Page 48 of 51

Re: Thread For Your Unrecognised CA

PostPosted: November 20th, 2018, 8:00 am
by Saka
I have recently made the following rule:
@RULE LineChaos
********************************
**** COMPILED FROM NUTSHELL ****
****         v0.4.4         ****
********************************
#exp
#1: Wire
#2: Forward
#3: Backward
@TABLE
neighborhood: Moore
symmetries: none
n_states: 4

var any.0 = {0,1,2,3}
var any.1 = any.0
var any.2 = any.0
var any.3 = any.0
var any.4 = any.0
var any.5 = any.0
var any.6 = any.0
var any.7 = any.0
var s.0 = {2,3}

3, any.0, any.1, 2, any.2, any.3, any.4, 2, any.5, 0
2, any.0, any.1, 3, any.2, any.3, any.4, 3, any.5, 0
3, any.0, any.1, 2, any.2, any.3, any.4, any.5, any.6, 2
3, any.0, any.1, any.2, any.3, any.4, any.5, 2, any.6, 2
2, any.0, any.1, 3, any.2, any.3, any.4, any.5, any.6, 3
2, any.0, any.1, any.2, any.3, any.4, any.5, 3, any.6, 3
0, any.0, any.1, 2, any.2, any.3, any.4, 3, any.5, 0
0, any.0, any.1, 3, any.2, any.3, any.4, 2, any.5, 0
0, any.0, any.1, s.0, any.2, 1, any.3, any.4, any.5, s.0
0, any.0, any.1, any.2, any.3, 1, any.4, s.0, any.5, s.0
s.0, any.0, any.1, any.2, any.3, any.4, any.5, any.6, any.7, 0
1, 2, any.0, 1, any.1, 0, any.2, 0, any.3, 0
0, any.0, any.1, any.2, any.3, any.4, any.5, 1, 2, 1
0, any.0, 3, 1, any.1, 0, any.2, 0, any.3, 1
1, any.0, any.1, 0, any.2, any.3, any.4, 1, 3, 0

State 2 adds state 1 to the right and deletes the leftmost state 1 cell and state 3 does the opposite, with a small "advantage" which I cant quite remember nor describe, but it makes for some very entertaining patterns.
Examples:
105 Gens
x = 20, y = 2, rule = LineChaos
C.BC.B2CB2.C2.B2.2B$20A!

107 Gens
x = 32, y = 2, rule = LineChaos
2.B4.C3.B2.B2.CB5.C4.B$32A!

115 Gens
x = 20, y = 2, rule = LineChaos
2B3.2BC.C4.BCB2.B$20A!

161 Gens
x = 21, y = 2, rule = LineChaos
5.C.B2.C.BC2.B2.C$21A!

275 Gens
x = 81, y = 2, rule = LineChaos
2C2B3C.4B.B4C.B3C3.B3.3C2.B3.C.3BC2.3B2.C.CB2.B.2B.B.2C.B3.CB2.BCB$
81A!

My challenge is: Find the longest lived pattern that stabilizes into only still lives withing a 20x2 bounding box, longest known is 115 gens above.

Re: Thread For Your Unrecognised CA

PostPosted: November 20th, 2018, 12:28 pm
by Senso
Saka wrote:My challenge is: Find the longest lived pattern that stabilizes into only still lives withing a 20x2 bounding box, longest known is 115 gens above.


145 gens:
x = 20, y = 2, rule = LineChaos
.C3BC2.3B.C.3B2CB$20A!


Bonus comedy lol:
x = 20, y = 2, rule = LineChaos
2BC2BC2BC2BC2BC2BC2B$20A!


EDIT - stretcher on both sides:
x = 20, y = 2, rule = LineChaos
B2C.C3BC2BC3BC2B.B$20A!

Re: Thread For Your Unrecognised CA

PostPosted: November 20th, 2018, 1:32 pm
by Rhombic
x = 15, y = 4, rule = B3-n/S2-i34qw
2b2o7b3o$b2obo5bo3bo$3obo5bobobo$o2bo6bob2o!

