b,2,2,1
a,d,2,2,e,2,2,2,2,1
n,d,2,2,2,2,2,2,2,3
d,1,1,1,1,1,1,1,1,2
a,2,2,2,2,2,2,2,2,1
1,a,o,p,i,j,q,r,b,0
1,b,c,f,d,g,h,s,3,0
1,b,c,t,d,f,g,3,n,0
1,n,t,u,d,b,3,v,w,0
1,d,n,v,t,w,x,b,3,0
y,i,j,k,l,d,m,3,e,0
1,0,0,0,t,1,1,0,3,0
1,t,n,v,w,1,1,1,1,0
y,i,j,k,l,d,3,0,e,0
1,a,0,o,t,p,u,z,d,0
1,i,a,t,A,u,z,B,2,0
1,B,n,v,1,t,1,1,1,0
1,B,n,v,1,C,t,1,1,0
1,B,t,u,1,1,1,z,1,0
1,0,0,A,2,0,D,E,3,0
1,0,0,0,3,0,1,1,2,0
1,0,0,0,3,1,0,1,2,0
1,B,t,1,u,z,1,1,1,0
1,B,t,1,u,1,z,1,1,0
1,B,t,1,u,1,1,z,1,0
1,i,B,1,t,2,u,z,2,0
1,B,t,1,1,u,z,1,1,0
1,B,t,1,1,u,1,z,1,0
1,0,0,1,2,0,0,1,3,0
1,0,0,1,2,0,1,0,3,0
1,0,0,1,2,1,0,0,3,0
1,0,B,2,2,t,1,a,2,0
1,0,0,2,2,1,1,3,2,0
1,B,1,t,1,u,1,z,1,0
1,0,1,B,2,2,t,2,2,0
1,n,v,2,2,2,A,3,2,0
1,a,2,2,0,2,2,2,A,0
1,0,2,2,2,0,2,2,2,0
1,B,2,2,2,1,3,2,1,0
1,0,2,2,2,2,2,2,1,0
1,B,3,2,1,1,2,2,2,0
1,2,2,2,2,2,2,2,2,0
F,i,j,k,l,m,G,d,e,0
F,G,i,j,k,l,1,m,1,0
F,G,i,j,k,1,0,0,1,0
F,G,d,e,H,1,1,1,1,0
F,G,i,j,1,k,l,m,1,0
F,G,H,d,1,i,1,1,1,0
F,G,H,d,1,1,i,1,1,0
F,G,i,j,1,1,1,k,1,0
F,G,i,1,j,k,1,1,1,0
F,G,i,1,j,1,k,1,1,0
F,G,i,1,j,1,1,k,1,0
F,G,i,1,1,j,k,1,1,0
F,G,i,1,1,j,1,k,1,0
F,G,1,i,1,j,1,k,1,0
shouldsee
 
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Postby shouldsee » May 7th, 2016, 6:16 am

I tried to implement the idea "delay" into the rule, where cells made a dead-live transition in the last generation cannot make an immediate dead-live transition in this generation. And vice-versa. This family of rule can thus be represented as B/S/D. By screening the B/S/D1 rulespace, I found this interesting rule "B3/S34/D1" with natural digonal SS and puffer.

ruletable B3_S34_D1.table
# rules: 20
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1}
var b={0,1}
var c={0,1}
var d={0,1}
var e={0,1}
var f={2,3}
var g={2,3}
var h={2,3}
var i={0,1,2,3}
var j={0,1,2,3}
var k={0,1,2,3}
var l={0,1,2,3}
var m={0,1,2,3}
var n={0,1,2,3}
var o={0,1,2,3}
var p={0,1,2,3}
var q={0,1}
var r={2,3}
var s={2,3}
0,a,b,c,d,e,f,g,h,2
0,a,b,c,d,f,e,g,h,2
0,a,b,c,d,f,g,e,h,2
0,a,b,c,f,d,e,g,h,2
0,a,b,c,f,d,g,e,h,2
0,a,b,c,f,g,d,e,h,2
0,a,b,f,c,d,g,e,h,2
1,i,j,k,l,m,n,o,p,0
2,i,j,k,l,m,n,o,p,3
3,a,b,c,d,e,q,i,j,1
3,a,b,c,d,e,f,q,g,1
3,a,b,c,d,f,e,q,g,1
3,a,b,c,f,d,e,q,g,1
3,i,j,k,f,g,h,r,s,1
3,a,i,f,b,g,h,r,s,1
3,a,i,f,g,b,h,r,s,1
3,a,b,f,g,h,c,r,s,1
3,a,b,f,g,h,r,c,s,1
3,a,f,b,g,c,h,r,s,1
3,a,f,b,g,h,c,r,s,1

transition function:
switch (c)
{
case 0:
if ((state2 neighbors+state3 neighbors)==3)
return 2;
else
return 0;

case 1: return 0;

case 2: return 3;

case 3:
if ( ( (state2 neighbors+state3 neighbors-1) |1 )==3) return 3;
else return 1;
}


natural puffer:
x = 6, y = 6, rule = B3_S34_D1
$2.BC$.B2C$.2C.BC$3.BA$3.A!


natural diagonal SS:
x = 4, y = 4, rule = B3_S34_D1
$2.BC$.B2C$.2CB!


orthgonal SS:
x = 23, y = 18, rule = B3_S34_D1
.2C$BCA.C$.C.C.BA$5.C2$.2C$BCA.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C
.C.C3$.2C$BCA.C$.C.C.C3$.2C$BCA.C$.C.C!
shouldsee
 
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Postby shouldsee » May 7th, 2016, 9:46 am

Keep modifying the generation rule.
In this explosive variant, secondary structure forms upon a primitve layer.
The "step" means every cell is capable of sustaining the neighbors of the same state (except for vacuum).

UPDATE: After some construction effort, I managed to create a stable tubular network to support screening for orthogonal moving object on an infinite plane.You can see how the space between tubules are much more ordered due to the limited width.
NOTE: This rule is analogous to the generation rule 23/2/3, however it takes a 0,0/2,1/3,2/1,3 conversion to translate pattern from B2S23D1step into one in 23/2/3. The minimal implementation of tubuluar network requires 23/2/2 (in other words B2/S23).

It's certainly desirable to create a tubular network capable of replicating itself (though they'll have to split at the end of a cycle in order to avoid crystallizing the whole plane). By adjusting the size of a such bounded structure, we should expect a self-replicating low entropy form. It might be possible to adapt the "loop" replication but I am not sure on this possibility. It is also intriguing to how a curved boundary could improve such structure.

What's more, these tube support multi-mode chaotic pattern. Namely tubes allow some character of the intial pattern indside to be conserved。

Effect of initial pattern on the outcome pattern in a tube in 23/2/4
x = 300, y = 62, rule = 23/2/4:T300,70
300A2$300A2$170.2AC3A.CBA44.3A$171.A.A.A3.CBA43.A$172.A2.2B2A2.CBA$
172.A2.2B2A2.CBA$171.A.A.A3.CBA43.A$170.2AC3A.CBA44.3A2$300A2$300A2$
170.2AC3A.CBA44.3A9.3A9.3A9.3A$171.A.A.A3.CBA43.A11.A11.A11.A$172.A2.
2B2A2.CBA$172.A2.2B2A2.CBA$171.A.A.A3.CBA43.A11.A11.A11.A$170.2AC3A.C
BA44.3A9.3A9.3A9.3A2$300A2$300A2$170.2AC3A.CBA44.3A9.3A9.3A9.3A9.3A9.
3A$171.A.A.A3.CBA43.A11.A11.A11.A11.A11.A$172.A2.2B2A2.CBA$172.A2.2B
2A2.CBA$171.A.A.A3.CBA43.A11.A11.A11.A11.A11.A$170.2AC3A.CBA44.3A9.3A
9.3A9.3A9.3A9.3A2$300A2$300A2$129.A4.ABC.A.A$127.3A6.A.AB3A81.3A9.3A
9.3A9.3A$126.2AC.A.A.A.A.A2.CBA81.A11.A11.A11.A$127.A.A.A.A.A.A5.CBA$
127.A.A.A.A.A.A5.CBA$126.2AC.A.A.A.A.A2.CBA81.A11.A11.A11.A$127.3A6.A
.AB3A81.3A9.3A9.3A9.3A$129.A4.ABC.A.A2$300A2$300A2$39.2A2.2AC2B2.AB5.
A.ABA$39.A.2A.A.C.A.A.C2.C.2AC.A$41.A3.A.CB.2B3.2A2.B.2A2.CBA$41.A.3A
.2C.2B4.A4.A5.CBA$41.A.3A.2C.2B4.A4.A5.CBA$41.A3.A.CB.2B3.2A2.B.2A2.C
BA$39.A.2A.A.C.A.A.C2.C.2AC.A$39.2A2.2AC2B2.AB5.A.ABA2$300A2$300A!



