ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Thread For Your Unrecognised CA

For discussion of other cellular automata.

Re: Thread For Your Unrecognised CA

Postby gameoflifeboy » March 16th, 2015, 3:54 pm

This reminds me of B35678/S34567, which I call "Cheerios" because if you run patterns long enough, they crystallize into copies of this pattern:
Code: Select all
#C [[ THUMBNAIL THEME 8 ]]
x = 8, y = 8, rule = B35678/S34567
$2b4o$b2o2b2o$bo4bo$bo4bo$b2o2b2o$2b4o!
User avatar
gameoflifeboy
 
Posts: 474
Joined: January 15th, 2015, 2:08 am

Re: Thread For Your Unrecognised CA

Postby Kiran » April 4th, 2015, 11:05 pm

Also B3/S258, try long 1 cell thick rows, some oscillate but many break up after a few cycles.
Kiran Linsuain
User avatar
Kiran
 
Posts: 284
Joined: March 4th, 2015, 6:48 pm

Re: Thread For Your Unrecognised CA

Postby Kazyan » April 19th, 2015, 3:56 am

Infinite growth exists in B34/S26, which is normally an implosive rule. gfind found a wickstretcher and matching fuse packaged into a series of c/3 spaceships; the next step was obvious.

x = 25, y = 7, rule = B34/S26
8b2o2b3o6b2o$bo5bobob2obo3b2o3bo$2o7bo6bo7bo$bobobob3o7bobob3o$bobobob
o13b2o$2o$bo!
Tanner Jacobi
User avatar
Kazyan
 
Posts: 843
Joined: February 6th, 2014, 11:02 pm

Re: Thread For Your Unrecognised CA

Postby Scorbie » April 19th, 2015, 6:30 am

Kazyan wrote:Infinite growth exists in B34/S26, which is normally an implosive rule.
Nice find, for a really stable rule with only one known natural still life and few oscs.


Kazyan wrote:gfind found a wickstretcher and matching fuse packaged into a series of c/3 spaceships;
I suspect this was what you found on gfind:
x = 28, y = 5, rule = B34/S26
11b2o2b3o6b2o$10bobob2obo3b2o3bo$o11bo6bo7bo$obobobobob3o7bobob3o$obob
obobobo13b2o!
Best wishes to you, Scorbie
User avatar
Scorbie
 
Posts: 1380
Joined: December 7th, 2013, 1:05 am

Re: Thread For Your Unrecognised CA

Postby gmc_nxtman » June 6th, 2015, 11:25 am

Here is a rule that I call InfectiousLife. It's basically a cross between immigration and LWOD, and the result is two "colonies" competing over "land claims" and when they intersect things get interesting.

Rule table:

@RULE InfectiousLife

@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0111000001
0112000001
0122000002
0222000002

@COLORS
0  48  48  48 (dark grey)
1 255   0 255 (purple)
2 255 255   0 (yellow)


Sample pattern:

x = 59, y = 54, rule = InfectiousLife
53.B$22.A$2B18.3A12$46.2B$46.B$46.B2$17.3B$19.B8$57.2A$19.2A23$31.2A$
32.A$32.A!


What I think to be the smallest starting seed that shows "competitive behavior":

x = 10, y = 7, rule = InfectiousLife
8.2A2$9.A4$2B!


I don't know if those 7 cells ever get touched:

x = 2, y = 5, rule = InfectiousLife
2B2$2A2$.A!


By the way, how do you use variables? I have a rule idea which is pretty cool, but would take forever to write using the current format.

Another rule I find interesting is "Star Trek":

0248/3

Surprisingly, it's actually not that explosive. It has a tiny c/6 glider and several oscillators:

#CXRLE Pos=-28,-118
#C    This is a stamp collection of patterns known for the rule StarTrek, or
#C B3/S0248, with cells being born with 3 neighbors, and surviving to the next
#C generation with 0, 2, 4, or 8 neighbors.
#C    It is not very big yet, unfortunately. It contains a few still lifes, categorized
#C as oscillators with period 1. The collection also showcases a tiny c/6 glider
#C known to me as the Segway. The patterns are sorted by period, and size.
#C That means that the first object will have the lowest period and population,
#C which is correspondingly 1. The smallest still life in this rule does have a population #C of 1 cell, and is known as the haplomino, monomino, or most commonly and most simply
#C dot. I have set up a list of names for these still lifes using my possibly mistaken
#C knowledge of the cis, trans, and ortho prefixes.
#C    All of these oscillators occur naturally, in asymmetric or symmetric soups.
#C Proof of this is at the catagolue census page, under B3/S0248 and symmetries
#C C1 and D4_+4.
#C    From top left to bottom right:
#C Period 1: dot, tub, pre-block on dot, z-pentomino, aircraft carrier,
#C beehive, loaf, winged z, two pre-blocks on dot, pond, mango, short table
#C on three dots, winged tub, mutated z, short tables, winged tub with arm
#C on dot, table weld tub with wing, long bar on dot, winged tub with z on dot,
#C baker’s boat, trident, leaking boat, curio on short table, odd bar,
#C viking, booth on four dots, pond on booth, mirrored booth, clown, sailfish,
#C saucer, deranged cap
#C Period 2: blinker, x, salt shaker, flip-flop, flip-flop 2, intertube,
#C pacman
#C Period 4: spinning P-pentomino, spinning R-pentomino, spinning glider,
#C n-bar 4, weeble wobble, octagon
#C Period 6: galaxy, segway
#C Period 8: n-bar 8
#C Enjoy the collection!
x = 69, y = 126, rule = B3/S0248
4bo$2bo$o$4bo15bo8bo5b2o8b2o6b2o$13bo5bobo5bo8bo6bo2bo5bo2bo$20bo6b2o
7b2o5b2o8b2o$4bo3$bo2bo2bo$28b2o18bo7bo$13bo5b2o7bo10b2o6bobo8b2o$12bo
bo5bo9bo7bo2bo5bo2bo5bobo$12bo2bo4b3o9bo5bo2bo6bobo7b2o$13b2o7bo8b2o6b
2o8bo6bo5$19b2o16bo2bobo5bo2bo$11bobo6bo7b2ob2o6bob2o5b4o9b2o$11b2obo
5b3o6bobo6b3o9bob2o5b6o$13bo8bo5b2ob2o7bo10bobo5bo4bo$13b2o7b2o38bo4$
22bo19bo$13bobo5bobo7b2ob2o5bobo13bo$10bobob2o6b4o6bobo7b4o6b2ob3o3b2o
2bo$13bo9bo2bo5b2obo7bo2bo6bobo6bo4bo$11b3o9bobo8bo8bo2bo5b2ob3o4b5obo
$11bo12bo9b2o8b2o11bo6b2obo3$37b2o$36bo2bo17b2o2b2o$22bobo2bobo6bo2bo
6bob2obo6bo2bo$10b2o2bo22b2o7b6o5bob2obo$11bo4bo6b6o28bob2obo$11b6o6bo
b2obo6b6o5b6o6bo2bo$13b2o20bob2obo5bob2obo5b2o2b2o4$24bo4bo9b2o$12bo2b
o7bobo2bobo7bo2bo$10b3o2b3o6b6o6b8o$11bob2obo8bo2bo6bo2bo2bo2bo$11bob
2obo8bo2bo6bo2bo2bo2bo$10b3o2b3o6b6o6b8o$12bo2bo7bobo2bobo7bo2bo$24bo
4bo9b2o6$3bo$bo3bo$56bo$6bo22bo8bo6bo9bo3b3o$13bo5bobo15bobo8bo7bobobo
$5bo7bo6bo6bobobo5b3o7b2o6b3o3bo$3bo9bo5bobo24b2o12bo$29bo8bo10bo$bo2b
o2bo3$17bo$15b2obo$15b3o$13bo2b2o$13bo$14b2o6$bo$54bo2b2o2bo$7bo29b2o$
bo35b2o7b2o8bo2bo$13b2o6bo6bobo6b2o5b4o6bo6bo$bo2bo2bo5b2o5b3o5b2o7b2o
9bo5bo6bo$13bo8bo6bo7b2o6b2o9bo2bo$37b2o7bo$7bo46bo2b2o2bo10$5bo$3bo3b
o2$2bo2$2bo10bo11bo$5bo7b2o10bo$2bo4bo15bo2bo$12b2o7b3obo$3bo3bo5bo11b
o$5bo7$5bo$3bo3bo2$2bo5bo$14b12o$3bo3bo6b12o$14b12o$2bo5bo5b12o2$3bo3b
o$5bo!


EDIT: Found that a c/6 glider can eat another, head-on:

x = 13, y = 9, rule = B3/S0248
9bo$9bo$7bo3bo$9bo2bo$4bo4b3o$4bo$2bo2bo$3obo$4bo!
Last edited by gmc_nxtman on July 3rd, 2015, 8:43 pm, edited 7 times in total.
User avatar
gmc_nxtman
 
Posts: 1147
Joined: May 26th, 2015, 7:20 pm

Re: Thread For Your Unrecognised CA

Postby gmc_nxtman » June 8th, 2015, 11:47 am

Miscellaneous rule: Snakeskin
B1/S134567
Simple patterns, even like a single dot, explode in all directions and form an interesting "snakeskin" like texture.
Example:

x = 1, y = 1 rule = b1/s134567
o$!


By the way, what would be the inverse of this rule?
User avatar
gmc_nxtman
 
Posts: 1147
Joined: May 26th, 2015, 7:20 pm

Re: Thread For Your Unrecognised CA

Postby wildmyron » June 8th, 2015, 10:48 pm

gmc_nxtman wrote:By the way, how do you use variables? I have a rule idea which is pretty cool, but would take forever to write using the current format.

The rule formats are documented at Golly Help -> File Formats and also elsewhere on the web - the Rule Table Repository in particular. The best thing is to look at other rules to see how variables are used. More importantly in terms of table compactness is using the symmetry options to good effect. You specified permute - which is applicable to all semi-totalistic rules - but then you've duplicated table entries to manually account for some of the possible orientations. With permute, the following set of 4 rule table entries will have the same effect:

@RULE InfectiousLife

@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0111000001
0112000001
0122000002
0222000002

@COLORS
0  48  48  48 (dark grey)
1 255   0 255 (purple)
2 255 255   0 (yellow)


Edited to add:

With a variable you can reduce the number of entries to two. For example:
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute
var a = {1,2}

0,1,1,a,0,0,0,0,0,1
0,2,2,a,0,0,0,0,0,2

In this instance it's probably unnecessary. There are always a multitude of ways you can define a rule with variables. I think the important thing is to try to maintain readability rather than optimising compactness.

NOTE: the same variable appearing in multiple positions in one line has to have the same value in each position. This is why you will frequently come across rules with one variable defined as a set of values and a group of related variables being equal to the defined var.

Edited to fix missing commas
Last edited by wildmyron on June 9th, 2015, 8:29 pm, edited 1 time in total.
The latest version of the 5S Project contains over 196,000 spaceships. Tabulated pages up to period 160 are available on the LifeWiki.
wildmyron
 
Posts: 1209
Joined: August 9th, 2013, 12:45 am

Re: Thread For Your Unrecognised CA

Postby gmc_nxtman » June 9th, 2015, 9:49 am

wildmyron wrote:
gmc_nxtman wrote:By the way, how do you use variables? I have a rule idea which is pretty cool, but would take forever to write using the current format.

The rule formats are documented at Golly Help -> File Formats and also elsewhere on the web - the Rule Table Repository in particular. The best thing is to look at other rules to see how variables are used. More importantly in terms of table compactness is using the symmetry options to good effect. You specified permute - which is applicable to all semi-totalistic rules - but then you've duplicated table entries to manually account for some of the possible orientations. With permute, the following set of 4 rule table entries will have the same effect:

code


Edited to add:

With a variable you can reduce the number of entries to two. For example:
code

In this instance it's probably unnecessary. There are always a multitude of ways you can define a rule with variables. I think the important thing is to try to maintain readability rather than optimising compactness.

NOTE: the same variable appearing in multiple positions in one line has to have the same value in each position. This is why you will frequently come across rules with one variable defined as a set of values and a group of related variables being equal to the defined var.


Thanks for the tips!

I want to see if StarTrek is omniperiodic, or universal.... I've been running some apgsearch and all the things in the stamp collection are what I've found... There's definitely more, that probably doesn't occur naturally. However I don't have these kinds of search programs; maybe somebody could do an ofind search? I just want to find logic gates :wink:
User avatar
gmc_nxtman
 
Posts: 1147
Joined: May 26th, 2015, 7:20 pm

Re: Thread For Your Unrecognised CA

Postby fluffykitty » June 9th, 2015, 4:44 pm

wildmyron wrote:Edited to add:

With a variable you can reduce the number of entries to two. For example:
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute
var a = {1,2}

011a000001
022a000002

...

If you use variables you have to separate each neighbor with commas, like this:
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute
var a = {1,2}

0,1,1,a,0,0,0,0,0,1
0,2,2,a,0,0,0,0,0,2
Last edited by fluffykitty on June 10th, 2015, 11:26 am, edited 1 time in total.
I like making rules
fluffykitty
 
Posts: 604
Joined: June 14th, 2014, 5:03 pm

Re: Thread For Your Unrecognised CA

Postby wildmyron » June 9th, 2015, 8:31 pm

fluffykitty wrote:If you use variables you have to separate each neighbor with commas, like this:

Thanks for the correction. I always do, it just didn't occur to me they were required but it's obvious that they would need to be.
The latest version of the 5S Project contains over 196,000 spaceships. Tabulated pages up to period 160 are available on the LifeWiki.
wildmyron
 
Posts: 1209
Joined: August 9th, 2013, 12:45 am

Re: Thread For Your Unrecognised CA

Postby gameoflifeboy » June 9th, 2015, 9:30 pm

Both Star Trek and B3/S024 have a strange frequency gap between the 27th and 28th objects.
User avatar
gameoflifeboy
 
Posts: 474
Joined: January 15th, 2015, 2:08 am

Re: Thread For Your Unrecognised CA

Postby gmc_nxtman » September 5th, 2015, 9:00 pm

Here is a rule that I call simplified seeds. It's a simple exploding rule, but it contains many replicators, rakes, and oscillators. I've uploaded an attachment containing some patterns, and all types of rule formats.