The p6 pipsquirter reflects a T-ship in two ways:
- just a normal reflection
- in the most unique way: it reflects it, then pulls it back and finally reflects it off.
- another of the weird push-pull-reflect.
x = 45, y = 17, rule = B3-n/S2-i34qw
39bo$4b3o15bo$21b3o14bobo$4bobo14b3o15bo$5bo33bo8$2ob2ob2ob2o6b2ob2ob
2ob2o6b2ob2ob2ob2o$ob2obob2obo6bob2obob2obo6bob2obob2obo$5bo16bo16bo$
3b2ob2o12b2ob2o12b2ob2o$3b2ob2o12b2ob2o12b2ob2o!

p8 sparker with interactions
x = 23, y = 23, rule = B3-n/S2-i34qw
8bo$7bo$8b3o$8b3o7$2b2obobob2o$2bo2bobo2bo$2o4bo4b2o6bo$o11bo6b2obo$
20bobo$2o9b2o8bo$2bo7bo$2o9b2o2$o11bo$2o4bo4b2o$2bo2bobo2bo$2b2obobob
2o!

Re: Thread For Your Unrecognised CA

PostPosted: November 20th, 2018, 2:32 pm
by Senso
Saka wrote:I have recently made the following rule:
@RULE LineChaos



I meant to toy with the randfill Golly function to work with special CAs where you don't really want full randomness inside the selection.

So here's a small script that generates random LineChaos 20x2 patterns, always keeping the bottom row as a full row of State 1 cells.

import golly as g
import random
random.seed()

def CArandfill():
    endstr = 'x = 20, y = 2, rule = LineChaos\n'
    for i in range(0,20):
        endstr += random.choice(['.','B','C'])
    endstr += '$20A!'
    g.setclipstr(endstr)

CArandfill()

Re: Thread For Your Unrecognised CA

PostPosted: November 21st, 2018, 6:40 am
by Saka
Holy heck
x = 13, y = 25, rule = PetriDish
.D3CD$2.C.C.2C$D2C.C.C$.C.C3.C$D2C$.D7C$D.8D$.D$2.5CD$.DC3.C.D3CD$2.
2C.3C.C.C$.DC4.3C.CD$2.2C2.C.C3D$.DC4.2C.D.D$2.6C2D$.DC2.C2D.D$2.C2.C
2.D$.3D4C$4.C2.4C$3.DC.C$4.DC$3.D.2C$4.2C$.4C.C$5.C!

Rake
x = 12, y = 18, rule = PetriDish
2E$BCACE$EC.CB$BC.C2E$EBC4A$FEC$.BCE3CACE$.E4BC.CB$.F3.ECECE$5.2BE2B$
4.7E$3.4A.4A$6.A.A$5.2A.2A$6.A.A$5.AC.CA$6.CBC$5.ACECA!

Weirder rake
x = 21, y = 22, rule = PetriDish
17.2CD$12.2C4.C$7.D3CDC.5CD$8.C.C.2C.C3D$7.DC.2CDC.C3.D$8.DC.C.4D$7.D
.C.2C.D$8.2DC.2CD5C$10.C2.CDC3.CD$6.5C2.C.C.C.C$13.C.C2.C2D$5.5C3.C.C
2.C$2.2C4DC4.C.C.C2D$3.C4.3C2.CDC.C$2.6CDC.3C.3CD$7.C.3CD$.5C.C.3D6.D
$9D4.D3CD$12.2D3.2D$12.2D2C.D$15.4D$14.D!

3 way
x = 16, y = 16, rule = PetriDish
4.2C$5.CD$4.2C$5.5C$4.C4.CD2C$8.2C.C$3.3C.C.4C$2.5D2C.C2.C.C$2C5.C2.
4CDC$.4C2DC2.C3D.C$C3.C.2D3CD2.2C$3.4C4.D3C$6.4C.DC2.C$9.CD.2C$8.2C2D
C$12.2C!

Re: Thread For Your Unrecognised CA

PostPosted: November 21st, 2018, 7:36 am
by Senso
Saka wrote:Holy heck
x = 13, y = 25, rule = PetriDish
.D3CD$2.C.C.2C$D2C.C.C$.C.C3.C$D2C$.D7C$D.8D$.D$2.5CD$.DC3.C.D3CD$2.
2C.3C.C.C$.DC4.3C.CD$2.2C2.C.C3D$.DC4.2C.D.D$2.6C2D$.DC2.C2D.D$2.C2.C
2.D$.3D4C$4.C2.4C$3.DC.C$4.DC$3.D.2C$4.2C$.4C.C$5.C!



This one obviously has to be named "Seahorse".