Tube Wickstrechers implemented with minimal cell states(2). TubeWidth=6
x = 46, y = 53, rule = B2/S23
9$12b22o$11bo22bo$9bo2bob6ob4ob6obo2bo$9bo3bob2o4bo2bo4b2obo3bo$11bo2b
o2bo3b4o2b2o2bo2bo$13bo2b4o3b2ob4o2bo$14b3o2b5ob3ob3o$15b2o4b3obobob2o
$12bo4b3o6b2o5bo$10bobo4b2o4b2ob3o4bobo$8bo3bo4b2o7b2o5bo3bo$8bo4b4o2b
obo5bob4o4bo$10bo24bo$11b24o$13bo18bo$14b3obo3bo2b2o2b3o$16bobo2bo2bob
ob2o2$14b3ob2ob3ob7o$13bo18bo$11b24o$10bo24bo$8bo4b4o2bobo5bob4o4bo$8b
o3bo4b2o7b2o5bo3bo$10bobo20bobo$12bo20bo2$14bo$13bo2b4o3b2ob4o2bo$11bo
2bo2bo3b4o2b2o2bo2bo$9bo3bob2o4bo2bo4b2obo3bo$9bo2bob6ob4ob6obo2bo$11b
o22bo$12b22o!





Tubewidth=7
x = 34, y = 40, rule = B2/S23
4$6b22o$5bo22bo$3bo2bob6ob4ob6obo2bo$3bo3bob2o4bo2bo4b2obo3bo$5bo2bo2b
o3b4o2b2o2bo2bo$7bo2b4o3b2ob4o2bo$8b3o2b5ob3ob3o$9b2o4b3obobob2o$6bo4b
3o6b2o5bo$4bobo4b2o4b2ob3o4bobo$2bo3bo4b2o7b2o5bo3bo$2bo4b4o2bobo5bob
4o4bo$4bo24bo$5b24o$7bo18bo$8b3obo3bo2b2o2b3o$10bobo2bo2bobob2o3$8b3ob
2ob3ob7o$7bo18bo$5b24o$4bo24bo$2bo4b4o2bobo5bob4o4bo$2bo3bo4b2o7b2o5bo
3bo$4bobo20bobo$6bo20bo2$26bo$5bo22bo$3bo22bo3bo$3bo2bo20bo2bo$5bo22bo
$6b22o!


TubeWidth=8
x = 38, y = 40, rule = B2/S23
$7b22o$6bo22bo$4bo2bob6ob4ob6obo2bo$4bo3bob2o4bo2bo4b2obo3bo$6bo2bo2bo
3b4o2b2o2bo2bo$8bo2b4o3b2ob4o2bo$9b3o2b5ob3ob3o$10b2o4b3obobob2o$7bo4b
3o6b2o5bo$5bobo4b2o4b2ob3o4bobo$3bo3bo4b2o7b2o5bo3bo$3bo4b4o2bobo5bob
4o4bo$5bo24bo$6b24o$8bo18bo$9b3o2b4o8bo$11bo2b4obo3b3o$13b3o2bob2obobo
$13bo4b4o$14bo5b2o3bo$9b3o3b3o2bo3bobo$8bo18bo$6b24o$5bo24bo$3bo4b4o
14b2o4bo$3bo3bo20bo3bo$5bobo20bobo$7bo20bo3$6bo22bo$4bo26bo$4bo2bo20bo
2bo$6bo22bo$7b22o!


Overall, a width of 7 seems to generate the most interesting pattern

Tubular network(implemented in B2S23D1step)
x = 124, y = 143, rule = B2S23D1step
115.C$114.C.C$113.C3.C$113.C.B.C$113.2B.2B$114.B.B$114.B.B$114.B.B$2.
2CB109.B.B$.C2.110B2.B$C2.B110.B.B$.C2.3B.B.104B2.B$2.2CB2.B.B104.B.B
$7.B.B92.2C4.2C4.B.B$7.B.B2.2B88.2A4.2C4.B.B$7.B.B.4B87.2C10.B.B$7.B.
B2.CB88.2B10.B.B$7.B.B.C.2A2B14.CB62.BC17.B.B$7.B.B.A.BC2B13.CAC62BCA
C16.B.B$7.B.B3.CB16.CB62.BC17.B.B$7.B.B3.B20.C.C54BC.C20.B.B$7.B.B.3C
20.CAC54.CAC20.B.B$7.B.B.ACA26.2C5.C.3C6.C3B4.3BC6.3C.C5.2C26.B.B$7.B
.B.CBA26.C6.2C2.C6.C.B6.B.C6.C2.2C6.C26.B.B$7.B.B2.CAB19.CAC54.CAC20.
B.B$7.B.B2.B.2CB17.C.C54BC.C20.B.B$7.B.B.2CB2C15.CB62.BC17.B.B$7.B.B.
C3.2B13.CAC62BCAC16.B.B$7.B.B3.CAB15.CB62.BC17.B.B$7.B.B.C.BC99.B.B$
7.B.B.2C.B99.B.B$7.B.B104.B.B$7.B.B104.B.B$7.B.B104.B.B2.B2C$7.B2.
104B.B.3B2.C$7.B.B110.B2.C$7.B2.110B2.C$7.B.B109.B2C$7.B.B$6.2B.2B$6.
C.B.C$6.C3.C$7.C.C$8.C42$60.B24CB$58.B.C11.B12.C.B$57.15B.16B$56.B2C
12.B.B13.2CB$54.BCA2.BCAC8.B.B9.CACB2.ACB$54.BCA2.BCA3C6.B.B9.CACB2.A
CB$56.B2C8.C3.B.B13.2CB$49.B7.3BCB3.2B4.B.B.2C2A.B2C.BC3B6.B$41.B2C.A
.BCA2.C.C11.A4.B.B3.ACA2.A.C.B8.ACB.A.2CB$39.B3C4.BCACACAB12.A2.CB.B.
C2B16.CACB4.3CB$37.BCA9.B2CAC3.B.B.C2B.CBA3.B.B.2B2.A14.CB9.ACB$37.BC
A19.BCB.4BC3.B.B.C.A2.B.B.2B19.ACB$39.B2C29.B.B29.2CB$40.31B3.31B$41.
B.C27.3B27.C.B$43.28B3.28B$44.B.C24.B.B24.C.B$47.B.B.2C.B3CB.B.B2.C.B
.B.B.B.2BA4.B.B.B3CB.2C.B.B$46.4BAB2.CB2A3C.2B.2C3B.B.B2.2BCA.2B.3C2A
BC2.BA4B$44.B.C24.B.B24.C.B$43.28B3.28B$41.B.C27.3B27.C.B$40.31B3.31B
$39.B2C29.B.B4.C24.2CB$37.BCA25.BCB3.B.B3.C27.ACB$37.BCA24.B6.B.B4.A
26.ACB$39.B3C21.2A2C3.B.B3.BA23.3CB$41.B2C.A3.2BCBAB2ABC.B.B.B4.C.B.B
.CB2.CB2C.B.CB2ABABC2B5.2CB$47.B.B.2C.B3CB.B.2B3.ACB.B.B.BC.C3.B.B.B
3CB.2C.B.B$46.4BAB2.C2BA3C.5B.CB.B.B.BCB.A.2B.3CA2BC2.BA4B$44.B.C18.A
.BC2.B.B24.C.B$43.28B3.28B$41.B.C27.3B27.C.B$40.31B3.31B$39.B2C29.B.B
29.2CB$37.BCA19.BCB.3B3.C.B.B3.C3B.B.2B19.ACB$37.BCA9.B2CAB2C.4BC2B.C
AB3.B.B.B.C.B.A6B.2CBA2CB9.ACB$39.B3C4.BCAB.2AB.BCB.2CBCABC4.B.B.CB2.
A.2B2C.BCB.B2A.BACB4.3CB$41.B2C.A.BC2BCBACBA.C.BCB.B3.2A.B.B.CB.A2.2C
2B.C.ABCABC2BCB.A.2CB$47.B.B3C.B3C5B.A2.BCB.B.B.2BA3.2B.3B3CB.3CB.B$
46.4BA2BACB2A3CA2B.BA3B.B.B2.2BCA.3B3C2ABCA2BA4B$44.B.C24.B.B24.C.B$
43.28B3.28B$41.B.C27.3B27.C.B$40.31B3.31B$39.B2C29.B.B29.2CB$37.BCA
19.BCB.4BC3.B.B.C.A2.B.B.2B19.ACB$37.BCA9.B2CAC3.B.B.CBA.C.A3.B.B.B.C
A15.CB9.ACB$39.B3C4.BCACACAB15.CB.B.C.3B14.CACB4.3CB$41.B2C.A.BCA2.C.
C16.B.B4.B3.A.C.B8.ACB.A.2CB$49.B7.3BCB.2CB5.B.B.C2.2AB2C.BC3B6.B$56.
B2C12.B.B2.C2.C7.2CB$54.BCA2.BCAC8.B.B9.CACB2.ACB$54.BCA2.BCAC8.B.B9.
CACB2.ACB$56.B2C12.B.B13.2CB$57.15B.16B$58.B.C11.B12.C.B$60.B24CB!