SimplifiedSeeds.zip
Includes tree and table files.
(5.95 KiB) Downloaded 280 times


I find B345/S0456 interesting, and named it "Never happy" for the reason that most patterns make an expanding diamond, that seems like it's going to stop expanding, but doesn't.

Here's a c/3 spaceship:

x = 13, y = 25, rule = B345/S0456
b2obo3bob2o$2bo3bo3bo$obobobobobobo$b3ob3ob3o$2o2b5o2b2o$bo9bo$
2ob2o3bob3o$b3o7bo$2ob2o3b5o$2b7ob2o$3ob9o$b9obo$2ob10o$b9obo$2o
3b2o3b3o$b2o2bo2b2obo$2ob3obo2b3o$b5o2bo2bo$2o2bob7o$2b5ob4o$3o3b
2o2b3o$b2o2b2ob4o$2b3ob7o$3b7obo$4bob2o!


c/7:

x = 12, y = 20, rule = B345/S0456
5b2o$4bo2bo$3b2o2b2o2$3b6o2$4b4o3$3b2o2b2o$5b2o$3b2o2b2o$5b2o$b4o2b4o$
5b2o$o3bo2bo3bo$5b2o$b2obo2bob2o$5b2o$2bobo2bobo!


I also think B345/S0 and B345/S025678 are interesting in the methods by which their population increase as they explode. B345/S0 is like longlife at first glance, but some of the oscillators emit dots which survive and help to further locomote the cloud. B345/S25678 is also interesting because of its switching between polygonal and chaotic growth. The expanding figures leave behind scattered dots which form a strange branch/tree-like pattern consisting of pseudo-random clouds and consistent, straight or oblique lines of dots or dominoes.

x = 36, y = 36, rule = B345/S25678
2bob3obo5b2o3b7obo7bo$ob2o2bo2bobobobobobo3b4obobobob2o$2ob2obob4ob5o
2b3ob3o2bo2bob2o$2bo4bob2o4bob2o2b2ob5ob3obo$5obo5bob4obob4obob2obo3bo
$bo3b3obo2b3ob4o2b2ob3o2b2o2bo$b3o2bobobo2bob2o8b6ob2o$2bo7b4obobobob
2o3bo4b3obo$2ob2ob2ob3ob2obo3b4o2bo3bob2obo$o2b2obo4b2ob2o2b4ob2o3bo3b
o$2o2b2obobobo3bo2bobobo5b4o2bo$3b2o2b2o2b2ob2ob3obo2bo4bobo$o2bo2b3ob
o5bo7b2o2bo4b2o$b4ob2o2b2obob6obo2b3o2b2o3bo$2b4ob2o3bob4o2bobo3b2o3bo
3bo$b6o3bo2bobo4b5o2b9o$2bo3bob2obob2obo6b5o4b2obo$4b2obo2bo2bo2bo3b5o
b2o2bob3o$b2ob2obob3ob2obo3b6o2bo$2b2obo2bobobo3bob2obobob2o2bo3b3o$2b
3obobo4bob3o4bo3bo2bobo2bo$2ob2ob3ob2o5b4o4bobo2bob4o$4b3ob2o3b2obob3o
bo3b2obo2bo$2bob4obo4bo2b2ob2ob3o2b2ob2obo$2bob2obo7bo2b2o2bo4bo4b2o$
3bo2bo2b3o10b4o2b2ob2ob2o$3b4o2b2obob2ob2obo4b2obo4bo$3o5b5ob2o2b3o4b
2o2b5obo$obob4ob4obo3bo2bob3ob4o$2o5b2o3b2ob2o6bo2b2ob2o3bo$2bo3b2obo
2b2obob8obo2bo3b3o$5o3bo3b3obobobo4bobobo2bobo$bobobo2b2obob2obob4o4b
3ob2o2bo$5b5obo2bob4obob2o2bob3ob3o$ob7obo2bo2bo4bo2bo2bobo3b3o$b2o3bo
4b2obo3b4o2bo3b2o2bo!

x = 36, y = 36, rule = B345/S0
2bob3obo5b2o3b7obo7bo$ob2o2bo2bobobobobobo3b4obobobob2o$2ob2obob4ob5o
2b3ob3o2bo2bob2o$2bo4bob2o4bob2o2b2ob5ob3obo$5obo5bob4obob4obob2obo3bo
$bo3b3obo2b3ob4o2b2ob3o2b2o2bo$b3o2bobobo2bob2o8b6ob2o$2bo7b4obobobob
2o3bo4b3obo$2ob2ob2ob3ob2obo3b4o2bo3bob2obo$o2b2obo4b2ob2o2b4ob2o3bo3b
o$2o2b2obobobo3bo2bobobo5b4o2bo$3b2o2b2o2b2ob2ob3obo2bo4bobo$o2bo2b3ob
o5bo7b2o2bo4b2o$b4ob2o2b2obob6obo2b3o2b2o3bo$2b4ob2o3bob4o2bobo3b2o3bo
3bo$b6o3bo2bobo4b5o2b9o$2bo3bob2obob2obo6b5o4b2obo$4b2obo2bo2bo2bo3b5o
b2o2bob3o$b2ob2obob3ob2obo3b6o2bo$2b2obo2bobobo3bob2obobob2o2bo3b3o$2b
3obobo4bob3o4bo3bo2bobo2bo$2ob2ob3ob2o5b4o4bobo2bob4o$4b3ob2o3b2obob3o
bo3b2obo2bo$2bob4obo4bo2b2ob2ob3o2b2ob2obo$2bob2obo7bo2b2o2bo4bo4b2o$
3bo2bo2b3o10b4o2b2ob2ob2o$3b4o2b2obob2ob2obo4b2obo4bo$3o5b5ob2o2b3o4b
2o2b5obo$obob4ob4obo3bo2bob3ob4o$2o5b2o3b2ob2o6bo2b2ob2o3bo$2bo3b2obo
2b2obob8obo2bo3b3o$5o3bo3b3obobobo4bobobo2bobo$bobobo2b2obob2obob4o4b
3ob2o2bo$5b5obo2bob4obob2o2bob3ob3o$ob7obo2bo2bo4bo2bo2bobo3b3o$b2o3bo
4b2obo3b4o2bo3b2o2bo!


EDIT: Here's a c/3 spaceship in one of the rules (I think that spaceships in the second rule are impossible)

x = 16, y = 30, rule = B345/S25678
2b2o8b2o$5bo4bo$3obo2b2o2bob3o$2ob2o6b2ob2o$b3o3b2o3b3o$3ob3o2b3ob3o$b
4o2b2o2b4o$4o2bo2bo2b4o$b5ob2ob5o$o3bo2b2o2bo3bo$3b2obo2bob2o$2b3o6b3o
$3b3o4b3o$2b4o4b4o$3bob6obo$5b2o2b2o$4bo2b2o2bo$3bob2o2b2obo$3b3ob2ob
3o$6bo2bo$3o3bo2bo3b3o$2ob2ob4ob2ob2o$b4o2b2o2b4o$3ob3o2b3ob3o$b3o2b4o
2b3o$16o$b3o2bo2bo2b3o$bo2bo2b2o2bo2bo$4b2ob2ob2o$6b4o!
User avatar
gmc_nxtman
 
Posts: 1147
Joined: May 26th, 2015, 7:20 pm

Re: Thread For Your Unrecognised CA

Postby Saka » September 6th, 2015, 3:50 am

I made a rule I called "predator", here it is:
@RULE Predator
@TABLE
n_states:5
neighborhood:vonNeumann
symmetries:rotate4reflect
var a={0,1,2,3,4}
var b={0,1,2,3,4}
var c={0,1,2,3,4}
var d={0,1,2,3,4}
var a1={1,2}
var b1={1,2}
var c1={1,2}
0,1,1,1,1,3
1,0,0,0,0,2
2,3,a,b,c,1
2,1,1,1,a,3
2,a,b,c,d,0
0,a1,b1,c1,0,1
0,a1,b1,0,0,1
0,1,0,0,0,4
4,1,0,0,0,1
4,a,b,c,d,0
1,1,0,0,0,2
1,1,1,1,1,2
1,1,1,1,0,2
1,3,a,b,c,0
3,a,b,c,d,0

I know I could simplify it a lot more, but I didn't want to.
c/4 Glider:
x = 4, y = 5, rule = Predator
2ABD$3A2$3A$2ABD!

Diagonal one:
x = 6, y = 6, rule = Predator
A3.BD$2.ABA$.3AD$.B2A$BAD$D!
If you're the person that uploaded to Sakagolue illegally, please PM me.
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 3077
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Thread For Your Unrecognised CA

Postby wildmyron » September 7th, 2015, 2:40 am

gmc_nxtman wrote:I also think B345/S0 and B345/S025678 are interesting in the methods by which their population increase as they explode. B345/S0 is like longlife at first glance, but some of the oscillators emit dots which survive and help to further locomote the cloud. B345/S25678 is also interesting because of its switching between polygonal and chaotic growth. The expanding figures leave behind scattered dots which form a strange branch/tree-like pattern consisting of pseudo-random clouds and consistent, straight or oblique lines of dots or dominoes.

<snip example patterns>

EDIT: Here's a c/3 spaceship in one of the rules (I think that spaceships in the second rule are impossible)

Not according to Eppstein's database

I also just found a c/5 while trying to disprove your speculation - before checking the database.
x = 17, y = 13, rule = B345/S0
11bobo$11bobobo$9bobobobo$o8b3obobo$2o2bobobo4bobo$2bo5b3obobobo$3o5b
2o2bo3bo$2bo5b3obobobo$2o2bobobo4bobo$o8b3obobo$9bobobob2o$11bobobo$
11bobo!

Edited to add:
Forgot to mention the ship is p10 (glide reflective). Here's another p10 version which has bilateral symmetry instead:
x = 17, y = 13, rule = B345/S0
11bobo$11bobobo$9bobobobo$o8b3obobo$2o2bobobo4bobo$2bo5b3obobobo$3o5b
2o2bo3bo$2bo5b3obobobo$2o2bobobo4bobo$o8b3obobo$9bobobobo$11bobobo$11b
obo!
The latest version of the 5S Project contains over 196,000 spaceships. Tabulated pages up to period 160 are available on the LifeWiki.
wildmyron
 
Posts: 1209
Joined: August 9th, 2013, 12:45 am

Re: Thread For Your Unrecognised CA

Postby gmc_nxtman » September 13th, 2015, 11:19 pm

Nice! Here is a rule that behaves much like my SimplifiedSeeds rule:

@RULE OverComplicatedSeeds
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,1,1,1
0,0,0,0,0,0,0,1,2,0
0,0,0,0,0,0,0,2,2,1
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,0
0,0,0,0,0,0,2,2,2,0
0,0,0,0,0,1,1,1,1,2
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,0
0,0,0,0,0,2,2,2,2,0
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,0
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,0
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,1,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,2,1
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,0
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,1
0,1,1,1,1,1,1,1,1,2
0,1,1,1,1,1,1,1,2,0
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,0
0,1,1,1,1,2,2,2,2,1
0,1,1,1,2,2,2,2,2,2
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,2
1,0,0,0,0,0,0,0,0,2
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,0
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,0,1,2,0
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,1,1,1,1
1,0,0,0,0,0,1,1,2,2
1,0,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,0
1,0,0,0,0,1,1,2,2,2
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,0
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,1
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,2
1,0,0,0,2,2,2,2,2,0
1,0,0,1,1,1,1,1,1,2
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,1
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,1,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,0
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,2
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,0
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,2
1,2,2,2,2,2,2,2,2,0
2,0,0,0,0,0,0,0,0,2
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,1
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,0
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,1,1,1,1,1
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,0
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,1
2,0,0,0,1,1,1,2,2,2
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,0
2,0,0,0,2,2,2,2,2,0
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,0
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,0
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,2
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,0
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,2
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,0
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,0

@COLORS
0   0   0   0
1  48  48   0
2   0  48  48


And here is another interesting rule:

@RULE Tryllic
@TABLE

n_states:4
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,0,3,2
0,0,0,0,0,0,0,0,1,3
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,0
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,0,2,3,0
0,0,0,0,0,0,0,3,3,2
0,0,0,0,0,0,0,3,1,0
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,3
0,0,0,0,0,0,2,2,2,1
0,0,0,0,0,0,2,2,3,0
0,0,0,0,0,0,2,3,3,0
0,0,0,0,0,0,3,3,3,3
0,0,0,0,0,0,3,3,1,2
0,0,0,0,0,0,3,1,1,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,1
0,0,0,0,0,2,2,2,2,1
0,0,0,0,0,2,2,2,3,2
0,0,0,0,0,2,2,3,3,0
0,0,0,0,0,2,3,3,3,0
0,0,0,0,0,3,3,3,3,0
0,0,0,0,0,3,3,3,1,0
0,0,0,0,0,3,3,1,1,0
0,0,0,0,0,3,1,1,1,2
0,0,0,0,0,1,1,1,1,0
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,0
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,2
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,1
0,0,0,0,2,2,2,2,3,0
0,0,0,0,2,2,2,3,3,0
0,0,0,0,2,2,3,3,3,3
0,0,0,0,2,3,3,3,3,0
0,0,0,0,3,3,3,3,3,0
0,0,0,0,3,3,3,3,1,0
0,0,0,0,3,3,3,1,1,2
0,0,0,0,3,3,1,1,1,0
0,0,0,0,3,1,1,1,1,3
0,0,0,0,1,1,1,1,1,0
0,0,0,1,1,1,1,1,1,3
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,3
0,0,0,2,2,2,2,2,2,0
0,0,0,2,2,2,2,2,3,1
0,0,0,2,2,2,2,3,3,0
0,0,0,2,2,2,3,3,3,3
0,0,0,2,2,3,3,3,3,0
0,0,0,2,3,3,3,3,3,3
0,0,0,3,3,3,3,3,3,0
0,0,0,3,3,3,3,3,1,0
0,0,0,3,3,3,3,1,1,1
0,0,0,3,3,3,1,1,1,0
0,0,0,3,3,1,1,1,1,0
0,0,0,3,1,1,1,1,1,0
0,0,0,1,1,1,1,1,1,3
0,0,1,1,1,1,1,1,1,3
0,0,1,1,1,1,1,1,2,3
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,1
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,3,2
0,0,2,2,2,2,2,3,3,2
0,0,2,2,2,2,3,3,3,0
0,0,2,2,2,3,3,3,3,2
0,0,2,2,3,3,3,3,3,3
0,0,2,3,3,3,3,3,3,1
0,0,3,3,3,3,3,3,3,0
0,0,3,3,3,3,3,3,1,0
0,0,3,3,3,3,3,1,1,0
0,0,3,3,3,3,1,1,1,0
0,0,3,3,3,1,1,1,1,0
0,0,3,3,1,1,1,1,1,0
0,0,3,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,1,2
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,1
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,0
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,0
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,3,0
0,2,2,2,2,2,2,3,3,0
0,2,2,2,2,2,3,3,3,0
0,2,2,2,2,3,3,3,3,0
0,2,2,2,3,3,3,3,3,0
0,2,2,3,3,3,3,3,3,1
0,2,3,3,3,3,3,3,3,0
0,3,3,3,3,3,3,3,3,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,2
1,0,0,0,0,0,0,0,3,0
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,1,1,2
1,0,0,0,0,0,0,1,2,0
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,0,2,3,2
1,0,0,0,0,0,0,3,3,0
1,0,0,0,0,0,0,3,1,2
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,0
1,0,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,0,2,2,3,3
1,0,0,0,0,0,2,3,3,2
1,0,0,0,0,0,3,3,3,0
1,0,0,0,0,0,3,3,1,0
1,0,0,0,0,0,3,1,1,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,0
1,0,0,0,0,1,1,2,2,1
1,0,0,0,0,1,2,2,2,1
1,0,0,0,0,2,2,2,2,0
1,0,0,0,0,2,2,2,3,2
1,0,0,0,0,2,2,3,3,1
1,0,0,0,0,2,3,3,3,0
1,0,0,0,0,3,3,3,3,2
1,0,0,0,0,3,3,3,1,3
1,0,0,0,0,3,3,1,1,0
1,0,0,0,0,3,1,1,1,3
1,0,0,0,0,1,1,1,1,1
1,0,0,0,1,1,1,1,1,3
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,3
1,0,0,0,2,2,2,2,3,0
1,0,0,0,2,2,2,3,3,2
1,0,0,0,2,2,3,3,3,0
1,0,0,0,2,3,3,3,3,1
1,0,0,0,3,3,3,3,3,0
1,0,0,0,3,3,3,3,1,0
1,0,0,0,3,3,3,1,1,1
1,0,0,0,3,3,1,1,1,2
1,0,0,0,3,1,1,1,1,0
1,0,0,0,1,1,1,1,1,0
1,0,0,1,1,1,1,1,1,0
1,0,0,1,1,1,1,1,2,3
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,0,2,2,2,2,2,3,0
1,0,0,2,2,2,2,3,3,0
1,0,0,2,2,2,3,3,3,3
1,0,0,2,2,3,3,3,3,0
1,0,0,2,3,3,3,3,3,0
1,0,0,3,3,3,3,3,3,0
1,0,0,3,3,3,3,3,1,1
1,0,0,3,3,3,3,1,1,0
1,0,0,3,3,3,1,1,1,0
1,0,0,3,3,1,1,1,1,0
1,0,0,3,1,1,1,1,1,0
1,0,0,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,3
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,1
1,0,2,2,2,2,2,2,3,0
1,0,2,2,2,2,2,3,3,0
1,0,2,2,2,2,3,3,3,0
1,0,2,2,2,3,3,3,3,0
1,0,2,2,3,3,3,3,3,3
1,0,2,3,3,3,3,3,3,0
1,0,3,3,3,3,3,3,3,1
1,0,3,3,3,3,3,3,1,0
1,0,3,3,3,3,3,1,1,0
1,0,3,3,3,3,1,1,1,0
1,0,3,3,3,1,1,1,1,0
1,0,3,3,1,1,1,1,1,0
1,0,3,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,0
1,1,1,2,2,2,2,2,2,2
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,3,0
1,2,2,2,2,2,2,3,3,0
1,2,2,2,2,2,3,3,3,2
1,2,2,2,2,3,3,3,3,0
1,2,2,2,3,3,3,3,3,0
1,2,2,3,3,3,3,3,3,1
1,2,3,3,3,3,3,3,3,0
1,3,3,3,3,3,3,3,3,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,0,3,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,1
2,0,0,0,0,0,0,2,2,3
2,0,0,0,0,0,0,2,3,0
2,0,0,0,0,0,0,3,3,0
2,0,0,0,0,0,0,3,1,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,1,1,1,3
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,0
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,0,2,2,3,3
2,0,0,0,0,0,2,3,3,0
2,0,0,0,0,0,3,3,3,0
2,0,0,0,0,0,3,3,1,0
2,0,0,0,0,0,3,1,1,0
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,1,1,1,1,1
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,0
2,0,0,0,0,2,2,2,3,2
2,0,0,0,0,2,2,3,3,0
2,0,0,0,0,2,3,3,3,0
2,0,0,0,0,3,3,3,3,0
2,0,0,0,0,3,3,3,1,2
2,0,0,0,0,3,3,1,1,0
2,0,0,0,0,3,1,1,1,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,0
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,0
2,0,0,0,2,2,2,2,2,3
2,0,0,0,2,2,2,2,3,0
2,0,0,0,2,2,2,3,3,0
2,0,0,0,2,2,3,3,3,0
2,0,0,0,2,3,3,3,3,2
2,0,0,0,3,3,3,3,3,0
2,0,0,0,3,3,3,3,1,0
2,0,0,0,3,3,3,1,1,2
2,0,0,0,3,3,1,1,1,2
2,0,0,0,3,1,1,1,1,0
2,0,0,0,1,1,1,1,1,2
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,1
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,0,2,2,2,2,2,3,0
2,0,0,2,2,2,2,3,3,1
2,0,0,2,2,2,3,3,3,2
2,0,0,2,2,3,3,3,3,0
2,0,0,2,3,3,3,3,3,3
2,0,0,3,3,3,3,3,3,0
2,0,0,3,3,3,3,3,1,0
2,0,0,3,3,3,3,1,1,0
2,0,0,3,3,3,1,1,1,3
2,0,0,3,3,1,1,1,1,3
2,0,0,3,1,1,1,1,1,0
2,0,0,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,1,3
2,0,1,1,1,1,1,1,2,0
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,1
2,0,1,1,2,2,2,2,2,2
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,3,0
2,0,2,2,2,2,2,3,3,0
2,0,2,2,2,2,3,3,3,0
2,0,2,2,2,3,3,3,3,0
2,0,2,2,3,3,3,3,3,3
2,0,2,3,3,3,3,3,3,0
2,0,3,3,3,3,3,3,3,0
2,0,3,3,3,3,3,3,1,0
2,0,3,3,3,3,3,1,1,0
2,0,3,3,3,3,1,1,1,0
2,0,3,3,3,1,1,1,1,0
2,0,3,3,1,1,1,1,1,0
2,0,3,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,1,2
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,1
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,3,0
2,2,2,2,2,2,2,3,3,3
2,2,2,2,2,2,3,3,3,3
2,2,2,2,2,3,3,3,3,0
2,2,2,2,3,3,3,3,3,0
2,2,2,3,3,3,3,3,3,0
2,2,3,3,3,3,3,3,3,1
2,3,3,3,3,3,3,3,3,3
3,0,0,0,0,0,0,0,0,0
3,0,0,0,0,0,0,0,1,2
3,0,0,0,0,0,0,0,2,0
3,0,0,0,0,0,0,0,3,0
3,0,0,0,0,0,0,0,1,3
3,0,0,0,0,0,0,1,1,1
3,0,0,0,0,0,0,1,2,2
3,0,0,0,0,0,0,2,2,0
3,0,0,0,0,0,0,2,3,0
3,0,0,0,0,0,0,3,3,0
3,0,0,0,0,0,0,3,1,0
3,0,0,0,0,0,0,1,1,2
3,0,0,0,0,0,1,1,1,0
3,0,0,0,0,0,1,1,2,3
3,0,0,0,0,0,1,2,2,0
3,0,0,0,0,0,2,2,2,1
3,0,0,0,0,0,2,2,3,0
3,0,0,0,0,0,2,3,3,1
3,0,0,0,0,0,3,3,3,1
3,0,0,0,0,0,3,3,1,0
3,0,0,0,0,0,3,1,1,0
3,0,0,0,0,0,1,1,1,0
3,0,0,0,0,1,1,1,1,0
3,0,0,0,0,1,1,1,2,0
3,0,0,0,0,1,1,2,2,2
3,0,0,0,0,1,2,2,2,0
3,0,0,0,0,2,2,2,2,3
3,0,0,0,0,2,2,2,3,1
3,0,0,0,0,2,2,3,3,0
3,0,0,0,0,2,3,3,3,1
3,0,0,0,0,3,3,3,3,0
3,0,0,0,0,3,3,3,1,0
3,0,0,0,0,3,3,1,1,3
3,0,0,0,0,3,1,1,1,0
3,0,0,0,0,1,1,1,1,3
3,0,0,0,1,1,1,1,1,0
3,0,0,0,1,1,1,1,2,0
3,0,0,0,1,1,1,2,2,0
3,0,0,0,1,1,2,2,2,0
3,0,0,0,1,2,2,2,2,0
3,0,0,0,2,2,2,2,2,0
3,0,0,0,2,2,2,2,3,0
3,0,0,0,2,2,2,3,3,1
3,0,0,0,2,2,3,3,3,0
3,0,0,0,2,3,3,3,3,0
3,0,0,0,3,3,3,3,3,0
3,0,0,0,3,3,3,3,1,2
3,0,0,0,3,3,3,1,1,1
3,0,0,0,3,3,1,1,1,2
3,0,0,0,3,1,1,1,1,0
3,0,0,0,1,1,1,1,1,0
3,0,0,1,1,1,1,1,1,0
3,0,0,1,1,1,1,1,2,0
3,0,0,1,1,1,1,2,2,0
3,0,0,1,1,1,2,2,2,0
3,0,0,1,1,2,2,2,2,2
3,0,0,1,2,2,2,2,2,0
3,0,0,2,2,2,2,2,2,3
3,0,0,2,2,2,2,2,3,2
3,0,0,2,2,2,2,3,3,0
3,0,0,2,2,2,3,3,3,0
3,0,0,2,2,3,3,3,3,1
3,0,0,2,3,3,3,3,3,0
3,0,0,3,3,3,3,3,3,0
3,0,0,3,3,3,3,3,1,0
3,0,0,3,3,3,3,1,1,3
3,0,0,3,3,3,1,1,1,2
3,0,0,3,3,1,1,1,1,0
3,0,0,3,1,1,1,1,1,0
3,0,0,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,2,0
3,0,1,1,1,1,1,2,2,0
3,0,1,1,1,1,2,2,2,3
3,0,1,1,1,2,2,2,2,0
3,0,1,1,2,2,2,2,2,0
3,0,1,2,2,2,2,2,2,0
3,0,2,2,2,2,2,2,2,2
3,0,2,2,2,2,2,2,3,0
3,0,2,2,2,2,2,3,3,0
3,0,2,2,2,2,3,3,3,0
3,0,2,2,2,3,3,3,3,0
3,0,2,2,3,3,3,3,3,3
3,0,2,3,3,3,3,3,3,0
3,0,3,3,3,3,3,3,3,0
3,0,3,3,3,3,3,3,1,0
3,0,3,3,3,3,3,1,1,1
3,0,3,3,3,3,1,1,1,0
3,0,3,3,3,1,1,1,1,0
3,0,3,3,1,1,1,1,1,1
3,0,3,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,1,0
3,1,1,1,1,1,1,1,1,3
3,1,1,1,1,1,1,1,2,0
3,1,1,1,1,1,1,2,2,0
3,1,1,1,1,1,2,2,2,0
3,1,1,1,1,2,2,2,2,0
3,1,1,1,2,2,2,2,2,0
3,1,1,2,2,2,2,2,2,0
3,1,2,2,2,2,2,2,2,0
3,2,2,2,2,2,2,2,2,1
3,2,2,2,2,2,2,2,3,0
3,2,2,2,2,2,2,3,3,1
3,2,2,2,2,2,3,3,3,0
3,2,2,2,2,3,3,3,3,0
3,2,2,2,3,3,3,3,3,0
3,2,2,3,3,3,3,3,3,0
3,2,3,3,3,3,3,3,3,0
3,3,3,3,3,3,3,3,3,3

@COLORS
0  48  48  48
1 255   0   0
2   0   0 255
3 255   0 255


An interesting 2-state rule:

@RULE Trycogene
@TABLE

n_states:2
neighborhood:Moore
symmetries:rotate8reflect

0,0,0,0,0,0,1,1,1,1
0,0,0,0,0,0,1,0,1,1
0,1,1,0,1,0,0,0,0,1
0,0,0,0,0,1,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,1,1,0,1,1,0,0,0,0
1,1,1,1,1,0,0,0,0,0
1,1,1,0,1,1,0,1,1,0
1,1,1,1,1,1,1,1,0,0
1,1,1,1,1,1,1,0,1,0
1,1,1,0,1,0,0,0,0,0
1,1,1,1,1,1,0,0,0,0
1,1,1,1,0,1,1,1,0,0
1,1,1,0,0,1,1,0,0,0
1,1,0,1,0,1,0,1,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,1,1,0,1,1,0,0
1,1,1,1,1,0,0,0,0,0
1,1,1,0,1,0,0,1,1,0
1,0,1,0,0,0,1,1,1,0
1,1,1,1,1,1,1,0,0,0

@COLORS
0   0   0   0
1 255 255   0


Many small p2 osc, including checker, semicolon, and apostrophe.

2c/5 glider:

x = 4, y = 6, rule = Trycogene
bo2$2obo$bo$b2o$o!


Also, oscillators of arbitrarily high period can be made from alternating on and off cells of composite population:

x = 35, y = 23, rule = Trycogene
13bo2$6bo6bo2$6bo6bo2$o5bo6bo$34bo$o5bo6bo$34bo2$17bo16bo2$17bo16bo$6b
o$17bo16bo$6bo$17bo16bo$6bo$17bo16bo$6bo$17bo16bo$6bo!