Re: Thread For Your Unrecognised CA

PostPosted: November 21st, 2018, 4:24 pm
by cvojan
Adjustable rake:
x = 61, y = 62, rule = PetriDish
60.D$59.CD$51.C.C.C.C.CD$51.6C2.CD$52.D.D4.CD$54.3C2.C$54.C.C4$51.2C$
52.CD$49.4C$50.C3D$47.4C$48.C3D$45.4C$46.C3D$43.4C$44.C3D$41.4C$42.C
3D$39.4C$40.C3D$37.4C$38.C3D$35.4C$36.C3D$33.4C$34.C3D$31.4C$32.C3D$
29.4C$30.C3D$27.4C$28.C3D$25.4C$26.C3D$23.4C$24.C3D$21.4C$22.C3D$19.
4C$20.C3D$17.4C$18.C3D$15.4C$16.C3D$13.4C$14.C3D$11.4C$12.C3D$9.4C$
10.C3D$7.4C$C.C.C3.C3D$4C.4C$.D4.C3D$4C2.C$C2.3CD$3CD.D.D$.D.D!

Re: Thread For Your Unrecognised CA

PostPosted: November 23rd, 2018, 1:24 am
by toroidalet
Saka wrote:My challenge is: Find the longest lived pattern that stabilizes into only still lives withing a 20x2 bounding box, longest known is 115 gens above.

889M:
x = 20, y = 2, rule = LineChaos
.C.B10.BC3.B$5A3.12A!

Chaotic growth patterns:
x = 20, y = 12, rule = LineChaos
.C2.2C.B2.B$11A9$.C.B10.C2.2B$5A6.9A!

c/5 (rightward) fuse of state 2 wick:
x = 13, y = 2, rule = LineChaos
.BCB2.CBC.B$12A!

Finally, the smallest wickstretcher predecessor:
x = 5, y = 2, rule = LineChaos
.C.B$5A!

Re: Thread For Your Unrecognised CA

PostPosted: November 28th, 2018, 6:19 pm
by AforAmpere
Probably one of my favorite rules that I have created, this rule acts as a printer, that can "print" frozen drawings of Life patterns. Rule:
@RULE PrintAndReleaseLife
#

@TABLE

n_states: 24
neighborhood:Moore
symmetries:rotate4reflect

var a={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var j={a}

var k={2,20,21}
var l={k}
var m={k}
var t={k}
var n={0,1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,22,23}
var o={n}
var p={n}
var q={n}
var r={n}
var s={n}

#1 Input
#2 Life
#3 Caps
#4 Block
#5 Push cell
#6 Detector cell
#7 Back of Signals
#8 Detector turn aid

k,l,m,n,o,p,q,r,s,k
k,n,l,o,m,p,q,r,s,k
k,l,n,m,o,p,q,r,s,k
k,l,n,o,m,p,q,r,s,k
k,l,n,o,p,m,q,r,s,k
k,n,l,o,p,q,m,r,s,k
k,n,l,m,t,o,p,q,r,k
k,l,m,t,n,o,p,q,r,k
k,n,l,o,m,p,t,q,r,k
k,l,n,m,o,t,p,q,r,k
k,l,n,m,o,p,t,q,r,k
k,l,m,n,t,o,p,q,r,k
k,n,l,m,o,t,p,q,r,k
k,l,m,n,o,t,p,q,r,k
k,l,m,n,o,p,t,q,r,k
k,l,n,o,m,p,t,q,r,k
20,a,b,c,d,e,f,g,h,1
21,a,b,c,d,e,f,g,h,3

0,0,2,2,2,0,0,0,0,2
0,2,2,2,0,0,0,0,0,2
0,0,2,0,2,0,2,0,0,2
0,2,0,2,0,2,0,0,0,2
0,2,0,2,0,0,2,0,0,2
0,2,2,0,2,0,0,0,0,2
0,0,2,2,0,2,0,0,0,2
0,2,2,0,0,2,0,0,0,2
0,2,2,0,0,0,2,0,0,2
0,2,0,0,2,0,2,0,0,2
2,2,2,0,0,0,0,0,0,2
2,0,2,0,2,0,0,0,0,2
2,2,0,2,0,0,0,0,0,2
2,2,0,0,2,0,0,0,0,2
2,2,0,0,0,2,0,0,0,2
2,0,2,0,0,0,2,0,0,2
2,0,2,2,2,0,0,0,0,2
2,2,2,2,0,0,0,0,0,2
2,0,2,0,2,0,2,0,0,2
2,2,0,2,0,2,0,0,0,2
2,2,0,2,0,0,2,0,0,2
2,2,2,0,2,0,0,0,0,2
2,0,2,2,0,2,0,0,0,2
2,2,2,0,0,2,0,0,0,2
2,2,2,0,0,0,2,0,0,2
2,2,0,0,2,0,2,0,0,2
2,a,b,c,d,e,f,g,h,0