Admittedly, it's hard to construct a indestructible loop.

Ongoing attempt:
x = 229, y = 231, rule = B2S23D1step
26$198.C$33.C163.C.C$32.C.C161.C3.C$31.C3.C160.C.B.C$31.C.B.C160.2B.
2B$31.2B.2B161.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B
162.B.B$32.B.B162.B.B$22.2CB7.B.B162.B.B6.B2C$21.C2.8B3.162B.B.7B2.C$
20.C2.B8.3B163.B8.B2.C$21.C2.8B3.162B.B.7B2.C$22.2CB7.B.B162.B.B6.B2C
$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.
B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B
.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.
B.B$32.B.B162.B.B$32.B.B130.C31.B.B$32.B.B34.C94.C.C30.B.B$32.B.B33.C
.C92.C3.C29.B.B$32.B.B32.C3.C91.C.B.C29.B.B$32.B.B32.C.B.C91.2B.2B29.
B.B$32.B.B32.2B.2B92.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B23.2CB7.B.B93.B.B6.B2C21.B.B$32.B.B22.C2.8B
3.93B.B.7B2.C20.B.B$32.B.B21.C2.B8.3B94.B8.B2.C19.B.B$32.B.B22.C2.8B
3.93B.B.7B2.C20.B.B$32.B.B23.2CB7.B.B93.B.B6.B2C21.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$
32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B
30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B
93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B
24.2CB6.B.B93.B.B7.B2C20.B.B$32.B.B23.C2.7B.B.93B3.8B2.C19.B.B$32.B.B
22.C2.B8.B94.3B8.B2.C18.B.B$32.B.B23.C2.7B.B.93B3.8B2.C19.B.B$32.B.B
24.2CB6.B.B93.B.B7.B2C20.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.
B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.B.B93.B.B30.B.B$32.B.B33.
B.B93.B.B30.B.B$32.B.B33.B.B92.2B.2B29.B.B$32.B.B32.2B.2B91.C.B.C29.B
.B$32.B.B32.C.B.C91.C3.C29.B.B$32.B.B32.C3.C92.C.C30.B.B$32.B.B33.C.C
94.C31.B.B$32.B.B34.C127.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.
B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B
.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.
B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B
162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.
B162.B.B$23.2CB6.B.B162.B.B7.B2C$22.C2.7B.B.162B3.8B2.C$21.C2.B8.B
163.3B8.B2.C$22.C2.7B.B.162B3.8B2.C$23.2CB6.B.B162.B.B7.B2C$32.B.B
162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.B162.B.B$32.B.
B161.2B.2B$31.2B.2B160.C.B.C$31.C.B.C160.C3.C$31.C3.C161.C.C$32.C.C
163.C$33.C!


B1S23D1step.table
# rules: 24
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:4
neighborhood:Moore
symmetries:rotate8
var a={0,1,3}
var b={0,1,3}
var c={0,1,3}
var d={0,1,3}
var e={0,1,3}
var f={0,1,3}
var g={0,1,3}
var h={0,1,2,3}
var i={0,1,2,3}
var j={0,1,2,3}
var k={0,1,2,3}
var l={0,1,2,3}
var m={0,1,2,3}
var n={0,1,2,3}
var o={0,1,2,3}
var p={0,1}
var q={0,1}
var r={0,1}
var s={0,1}
var t={0,1}
var u={0,1}
var v={0,1}
var w={2,3}
var x={2,3}
var y={2,3}
var z={2,3}
0,a,b,c,d,e,f,g,2,2
1,h,i,j,k,l,m,n,o,0
2,a,b,c,d,e,f,g,h,3
2,h,i,j,k,2,2,2,2,3
2,a,h,i,2,b,2,2,2,3
2,a,h,i,2,2,b,2,2,3
2,a,b,c,2,2,2,d,2,3
2,a,b,2,c,d,2,2,2,3
2,a,b,2,c,2,d,2,2,3
2,a,b,2,c,2,2,d,2,3
2,a,b,2,2,c,d,2,2,3
2,a,b,2,2,c,2,d,2,3
2,a,2,b,2,c,2,d,2,3
3,p,q,r,s,t,u,v,h,1
3,h,i,j,k,w,x,y,z,1
3,p,h,i,w,q,x,y,z,1
3,p,h,i,w,x,q,y,z,1
3,p,q,r,w,x,y,s,z,1
3,p,q,w,r,s,x,y,z,1
3,p,q,w,r,x,s,y,z,1
3,p,q,w,r,x,y,s,z,1
3,p,q,w,x,r,s,y,z,1
3,p,q,w,x,r,y,s,z,1
3,p,w,q,x,r,y,s,z,1


An exemplar torus:
x = 10, y = 10, rule = B1S23D1step:T129,101
C.B2.2AB.C$.BC.C.A.A$.B.B.C3.C$.B.A.AB$2AB.CB2.B$2A3.2CAC$2.C.A2.C$4.
AC.B.C$.C.C.ABA.C$3.2B2.CBA!
shouldsee
 
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Postby drc » May 8th, 2016, 1:47 pm

B3678S13567 has a lot of weird patterns.

http://catagolue.appspot.com/census/b3678s13567/C1
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y
User avatar
drc
 
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Thread For Your Unrecognised CA

Postby drc » May 8th, 2016, 2:14 pm

Like this sort-of puffer, which dies out at gen 10106, and leaves an ov_p4:

x = 16, y = 16, rule = B3678/S13567
obo2b2ob2ob2o2bo$obobo5bo2b3o$2b2ob3obobob3o$ob5o2b2o3b2o$4bo3bob3o2bo
$3obob4obob2o$bob4obobo$o2b5o$2obo2b2o2bobo2bo$bo2b3ob3obob2o$2b3obob
4ob3o$o4b4o4bo$ob2ob3obo4b2o$4ob2obob6o$3b2obobo2b4o$obo4bo3b2ob2o!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y
User avatar
drc
 
Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: Thread For Your Unrecognised CA

Postby shouldsee » May 12th, 2016, 2:55 am

Based on my investigation into “tube effect” in 23/2/8 and other rules, I tried to apply the principle to B3/S23 to see whether anything happens.
Golly does not allow me to specify a tube,or a half-torus(i.e. vertically isolated, horizontally a connected torus). Thus I added a non-changeable state2 to B3/S23, and name this rule life_grey (it's basically a grey block in lifehistory or in extendedlife) to allow easy construction of a tube.
life_grey.table
# rules: 18
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:3
neighborhood:Moore
symmetries:rotate8
var a={0,2}
var b={0,2}
var c={0,2}
var d={0,2}
var e={0,2}
var f={0,2}
var g={0,2}
var h={0,1,2}
var i={0,1,2}
var j={0,1,2}
var k={0,1,2}
0,a,b,c,d,e,1,1,1,1
0,a,b,c,d,1,e,1,1,1
0,a,b,c,d,1,1,e,1,1
0,a,b,c,1,d,e,1,1,1
0,a,b,c,1,d,1,e,1,1
0,a,b,c,1,1,d,e,1,1
0,a,b,1,c,d,1,e,1,1
1,a,b,c,d,e,f,g,h,0
1,h,i,j,k,1,1,1,1,0
1,a,h,i,1,b,1,1,1,0
1,a,h,i,1,1,b,1,1,0
1,a,b,c,1,1,1,d,1,0
1,a,b,1,c,d,1,1,1,0
1,a,b,1,c,1,d,1,1,0
1,a,b,1,c,1,1,d,1,0
1,a,b,1,1,c,d,1,1,0
1,a,b,1,1,c,1,d,1,0
1,a,1,b,1,c,1,d,1,0


Indeed, search in life_grey revealed some pattern that requires communication across the torus, and not easily recognised by the conventional oscar.py , as I termed earlier as pseudo-Methuselah, which is often interaction between smaller parts. There has also been some emergence of LWSS, MWSS, queen bee, and pulsars.