They can sometimes interact.
User avatar
gmc_nxtman
 
Posts: 1147
Joined: May 26th, 2015, 7:20 pm

Re: Thread For Your Unrecognised CA

Postby Saka » September 14th, 2015, 6:29 am

An "over-complicated" rule I made:
@RULE Quintlanych

@TABLE
n_states:6
neighborhood:Moore
symmetries:rotate8reflect
var a={1,4}
var b={2,3}
var c={3,5}
var a1={0,1,2,3,4,5}
var b1={a1}
var c1={b1}
var d1={c1}
var e1={a1}
var f1={b1}
var g1={c1}
var z={a1}
0,a,a,a,0,0,0,0,0,1
1,c,a1,a1,0,0,0,0,0,2
1,0,0,0,0,0,0,0,0,3
3,a1,b1,c1,d1,e1,f1,g1,b,2
2,a1,b1,c1,d1,e1,f1,g1,a,1
0,a,a,a,a,a,a,a,a,4
4,0,0,0,0,0,0,0,0,3
3,b,b,b,b,b,b,b,b,0
2,a,a,a,a,a,a,a,a,0
2,1,2,3,4,5,0,a1,b1,0
0,b,b,b,b,b,b,b,b,5
5,a1,b1,c1,d1,e1,f1,g1,z,0
4,a1,b1,c1,d1,e1,f1,g1,z,5
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,0,0
1,1,1,1,1,1,1,0,0,0
3,0,0,0,0,0,0,0,0,0
1,1,1,1,1,0,0,0,0,0
1,1,1,1,1,1,0,0,0,2
1,1,1,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0

@COLORS
0 48 48 48
1 255 0 0
2 0 255 0
3 0 0 255
4 255 255 255
5 255 255 0

It has a glider:
x = 5, y = 3, rule = Quintlanych
3.A$3ABA$A2.A!

A lot of orthogonal wickstretchers, a diagonal line stretcher:
x = 16, y = 12, rule = Quintlanych
14.2A$12.3A$8.2A.A.A$8.A.3A$7.A.A$6.A.A$5.A$4.A$.A.A$.2A$AB2A$.A!

and a boatstretcher/tubstretcher:
x = 10, y = 10, rule = Quintlanych
3.A$2.2A$.3A$3A.A$3.A.A$4.A.A$5.A.A$6.A.A$7.A.A$8.2A!

Extendable "wickstretcher hassler":
x = 17, y = 4, rule = Quintlanych
5.A.A.A.A.2A$4.11A$B4.A.A.A.A.A2.B$.B13.B!

Basketball!
x = 14, y = 11, rule = Quintlanych
4.2A$.A.A.A$.4A$2.A$.A$A$A$.A11.B$2.A.A3.A4.B$3.5AB$5.A2.A!

Miscellaneous oscillators:
x = 3, y = 5, rule = Quintlanych
2A$2A$A$.CA$.A!

x = 5, y = 7, rule = Quintlanych
2.A$2.2A$.A2.A$.A2.A$A2.A$2A.A$2.A!

x = 8, y = 5, rule = Quintlanych
2.A$2.2A2.A$.A.3A.A$3A.A.A$.2A!

SUPER SMALL breeder:
x = 4, y = 4, rule = Quintlanych
2.2A$A.2A$.ABA$3A!

Equivalent of HWSS emulator:
x = 10, y = 5, rule = Quintlanych
3.4A$.8A$A8.A$.8A$3.4A!

NATURAL growing ship:
x = 21, y = 3, rule = Quintlanych
A2.A.A.A.A.A.A.A3.A$19ABA$2.A.A.A.A.A.A.A.A2.A!
If you're the person that uploaded to Sakagolue illegally, please PM me.
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 3077
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Thread For Your Unrecognised CA

Postby gmc_nxtman » September 14th, 2015, 4:31 pm

This rule has some interest, as it has small spaceships, oscillators, and an occasionaly occuring four-barrelled strictvolatility statorless gun.

@RULE Zygorax
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,1
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,1,1,1,2
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,1
0,0,0,0,0,0,2,2,2,2
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,1
0,0,0,0,0,1,2,2,2,0
0,0,0,0,0,2,2,2,2,1
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,2
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,1
0,0,0,1,1,1,1,1,1,2
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,2
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,1,1,1,1,1,1,1,1
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,1
0,0,1,1,2,2,2,2,2,1
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,1,1,1,1,1,1,1,1,1
0,1,1,1,1,1,1,1,2,0
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,0
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,2
0,1,1,2,2,2,2,2,2,2
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,0
1,0,0,0,0,0,0,1,1,1
1,0,0,0,0,0,0,1,2,2
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,0
1,0,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,1,1,1,1,1
1,0,0,0,0,1,1,1,2,0
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,0
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,1
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,0
1,0,0,1,1,1,1,1,1,0
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,2
1,0,1,1,1,1,1,1,1,1
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,2
1,0,1,1,1,1,2,2,2,1
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,0
1,1,1,1,1,1,1,1,1,2
1,1,1,1,1,1,1,1,2,1
1,1,1,1,1,1,1,2,2,2
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,2
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,1,1,1
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,0
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,0,1,1,2,2
2,0,0,0,0,0,1,2,2,0
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,2
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,0
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,0
2,0,0,0,2,2,2,2,2,0
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,0
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,1
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,0
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,0
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,0

@COLORS
0  48  48  48
1 255 255 255
2 255   0 255


This one has a replicator, and several small sparky diagonal spaceships/rakes.

@RULE Sparklers
@TABLE

n_states:4
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,3
0,0,0,0,0,0,0,0,3,0
0,0,0,0,0,0,0,0,1,2
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,2
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,0,2,3,0
0,0,0,0,0,0,0,3,3,0
0,0,0,0,0,0,0,3,1,0
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,0
0,0,0,0,0,0,2,2,2,0
0,0,0,0,0,0,2,2,3,0
0,0,0,0,0,0,2,3,3,0
0,0,0,0,0,0,3,3,3,0
0,0,0,0,0,0,3,3,1,0
0,0,0,0,0,0,3,1,1,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,1
0,0,0,0,0,2,2,2,2,0
0,0,0,0,0,2,2,2,3,0
0,0,0,0,0,2,2,3,3,0
0,0,0,0,0,2,3,3,3,1
0,0,0,0,0,3,3,3,3,2
0,0,0,0,0,3,3,3,1,0
0,0,0,0,0,3,3,1,1,1
0,0,0,0,0,3,1,1,1,1
0,0,0,0,0,1,1,1,1,0
0,0,0,0,1,1,1,1,1,1
0,0,0,0,1,1,1,1,2,1
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,3
0,0,0,0,2,2,2,2,2,0
0,0,0,0,2,2,2,2,3,0
0,0,0,0,2,2,2,3,3,0
0,0,0,0,2,2,3,3,3,1
0,0,0,0,2,3,3,3,3,0
0,0,0,0,3,3,3,3,3,0
0,0,0,0,3,3,3,3,1,3
0,0,0,0,3,3,3,1,1,3
0,0,0,0,3,3,1,1,1,0
0,0,0,0,3,1,1,1,1,3
0,0,0,0,1,1,1,1,1,0
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,3
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,0,2,2,2,2,2,3,0
0,0,0,2,2,2,2,3,3,0
0,0,0,2,2,2,3,3,3,0
0,0,0,2,2,3,3,3,3,0
0,0,0,2,3,3,3,3,3,3
0,0,0,3,3,3,3,3,3,0
0,0,0,3,3,3,3,3,1,3
0,0,0,3,3,3,3,1,1,0
0,0,0,3,3,3,1,1,1,2
0,0,0,3,3,1,1,1,1,3
0,0,0,3,1,1,1,1,1,0
0,0,0,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,1,3
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,1
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,3
0,0,1,1,2,2,2,2,2,2
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,3
0,0,2,2,2,2,2,2,3,2
0,0,2,2,2,2,2,3,3,0
0,0,2,2,2,2,3,3,3,0
0,0,2,2,2,3,3,3,3,0
0,0,2,2,3,3,3,3,3,0
0,0,2,3,3,3,3,3,3,0
0,0,3,3,3,3,3,3,3,3
0,0,3,3,3,3,3,3,1,0
0,0,3,3,3,3,3,1,1,0
0,0,3,3,3,3,1,1,1,0
0,0,3,3,3,1,1,1,1,0
0,0,3,3,1,1,1,1,1,0
0,0,3,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,1,3
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,2
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,0
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,2
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,3,0
0,2,2,2,2,2,2,3,3,0
0,2,2,2,2,2,3,3,3,0
0,2,2,2,2,3,3,3,3,1
0,2,2,2,3,3,3,3,3,0
0,2,2,3,3,3,3,3,3,0
0,2,3,3,3,3,3,3,3,0
0,3,3,3,3,3,3,3,3,0
1,0,0,0,0,0,0,0,0,3
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,2
1,0,0,0,0,0,0,0,3,0
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,0,1,2,0
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,0,2,3,0
1,0,0,0,0,0,0,3,3,1
1,0,0,0,0,0,0,3,1,0
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,0
1,0,0,0,0,0,1,2,2,2
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,0,2,2,3,0
1,0,0,0,0,0,2,3,3,0
1,0,0,0,0,0,3,3,3,0
1,0,0,0,0,0,3,3,1,1
1,0,0,0,0,0,3,1,1,3
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,0
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,1
1,0,0,0,0,2,2,2,2,0
1,0,0,0,0,2,2,2,3,0
1,0,0,0,0,2,2,3,3,0
1,0,0,0,0,2,3,3,3,0
1,0,0,0,0,3,3,3,3,0
1,0,0,0,0,3,3,3,1,0
1,0,0,0,0,3,3,1,1,0
1,0,0,0,0,3,1,1,1,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,3
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,2
1,0,0,0,2,2,2,2,2,0
1,0,0,0,2,2,2,2,3,0
1,0,0,0,2,2,2,3,3,3
1,0,0,0,2,2,3,3,3,0
1,0,0,0,2,3,3,3,3,0
1,0,0,0,3,3,3,3,3,0
1,0,0,0,3,3,3,3,1,3
1,0,0,0,3,3,3,1,1,0
1,0,0,0,3,3,1,1,1,0
1,0,0,0,3,1,1,1,1,0
1,0,0,0,1,1,1,1,1,0
1,0,0,1,1,1,1,1,1,0
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,0,2,2,2,2,2,3,1
1,0,0,2,2,2,2,3,3,0
1,0,0,2,2,2,3,3,3,0
1,0,0,2,2,3,3,3,3,0
1,0,0,2,3,3,3,3,3,0
1,0,0,3,3,3,3,3,3,0
1,0,0,3,3,3,3,3,1,1
1,0,0,3,3,3,3,1,1,0
1,0,0,3,3,3,1,1,1,0
1,0,0,3,3,1,1,1,1,0
1,0,0,3,1,1,1,1,1,0
1,0,0,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,2,2
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,3
1,0,1,1,1,2,2,2,2,3
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,3,2
1,0,2,2,2,2,2,3,3,0
1,0,2,2,2,2,3,3,3,0
1,0,2,2,2,3,3,3,3,0
1,0,2,2,3,3,3,3,3,3
1,0,2,3,3,3,3,3,3,2
1,0,3,3,3,3,3,3,3,0
1,0,3,3,3,3,3,3,1,0
1,0,3,3,3,3,3,1,1,0
1,0,3,3,3,3,1,1,1,0
1,0,3,3,3,1,1,1,1,0
1,0,3,3,1,1,1,1,1,0
1,0,3,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,3
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,0
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,3,0
1,2,2,2,2,2,2,3,3,0
1,2,2,2,2,2,3,3,3,0
1,2,2,2,2,3,3,3,3,2
1,2,2,2,3,3,3,3,3,0
1,2,2,3,3,3,3,3,3,0
1,2,3,3,3,3,3,3,3,0
1,3,3,3,3,3,3,3,3,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,0,3,0
2,0,0,0,0,0,0,0,1,2
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,3
2,0,0,0,0,0,0,2,3,0
2,0,0,0,0,0,0,3,3,0
2,0,0,0,0,0,0,3,1,0
2,0,0,0,0,0,0,1,1,1
2,0,0,0,0,0,1,1,1,3
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,0
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,0,2,2,3,0
2,0,0,0,0,0,2,3,3,0
2,0,0,0,0,0,3,3,3,0
2,0,0,0,0,0,3,3,1,0
2,0,0,0,0,0,3,1,1,3
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,1
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,0
2,0,0,0,0,2,2,2,3,3
2,0,0,0,0,2,2,3,3,2
2,0,0,0,0,2,3,3,3,0
2,0,0,0,0,3,3,3,3,1
2,0,0,0,0,3,3,3,1,0
2,0,0,0,0,3,3,1,1,2
2,0,0,0,0,3,1,1,1,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,0
2,0,0,0,1,1,1,2,2,2
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,0
2,0,0,0,2,2,2,2,2,0
2,0,0,0,2,2,2,2,3,0
2,0,0,0,2,2,2,3,3,0
2,0,0,0,2,2,3,3,3,0
2,0,0,0,2,3,3,3,3,0
2,0,0,0,3,3,3,3,3,0
2,0,0,0,3,3,3,3,1,0
2,0,0,0,3,3,3,1,1,0
2,0,0,0,3,3,1,1,1,2
2,0,0,0,3,1,1,1,1,0
2,0,0,0,1,1,1,1,1,0
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,2
2,0,0,1,1,1,1,2,2,1
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,0,2,2,2,2,2,3,0
2,0,0,2,2,2,2,3,3,0
2,0,0,2,2,2,3,3,3,2
2,0,0,2,2,3,3,3,3,2
2,0,0,2,3,3,3,3,3,0
2,0,0,3,3,3,3,3,3,1
2,0,0,3,3,3,3,3,1,0
2,0,0,3,3,3,3,1,1,0
2,0,0,3,3,3,1,1,1,0
2,0,0,3,3,1,1,1,1,0
2,0,0,3,1,1,1,1,1,2
2,0,0,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,1
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,2
2,0,1,2,2,2,2,2,2,3
2,0,2,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,3,0
2,0,2,2,2,2,2,3,3,1
2,0,2,2,2,2,3,3,3,3
2,0,2,2,2,3,3,3,3,0
2,0,2,2,3,3,3,3,3,0
2,0,2,3,3,3,3,3,3,0
2,0,3,3,3,3,3,3,3,0
2,0,3,3,3,3,3,3,1,0
2,0,3,3,3,3,3,1,1,0
2,0,3,3,3,3,1,1,1,0
2,0,3,3,3,1,1,1,1,2
2,0,3,3,1,1,1,1,1,0
2,0,3,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,1,3
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,0
2,1,1,1,1,1,2,2,2,2
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,3
2,2,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,3,0
2,2,2,2,2,2,2,3,3,0
2,2,2,2,2,2,3,3,3,0
2,2,2,2,2,3,3,3,3,0
2,2,2,2,3,3,3,3,3,0
2,2,2,3,3,3,3,3,3,0
2,2,3,3,3,3,3,3,3,0
2,3,3,3,3,3,3,3,3,0
3,0,0,0,0,0,0,0,0,0
3,0,0,0,0,0,0,0,1,2
3,0,0,0,0,0,0,0,2,0
3,0,0,0,0,0,0,0,3,0
3,0,0,0,0,0,0,0,1,2
3,0,0,0,0,0,0,1,1,0
3,0,0,0,0,0,0,1,2,0
3,0,0,0,0,0,0,2,2,0
3,0,0,0,0,0,0,2,3,0
3,0,0,0,0,0,0,3,3,2
3,0,0,0,0,0,0,3,1,0
3,0,0,0,0,0,0,1,1,0
3,0,0,0,0,0,1,1,1,0
3,0,0,0,0,0,1,1,2,1
3,0,0,0,0,0,1,2,2,0
3,0,0,0,0,0,2,2,2,2
3,0,0,0,0,0,2,2,3,0
3,0,0,0,0,0,2,3,3,2
3,0,0,0,0,0,3,3,3,2
3,0,0,0,0,0,3,3,1,0
3,0,0,0,0,0,3,1,1,0
3,0,0,0,0,0,1,1,1,0
3,0,0,0,0,1,1,1,1,3
3,0,0,0,0,1,1,1,2,0
3,0,0,0,0,1,1,2,2,0
3,0,0,0,0,1,2,2,2,0
3,0,0,0,0,2,2,2,2,0
3,0,0,0,0,2,2,2,3,0
3,0,0,0,0,2,2,3,3,0
3,0,0,0,0,2,3,3,3,0
3,0,0,0,0,3,3,3,3,0
3,0,0,0,0,3,3,3,1,1
3,0,0,0,0,3,3,1,1,0
3,0,0,0,0,3,1,1,1,0
3,0,0,0,0,1,1,1,1,1
3,0,0,0,1,1,1,1,1,0
3,0,0,0,1,1,1,1,2,0
3,0,0,0,1,1,1,2,2,0
3,0,0,0,1,1,2,2,2,0
3,0,0,0,1,2,2,2,2,2
3,0,0,0,2,2,2,2,2,1
3,0,0,0,2,2,2,2,3,0
3,0,0,0,2,2,2,3,3,0
3,0,0,0,2,2,3,3,3,1
3,0,0,0,2,3,3,3,3,0
3,0,0,0,3,3,3,3,3,3
3,0,0,0,3,3,3,3,1,0
3,0,0,0,3,3,3,1,1,0
3,0,0,0,3,3,1,1,1,0
3,0,0,0,3,1,1,1,1,1
3,0,0,0,1,1,1,1,1,0
3,0,0,1,1,1,1,1,1,0
3,0,0,1,1,1,1,1,2,0
3,0,0,1,1,1,1,2,2,0
3,0,0,1,1,1,2,2,2,0
3,0,0,1,1,2,2,2,2,2
3,0,0,1,2,2,2,2,2,3
3,0,0,2,2,2,2,2,2,0
3,0,0,2,2,2,2,2,3,0
3,0,0,2,2,2,2,3,3,0
3,0,0,2,2,2,3,3,3,0
3,0,0,2,2,3,3,3,3,0
3,0,0,2,3,3,3,3,3,0
3,0,0,3,3,3,3,3,3,0
3,0,0,3,3,3,3,3,1,0
3,0,0,3,3,3,3,1,1,0
3,0,0,3,3,3,1,1,1,0
3,0,0,3,3,1,1,1,1,3
3,0,0,3,1,1,1,1,1,0
3,0,0,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,2,3
3,0,1,1,1,1,1,2,2,0
3,0,1,1,1,1,2,2,2,1
3,0,1,1,1,2,2,2,2,0
3,0,1,1,2,2,2,2,2,2
3,0,1,2,2,2,2,2,2,0
3,0,2,2,2,2,2,2,2,0
3,0,2,2,2,2,2,2,3,0
3,0,2,2,2,2,2,3,3,0
3,0,2,2,2,2,3,3,3,0
3,0,2,2,2,3,3,3,3,0
3,0,2,2,3,3,3,3,3,0
3,0,2,3,3,3,3,3,3,0
3,0,3,3,3,3,3,3,3,0
3,0,3,3,3,3,3,3,1,0
3,0,3,3,3,3,3,1,1,0
3,0,3,3,3,3,1,1,1,1
3,0,3,3,3,1,1,1,1,2
3,0,3,3,1,1,1,1,1,0
3,0,3,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,1,1
3,1,1,1,1,1,1,1,1,0
3,1,1,1,1,1,1,1,2,0
3,1,1,1,1,1,1,2,2,0
3,1,1,1,1,1,2,2,2,0
3,1,1,1,1,2,2,2,2,0
3,1,1,1,2,2,2,2,2,0
3,1,1,2,2,2,2,2,2,3
3,1,2,2,2,2,2,2,2,2
3,2,2,2,2,2,2,2,2,3
3,2,2,2,2,2,2,2,3,0
3,2,2,2,2,2,2,3,3,0
3,2,2,2,2,2,3,3,3,0
3,2,2,2,2,3,3,3,3,0
3,2,2,2,3,3,3,3,3,0
3,2,2,3,3,3,3,3,3,0
3,2,3,3,3,3,3,3,3,1
3,3,3,3,3,3,3,3,3,1