0,5,0,0,0,0,0,0,0,5
5,4,4,0,0,0,0,7,0,0
5,a,b,c,d,e,f,g,h,7
7,a,b,c,d,e,f,g,h,0
0,5,0,0,4,0,0,0,0,5
0,4,5,0,0,0,0,0,0,4
0,5,0,4,0,0,0,0,0,5
4,5,7,0,0,0,0,0,0,0
0,4,4,0,0,0,0,5,0,5
0,4,4,5,0,0,0,0,0,5
5,4,4,0,0,0,0,7,0,0
0,5,4,4,0,0,4,0,0,5
0,5,4,4,4,0,4,0,0,5
0,5,4,4,0,0,0,4,0,5
0,5,0,4,4,0,4,0,0,5
0,5,4,0,0,0,0,0,4,5
0,6,0,0,0,0,0,0,0,6
0,6,0,0,4,0,0,0,0,6
0,4,4,0,0,0,0,6,0,6
0,6,4,4,4,0,4,0,0,6
6,4,4,0,0,0,0,7,0,0
0,6,4,4,0,0,0,4,0,6
0,6,0,4,4,0,4,0,0,6
0,6,4,0,0,0,0,0,4,6
0,6,0,4,0,0,0,0,0,8
0,8,7,0,0,0,0,0,0,6
0,4,4,6,0,0,0,0,0,6
8,a,b,c,d,e,f,g,h,7
6,a,b,c,d,e,f,g,h,7
0,6,a,b,1,c,d,e,f,6
0,6,a,b,c,1,d,e,f,6
#0,6,3,a,b,c,d,e,f,6
#0,6,a,1,b,c,d,e,f,6
0,6,a,b,3,c,d,e,f,6
0,6,a,b,c,3,d,e,f,6

0,k,l,m,n,o,p,q,r,2
3,k,l,m,n,o,p,q,r,21
1,k,l,m,n,o,p,q,r,20
0,n,k,l,m,o,p,q,r,2
3,n,k,l,m,o,p,q,r,21
1,n,k,l,m,o,p,q,r,20
0,n,k,r,l,o,m,p,q,2
3,n,k,r,l,o,m,p,q,21
1,n,k,r,l,o,m,p,q,20
0,k,n,l,o,m,p,q,r,2
3,k,n,l,o,m,p,q,r,21
1,k,n,l,o,m,p,q,r,20
0,k,n,l,o,p,m,q,r,2
3,k,n,l,o,p,m,q,r,21
1,k,n,l,o,p,m,q,r,20
0,k,l,n,m,o,p,q,r,2
3,k,l,n,m,o,p,q,r,21
1,k,l,n,m,o,p,q,r,20
0,n,k,l,o,m,p,q,r,2
3,n,k,l,o,m,p,q,r,21
1,n,k,l,o,m,p,q,r,20
0,k,l,n,o,m,p,q,r,2
3,k,l,n,o,m,p,q,r,21
1,k,l,n,o,m,p,q,r,20
0,k,l,n,o,p,m,q,r,2
3,k,l,n,o,p,m,q,r,21
1,k,l,n,o,p,m,q,r,20
0,k,n,o,l,p,m,q,r,2
3,k,n,o,l,p,m,q,r,21
1,k,n,o,l,p,m,q,r,20