Since these pseudo-methuselahs are spanning the whole torus and cannot live without a torus of specifc size, I term them "spanning spaceship" (SSS) and "spanning oscillator"(SOS)


Here are the results

All patterns are normalised to least population

(PS:can put them into a single code window if the post is too lengthy, but we then can't select it easily. Is there a compromise between?)

1c/18 SSS
x = 15, y = 8, rule = life_grey:T15,8
15B$15B$15B2$.A.A3.A$A2.A3.2A$.A.A3.A!

1c/22 SSS
x = 18, y = 8, rule = life_grey:T18,8
18B$18B$18B2$3.A.A6.A$2.A2.A6.2A$3.A.A6.A!

1c/26 SSS
x = 21, y = 8, rule = life_grey:T21,8
21B$21B$21B$3A10.3A$4.A7.A3.A2.A$4.A7.A3.A2.A$4.A7.A3.A2.A$3A10.3A!

3c/29 SSS
x = 18, y = 8, rule = life_grey:T18,8
18B$18B$18B2$3.A10.A$.2A9.2A.2A$3.A10.A!

19c/55 SSS,SOS
x = 38, y = 8, rule = life_grey:T38,8
38B$38B$38B$3.A.A12.A.A$2.A3.A10.A3.A$2.A3.A10.A3.A$2.A3.A10.A3.A$3.A
.A12.A.A!

8c/60 SSS
x = 21, y = 8, rule = life_grey:T21,8
21B$21B$21B2$13.A$9.3A.A$13.A!

12c/82 SSS
x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$12.2A6.A.A$11.A2.A4.A2.A$12.2A6.A.A!

10c/92 SSS
x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B$25.A$25.2A$24.A.2A$24.A.A$24.2A!

4c/150 SSS
x = 45, y = 8, rule = life_grey:T45,8
45B$45B$45B$32.2A$14.A17.2A4.2A$12.2A.2A20.A2.A$14.A17.2A4.2A$32.2A!

42c/160 SSS, SOS
x = 84, y = 8, rule = life_grey:T84,8
84B$84B$84B2$64.A13.A$63.2A13.2A$64.A13.A!

38c/185 SSS,SOS
x = 76, y = 8, rule = life_grey:T76,8
76B$76B$76B2$59.A5.A$58.2A5.2A$59.A5.A!

37c/188 SSS,SOS
x = 74, y = 8, rule = life_grey:T74,8
74B$74B$74B2$53.A3.A$51.2A5.2A$53.A3.A!

32c/246 SSS
x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$6.A24.2A$4.2A.2A21.A2.A$6.A24.2A!

24c/275 SSS,SOS
x = 48, y = 8, rule = life_grey:T48,8
48B$48B$48B2$5.A18.A$4.2A18.2A$5.A18.A!

16c/303 SSS
x = 46, y = 8, rule = life_grey:T46,8
46B$46B$46B2$8.A.A4.A3.A9.A$7.A2.A2.2A5.2A5.2A.2A$8.A.A4.A3.A9.A!

20c/345 SSS
x = 45, y = 8, rule = life_grey:T45,8
45B$45B$45B2$17.A3.A13.3A$15.2A5.2A11.3A$17.A3.A13.3A!

24c/523 SSS
x = 57, y = 8, rule = life_grey:T57,8
57B$57B$57B2$16.A3.A22.2A$14.2A5.2A19.A2.A$16.A3.A22.2A!

6c/615 SSS
x = 67, y = 8, rule = life_grey:T67,8
67B$67B$67B2$8.A30.A3.A11.A.A$8.A30.2A3.A9.A2.A$8.A30.A3.A11.A.A!

3c/656 SSS
x = 39, y = 8, rule = life_grey:T39,8
39B$39B$39B$22.A.A$21.2A.A$20.2A$21.2A14.2A$37.2A!

14c/762 SSS
x = 53, y = 8, rule = life_grey:T53,8
53B$53B$53B2$25.A24.2A$24.2A23.A2.A$25.A24.2A!

18c/805 SSS
x = 41, y = 8, rule = life_grey:T41,8
41B$41B$41B2$16.A3.A$2.3A9.2A5.2A$16.A3.A!

(2 or 44)c/909 SSS
x = 46, y = 8, rule = life_grey:T46,8
46B$46B$46B$14.A22.2A$13.A5.2A16.2A$13.A4.A2.A$13.A5.2A16.2A$14.A22.
2A!

13c/925 SSS
x = 48, y = 8, rule = life_grey:T48,8
48B$48B$48B2$16.A.A11.3A$15.A2.A11.A.A$16.A.A11.3A!

9c/1203 SSS
x = 65, y = 8, rule = life_grey:T65,8
65B$65B$65B2$10.2A5.A3.A$9.A2.A2.2A5.2A25.3A$10.2A5.A3.A!

20c/1607 SSS
x = 83, y = 8, rule = life_grey:T83,8
83B$83B$83B$8.A13.A$7.A.A11.A.A18.2A$6.A3.A9.A3.4A13.A2.A$7.A.A11.A.A
18.2A$8.A13.A!


SS's:
16c/94 SS
x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$20.A5.2A3.2A$18.2A.2A2.A2.A2.2A$20.A5.2A!

LWSS,MWSS,HWSS:
x = 35, y = 8, rule = life_grey:T35,8
35B$35B$35B$16.2A$15.4A$15.2A.2A$17.2A!
shouldsee
 
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Postby BlinkerSpawn » May 12th, 2016, 7:51 am

shouldsee wrote:Golly does not allow me to specify a tube,or a half-torus(i.e. vertically isolated, horizontally a connected torus).

Set one dimension to zero in the rule specification to get a tube.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image
User avatar
BlinkerSpawn
 
Posts: 1881
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread For Your Unrecognised CA

Postby shouldsee » May 12th, 2016, 8:58 am

BlinkerSpawn wrote:
shouldsee wrote:Golly does not allow me to specify a tube,or a half-torus(i.e. vertically isolated, horizontally a connected torus).

Set one dimension to zero in the rule specification to get a tube.


I meant tube as a hybrid that is vertically plane (not connected) and horizontally torus (connected). Set dimension to zero gives me a infinite dimension.

Thus I should probably call it a "toric tube"
shouldsee
 
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Postby BlinkerSpawn » May 12th, 2016, 3:11 pm

x = 4, y = 5, rule = B3/S23:P0,5
2o$obo$ob2o$b2o$bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image
User avatar
BlinkerSpawn
 
Posts: 1881
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread For Your Unrecognised CA

Postby shouldsee » May 12th, 2016, 3:14 pm

BlinkerSpawn wrote:
x = 4, y = 5, rule = B3/S23:P0,5
2o$obo$ob2o$b2o$bo!


The length is infinite while I wanted them to be teleported.