@COLORS
0  48  48  48
1 255 255   0
2   0 255   0
3 255   0 255


This one has puffers and replicators with smouldering trails:

@RULE Wildfire
@TABLE

n_states:4
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,0,3,2
0,0,0,0,0,0,0,0,1,1
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,0
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,0,2,3,0
0,0,0,0,0,0,0,3,3,3
0,0,0,0,0,0,0,3,1,0
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,1,1,1,2
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,0
0,0,0,0,0,0,2,2,2,1
0,0,0,0,0,0,2,2,3,3
0,0,0,0,0,0,2,3,3,0
0,0,0,0,0,0,3,3,3,0
0,0,0,0,0,0,3,3,1,0
0,0,0,0,0,0,3,1,1,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,3
0,0,0,0,0,2,2,2,2,0
0,0,0,0,0,2,2,2,3,0
0,0,0,0,0,2,2,3,3,0
0,0,0,0,0,2,3,3,3,0
0,0,0,0,0,3,3,3,3,0
0,0,0,0,0,3,3,3,1,0
0,0,0,0,0,3,3,1,1,0
0,0,0,0,0,3,1,1,1,0
0,0,0,0,0,1,1,1,1,0
0,0,0,0,1,1,1,1,1,1
0,0,0,0,1,1,1,1,2,3
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,0
0,0,0,0,2,2,2,2,3,0
0,0,0,0,2,2,2,3,3,3
0,0,0,0,2,2,3,3,3,0
0,0,0,0,2,3,3,3,3,0
0,0,0,0,3,3,3,3,3,0
0,0,0,0,3,3,3,3,1,0
0,0,0,0,3,3,3,1,1,2
0,0,0,0,3,3,1,1,1,0
0,0,0,0,3,1,1,1,1,0
0,0,0,0,1,1,1,1,1,0
0,0,0,1,1,1,1,1,1,3
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,0,2,2,2,2,2,3,0
0,0,0,2,2,2,2,3,3,0
0,0,0,2,2,2,3,3,3,0
0,0,0,2,2,3,3,3,3,0
0,0,0,2,3,3,3,3,3,0
0,0,0,3,3,3,3,3,3,0
0,0,0,3,3,3,3,3,1,0
0,0,0,3,3,3,3,1,1,0
0,0,0,3,3,3,1,1,1,0
0,0,0,3,3,1,1,1,1,2
0,0,0,3,1,1,1,1,1,0
0,0,0,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,2,2
0,0,1,1,1,1,1,2,2,1
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,0
0,0,1,2,2,2,2,2,2,3
0,0,2,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,3,0
0,0,2,2,2,2,2,3,3,0
0,0,2,2,2,2,3,3,3,0
0,0,2,2,2,3,3,3,3,0
0,0,2,2,3,3,3,3,3,1
0,0,2,3,3,3,3,3,3,0
0,0,3,3,3,3,3,3,3,0
0,0,3,3,3,3,3,3,1,0
0,0,3,3,3,3,3,1,1,0
0,0,3,3,3,3,1,1,1,0
0,0,3,3,3,1,1,1,1,0
0,0,3,3,1,1,1,1,1,0
0,0,3,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,2
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,1
0,1,1,1,1,2,2,2,2,3
0,1,1,1,2,2,2,2,2,0
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,1
0,2,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,3,0
0,2,2,2,2,2,2,3,3,3
0,2,2,2,2,2,3,3,3,1
0,2,2,2,2,3,3,3,3,2
0,2,2,2,3,3,3,3,3,0
0,2,2,3,3,3,3,3,3,0
0,2,3,3,3,3,3,3,3,0
0,3,3,3,3,3,3,3,3,0
1,0,0,0,0,0,0,0,0,2
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,0
1,0,0,0,0,0,0,0,3,0
1,0,0,0,0,0,0,0,1,3
1,0,0,0,0,0,0,1,1,1
1,0,0,0,0,0,0,1,2,0
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,0,2,3,0
1,0,0,0,0,0,0,3,3,0
1,0,0,0,0,0,0,3,1,0
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,3
1,0,0,0,0,0,1,2,2,3
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,0,2,2,3,1
1,0,0,0,0,0,2,3,3,0
1,0,0,0,0,0,3,3,3,0
1,0,0,0,0,0,3,3,1,2
1,0,0,0,0,0,3,1,1,3
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,2
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,0
1,0,0,0,0,2,2,2,3,0
1,0,0,0,0,2,2,3,3,0
1,0,0,0,0,2,3,3,3,1
1,0,0,0,0,3,3,3,3,0
1,0,0,0,0,3,3,3,1,1
1,0,0,0,0,3,3,1,1,2
1,0,0,0,0,3,1,1,1,0
1,0,0,0,0,1,1,1,1,3
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,1
1,0,0,0,2,2,2,2,3,0
1,0,0,0,2,2,2,3,3,0
1,0,0,0,2,2,3,3,3,3
1,0,0,0,2,3,3,3,3,0
1,0,0,0,3,3,3,3,3,0
1,0,0,0,3,3,3,3,1,2
1,0,0,0,3,3,3,1,1,0
1,0,0,0,3,3,1,1,1,0
1,0,0,0,3,1,1,1,1,0
1,0,0,0,1,1,1,1,1,0
1,0,0,1,1,1,1,1,1,3
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,0,2,2,2,2,2,3,0
1,0,0,2,2,2,2,3,3,1
1,0,0,2,2,2,3,3,3,0
1,0,0,2,2,3,3,3,3,2
1,0,0,2,3,3,3,3,3,0
1,0,0,3,3,3,3,3,3,3
1,0,0,3,3,3,3,3,1,0
1,0,0,3,3,3,3,1,1,0
1,0,0,3,3,3,1,1,1,2
1,0,0,3,3,1,1,1,1,3
1,0,0,3,1,1,1,1,1,0
1,0,0,1,1,1,1,1,1,2
1,0,1,1,1,1,1,1,1,1
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,3
1,0,2,2,2,2,2,2,3,0
1,0,2,2,2,2,2,3,3,0
1,0,2,2,2,2,3,3,3,0
1,0,2,2,2,3,3,3,3,0
1,0,2,2,3,3,3,3,3,0
1,0,2,3,3,3,3,3,3,0
1,0,3,3,3,3,3,3,3,2
1,0,3,3,3,3,3,3,1,0
1,0,3,3,3,3,3,1,1,0
1,0,3,3,3,3,1,1,1,0
1,0,3,3,3,1,1,1,1,0
1,0,3,3,1,1,1,1,1,0
1,0,3,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,0
1,1,1,2,2,2,2,2,2,2
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,3,0
1,2,2,2,2,2,2,3,3,3
1,2,2,2,2,2,3,3,3,0
1,2,2,2,2,3,3,3,3,0
1,2,2,2,3,3,3,3,3,0
1,2,2,3,3,3,3,3,3,3
1,2,3,3,3,3,3,3,3,1
1,3,3,3,3,3,3,3,3,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,3
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,0,3,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,3
2,0,0,0,0,0,0,2,3,0
2,0,0,0,0,0,0,3,3,0
2,0,0,0,0,0,0,3,1,2
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,1,1,1,1
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,3
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,0,2,2,3,0
2,0,0,0,0,0,2,3,3,0
2,0,0,0,0,0,3,3,3,0
2,0,0,0,0,0,3,3,1,2
2,0,0,0,0,0,3,1,1,0
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,0
2,0,0,0,0,2,2,2,3,0
2,0,0,0,0,2,2,3,3,2
2,0,0,0,0,2,3,3,3,0
2,0,0,0,0,3,3,3,3,0
2,0,0,0,0,3,3,3,1,0
2,0,0,0,0,3,3,1,1,1
2,0,0,0,0,3,1,1,1,2
2,0,0,0,0,1,1,1,1,1
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,0
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,0
2,0,0,0,2,2,2,2,2,3
2,0,0,0,2,2,2,2,3,0
2,0,0,0,2,2,2,3,3,0
2,0,0,0,2,2,3,3,3,0
2,0,0,0,2,3,3,3,3,0
2,0,0,0,3,3,3,3,3,1
2,0,0,0,3,3,3,3,1,3
2,0,0,0,3,3,3,1,1,0
2,0,0,0,3,3,1,1,1,0
2,0,0,0,3,1,1,1,1,0
2,0,0,0,1,1,1,1,1,0
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,3
2,0,0,1,1,1,1,2,2,3
2,0,0,1,1,1,2,2,2,3
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,3
2,0,0,2,2,2,2,2,3,1
2,0,0,2,2,2,2,3,3,3
2,0,0,2,2,2,3,3,3,1
2,0,0,2,2,3,3,3,3,0
2,0,0,2,3,3,3,3,3,1
2,0,0,3,3,3,3,3,3,0
2,0,0,3,3,3,3,3,1,0
2,0,0,3,3,3,3,1,1,0
2,0,0,3,3,3,1,1,1,0
2,0,0,3,3,1,1,1,1,0
2,0,0,3,1,1,1,1,1,0
2,0,0,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,1
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,0
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,3
2,0,2,2,2,2,2,2,3,0
2,0,2,2,2,2,2,3,3,0
2,0,2,2,2,2,3,3,3,3
2,0,2,2,2,3,3,3,3,0
2,0,2,2,3,3,3,3,3,0
2,0,2,3,3,3,3,3,3,3
2,0,3,3,3,3,3,3,3,2
2,0,3,3,3,3,3,3,1,0
2,0,3,3,3,3,3,1,1,1
2,0,3,3,3,3,1,1,1,0
2,0,3,3,3,1,1,1,1,0
2,0,3,3,1,1,1,1,1,2
2,0,3,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,1
2,1,1,1,1,1,2,2,2,2
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,3
2,2,2,2,2,2,2,2,3,0
2,2,2,2,2,2,2,3,3,0
2,2,2,2,2,2,3,3,3,0
2,2,2,2,2,3,3,3,3,0
2,2,2,2,3,3,3,3,3,0
2,2,2,3,3,3,3,3,3,2
2,2,3,3,3,3,3,3,3,0
2,3,3,3,3,3,3,3,3,1
3,0,0,0,0,0,0,0,0,2
3,0,0,0,0,0,0,0,1,0
3,0,0,0,0,0,0,0,2,0
3,0,0,0,0,0,0,0,3,0
3,0,0,0,0,0,0,0,1,0
3,0,0,0,0,0,0,1,1,0
3,0,0,0,0,0,0,1,2,0
3,0,0,0,0,0,0,2,2,0
3,0,0,0,0,0,0,2,3,0
3,0,0,0,0,0,0,3,3,0
3,0,0,0,0,0,0,3,1,0
3,0,0,0,0,0,0,1,1,0
3,0,0,0,0,0,1,1,1,0
3,0,0,0,0,0,1,1,2,0
3,0,0,0,0,0,1,2,2,0
3,0,0,0,0,0,2,2,2,1
3,0,0,0,0,0,2,2,3,0
3,0,0,0,0,0,2,3,3,0
3,0,0,0,0,0,3,3,3,0
3,0,0,0,0,0,3,3,1,0
3,0,0,0,0,0,3,1,1,3
3,0,0,0,0,0,1,1,1,0
3,0,0,0,0,1,1,1,1,1
3,0,0,0,0,1,1,1,2,0
3,0,0,0,0,1,1,2,2,0
3,0,0,0,0,1,2,2,2,0
3,0,0,0,0,2,2,2,2,1
3,0,0,0,0,2,2,2,3,0
3,0,0,0,0,2,2,3,3,1
3,0,0,0,0,2,3,3,3,0
3,0,0,0,0,3,3,3,3,0
3,0,0,0,0,3,3,3,1,0
3,0,0,0,0,3,3,1,1,0
3,0,0,0,0,3,1,1,1,0
3,0,0,0,0,1,1,1,1,3
3,0,0,0,1,1,1,1,1,1
3,0,0,0,1,1,1,1,2,1
3,0,0,0,1,1,1,2,2,0
3,0,0,0,1,1,2,2,2,0
3,0,0,0,1,2,2,2,2,0
3,0,0,0,2,2,2,2,2,3
3,0,0,0,2,2,2,2,3,3
3,0,0,0,2,2,2,3,3,0
3,0,0,0,2,2,3,3,3,0
3,0,0,0,2,3,3,3,3,2
3,0,0,0,3,3,3,3,3,0
3,0,0,0,3,3,3,3,1,0
3,0,0,0,3,3,3,1,1,0
3,0,0,0,3,3,1,1,1,3
3,0,0,0,3,1,1,1,1,1
3,0,0,0,1,1,1,1,1,2
3,0,0,1,1,1,1,1,1,0
3,0,0,1,1,1,1,1,2,0
3,0,0,1,1,1,1,2,2,1
3,0,0,1,1,1,2,2,2,0
3,0,0,1,1,2,2,2,2,0
3,0,0,1,2,2,2,2,2,1
3,0,0,2,2,2,2,2,2,0
3,0,0,2,2,2,2,2,3,0
3,0,0,2,2,2,2,3,3,0
3,0,0,2,2,2,3,3,3,0
3,0,0,2,2,3,3,3,3,0
3,0,0,2,3,3,3,3,3,2
3,0,0,3,3,3,3,3,3,0
3,0,0,3,3,3,3,3,1,3
3,0,0,3,3,3,3,1,1,0
3,0,0,3,3,3,1,1,1,3
3,0,0,3,3,1,1,1,1,0
3,0,0,3,1,1,1,1,1,0
3,0,0,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,2,0
3,0,1,1,1,1,1,2,2,0
3,0,1,1,1,1,2,2,2,1
3,0,1,1,1,2,2,2,2,1
3,0,1,1,2,2,2,2,2,0
3,0,1,2,2,2,2,2,2,0
3,0,2,2,2,2,2,2,2,3
3,0,2,2,2,2,2,2,3,0
3,0,2,2,2,2,2,3,3,0
3,0,2,2,2,2,3,3,3,0
3,0,2,2,2,3,3,3,3,0
3,0,2,2,3,3,3,3,3,0
3,0,2,3,3,3,3,3,3,0
3,0,3,3,3,3,3,3,3,3
3,0,3,3,3,3,3,3,1,0
3,0,3,3,3,3,3,1,1,0
3,0,3,3,3,3,1,1,1,0
3,0,3,3,3,1,1,1,1,0
3,0,3,3,1,1,1,1,1,0
3,0,3,1,1,1,1,1,1,0
3,0,1,1,1,1,1,1,1,0
3,1,1,1,1,1,1,1,1,0
3,1,1,1,1,1,1,1,2,0
3,1,1,1,1,1,1,2,2,0
3,1,1,1,1,1,2,2,2,0
3,1,1,1,1,2,2,2,2,0
3,1,1,1,2,2,2,2,2,0
3,1,1,2,2,2,2,2,2,2
3,1,2,2,2,2,2,2,2,0
3,2,2,2,2,2,2,2,2,0
3,2,2,2,2,2,2,2,3,0
3,2,2,2,2,2,2,3,3,0
3,2,2,2,2,2,3,3,3,0
3,2,2,2,2,3,3,3,3,0
3,2,2,2,3,3,3,3,3,0
3,2,2,3,3,3,3,3,3,0
3,2,3,3,3,3,3,3,3,0
3,3,3,3,3,3,3,3,3,0