1,19,a,b,c,d,e,f,g,18
1,a,19,b,c,d,e,f,g,18
3,13,a,b,c,d,e,f,g,12
3,a,13,b,c,d,e,f,g,12
1,18,a,b,c,d,e,f,g,17
1,a,18,b,c,d,e,f,g,17
3,12,a,b,c,d,e,f,g,11
3,a,12,b,c,d,e,f,g,11
1,17,a,b,c,d,e,f,g,16
1,a,17,b,c,d,e,f,g,16
3,11,a,b,c,d,e,f,g,10
3,a,11,b,c,d,e,f,g,10
1,16,a,b,c,d,e,f,g,15
1,a,16,b,c,d,e,f,g,15
3,10,a,b,c,d,e,f,g,9
3,a,10,b,c,d,e,f,g,9
1,15,a,b,c,d,e,f,g,14
1,a,15,b,c,d,e,f,g,14
#3,9,a,b,c,d,e,f,g,8
#3,a,9,b,c,d,e,f,g,8
19,a,b,c,d,e,f,g,h,18
18,a,b,c,d,e,f,g,h,17
17,a,b,c,d,e,f,g,h,16
16,a,b,c,d,e,f,g,h,15
15,a,b,c,d,e,f,g,h,14
14,a,b,c,d,e,f,g,h,20
13,a,b,c,d,e,f,g,h,12
12,a,b,c,d,e,f,g,h,11
11,a,b,c,d,e,f,g,h,10
10,a,b,c,d,e,f,g,h,9
9,a,b,c,d,e,f,g,h,3
3,19,a,b,c,d,e,f,g,12
3,a,19,b,c,d,e,f,g,12
1,13,a,b,c,d,e,f,g,18
1,a,13,b,c,d,e,f,g,18
3,18,a,b,c,d,e,f,g,11
3,a,18,b,c,d,e,f,g,11
1,12,a,b,c,d,e,f,g,17
1,a,12,b,c,d,e,f,g,17
3,17,a,b,c,d,e,f,g,10
3,a,17,b,c,d,e,f,g,10
1,11,a,b,c,d,e,f,g,16
1,a,11,b,c,d,e,f,g,16
3,16,a,b,c,d,e,f,g,9
3,a,16,b,c,d,e,f,g,9
1,10,a,b,c,d,e,f,g,15
1,a,10,b,c,d,e,f,g,15
#3,15,a,b,c,d,e,f,g,8
#3,a,15,b,c,d,e,f,g,8
1,9,a,b,c,d,e,f,g,14
1,a,9,b,c,d,e,f,g,14
1,6,a,b,c,d,e,f,g,19
1,a,6,b,c,d,e,f,g,19
3,6,a,b,c,d,e,f,g,13
3,a,6,b,c,d,e,f,g,13


@COLORS

1 20 20 255
2 255 255 255
3 150 150 150
5 0 255 0
6 150 0 150
7 255 255 0


The printing works like this:
x = 3, y = 9, rule = PrintAndReleaseLife
3A$2CA$CAC5$.F$.G!

A directional purple photon is shot at a Life pattern, with state 1 being the on state to be printed, and state 3 being off. When the purple photon hits the drawn frozen pattern, it converts it into a Life pattern, but leaves the drawing behind for further use. Using state 4 cells as reflectors and duplicators, we can create various spaceship guns, such as:
x = 87, y = 17, rule = PrintAndReleaseLife
.D83.D$15.FG6.D39.D6.GF2$.G83.G$.F83.F$35.7C2ACA5C$35.4C2ACAC2AC3AC$
35.C4A2C2A6CA$35.A4CA3CA3C2AC$35.C2A13C$42.2C$22.F41.F$20.2DG2D37.2DG
2D$23.D39.D$D6.GF69.FG6.D$21.3D15.D7.D15.3D$20.D3.D37.D3.D!

x = 74, y = 44, rule = PrintAndReleaseLife
69.D2.D$45.D24.2D$46.D$46.D$45.D5$47.F$47.G3$45.2D.2D23.D$38.D7.D25.D
$41.FG29.D$46.3D24.D$45.D3.D9$69.D2.D$7.D37.D24.2D$6.D21.A17.D$6.D20.
A.A9.D6.D$7.D18.A2.A15.D$27.2A2$23.A5.A$22.A.A3.A$21.A2.A3.2A$21.A2C
2A3.A3$3.2D.2D37.2D.2D23.D$6.D39.D25.D$GF49.FG19.D$4.3D15.D7.D15.3D
24.D$3.D3.D37.D3.D!

The green photons are used to push red cells, and can act as slide guns:
x = 37, y = 18, rule = PrintAndReleaseLife
32.D2.D$8.D24.2D$9.D$9.D$8.D9$8.2D.2D23.D$9.D25.D$14.FG5.EG12.D$D8.3D
24.D$8.D3.D!


The print size for each purple photon is only 13x6, unless you modify the rule to add more states to push the converting timer signals. Still, many spaceships and other things can be printed at very high rates.