EDIT: BTW, this is a nice pattern!
Last edited by shouldsee on October 20th, 2016, 12:57 pm, edited 1 time in total.
shouldsee
 
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Postby shouldsee » May 12th, 2016, 5:46 pm

Emulation of a diagonal rule (by adapting 23/2/4) in BGRainbowR2

It shows interesting self organization property

x = 227, y = 175, rule = BGRainbowR2
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.D.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.D
.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.D.
D.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.
C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.D.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.D.D.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D
.D.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.D.D.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D
.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.D.D.C.C.C.C.C.C.C.C.C.D
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.D.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.D.D.D.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.D.D.D.D
.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.D.C
.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.C.C.D.C.D.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.C.D.C.C
.C.C.C.C.C.C.C.C.D.D.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D
.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.D.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.C.D.D.D.D.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.D.C.D.C.D.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.
C.C.C.D.D.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.
C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C
.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D
.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.D.C.C.C.C.C.
C.C.C.C.C.D.D.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.
C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C
.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.D.C.C.
C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C
.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.
D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.D.D.C.D.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.D.D.C.C.C.D.C.D.C.C.C.C.C.C.C.D.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.D.C.C.D.C.C.C.D.D.
D.D.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.D.D.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.
D.D.C.C.C.C.C.C.D.C.D.C.D.C.C.C.C.C.C.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.D
.D.C.C.C.C.C.D.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.D.C.D.C.C.D.C.C.C.C.C.C.D.D.D.C.D.D.C.C.C.C.C.C.D.D.C.D.C.
C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.D.C.D.C.C.D.D.
C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D
.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C
.C.C.C.D.D.C.C.C.D.D.C.C.C.C.C.C.D.D.D.D.C.C.C.D.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C
.C.C.D.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D.C.C.C.C.C.C.C.D.C.D.D.C.C.D.
D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.D.C.D.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.D.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.D.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.C.
C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.C.C.C.C.C.C.C.D
.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C
.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.D
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C
.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C
.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.C.D.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.D.D.C.C.C.C.C.D.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.D.C.C.C.C.C.C.C.C.C.D.D.D.D.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.D.D.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.D.D.C.C.C.C.
C.C.C.C.D.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
D.C.C.C.D.C.D.C.C.C.C.C.C.C.D.D.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C
.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.D.D.C.C.C.C.C.C.C.D.C.D.C.D.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.D.D.D.C.C.C.C.C.C.
C.C.D.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C
.C.C.D.D.C.C.C.C.C.C.C.C.D.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
D.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.D.D.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.D.C.C.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.D.C.C.C.C.D.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.
D.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.D.D.D.D.C.C.C.C.C.C.C.C.D
.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.D.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.D.D.D.D.C.C.C.C.C.C.D.D
.D.D.C.C.D.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.D.D.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.D.D.
F.D.D.C.C.C.C.C.C.D.C.C.D.C.D.D.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D
.C.D.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.
C.C.C.C.C.C.C.C.D.D.C.C.C.D.C.C.C.C.C.C.D.D.D.C.D.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.F.C.E.D.C.C.C.C.C.D.D.D.C.C.
D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.E.C.C.F.
D.C.C.C.C.E.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.D.C.C.C.C
.C.C.D.D.D.C.D.D.D.D.C.C.D.C.F.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C
.C.C.C.C.C.D.D.C.C.C.C.C.C.D.D.D.D.E.D.D.D.C.D.D.C.D.D.C.C.C.C.C.D.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.D.C.D.D.E.C.D.F.D.D.D
.C.D.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.D.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.D.D.C.D.D.D.D.D.C.C.D.D.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C
.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.D.C.F.C.D.D.C.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.E.C.D.D.D.C.C.D.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.
D.D.D.D.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.D.C.D.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D.D.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.E.E.D.C.D.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.D.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.D.F.F.F.
D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C
.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C
.C.C.C.C.C.C.D.E.E.D.D.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C
.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.D.C.C.D.C.C.C.D.D.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D
.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.
C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.D.C.C.C.C.C.C.C.D.D.D.C.C.C.D
.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.D.D.C.C.C
.C.C.C.C.D.D.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.D.D.D.D.D.C.C.C.C.C.C.C.D.C.C.C.D.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.D.D.C.C.C.C.C.D.D.C.C.C.D.C.D.D.D.D
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.D.D.C.D.C.D.C.D.C.C.C.C.D.
D.C.C.C.D.D.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.D.C.
C.D.C.D.D.D.C.C.C.D.D.C.C.C.D.D.C.C.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C
.C.C.C.C.C.C.D.C.C.C.C.D.D.D.C.D.C.C.C.D.C.C.C.D.C.C.C.C.C.C.D.D.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.C.D.D.D.C.C.C.C.C.C.D.
D.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.D.C.D.C.C.C.C.C.D
.C.D.D.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C
.C.D.D.D.C.C.C.C.C.C.D.D.C.D.C.C.C.C.D.C.D.D.C.C.C.C.C.C.D.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.
C.C.C.C.C.D.C.D.C.C.C.D.C.D.C.C.C.C.C.C.C.D.D.C.D.C.C.C.D.D.C.D.C.C.C
.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.
C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.D.D
.C.C.C.D.D.D.D.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.D.D
.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.C.D.C.
C.C.C.C.C.C.C.C.D.D.C.C.C.D.C.D.C.D.D.C.C.C.C.D.D.C.D.D.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C
.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.D.C.D.D.D.D.C.C.C.C.D
.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D
.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.
C.C.D.C.C.D.C.C.D.D.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.D.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.
C.C.C.D.D.C.C.C.C.C.C.C.C.D.D.D.C.C.D.D.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.D.C.D.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.D.D.D.C.D.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.
D.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.D.C
.C.C.C.C.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C
.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.
C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.
C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C
.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.D.D.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.
C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.
C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D
.D.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.D.D.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.D.C.C.C.C.C.C.C.C.D.D.C.
C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C$.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.D.C.
C.C.C.C.C.C.C.D.D.D.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.D.C.C.D.D.C.C.C.C
.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C
.C.C.C.D.D.C.D.D.C.C.C.C.C.C.C.C.D.D.C.D.C.C.C.D.D.C.C.C.C.C.C.C.C.C.
C.D.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
D.D.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C
.C.D.D.C.C.C.C.C.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.D.C.D.D.D.C.C.C.
D.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C
.C.C.C.C.C.C.C.C.C.D.D.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.D.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C
.C.D.D.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D.C.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.C.C.C.C.C.C
.C.D.D.C.C.C.D.C.C.C.C.D.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C
.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
C.C.C.D.D.C.C.C.C.C.C.C.D.C.C.C.D.D.C.C.C.D.C.C.D.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C
.C.C.C.C.C.D.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.D.D.D.D
.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.
C.D.D.D.C.C.D.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D
.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
D.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.D.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.D.D.D.D.D.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.
C.D.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.D.D.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.D.C.D.C.C.D.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.D.D.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.C.D.D.D.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D.C.C.D.D.D.C.D
.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C
.C.C.C.C.C.D.C.D.D.D.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.D.C.C.C.C.C.C.D.D.D.C.C.C.C.C
.C.C.C.C.C.D.D.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.
C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.D.C.C.C.D.D.C.C.C.C.C.D.D.C
.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.
C.D.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C
.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.
C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.
C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.D.D.C.C.C.C.D.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.D.C
.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.D.D.C.C.C.C.D.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.D.C.C.D.C.C.C.C.C.C.C.C
.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C
.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.C.C.C
.C.C.C.C.C.C.C.C.D.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.D.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.
C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.D.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.D.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.D.C.C.C.D.C.C.C.
C.C.C.C.C.C.C.D.D.C.C.C.C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.D.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D
.C.D.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.D.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C
.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.D.C.C.C.C.C.C.C.C.D.C.C.D.C.C.C.D.
D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.D.C.C.C.C
.C.C.D.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.D.D.C.C.C.C.C.C
.C.C.D.D.D.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.D.C.C.D.C.D.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.D.C.C.C.C.C.C.C.C.C.D.D.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.D.D.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.
C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D
.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.D.
D.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C
.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.D.D.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C.D.D.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.D.C
.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.D.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.D.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.D.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.D.D.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.D.D.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.D.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.
D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.D.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C!


Other interesting fabrication units

So far I have only manually searched these

x = 60, y = 42, rule = BGRainbowR2
39.C.C$39.2C$40.2C5$39.3C2$9.2C28.3C$8.3C$8.2C4$C8.2C11.C16.3C14.3C$.
C6.C.C12.C16.C15.C.2C$8.2C2.C.C9.C14.3C14.C2.C$12.2C42.4C$13.2C3$39.C
.C$40.C$39.3C16$C.C$2C!