@COLORS
0  47  19  17
1 255 128   0
2 255   0   0
3 255 255   0
User avatar
gmc_nxtman
 
Posts: 1147
Joined: May 26th, 2015, 7:20 pm

Re: Thread For Your Unrecognised CA

Postby M. I. Wright » September 14th, 2015, 6:37 pm

gmc_nxtman wrote:This one has a replicator, and several small sparky diagonal spaceships/rakes.

@RULE Sparklers

It has two, actually.
x = 17, y = 16, rule = Sparklers
15.B$15.2B$15.2B$16.B11$.B$B!


Any even-length diagonal line of state-2 or state-3 pixels evolves into the slow replicator.
Last edited by M. I. Wright on September 14th, 2015, 8:09 pm, edited 1 time in total.
gamer54657 wrote:God save us all.
God save humanity.

hgkhjfgh

nutshelltlifeDiscord 'Conwaylife Lounge'
M. I. Wright
 
Posts: 371
Joined: June 13th, 2015, 12:04 pm

Re: Thread For Your Unrecognised CA

Postby gmc_nxtman » September 14th, 2015, 7:20 pm

Nice! This rule seems to also have potential:

@RULE ShiftingTracks
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,1
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,2
0,0,0,0,0,0,2,2,2,0
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,1
0,0,0,0,0,2,2,2,2,0
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,1
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,0
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,2
0,0,0,1,2,2,2,2,2,1
0,0,0,2,2,2,2,2,2,0
0,0,1,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,0
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,1,1,1,1,1,1,1,1,2
0,1,1,1,1,1,1,1,2,0
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,0
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,0
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,2
1,0,0,0,0,0,0,0,2,0
1,0,0,0,0,0,0,1,1,1
1,0,0,0,0,0,0,1,2,1
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,1
1,0,0,0,0,0,1,2,2,1
1,0,0,0,0,0,2,2,2,2
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,0
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,2
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,0
1,0,0,1,1,1,1,1,1,0
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,2
1,0,0,1,2,2,2,2,2,1
1,0,0,2,2,2,2,2,2,0
1,0,1,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,0
1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,1
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,1
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,1
1,2,2,2,2,2,2,2,2,1
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,2
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,1
2,0,0,0,0,0,1,1,1,2
2,0,0,0,0,0,1,1,2,2
2,0,0,0,0,0,1,2,2,0
2,0,0,0,0,0,2,2,2,1
2,0,0,0,0,1,1,1,1,1
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,1
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,1
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,2
2,0,0,0,1,2,2,2,2,1
2,0,0,0,2,2,2,2,2,1
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,0
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,1
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,1
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,2
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,0
2,0,1,2,2,2,2,2,2,2
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,2
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,0

@COLORS
0 255 255 255
1  11  14  61
2  48  48  48


And this is an interesting variant of my InfectiousLife rule (The names should probably be switched)

@RULE predvprey
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

var a={0,1,2}
var b={a}
var c={b}
var d={c}
var e={d}
var q={0,2}
var r={q}
var s={r}
var t={s}
var u={t}

0,1,1,1,q,r,s,t,u,1
1,2,2,2,a,b,c,d,e,2

@COLORS
0  48  48  48
1   0 255   0
2   0   0 255


Here is an interesting pattern:

x = 3, y = 4, rule = predvprey
.2B$A2B$A2B$2A!


EDIT: Another in a similar spirit:

x = 5, y = 5, rule = predvprey
.2A$2B2A$.2BA$2.B2A$2.B!
User avatar
gmc_nxtman
 
Posts: 1147
Joined: May 26th, 2015, 7:20 pm

Re: Thread For Your Unrecognised CA

Postby M. I. Wright » September 14th, 2015, 8:08 pm

Woah, ShiftingTracks is really neat! I think the blue should be made a bit lighter, though.
x = 145, y = 102, rule = ShiftingTracks
116.2A26.A$116.2B26.B$116.2B26.B$116.2A26.A30$121.2A$121.2B$121.2B$
121.2A37$60.A$60.2A10.2A$60.A5.2A2.A5.B$61.3B6.B2.A2.A$66.B3.B2.B$38.
BA.B18.A.B7.A.A.2B$39.A3.A17.A10.2A$37.B2.2A19.B3.A$22.A2BA4.B7.B4.AB
A19.ABA8.A$17.B12.B8.B4.2A$2A.2A2.2A4.A3.3A44.3A$2B2.A3.A.3A21.A26.4A
.A.2A$2B3.B.AB.A.A.BA2.A15.A2.A5.B.2A14.A.A5.A$2A2.AB.3A3.A.A.A16.2AB
6.A3.A20.A$5.A2.A.BA3.A27.B.2B$43.B3.A$44.A$44.A$44.A$42.B$43.A.A2$
43.A.A2$42.B.A$43.AB$42.A2.B$42.AB$42.A2BA!


There are a lot of bluestretschers in predvprey.
x = 44, y = 11, rule = predvprey
A2B$.AB21.5B$.A3B19.2A3B$.3AB20.4A7.3B2.3B$4.A8.B11.4A7.3A2.ABA$12.A
2B21.3A2.3A$13.A3B$13.3A3B$13.3A.A3B$17.3AB$19.A!
gamer54657 wrote:God save us all.
God save humanity.

hgkhjfgh

nutshelltlifeDiscord 'Conwaylife Lounge'
M. I. Wright
 
Posts: 371
Joined: June 13th, 2015, 12:04 pm

Re: Thread For Your Unrecognised CA

Postby Saka » September 16th, 2015, 5:28 am

Small rake:
x = 7, y = 4, rule = ShiftingTracks
2A2.A.A$2B2.3B$2B2.3B$2A2.A.A!

Replicator-based spaceship:
x = 17, y = 48, rule = ShiftingTracks
$2.A2B.A2.A.2BA$3.A.B4.B.A$3.A8.A$2.B10.B3$3.3A4.3A$3.3A4.3A$3.B.B4.B
.B$3.3B4.3B$3.AB6.BA$2.A2.A4.A2.A$.BA10.AB$3.A2BA2.A2BA$4.2BA2.A2B$.
2A3.A2.A3.2A$4.2A4.2A$6.A2.A$2.3A6.3A2$2.A.A6.A.A4$3.B.A4.A.B$4.2A4.
2A$3.A8.A$3.A8.A$4.AB.2B.BA5$5.A4.A$5.A4.A$5.A.2A.A$6.A2.A$7.2B2$6.A
2BA$6.A2BA$6.A2BA$6.A2BA$6.A2BA!

Tiny Sierpinski breeder:
x = 9, y = 4, rule = ShiftingTracks
2A6.A$2B6.B$2B6.B$2A6.A!

glider reflective spaceship:
x = 4, y = 4, rule = ShiftingTracks
3A$BA$BA$2A.A!