Re: Thread For Your Unrecognised CA

PostPosted: November 29th, 2018, 3:33 am
by Saka
Very nice rule!
Here's a minimal period copperhead gun
x = 104, y = 74, rule = PrintAndReleaseLife
.D100.D$43.D16.D28$50.A2.A$50.A2.A$41.D.D5.A4.A5.D.D$43.D5.A4.A5.D$D
34.GF12.A4.A12.FG34.D$41.3D5.A4.A5.3D$48.3A2.3A$48.A.4A.A$49.A4.A2$
41.3D$D34.GF14.2A$43.D7.2A$41.D.D30$43.D$.D!

Here's a barrel-switching gun
x = 79, y = 20, rule = PrintAndReleaseLife
.D2.D69.D2.D$2.2D23.D23.D23.2D$26.D25.D5.GE4.GE4.GF$26.D25.D$27.D23.D
3$36.3A.3A$36.A5.A$37.A3.A6$D22.2D.2D23.2D.2D22.D$.D24.D25.D24.D$.D5.
GE4.GE4.GF56.D$D23.3D11.D13.3D23.D$23.D3.D23.D3.D!

Edt.:
Destruction
x = 7, y = 6, rule = PrintAndReleaseLife
GE$4.D3$6.F$6.G!

Re: Thread For Your Unrecognised CA

PostPosted: November 30th, 2018, 7:24 pm
by cvojan
Adjustable slide gun
x = 171, y = 57, rule = PrintAndReleaseLife
2$119.3C2AC3A3C$119.C2A2C2A5C$119.A4CA4C2A$119.A4CA4C2A$119.C2A2C2A5C
$119.3C2AC3A3C2$106.3C2AC3A3C14.3C2AC3A3C$106.C2A2C2A5C14.C2A2C2A5C$
106.A4CA4C2A14.A4CA4C2A$106.A4CA4C2A14.A4CA4C2A$106.C2A2C2A5C14.C2A2C
2A5C$106.3C2AC3A3C14.3C2AC3A3C2$93.3C2AC3A3C40.3C2AC3A3C$93.C2A2C2A5C
40.C2A2C2A5C$93.A4CA4C2A40.A4CA4C2A$93.A4CA4C2A40.A4CA4C2A$93.C2A2C2A
5C40.C2A2C2A5C$93.3C2AC3A3C40.3C2AC3A3C2$80.3C2AC3A3C66.3C2AC3A3C$80.
C2A2C2A5C66.C2A2C2A5C$80.A4CA4C2A66.A4CA4C2A$80.A4CA4C2A66.A4CA4C2A$
80.C2A2C2A5C66.C2A2C2A5C$80.3C2AC3A3C66.3C2AC3A3C3$3.D2.D$4.2D70.D$4.
G4.EG64.D$4.E70.D$2.D5.D2.D64.D$3.D5.2D$3.D2.GE$2.D$8.D.G61.2D.2D$9.D
E64.D$9.D4.GE4.GE4.GE4.GE4.GE4.GE4.GE4.GE4.GE4.GF$8.D64.3D7.D$72.D3.D
$8.D64.3D$9.DGE4.GE4.GE4.GE4.GE4.GE4.GE4.GE4.GE4.GE4.GE4.GF$9.D65.D
11.D$8.D63.2DG2D$2.D71.F$3.D4.GE$3.DE4.2D$2.D.G3.D2.D64.D$75.D$75.D$
4.2D70.D$3.D2.D!

EDIT: Sir Robin print:
x = 46, y = 83, rule = PrintAndReleaseLife
33.A$31.2AC6.FG$31.3C$23.GF6.CAC$31.C2A$31.2AC2A$30.2A3C3A$29.3A4CAC
6.FG$29.3A4CAC$21.GF6.4C2A3C$29.2CACA2C2A$29.2ACA2CA2C$28.A2C3ACACA6.
FG$20.GF6.3C2A2CACA$28.3A5CA$28.C2A5C$28.4C3AC6.FG$27.4CA2C2A$16.GF7.
10CA$24.7CACAC$24.3A4CA3C6.FG$24.3C4AC2A$15.GF6.A4C4A$24.3CA4C$24.CA
6C$15.GF7.CAC5A6.FG$25.3AC3A$26.A4CA$18.GF6.5AC6.FG$26.CA4C$26.2C2ACA
$26.2CA3C$18.GF6.3C2A3CAC$26.C4A2CA2CA6.FG$26.2A3CA3C2A$17.GF6.A6CAC
3A$26.A3C2A4C$26.A3CA3CAC$26.CACA3CACA6.FG$18.GF6.3A6CA$26.6C2A$26.2C
5A$25.2C2A4C6.FG$26.CA2C2AC$12.GF12.A6C$20.AC4A4C2AC$20.4ACA4C2AC6.FG
$9.GF6.CA4C2AC3A4C$17.A3CA2CA4C$18.AC3ACA4C$19.C3A2CA3C6.FG$11.GF6.4C
2A4C$19.3A7C$19.A5C5A$18.A3CA6CA6.FG$10.GF6.A9CA$18.10C$18.A6C3A6.FG$
10.GF6.3C2ACACA$18.ACACA3CA$17.3A6CA$9.GF6.A2CACACAC$17.ACA2C2A2C6.FG
$17.2A3CA2CA$4.GF11.C2AC3ACA$13.4C2A6CA6.FG$.GF8.9CAC2A$9.2A7CA4CA$9.
4C3A2C2A2CA$8.A3CA10C6.FG$7.A9C2A4C$8.C4A4C2A3CA$GF6.A4CA6C3A6.FG$9.A
C2A4C4A$9.2A6C4A$11.2C3A$11.A3CA$11.A2CA$3.GF6.2AC3$20.F$20.G!