Also, it's great fun to watch this spaceship incubator (fixed)
x = 102, y = 67, rule = BGRainbowR2
DBE2DADFCA92C$2CE2DCADCD92C$2BCFA2FC2D2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$2E4CBDFB
92C$FACEC2BDA93C$CDEBFADEFB2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$2C2ACEACE93C$FBCBAC
2EBD92C$F2CBEDACED2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$DCEFE2CECF92C$ADED3EAFA92C$DB
FDCEBECB2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$FDB3D3BF92C$FC4ADFEA92C$DADCBFAEFE2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C$FAB2EDACB93C$2B2AD4CA92C$AEAFD2EDFE2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C$2CFCEBDACE92C$DEBCADBDBE92C$AE2BEBADCA2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$FC
2FCB3EF92C$BEAB2DCBEF92C$FCFADBCEFC2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$DEDEBDBACB
92C$FD2BC2BEDB92C$FDAEFCDEDF2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.
C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$E2A2CADCFD92C$FAFEF
2DADB92C$ECFCFEFAFD2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.
C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$BACBA2CE2D92C$CA2BFA2E2F92C$
DCF3ABAFD2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$BFCBDFDEDE92C$BFBC2EF2CB92C$BF2BDFE2CA
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C$C2FAFED2BD92C$CFCE2ABCBE92C$DB2E3AE2C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C$E2F2BD3BE92C$FA2FACFCDB92C$EBEC2DACAE2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C$D2ADBABCA93C$2EC3DCEBA92C$EAFABCAEAD2.C2.C2.C2.C2.C2.C2.C2.C2.C2.
C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$EDFEDBF
ACB92C$FACBAE2FA93C$BDBFEA2E2F2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$CEFBAEFAEF92C$EDA
DBEDFEB92C$CDAECAFCBD2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$BA2CB2DCA93C$AC3DECBA93C$D
FA2EF2DBD2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$EFABADBAFB92C$BF2C2EABEA92C$CF2BECDCFA
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C$DCB2DECDF93C$EBEADFCBDE92C$DFBF2DAEFD2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C$2B2DFD2AEB92C$FDAED3B2D92C$EBFEDEFC2B2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C$BABDBAFB2F92C$FBECAF2ECF92C$AFEADBDEFA2.C2.C2.C2.C2.C2.C2.C2.C2.C
2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C2.C$FEAFD
A2CF93C!



@RULE BGRainbowR2

@COLORS

0 0 0 0
1 0 100 50
2 255 255 0
3 0 0 255

4 255 0 0
5 255 0 127
6 255 127 127
7 255 127 255

@TABLE
# rules: 35
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:7
neighborhood:Moore
symmetries:rotate8
var a={0,1,3,5,6}
var b={0,1,3,5,6}
var c={0,1,3,5,6}
var d={0,1,3,5,6}
var e={0,1,3,5,6}
var f={2,4}
var g={2,4}
var h={2,4}
var i={0,1,3,5,6}
var j={0,1,3,5,6}
var k={0,1,2,3,4,5,6}
var l={0,1,2,3,4,5,6}
var m={0,1,2,3,4,5,6}
var n={0,1,2,3,4,5,6}
var o={2,4}
var p={0,1,2,3,4,5,6}
var q={0,1,2,3,4,5,6}
var r={0,1,2,3,4,5,6}
var s={0,1,2,3,4,5,6}
1,a,b,c,d,e,f,g,h,2
1,a,b,c,d,f,e,g,h,2
1,a,b,c,d,f,g,e,h,2
1,a,b,c,f,d,e,g,h,2
1,a,b,c,f,d,g,e,h,2
1,a,b,c,f,g,d,e,h,2
1,a,b,f,c,d,g,e,h,2
2,a,b,c,d,e,i,j,k,1
2,k,l,m,n,f,g,h,o,1
2,a,k,l,f,b,g,h,o,1
2,a,k,l,f,g,b,h,o,1
2,a,b,c,f,g,h,d,o,1
2,a,b,f,c,d,g,h,o,1
2,a,b,f,c,g,d,h,o,1
2,a,b,f,c,g,h,d,o,1
2,a,b,f,g,c,d,h,o,1
2,a,b,f,g,c,h,d,o,1
2,a,f,b,g,c,h,d,o,1
3,a,b,c,d,e,i,f,g,4
3,a,b,c,d,e,f,i,g,4
3,a,b,c,d,f,e,i,g,4
3,a,b,c,f,d,e,i,g,4
4,a,b,c,d,e,i,j,k,5
4,k,l,m,n,f,g,h,o,5
4,a,k,l,f,b,g,h,o,5
4,a,k,l,f,g,b,h,o,5
4,a,b,c,f,g,h,d,o,5
4,a,b,f,c,d,g,h,o,5
4,a,b,f,c,g,d,h,o,5
4,a,b,f,c,g,h,d,o,5
4,a,b,f,g,c,d,h,o,5
4,a,b,f,g,c,h,d,o,5
4,a,f,b,g,c,h,d,o,5
5,k,l,m,n,p,q,r,s,6
6,k,l,m,n,p,q,r,s,3

Last edited by shouldsee on May 13th, 2016, 12:09 pm, edited 4 times in total.
shouldsee
 
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Postby BlinkerSpawn » May 12th, 2016, 6:33 pm

I realize that BGRainbowR2 shouldn't be used this way, but...
CTRL+5!
x = 5, y = 6, rule = BGRainbowR2
.C$ACA$2C.C$.2DCF$2.2D$2.D!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Image
User avatar
BlinkerSpawn
 
Posts: 1881
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: Thread For Your Unrecognised CA

Postby blah » May 13th, 2016, 6:58 am

shouldsee wrote:Emulation of a diagonal rule (by adapting 23/2/4) in BGRainbowR2

That's actually the rule 23/2/4V, which Golly cannot interpret, but the point is that it's a Von Neumann neighbourhood. Since it does not have B1, it is impossible for a pattern to escape its initial bounding box. I also noticed signals can pass along a wire:
x = 32, y = 32, rule = BGRainbowR2
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C$C.C.C.C.C.C.C.C.
C.D.D.C.C.C.C.C$.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C$C.C.C.C.C.C.C.C.D.C.
D.D.C.C.C.C$.C.C.C.C.C.C.C.D.C.C.D.C.C.C.C.C$C.C.C.C.C.C.C.D.C.C.C.C.
C.C.C.C$.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.D.C.C.C.C.C.C.C.
C.C$.C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C$C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C$
.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C$C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C$.C.C
.D.D.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C!
succ
User avatar
blah
 
Posts: 244
Joined: April 9th, 2016, 7:22 pm

Re: Thread For Your Unrecognised CA

Postby shouldsee » May 13th, 2016, 7:41 am

blah wrote:
shouldsee wrote:Emulation of a diagonal rule (by adapting 23/2/4) in BGRainbowR2

That's actually the rule 23/2/4V, which Golly cannot interpret, but the point is that it's a Von Neumann neighbourhood. Since it does not have B1, it is impossible for a pattern to escape its initial bounding box. I also noticed signals can pass along a wire:
x = 32, y = 32, rule = BGRainbowR2
C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.
C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.
C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.
C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.D.C.C.C.C.C.C$C.C.C.C.C.C.C.C.
C.D.D.C.C.C.C.C$.C.C.C.C.C.C.C.C.D.C.D.C.C.C.C.C$C.C.C.C.C.C.C.C.D.C.
D.D.C.C.C.C$.C.C.C.C.C.C.C.D.C.C.D.C.C.C.C.C$C.C.C.C.C.C.C.D.C.C.C.C.
C.C.C.C$.C.C.C.C.C.C.D.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.D.C.C.C.C.C.C.C.
C.C$.C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C$C.C.D.C.C.D.C.C.C.C.C.C.C.C.C.C$
.C.D.D.C.D.C.C.C.C.C.C.C.C.C.C.C$C.C.D.C.D.C.C.C.C.C.C.C.C.C.C.C$.C.C
.D.D.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.D.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C
.C.C.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C
.C.C.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C
.C.C.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C
.C.C.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C
.C.C.C.C$C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C$.C.C.C.C.C.C.C.C.C.C.C.C.C.C
.C.C!