Very large smoke:
x = 115, y = 30, rule = ShiftingTracks
85.A$85.A.A$72.A14.B.B$54.B.AB15.BA14.B$56.BA10.A4.A$41.B12.A2.2A13.B
14.B11.A2B$43.A12.A.A2.A.A6.B2.4A10.A11.A2B2A$39.B2.A21.B6.2A.2AB9.B
17.B$30.B9.AB.A12.2B.2A3.A5.B2.2A.A23.A.A$27.A2.B12.A.2A11.2A2.B9.B
26.B2.2A$22.2A3.2A.2A9.3A14.A.B4.A.A4.B.3A24.3A$15.2A.A3.A3B3.A2.A2B
3.A.A6.B12.A.2B2.B.A5.3A24.2A.A$10.A3.A2.A4.2AB2A.B3.B.BA6.B18.A40.AB
$7.A6.A9.A2.AB3.6A.AB4.A.B13.3AB.B35.2A$2A2.A.A.B9.B6.BA.A15.BA.A16.B
A.A$2B2.2B.A3.B2.A10.2A10.A.A3.A.A.A.A.A11.BA$2B2.2B.A3.B2.A20.A10.A
2.3A11.A$2A2.A.A.B9.B8.A3.A.B2A6.A.A6.A4.A13.A5.A.A$7.A6.A15.2A3.B.A
11.A4.B15.A5.3A$10.A3.A2.A4.A.2A6.A3.A12.A7.A14.B4.A$15.2A.A3.A.A3.A.
ABA3.A11.A6.3A13.ABA38.A$22.A.A5.A.A3.A12.AB16.2A7.3A15.A15.3A$24.A.B
7.3A12.2A4.BA6.2A.2A8.3A15.BA.A14.A$34.A.A10.2A.2A3.BA4.A2.A30.A16.2A
$34.A12.A.B.A12.A.BA4.B.B17.AB.2A15.ABA$48.A2.A9.A15.AB13.A15.2A4.A$
65.B6.A.A.A18.2A12.A.A$47.2A.B.B8.AB.2A10.B15.BA.B12.A$49.2ABA7.B.A.A
13.BAB11.A.A13.3A$60.2A.2A43.A.A!

x = 32, y = 11, rule = ShiftingTracks
$25.2A3.2A$26.A3.A$13A3.A4.4A3.B$13B3.B4.4B3.A$13B3.B4.4B3.A$13A3.A4.
4A3.B$26.A3.A$25.2A3.2A!
If you're the person that uploaded to Sakagolue illegally, please PM me.
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 3077
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Thread For Your Unrecognised CA

Postby Saka » September 16th, 2015, 6:06 am

I'm not sure but maybe this rule has some potential...
@RULE Kel

@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate8reflect
var a={1,2}
var b={a}
var c={b}
var d={c}
var e={d}
var f={e}
var g={f}
var h={g}
var a1={0,1,2}
var b1={a1}
var c1={b1}
var d1={c1}
var e1={d1}
var f1={e1}
var g1={f1}
var h1={g1}

0,a,b,c,0,0,0,0,0,1
1,a,b,c,d,0,0,0,0,2
1,0,0,0,0,0,0,0,0,2
1,1,0,0,0,0,0,0,0,2
1,a,b,c,d,e,0,0,0,2
1,a,b,c,d,e,f,g,0,2
2,a,b,c,d,e,f,g,0,1
2,a1,b1,c1,d1,e1,f1,g1,h1,0

A fun rule:
@RULE ReplicatorCrystal

@TABLE
n_states:3
neighborhood:Moore
symmetries:rotate8reflect
var a={1,2}
var b={a}
var c={b}
var d={c}
var e={d}
var f={e}
var g={f}
var h={g}
var a1={0,1,2}
var b1={a1}
var c1={b1}
var d1={c1}
var e1={d1}
var f1={e1}
var g1={f1}
var h1={g1}

0,a,b,c,0,0,0,0,0,1
1,a,b,c,d,0,0,0,0,2
1,0,0,0,0,0,0,0,0,2
1,1,0,0,0,0,0,0,0,2
1,a,b,c,d,e,0,0,0,2
1,a,b,c,d,e,f,g,0,2
2,a,b,c,d,e,f,g,0,1
2,a1,b1,c1,d1,e1,f1,g1,h1,0
0,a,b,0,0,0,0,0,0,2

There's gliders in kel:
x = 5, y = 5, rule = Kel
.3A$.3A$A3.A$.B.A$4.B!

x = 5, y = 4, rule = Kel
.A2.A$2A$.A2.A$3.A!

a large natural still life:
x = 5, y = 7, rule = Kel
.2A$A2.A$.A.A$2A.2A$.A.A$A2.A$.2A!

and then there's this:
x = 10, y = 5, rule = Kel
2.A$.A.2A3.2A$A3.A3.2A$.A.2A$2.A!
If you're the person that uploaded to Sakagolue illegally, please PM me.
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 3077
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

Re: Thread For Your Unrecognised CA

Postby M. I. Wright » September 16th, 2015, 5:48 pm

A p8 wick in Sparklers:
x = 42, y = 44, rule = Sparklers
41.B$40.2B$40.2B$40.B$37.B$36.2B$36.2B$36.B5$29.B$28.2B$28.2B$28.B$
25.B$24.2B$24.2B$24.B5$17.B$16.2B$16.2B$16.B$13.B$12.2B$12.2B$12.B5$
5.B$4.2B$4.2B$4.B$.B$2B$2B$B!

And a half-Sierpinski breeder:
x = 8, y = 6, rule = Sparklers
.3B$3B3$5.2B$5.3B!

edit: this works.
x = 18, y = 12, rule = Sparklers
.B15.B$2B14.2B$2B14.2B2$8.B3.B$8.2B2.2B$8.2B2.2B$13.B$4.B$4.2B$4.2B$
5.B!

Normal breeder:
x = 11, y = 6, rule = Sparklers
3B5.3B$2B6.2B3$3.3B$4.3B!

Backrakes:
x = 70, y = 23, rule = Sparklers
66.3B$67.3B2$38.3B5.3B$39.2B6.2B18.2B$67.3B2$39.2B$4.B34.3B$4.2B2.2B$
4.2B2.2B$5.B3.B$B$2B$2B2$4.2B$4.2B$4.2B$5.B$B$2B$2B!

An 'engine' for a siderake that needs stabilization:
x = 5, y = 4, rule = Sparklers
3B$.B.B$3.B$4.B!


Smaller stabilization of Quintlanych's linestretcher:
x = 4, y = 4, rule = Quintlanych
2.A$.3A$.2A$C!


A couple variations on the breeder:
x = 127, y = 42, rule = Quintlanych
97.A$96.3A$95.5A$96.A.A$95.2A.2A$96.A.2A$95.2A.2A$96.A.2A$95.2A.A$96.
A.AB$95.2A.B4A$96.A.AB$95.2A.A$15.A80.A.A$14.3A78.2A.2A$13.5A78.A.A$
13.2A.2A77.2A.A$14.A.A79.A.AB$14.A.2A77.2A.B4A8.A$12.3A.A79.A.AB.A.A.
A4.3A$14.A.2A77.2A.A3.4A3.5A$14.A.A79.A.A4.A.A4.A.A$8.A6.3A77.2A.2A2.
2A.2A2.2A.2A$7.3A5.2A79.A.A4.A.A4.A.2A$6.5A6.A77.2A.A3.2A.A3.2A.A$7.A
.4A3.2A2.2A74.A.2A3.A.2A3.A.2A$6.A3.3A3.5A74.2A.A3.2A.A3.2A.A$6.2A3.
3A4.3A75.A.A4.A.A4.A.A5.A$11.4A80.3A4.3A4.3A5.3A$11.A84.2A5.2A5.2A4.
5A$3A92.A6.A6.A6.2A.2A$.4A18.A71.2A5.2A5.A4.C.2A.A$2.3A17.AB.A64.A3.
2A5.3A.2A.2A6.2A2.A$3.A17.2A.A65.2A.A.A4.A5.2A.A2.2A$22.A.B2A63.2A.2A
5.2A5.A5.A$19.3A2.A67.2A5.2A$19.2A71.A.A5.A24.A$20.A70.A7.3A22.3A$18.
2A69.2A9.A22.3A$18.3A66.2A34.2A$87.2A34.A$87.A!


A neat ripple-like effect:
x = 66, y = 74, rule = Quintlanych
36.A$35.3A$34.5A$35.A.A$34.2A.2A$35.A.2A$34.2A.2A$35.A.2A$34.2A.A$35.
A.AB$34.2A.B4A$35.A.AB$34.2A.A$35.A.A$34.2A.2A$35.A.A$34.2A.A$35.A.AB
$34.2A.B4A8.A$35.A.AB.A.A.A4.3A$34.2A.A3.4A3.5A$35.A.A4.A.A4.A.A$34.
2A.2A2.2A.2A2.2A.2A$35.A.A4.A.A4.A.2A$34.2A.A3.2A.A3.2A.A$35.A.2A3.A.
2A3.A.2A$34.2A.A3.2A.A3.2A.A$35.A.A4.A.A4.A.A5.A$34.3A4.3A4.3A5.3A$
35.2A5.2A5.2A4.5A$34.A6.A6.A6.2A.2A$34.2A5.2A5.A4.C.2A.A$29.A3.2A5.3A
.2A.2A6.2A2.A$29.2A.A.A4.A5.2A.A2.2A$29.2A.2A5.2A5.A5.A$31.2A5.2A$31.
A.A5.A24.A$30.A7.3A22.3A$28.2A9.A22.3A$26.2A34.2A$26.2A34.A$26.A27$A.
A.A.2A$9A$A6.3A$.8A$3.A2.2A$3.A!


x = 16, y = 3, rule = Quintlanych
11.A$B9.AB3A$11.A3.C!
Last edited by M. I. Wright on September 16th, 2015, 8:12 pm, edited 1 time in total.
gamer54657 wrote:God save us all.
God save humanity.

hgkhjfgh

nutshelltlifeDiscord 'Conwaylife Lounge'
M. I. Wright
 
Posts: 371
Joined: June 13th, 2015, 12:04 pm

Re: Thread For Your Unrecognised CA

Postby gmc_nxtman » September 16th, 2015, 7:05 pm

Thanks for contributing to ShiftingTracks and predvprey, guys!

The aforementioned statorless, quad-symmetric four-barreled gun in Zygorax:

x = 5, y = 2, rule = Zygorax
AB.2A$B!


A "gun" in Wildfire:

x = 11, y = 11, rule = Wildfire
2.2B$2.A2.2B$6.C$4.B.C$2B4.B$2BC2B$2B3.B$5.2CBA$6.CBC.B$5.2CABC$8.A!


Some very long, smoky, and sparky natural(!) spaceships:

#C Also contains a few oscillators.
x = 459, y = 67, rule = Wildfire
230.C$235.2B$231.B3.2B$231.B10.A$176.BC.CB42.3B4.B3CB.B6.C2.AC53.A$
106.C21.BC.CB43.B3.C2B8.2B30.3B4.C.3B5.A2C4.C51.A$102.ACA3.C19.B3.B
43.BC.C11.C40.B10.A2.A5.A44.AC70.B$128.BC.2C2B41.2BCB.BC14.2B25.B13.B
.CA6.C.C.C8.BAB38.CB68.B$133.2B41.2BC2.A3.2C4.C2.2BC2B33.2B.B2.B10.CA
3CA5.C40.A70.B$133.2C41.2BC.B6.CA5.2B3C24.3B4.2C8.C2.2CB3.C2.C47.2C4.
3B28.C30.C2.2B$73.C56.C51.BC.2C6.B.C27.3B8.C4.BA3.C4.B2.A9.ACA31.A11.
CB55.3BC.C$71.B27.B26.A.C.A.A.C45.3B10.BC.A.C9.A14.3B4.3C6.B4.2C25.3B
20.A14.B30.BA23.C.CB$71.BC3.BC50.C3.C47.C15.C7.C.B2.C30.C3.C2.C14.2B
7.C24.AC4.A4.C57.C91.A$90.B3.CB12.B.B16.CACA.A44.A.C.A14.A37.B3.B.A6.
C13.3B32.C3.AC34.A3.C24.B6.2B84.C$74.C3.B16.B33.B52.C24.B2C29.A2.BC3.
C17.AB2C4.B.B24.B3.C25.B2CB40.B44.B38.C$77.CB12.BC3.B2.BC7.B.B18.A76.
C35.3BC2B15.B2.BA6.CA.C21.2C2.C26.B2.C.AC.A.A33.C7.3B32.3B36.B$56.2C
17.B20.B2.C2.CA101.C.B32.2B21.C.A.B4.AC.B2.AC.B17.C3.C26.B3.2C3.C28.B
6.B37.3B.B36.C.3B$13.C46.B11.C3.C19.B2.C.C107.B53.C8.A2C2.AC3.2B17.C.
CB4.A21.B8.CA26.B6.C6.C30.2BC2.C37.3B$26.BC29.C2.B4.2B5.B2.C2.C20.B4.
C158.B2CB5.CBCB6.2B17.A3.2B2.C22.C2.2BC2A4.A23.BC4.C6.C2.A28.2BC2.C$
14.CA12.C14.B3C2B15.C.CB3.A3.2A26.C2.C160.3B4.2C6.C19.C6.2CA3B19.CB2.
B2.A3.C23.A4.B.2B3.A4.BC27.B.C$C3.C2.2AC2.B9.B8.CB15.B13.C4.C10.2B21.
A177.B22.2BC2.A.C2.3B8.3B9.B3.B5.C21.B3.A.3A10.B$5.C2.C.A11.B9.B11.BC
A.C14.A3.C6.B24.A2.B168.B4.B4.A.A19.B2.CA2.A.3B8.C.C7.B18.C7.C19.B2.C
.2B59.C.B$3C5.A19.C2.CB8.2B2.2C.C13.C2.C2B40.C162.C2.3B3.B2.A19.C8.2B
11.C13.BC2B9.C8.ACA10.A.A6.C60.C3.C$2BC6.C12.B18.2B3.B.C14.AC205.C2.A
.2B26.C4.C11.B3.CB7.BC2.3B3.AC6.C.CBA3.C3.A11.B2.B4.C35.A29.3B$2B9.C
12.B4.B8.AB3C.C.C.B10.C2.B208.2C4.B25.BC3.A11.B3.B9.3B2.C5.A5.A.C.A7.
A14.A2.C.A35.C31.B$41.2B2.B14.A.B207.A2C31.B15.B8.2B.3B3.B6.A6.A2.AB
4.A15.2B4.C33.A3CA28.CB$46.C14.CB210.A4.2CB18.C4.B.C.C.B2CB15.2B.C.C
19.CAB4.A16.B2.C37.C25.B4.B$44.2B12.3B237.B3.3B.C.C8.C.C8.3B2.CB16.C.
C20.B2C3.BC2B35.A25.A2.2C$44.2B258.CB3.CB9.B12.AB39.B5.3B66.C$299.BC
2.2CBC3.B3.4B19.A13.A7.B5.B8.BC3.C3B67.2B$300.B2C3B3.CB3.B4.2A10.C5.
2C19.CB20.3B62.ACA.C2B$314.B7.B32.B93.3B2$327.AB3.B$332.C73.B.B2$2.3B
6.A394.B.B$2.2BC2B4.C$2.C6.A.C22.B$16.3B$2.C2.A2.A7.2BC2.A15.C$5.CB.A
$10.C4.B26.3B362.B$13.C2B6.C.C13.2BCBC2B$12.C3.C.C19.2BCBC2B3.B3.B5.C
$16.3B5.B13.2BC2B9.B$13.A6.B27.C2.2B8.AC$14.2C44.3C$60.C$58.2A7$7.B$
4.2B$4.2BC$4.C6.CB22.B7.2C$8.C2B31.ABAB$4.C2.AC5.C17.BC.C6.ABAB$7.CB
2.C.A18.B.CBA6.2C$11.C.A18.B.BA6.B2CB$12.C10.B$12.A$21.B!