Re: Thread For Your Unrecognised CA

PostPosted: December 1st, 2018, 1:33 am
by danny
I accidentally a SMOS while golfing:
x = 3, y = 6, rule = B3-r5ck6a/S2-n34n5ace6c
b2o$2o$o$o$2o$b2o!

Re: Thread For Your Unrecognised CA

PostPosted: December 1st, 2018, 4:35 pm
by EvinZL
I wonder if anyone has noticed that p4 oscillators in B2/S0123 tend to be asymmetrical?

Re: Thread For Your Unrecognised CA

PostPosted: December 1st, 2018, 4:42 pm
by EvinZL
gmc_nxtman wrote:Miscellaneous rule: Snakeskin
B1/S134567
Simple patterns, even like a single dot, explode in all directions and form an interesting "snakeskin" like texture.
Example:

x = 1, y = 1 rule = b1/s134567
o$!


By the way, what would be the inverse of this rule?


This reminds me of a rule B15/S24:
x=1, y=1, rule=B15/S24

o!

Re: Thread For Your Unrecognised CA

PostPosted: December 1st, 2018, 5:24 pm
by EvinZL
Sparkies:
x=1, y=1, rule=B147/S05
o!

x=3, y=3, rule=B147/S05
ooo$ooo$oob!

Nearly all patterns display tons of sparks.

Re: Thread For Your Unrecognised CA

PostPosted: December 1st, 2018, 10:06 pm
by danny
This pattern somehow shows off a fun catalyst and a HWSS predecessor:
x = 14, y = 6, rule = B35k/S2-n34n6c
bo8b3o$obo6bo3bo$bo7b2ob2o$4b2o$3bobo$3b2o!

Re: Thread For Your Unrecognised CA

PostPosted: December 2nd, 2018, 11:44 am
by EvinZL
B125/S01236 is nice.
x=1, y=1, rule=B125/S01236
o!

Re: Thread For Your Unrecognised CA

PostPosted: December 2nd, 2018, 12:26 pm
by wwei23
EvinZL wrote:B125/S01236 is nice.
x=1, y=1, rule=B125/S01236
o!

Simple 90/90 replicator:
x=2, y=2, rule=B125/S01236
2o$2o!

Re: Thread For Your Unrecognised CA

PostPosted: December 3rd, 2018, 8:52 pm
by Hdjensofjfnen
How many barrels does this have?
x = 4, y = 3, rule = B2en3-an/S01c23-a
b2o$o2bo$b3o!

Re: Thread For Your Unrecognised CA

PostPosted: December 3rd, 2018, 8:55 pm
by EvinZL
Hdjensofjfnen wrote:How many barrels does this have?
x = 4, y = 3, rule = B2en3-an/S01c23-a
b2o$o2bo$b3o!


It shoots gliders along 12 lanes.