Yeah I think a change in topology is to some extent equivalent to a change in transition rule.
shouldsee
 
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Postby dvgrn » May 13th, 2016, 8:39 am

shouldsee wrote:Yeah I think a change in topology is to some extent equivalent to a change in transition rule.

And a change in the default background can also be equivalent to a change in transition rule. A really Life-altering change, quite often.

In B3/S23, for example, a spaceship can't travel faster than c/2 through vacuum -- but if we fill the universe with zebra stripes, we can get lightspeed "negative spaceships" with the grain of the stripes, or 2c/3 negative spaceships perpendicular to the grain. If the laws of the universe can change to that degree, then really it's a different universe.
User avatar
dvgrn
Moderator
 
Posts: 5739
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Thread For Your Unrecognised CA

Postby shouldsee » May 13th, 2016, 9:36 am

dvgrn wrote:
shouldsee wrote:Yeah I think a change in topology is to some extent equivalent to a change in transition rule.

And a change in the default background can also be equivalent to a change in transition rule. A really Life-altering change, quite often.

In B3/S23, for example, a spaceship can't travel faster than c/2 through vacuum -- but if we fill the universe with zebra stripes, we can get lightspeed "negative spaceships" with the grain of the stripes, or 2c/3 negative spaceships perpendicular to the grain. If the laws of the universe can change to that degree, then really it's a different universe.


But if default background consist of standard live cells, you have to really construct the pattern so that the background could persists if my understanding is right.

Could you please post some zebra strips and SS's?
shouldsee
 
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Postby blah » May 13th, 2016, 10:01 am

shouldsee wrote:Could you please post some zebra strips and SS's?


There's plenty on this page. The images in it are links to RLE files. It was the top result when I looked this up.
succ
User avatar
blah
 
Posts: 244
Joined: April 9th, 2016, 7:22 pm

Re: Thread For Your Unrecognised CA

Postby dvgrn » May 13th, 2016, 10:31 am

shouldsee wrote:But if default background consist of standard live cells, you have to really construct the pattern so that the background could persists if my understanding is right.

Yeah, it would be a strange Life universe that started with an infinite tiling that was not stable (in the sense of P1-or-oscillating). It's perfectly possible, though -- there would be some early fireworks, and then it would settle down into an agar made up of whatever emergent structures happened to turn up. Sounds kind of like the Big Bang, actually.

There have been innumerable experiments run in B3/S23 on different-sized tori (i.e., bounded rectangles with wrapping) that amount to the same thing -- except for the idea of a finite area where things are different from the default.

shouldsee wrote:Could you please post some zebra strips and SS's?

I think blah's link is as good as I can do. Gabriel Nivasch has collected nearly all of the known B3/S23 examples of these kinds of weird signals through non-empty space. The only exceptions I can think of are a scattering of reburnable fuses -- you could put a few blocks in a rectangular tile, and repeat that to infinity, and then there would be relatively small spaceships that travel through that agar at 31c/240.

Similar tricks could be done with a couple of blinkers and 17c/45 pi climbers, but again it would only allow travel in one direction through the grid of blinkers (and a "spaceship" would consist of 34 consecutive pi climbers (with all kinds of spacing options)... because you have to put the blinkers back where you found them.

That all seems kind of silly and not terribly interesting, though. Somehow I would like it better if nontrivial new signals could travel through the agar in both directions, as in the zebra-stripes case.
User avatar
dvgrn
Moderator
 
Posts: 5739
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Thread For Your Unrecognised CA

Postby shouldsee » May 13th, 2016, 11:47 am

dvgrn wrote:
shouldsee wrote:But if default background consist of standard live cells, you have to really construct the pattern so that the background could persists if my understanding is right.

Yeah, it would be a strange Life universe that started with an infinite tiling that was not stable (in the sense of P1-or-oscillating). It's perfectly possible, though -- there would be some early fireworks, and then it would settle down into an agar made up of whatever emergent structures happened to turn up. Sounds kind of like the Big Bang, actually.

There have been innumerable experiments run in B3/S23 on different-sized tori (i.e., bounded rectangles with wrapping) that amount to the same thing -- except for the idea of a finite area where things are different from the default.

shouldsee wrote:Could you please post some zebra strips and SS's?

I think blah's link is as good as I can do. Gabriel Nivasch has collected nearly all of the known B3/S23 examples of these kinds of weird signals through non-empty space. The only exceptions I can think of are a scattering of reburnable fuses -- you could put a few blocks in a rectangular tile, and repeat that to infinity, and then there would be relatively small spaceships that travel through that agar at 31c/240.

Similar tricks could be done with a couple of blinkers and 17c/45 pi climbers, but again it would only allow travel in one direction through the grid of blinkers (and a "spaceship" would consist of 34 consecutive pi climbers (with all kinds of spacing options)... because you have to put the blinkers back where you found them.

That all seems kind of silly and not terribly interesting, though. Somehow I would like it better if nontrivial new signals could travel through the agar in both directions, as in the zebra-stripes case.


When I burn zebra strips they just burn into ashes without producing emergent structures. I guess it would take some programming to search for such structure. However, I am not really good at searching in B3/S23... The live-cell background just seems too fragile to me for interesting behavior, though it would be realtively easy to search in such construction.

Nevertheless, the interesting point about the zebra strips is the active pattern itself can influence the spatial topology around it (i.e. minor change to the default background), which leads to my next ambition, that is making topology itself dynamic yet robust (which is kind of self-contradictory).

Thanks for the info @dvrgn,blah .

Burn, baby, burn!
x = 123, y = 143, rule = Life:T123,144
123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o
2$123o2$123o2$123o2$123o2$123o2$123o2$123o$30bo5bo3bo4bo$123o2$123o$
41bo$123o$39b2o$33ob13ob75o$30bo10bo$123o$40bo$123o$30b2o8b2obo$123o$
31bo7bo4bo$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o
2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$
123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o
2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$123o2$
123o2$123o!
shouldsee
 
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Postby dvgrn » May 13th, 2016, 1:13 pm

shouldsee wrote:When I burn zebra strips they just burn into ashes without producing emergent structures. I guess it would take some programming to search for such structure. However, I am not really good at searching in B3/S23... The live-cell background just seems too fragile to me for interesting behavior, though it would be realtively easy to search in such construction.

Yup, "fragile" is the name of the game for B3/S23, it seems. You're probably not much more likely to create a negative spaceship by random scribbling in zebra stripes, than you would be to create a loafer (let's say) by random scribbling in an empty universe.

It does seem a little weird that for the zebra-stripes case, almost every random experiment will result in the eventual collapse of the entire space-time continuum, so to speak.

I was thinking of this as a possible way to rehabilitate rules that might otherwise be considered boring -- like the no-B3-or-below rules that get dismissed because a pattern can't escape its initial bounding box. But if you effectively start with an infinitely large bounding box, that little problem goes away.

This isn't a new idea by any means. I just remembered the anti-rules supported by Golly, where effectively the universe starts with all ON cells, and when you run "Antilife" -- B0123478/S01234678 -- the OFF cells obey standard Life rules.

It's a little tricky to find nontrivial agars that aren't as fragile as the Life case, where there's some hope of seeing emergent behavior coming from random initial conditions. I would think a common kind of interesting behavior might be signals propagating along some kind of boundary, where there's a reliably higher number of neighbors -- and/or maybe where the agar includes a regular pattern of invulnerable islands, so there's no danger of a completely catastrophic collapse.
User avatar
dvgrn
Moderator
 
Posts: 5739
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Thread For Your Unrecognised CA

Postby A for awesome » May 13th, 2016, 2:36 pm

dvgrn wrote:I just remembered the anti-rules supported by Golly, where effectively the universe starts with all ON cells, and when you run "Antilife" -- B0123478/S01234678 -- the OFF cells obey standard Life rules.