Simpe wickstretcher in Kel:

x = 5, y = 5, rule = Kel
2.A$.A.A$A2.2A$.A.A$2.A!


I think this rule is also interesting, with c/2 diagonal replicators, puffers, and puffer-eaters:

@RULE hdiag
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,1
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,0
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,0
0,0,0,0,0,0,2,2,2,0
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,0
0,0,0,0,0,2,2,2,2,0
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,0
0,0,0,0,1,1,1,2,2,2
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,0
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,2
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,1,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,0
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,0
0,1,1,1,1,1,1,2,2,2
0,1,1,1,1,1,2,2,2,0
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,0
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,1
0,2,2,2,2,2,2,2,2,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,0
1,0,0,0,0,0,0,1,1,2
1,0,0,0,0,0,0,1,2,0
1,0,0,0,0,0,0,2,2,2
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,0
1,0,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,1,1,1,1,1
1,0,0,0,0,1,1,1,2,2
1,0,0,0,0,1,1,2,2,2
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,0
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,0
1,0,0,1,1,1,1,1,1,2
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,1
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,1,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,1
1,0,1,2,2,2,2,2,2,2
1,0,2,2,2,2,2,2,2,2
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,0
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,2
1,2,2,2,2,2,2,2,2,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,2
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,1
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,2
2,0,0,0,0,2,2,2,2,0
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,0
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,2
2,0,0,0,2,2,2,2,2,0
2,0,0,1,1,1,1,1,1,1
2,0,0,1,1,1,1,1,2,0
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,2
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,2
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,2
2,0,1,1,2,2,2,2,2,2
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,2
2,1,1,1,1,1,1,2,2,1
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,2

@COLORS
0  48  48  48
1 255 128 128
2 128 128 255

x = 2, y = 2, rule = hdiag
B$.B!


This one eerily resembles a generations rule I studied a while back:

@RULE snakelike
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,0
0,0,0,0,0,0,0,2,2,2
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,1
0,0,0,0,0,0,2,2,2,0
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,0
0,0,0,0,0,2,2,2,2,0
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,2
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,1
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,1,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,1
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,0
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,0
0,1,1,1,1,1,1,2,2,2
0,1,1,1,1,1,2,2,2,2
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,2
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,0
1,0,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,0
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,0,1,2,1
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,1
1,0,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,2
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,0
1,0,0,0,1,1,1,1,1,2
1,0,0,0,1,1,1,1,2,1
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,0
1,0,0,1,1,1,1,1,1,2
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,2
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,1,1,1,1,1,1,1,2
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,0
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,1
1,1,1,1,2,2,2,2,2,0
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,0
2,0,0,0,0,0,1,1,1,1
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,0
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,1
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,0
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,2
2,0,0,0,2,2,2,2,2,0
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,0
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,0
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,1
2,0,1,1,2,2,2,2,2,2
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,1
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,0
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,0

@COLORS
0 255 255 255
1  48  48  48
2  54  79  54


This rule seems to heavily be in favor of diagonal technology (replicators, puffers, spaceships, etc.)

@RULE Scutile
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,1
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,0
0,0,0,0,0,0,0,2,2,1
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,2
0,0,0,0,0,0,2,2,2,2
0,0,0,0,0,1,1,1,1,1
0,0,0,0,0,1,1,1,2,2
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,1
0,0,0,0,0,2,2,2,2,2
0,0,0,0,1,1,1,1,1,1
0,0,0,0,1,1,1,1,2,0
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,0
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,1,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,1
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,1
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,2
0,1,1,1,1,2,2,2,2,1
0,1,1,1,2,2,2,2,2,0
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,2
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,0,1,2,0
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,1,1,1,2
1,0,0,0,0,0,1,1,2,0
1,0,0,0,0,0,1,2,2,1
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,0
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,0
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,2
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,0
1,0,0,1,1,1,1,1,1,0
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,1,1,1,1,1,1,1,2
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,2
1,1,1,1,1,1,1,1,1,1
1,1,1,1,1,1,1,1,2,2
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,2
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,0
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,0
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,0,1,1,2,2
2,0,0,0,0,0,1,2,2,2
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,1
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,0
2,0,0,0,1,1,1,1,1,1
2,0,0,0,1,1,1,1,2,0
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,2
2,0,0,0,2,2,2,2,2,0
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,0
2,0,0,1,1,1,1,2,2,2
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,1
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,0
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,0
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,0
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,1
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,0


Sparky diagonal spaceships, the LOM Is a p2 osc, and a relocation reaction:

@RULE reloscr
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,2
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,1,1,0
0,0,0,0,0,0,0,1,2,0
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,1,1,1,0
0,0,0,0,0,0,1,1,2,2
0,0,0,0,0,0,1,2,2,0
0,0,0,0,0,0,2,2,2,0
0,0,0,0,0,1,1,1,1,1
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,2
0,0,0,0,0,2,2,2,2,0
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,1
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,1
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,0
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,0
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,1
0,0,1,1,1,1,1,1,1,0
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,0
0,0,1,1,2,2,2,2,2,0
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,0
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,0
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,0
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0,2,0
1,0,0,0,0,0,0,1,1,1
1,0,0,0,0,0,0,1,2,1
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,0,1,1,2,0
1,0,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,2,0
1,0,0,0,0,1,1,1,1,0
1,0,0,0,0,1,1,1,2,0
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,0
1,0,0,0,0,2,2,2,2,2
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,0
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,0
1,0,0,0,2,2,2,2,2,1
1,0,0,1,1,1,1,1,1,0
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,1,1,1,1,1,1,1,0
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,0
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,0
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,0
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,0
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,1
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,1
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,0
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,1
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,1
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,0
2,0,0,0,0,2,2,2,2,0
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,2
2,0,0,0,1,1,1,2,2,0
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,0
2,0,0,0,2,2,2,2,2,0
2,0,0,1,1,1,1,1,1,0
2,0,0,1,1,1,1,1,2,0
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,0
2,0,1,1,1,1,1,1,2,0
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,0
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,1
2,1,1,1,1,1,1,2,2,0
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,0
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,0
2,2,2,2,2,2,2,2,2,0


Explosive, but many diagonal spaceships:

@RULE canoe
@TABLE

n_states:3
neighborhood:Moore
symmetries:permute

0,0,0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0,2,0
0,0,0,0,0,0,0,1,1,2
0,0,0,0,0,0,0,1,2,2
0,0,0,0,0,0,0,2,2,0
0,0,0,0,0,0,1,1,1,1
0,0,0,0,0,0,1,1,2,0
0,0,0,0,0,0,1,2,2,0
0,0,0,0,0,0,2,2,2,2
0,0,0,0,0,1,1,1,1,0
0,0,0,0,0,1,1,1,2,0
0,0,0,0,0,1,1,2,2,0
0,0,0,0,0,1,2,2,2,0
0,0,0,0,0,2,2,2,2,1
0,0,0,0,1,1,1,1,1,0
0,0,0,0,1,1,1,1,2,0
0,0,0,0,1,1,1,2,2,0
0,0,0,0,1,1,2,2,2,0
0,0,0,0,1,2,2,2,2,0
0,0,0,0,2,2,2,2,2,0
0,0,0,1,1,1,1,1,1,0
0,0,0,1,1,1,1,1,2,0
0,0,0,1,1,1,1,2,2,0
0,0,0,1,1,1,2,2,2,0
0,0,0,1,1,2,2,2,2,2
0,0,0,1,2,2,2,2,2,0
0,0,0,2,2,2,2,2,2,0
0,0,1,1,1,1,1,1,1,1
0,0,1,1,1,1,1,1,2,0
0,0,1,1,1,1,1,2,2,0
0,0,1,1,1,1,2,2,2,0
0,0,1,1,1,2,2,2,2,2
0,0,1,1,2,2,2,2,2,0
0,0,1,2,2,2,2,2,2,0
0,0,2,2,2,2,2,2,2,0
0,1,1,1,1,1,1,1,1,0
0,1,1,1,1,1,1,1,2,0
0,1,1,1,1,1,1,2,2,0
0,1,1,1,1,1,2,2,2,2
0,1,1,1,1,2,2,2,2,0
0,1,1,1,2,2,2,2,2,0
0,1,1,2,2,2,2,2,2,0
0,1,2,2,2,2,2,2,2,0
0,2,2,2,2,2,2,2,2,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,2
1,0,0,0,0,0,0,0,2,1
1,0,0,0,0,0,0,1,1,0
1,0,0,0,0,0,0,1,2,0
1,0,0,0,0,0,0,2,2,0
1,0,0,0,0,0,1,1,1,2
1,0,0,0,0,0,1,1,2,0
1,0,0,0,0,0,1,2,2,0
1,0,0,0,0,0,2,2,2,2
1,0,0,0,0,1,1,1,1,1
1,0,0,0,0,1,1,1,2,2
1,0,0,0,0,1,1,2,2,0
1,0,0,0,0,1,2,2,2,2
1,0,0,0,0,2,2,2,2,0
1,0,0,0,1,1,1,1,1,0
1,0,0,0,1,1,1,1,2,0
1,0,0,0,1,1,1,2,2,2
1,0,0,0,1,1,2,2,2,0
1,0,0,0,1,2,2,2,2,2
1,0,0,0,2,2,2,2,2,0
1,0,0,1,1,1,1,1,1,0
1,0,0,1,1,1,1,1,2,0
1,0,0,1,1,1,1,2,2,0
1,0,0,1,1,1,2,2,2,0
1,0,0,1,1,2,2,2,2,0
1,0,0,1,2,2,2,2,2,0
1,0,0,2,2,2,2,2,2,0
1,0,1,1,1,1,1,1,1,2
1,0,1,1,1,1,1,1,2,0
1,0,1,1,1,1,1,2,2,1
1,0,1,1,1,1,2,2,2,0
1,0,1,1,1,2,2,2,2,0
1,0,1,1,2,2,2,2,2,0
1,0,1,2,2,2,2,2,2,0
1,0,2,2,2,2,2,2,2,0
1,1,1,1,1,1,1,1,1,0
1,1,1,1,1,1,1,1,2,1
1,1,1,1,1,1,1,2,2,0
1,1,1,1,1,1,2,2,2,1
1,1,1,1,1,2,2,2,2,0
1,1,1,1,2,2,2,2,2,0
1,1,1,2,2,2,2,2,2,0
1,1,2,2,2,2,2,2,2,0
1,2,2,2,2,2,2,2,2,0
2,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,1,0
2,0,0,0,0,0,0,0,2,1
2,0,0,0,0,0,0,1,1,0
2,0,0,0,0,0,0,1,2,0
2,0,0,0,0,0,0,2,2,2
2,0,0,0,0,0,1,1,1,0
2,0,0,0,0,0,1,1,2,0
2,0,0,0,0,0,1,2,2,0
2,0,0,0,0,0,2,2,2,0
2,0,0,0,0,1,1,1,1,0
2,0,0,0,0,1,1,1,2,0
2,0,0,0,0,1,1,2,2,0
2,0,0,0,0,1,2,2,2,1
2,0,0,0,0,2,2,2,2,0
2,0,0,0,1,1,1,1,1,0
2,0,0,0,1,1,1,1,2,1
2,0,0,0,1,1,1,2,2,1
2,0,0,0,1,1,2,2,2,0
2,0,0,0,1,2,2,2,2,1
2,0,0,0,2,2,2,2,2,0
2,0,0,1,1,1,1,1,1,2
2,0,0,1,1,1,1,1,2,2
2,0,0,1,1,1,1,2,2,0
2,0,0,1,1,1,2,2,2,0
2,0,0,1,1,2,2,2,2,0
2,0,0,1,2,2,2,2,2,0
2,0,0,2,2,2,2,2,2,0
2,0,1,1,1,1,1,1,1,2
2,0,1,1,1,1,1,1,2,0
2,0,1,1,1,1,1,2,2,0
2,0,1,1,1,1,2,2,2,0
2,0,1,1,1,2,2,2,2,0
2,0,1,1,2,2,2,2,2,0
2,0,1,2,2,2,2,2,2,0
2,0,2,2,2,2,2,2,2,0
2,1,1,1,1,1,1,1,1,0
2,1,1,1,1,1,1,1,2,0
2,1,1,1,1,1,1,2,2,0
2,1,1,1,1,1,2,2,2,0
2,1,1,1,1,2,2,2,2,1
2,1,1,1,2,2,2,2,2,0
2,1,1,2,2,2,2,2,2,0
2,1,2,2,2,2,2,2,2,2
2,2,2,2,2,2,2,2,2,0
User avatar
gmc_nxtman
 
Posts: 1147
Joined: May 26th, 2015, 7:20 pm

Re: Thread For Your Unrecognised CA

Postby Saka » September 18th, 2015, 5:31 am

Quintlanych "sidepuffer"
x = 13, y = 23, rule = Quintlanych
4.2A$.2A.A.A$.4A2.A$A3.A.2A$.A2.2A.2A$2.A.A.3A$.2A.2A2.2A$2.A.A5.A$.
2A.2A5.A$2.A.A7.A$.2A.2A$2.A.A$.2A.2A.2A$2.A.A2.2A.A$.2A.2A.AB$2.A.A
3.AB2A$.2A.2A3.AB2A$2.A.A5.A$.2A.2A$2.A.A$.2A.2A$.ABABA$2.3A!
If you're the person that uploaded to Sakagolue illegally, please PM me.
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)
User avatar
Saka
 
Posts: 3077
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

PreviousNext

Return to Other Cellular Automata

Who is online

Users browsing this forum: GUYTU6J and 5 guests