Re: Thread For Your Unrecognised CA

PostPosted: December 9th, 2018, 8:45 pm
by EvinZL
B23/S23 has some nice patterns:
  • block:
    x=2, y=2, rule=B23/S23
    2o$2o!
  • length 100:
    x=100, y=1, rule=B23/S23
    100o!
  • using python to generate random lines:
    import random
    def randlines():
        length = random.randint(1, 200)
        fss = 'x={}, y=1, rule=B23/S23\n{}o!'
        return fss.format(str(length), str(length))

Re: Thread For Your Unrecognised CA

PostPosted: December 10th, 2018, 2:53 am
by danny
Here's a rule that makes lines of pseudorandom 'DNA': Blocks and bees, with the occasional pond:
x = 50, y = 4, rule = B3-q4aey5acnr6ack78/S2-ae3ace4aiknr5ceqy6-c78
13bo$2o2b2o7b2o33b2o$2o2b2o7b2o33b2o$13bo!


Rarer, it makes puffers, which can be viewed along with the common c/4 diagonal photon here

Re: Thread For Your Unrecognised CA

PostPosted: December 10th, 2018, 9:53 am
by jimmyChen2013
From the recent Numberphile video (if you don't know what that is, check it out,its a great Youtube channel)
talking about the toothpick sequence
so here's a rule for a visual:
@RULE Toothpick


@TABLE
neighborhood:vonNeumann
n_states:6
symmetries:none

var ver = {1,3,5}
var hor = {2,4}
var a = {0,1,2,3,4,5}

var nv = {0,2,4}
var nv2 = {0,2,4}
var nh = {0,1,3,5}
var nh2 = {0,1,3,5}


0,nv,nh,ver,nh2,2
0,ver,nh,nv,nh2,4
0,nv,hor,nv2,nh,3
0,nv,nh,nv2,hor,5

@COLORS
0 0 0 0
1 80 80 80
2 200 200 200
3 220 220 80
4 220 80 220
5 80 220 220

@ICONS

XPM
/* width height num_colors chars_per_pixel */
"31 155 2 1"
/* colors */
". c #000000"
"B c #FFFFFF"
/* icon for state 1 */
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
/* icon for state 2 */
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
/* icon for state 3 */
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBBBBBBBBBBBBBBBB"
"..............BBBBBBBBBBBBBBBBB"
"..............BBBBBBBBBBBBBBBBB"
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
/* icon for state 4 */
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
/* icon for state 5 */
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"BBBBBBBBBBBBBBBBB.............."
"BBBBBBBBBBBBBBBBB.............."
"BBBBBBBBBBBBBBBBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."

Re: Thread For Your Unrecognised CA

PostPosted: December 10th, 2018, 10:47 am
by Gamedziner
jimmyChen2013 wrote:From the recent Numberphile video (if you don't know what that is, check it out,its a great Youtube channel)
talking about the toothpick sequence
so here's a rule for a visual:
@RULE Toothpick


@TABLE
neighborhood:vonNeumann
n_states:6
symmetries:none

var ver = {1,3,5}
var hor = {2,4}
var a = {0,1,2,3,4,5}

var nv = {0,2,4}
var nv2 = {0,2,4}
var nh = {0,1,3,5}
var nh2 = {0,1,3,5}


0,nv,nh,ver,nh2,2
0,ver,nh,nv,nh2,4
0,nv,hor,nv2,nh,3
0,nv,nh,nv2,hor,5

@COLORS
0 0 0 0
1 80 80 80
2 200 200 200
3 220 220 80
4 220 80 220
5 80 220 220

@ICONS

XPM
/* width height num_colors chars_per_pixel */
"31 155 2 1"
/* colors */
". c #000000"
"B c #FFFFFF"
/* icon for state 1 */
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
/* icon for state 2 */
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
/* icon for state 3 */
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBBBBBBBBBBBBBBBB"
"..............BBBBBBBBBBBBBBBBB"
"..............BBBBBBBBBBBBBBBBB"
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
/* icon for state 4 */
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
"..............................."
/* icon for state 5 */
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"BBBBBBBBBBBBBBBBB.............."
"BBBBBBBBBBBBBBBBB.............."
"BBBBBBBBBBBBBBBBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."
"..............BBB.............."

The first toothpick sequence can be described quite well with the following rule:
x = 1, y =3, rule=B12i4n/S012345678
o$o$o!

Re: Thread For Your Unrecognised CA

PostPosted: December 10th, 2018, 7:25 pm
by jimmyChen2013
Gamedziner wrote:
jimmyChen2013 wrote:From the recent Numberphile video (if you don't know what that is, check it out,its a great Youtube channel)
talking about the toothpick sequence
so here's a rule for a visual:
@RULE Toothpick
...

The first toothpick sequence can be described quite well with the following rule:
x = 1, y =3, rule=B12i4n/S012345678
o$o$o!


huh.
nice