I just remembered B123478/S01234678, which is one of my favorite rules:
x = 1, y = 1, rule = B123478/S01234678
o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1860
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: Thread For Your Unrecognised CA

Postby shouldsee » May 14th, 2016, 1:55 am

Day and night is probably a good example of "conjugate" effect, though it's a bit different from negative signals.
shouldsee
 
Posts: 406
Joined: April 8th, 2016, 8:29 am

Re: Thread For Your Unrecognised CA

Postby PHPBB12345 » May 14th, 2016, 6:30 am

shouldsee wrote:Based on my investigation into “tube effect” in 23/2/8 and other rules, I tried to apply the principle to B3/S23 to see whether anything happens.
Golly does not allow me to specify a tube,or a half-torus(i.e. vertically isolated, horizontally a connected torus). Thus I added a non-changeable state2 to B3/S23, and name this rule life_grey (it's basically a grey block in lifehistory or in extendedlife) to allow easy construction of a tube.
life_grey.table
# rules: 18
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
n_states:3
neighborhood:Moore
symmetries:rotate8
var a={0,2}
var b={0,2}
var c={0,2}
var d={0,2}
var e={0,2}
var f={0,2}
var g={0,2}
var h={0,1,2}
var i={0,1,2}
var j={0,1,2}
var k={0,1,2}
0,a,b,c,d,e,1,1,1,1
0,a,b,c,d,1,e,1,1,1
0,a,b,c,d,1,1,e,1,1
0,a,b,c,1,d,e,1,1,1
0,a,b,c,1,d,1,e,1,1
0,a,b,c,1,1,d,e,1,1
0,a,b,1,c,d,1,e,1,1
1,a,b,c,d,e,f,g,h,0
1,h,i,j,k,1,1,1,1,0
1,a,h,i,1,b,1,1,1,0
1,a,h,i,1,1,b,1,1,0
1,a,b,c,1,1,1,d,1,0
1,a,b,1,c,d,1,1,1,0
1,a,b,1,c,1,d,1,1,0
1,a,b,1,c,1,1,d,1,0
1,a,b,1,1,c,d,1,1,0
1,a,b,1,1,c,1,d,1,0
1,a,1,b,1,c,1,d,1,0


Indeed, search in life_grey revealed some pattern that requires communication across the torus, and not easily recognised by the conventional oscar.py , as I termed earlier as pseudo-Methuselah, which is often interaction between smaller parts. There has also been some emergence of LWSS, MWSS, queen bee, and pulsars.

Since these pseudo-methuselahs are spanning the whole torus and cannot live without a torus of specifc size, I term them "spanning spaceship" (SSS) and "spanning oscillator"(SOS)


Here are the results

All patterns are normalised to least population

(PS:can put them into a single code window if the post is too lengthy, but we then can't select it easily. Is there a compromise between?)

1c/18 SSS
x = 15, y = 8, rule = life_grey:T15,8
15B$15B$15B2$.A.A3.A$A2.A3.2A$.A.A3.A!

1c/22 SSS
x = 18, y = 8, rule = life_grey:T18,8
18B$18B$18B2$3.A.A6.A$2.A2.A6.2A$3.A.A6.A!

1c/26 SSS
x = 21, y = 8, rule = life_grey:T21,8
21B$21B$21B$3A10.3A$4.A7.A3.A2.A$4.A7.A3.A2.A$4.A7.A3.A2.A$3A10.3A!

3c/29 SSS
x = 18, y = 8, rule = life_grey:T18,8
18B$18B$18B2$3.A10.A$.2A9.2A.2A$3.A10.A!

19c/55 SSS,SOS
x = 38, y = 8, rule = life_grey:T38,8
38B$38B$38B$3.A.A12.A.A$2.A3.A10.A3.A$2.A3.A10.A3.A$2.A3.A10.A3.A$3.A
.A12.A.A!

8c/60 SSS
x = 21, y = 8, rule = life_grey:T21,8
21B$21B$21B2$13.A$9.3A.A$13.A!

12c/82 SSS
x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$12.2A6.A.A$11.A2.A4.A2.A$12.2A6.A.A!

10c/92 SSS
x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B$25.A$25.2A$24.A.2A$24.A.A$24.2A!

4c/150 SSS
x = 45, y = 8, rule = life_grey:T45,8
45B$45B$45B$32.2A$14.A17.2A4.2A$12.2A.2A20.A2.A$14.A17.2A4.2A$32.2A!

42c/160 SSS, SOS
x = 84, y = 8, rule = life_grey:T84,8
84B$84B$84B2$64.A13.A$63.2A13.2A$64.A13.A!

38c/185 SSS,SOS
x = 76, y = 8, rule = life_grey:T76,8
76B$76B$76B2$59.A5.A$58.2A5.2A$59.A5.A!

37c/188 SSS,SOS
x = 74, y = 8, rule = life_grey:T74,8
74B$74B$74B2$53.A3.A$51.2A5.2A$53.A3.A!

32c/246 SSS
x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$6.A24.2A$4.2A.2A21.A2.A$6.A24.2A!

24c/275 SSS,SOS
x = 48, y = 8, rule = life_grey:T48,8
48B$48B$48B2$5.A18.A$4.2A18.2A$5.A18.A!

16c/303 SSS
x = 46, y = 8, rule = life_grey:T46,8
46B$46B$46B2$8.A.A4.A3.A9.A$7.A2.A2.2A5.2A5.2A.2A$8.A.A4.A3.A9.A!

20c/345 SSS
x = 45, y = 8, rule = life_grey:T45,8
45B$45B$45B2$17.A3.A13.3A$15.2A5.2A11.3A$17.A3.A13.3A!

24c/523 SSS
x = 57, y = 8, rule = life_grey:T57,8
57B$57B$57B2$16.A3.A22.2A$14.2A5.2A19.A2.A$16.A3.A22.2A!

6c/615 SSS
x = 67, y = 8, rule = life_grey:T67,8
67B$67B$67B2$8.A30.A3.A11.A.A$8.A30.2A3.A9.A2.A$8.A30.A3.A11.A.A!

3c/656 SSS
x = 39, y = 8, rule = life_grey:T39,8
39B$39B$39B$22.A.A$21.2A.A$20.2A$21.2A14.2A$37.2A!

14c/762 SSS
x = 53, y = 8, rule = life_grey:T53,8
53B$53B$53B2$25.A24.2A$24.2A23.A2.A$25.A24.2A!

18c/805 SSS
x = 41, y = 8, rule = life_grey:T41,8
41B$41B$41B2$16.A3.A$2.3A9.2A5.2A$16.A3.A!

(2 or 44)c/909 SSS
x = 46, y = 8, rule = life_grey:T46,8
46B$46B$46B$14.A22.2A$13.A5.2A16.2A$13.A4.A2.A$13.A5.2A16.2A$14.A22.
2A!

13c/925 SSS
x = 48, y = 8, rule = life_grey:T48,8
48B$48B$48B2$16.A.A11.3A$15.A2.A11.A.A$16.A.A11.3A!

9c/1203 SSS
x = 65, y = 8, rule = life_grey:T65,8
65B$65B$65B2$10.2A5.A3.A$9.A2.A2.2A5.2A25.3A$10.2A5.A3.A!

20c/1607 SSS
x = 83, y = 8, rule = life_grey:T83,8
83B$83B$83B$8.A13.A$7.A.A11.A.A18.2A$6.A3.A9.A3.4A13.A2.A$7.A.A11.A.A
18.2A$8.A13.A!


SS's:
16c/94 SS
x = 34, y = 8, rule = life_grey:T34,8
34B$34B$34B2$20.A5.2A3.2A$18.2A.2A2.A2.A2.2A$20.A5.2A!

LWSS,MWSS,HWSS:
x = 35, y = 8, rule = life_grey:T35,8
35B$35B$35B$16.2A$15.4A$15.2A.2A$17.2A!


105c/200 SSS,SOS
x = 210, y = 8, rule = life_grey:T210,8
210B$210B$210B2$69.3A67.3A$69.A.A67.A.A$69.3A67.3A!
User avatar
PHPBB12345
 
Posts: 560
Joined: August 5th, 2015, 11:55 pm

Re: Thread For Your Unrecognised CA

Postby shouldsee » May 14th, 2016, 10:59 am

PHPBB12345 wrote:
105c/200 SSS,SOS
x = 210, y = 8, rule = life_grey:T210,8
210B$210B$210B2$69.3A67.3A$69.A.A67.A.A$69.3A67.3A!


Great we have one more now.

But could you please trim back the quote box to exclude the previous list so that this long thing is not repeated. Many thanks
shouldsee
 
Posts: 406
Joined: April 8th, 2016, 8:29 am

PreviousNext

Return to Other Cellular Automata

Who is online

Users browsing this forum: No registered users and 2 guests