Home  •  LifeWiki  •  Forums  •  Download Golly

## Thread For Your Unrecognised CA

For discussion of other cellular automata.

### Re: Thread For Your Unrecognised CA

Infinite spaceship:
x = 8, y = 24, rule = Billiard:T0,24bobo2b2o$2ob4o$bobobo$bobobo$2ob4o$bobo2b2o$bobo2b2o$2ob4o$bobobo$bobobo$2ob4o$bobo2b2o$bobo2b2o$2ob4o$bobobo$bobobo$2ob4o$bobo2b2o$bobo2b2o$2ob4o$bobobo$bobobo$2ob4o$bobo2b2o! ▄▀ ▀▀▀ Billabob Posts: 143 Joined: April 2nd, 2015, 5:28 pm ### Re: Thread For Your Unrecognised CA It is obvious that there exist objects that can't be destroyed from the inside, but what about the outside? Here are some likely candidates: x = 65, y = 87, rule = Billiard41bo2bo2bo2bo2bo$39b17o$40bo13bo$37bo2bob2obobobob2obo2bo$37b4ob2ob5ob2ob4o$36b2o4b2o7b2o4b2o$37bob3obob2ob2obob3obo$37bob5o7b5obo$36b2o6b3ob3o6b2o$37bob2obobo5bobob2obo$37bo2bobobo5bobobo2bo$36b2ob2o13b2ob2o$37bo2bobobo5bobobo2bo$37bob2obobo5bobob2obo$36b2o6b3ob3o6b2o$37bob5o7b5obo$37bob3obob2ob2obob3obo$36b2o4b2o7b2o4b2o$37b4ob2ob5ob2ob4o$37bo2bob2obobobob2obo2bo$40bo13bo$39b17o$41bo2bo2bo2bo2bo25$62bobo$63bo10$3bo2bo2bo2bobobo2bo2bo2bo$b27o$bo2bo4bo4bo4bo4bo2bo$2o2bob2obob2obob2obob2obo2b2o$b4ob2obobo2bo2bobob2ob4o$bo4b4o2bobobo2b4o4bo$2ob3obo2b3obob3o2bob3ob2o$bob5obo4bo4bob5obo$bo3bo3bob2obob2obo3bo3bo$6ob3obo2bo2bob3ob6o$bo4bo4bob3obo4bo4bo$bob2obob4o2bo2b4obob2obo$2obob2obo3bobobo3bob2obob2o$bo8bo3bo3bo8bo$29o$bo8bo3bo3bo8bo$2obob2obo3bobobo3bob2obob2o$bob2obob4o2bo2b4obob2obo$bo4bo4bob3obo4bo4bo$6ob3obo2bo2bob3ob6o$bo3bo3bob2obob2obo3bo3bo$bob5obo4bo4bob5obo$2ob3obo2b3obob3o2bob3ob2o$bo4b4o2bobobo2b4o4bo$b4ob2obobo2bo2bobob2ob4o$2o2bob2obob2obob2obob2obo2b2o$bo2bo4bo4bo4bo4bo2bo$b27o$3bo2bo2bo2bobobo2bo2bo2bo!

So far I haven't found anything that lasts longer than 1K generations.

EDIT1,2,3: Here's a smaller P22:
x = 11, y = 9, rule = Billiard24.2B.B.2B$4.2B.B.2B$7.B$B.4BABA2B$B.B4.A$2.B.B.A4B$2.B.B.B3.B$B.BAB.B2.B$.2B.B.2B!

It can definitely be improved. Also, "Billiard2" is this:
@RULE Billiard2@TABLEneighborhood:Mooresymmetries:rotate4reflectn_states:3# 0 = dead# 1 = alive# 2 = special alivevar a1={1,2}var a2={1,2}var a3={1,2}var a4={1,2}var a5={1,2}var a6={1,2}var a7={1,2}var a8={1,2}# C,N,NE,E,SE,S,SW,W,NW,C'#B30,0,a1,0,0,0,a2,0,a3,10,a1,0,a2,0,0,0,a3,0,10,0,0,a1,0,a2,0,0,a3,10,a1,a2,0,0,0,0,0,a3,10,0,a1,a2,0,0,0,0,a3,10,0,a1,0,0,a2,0,0,a3,10,a1,0,0,a2,0,0,0,a3,10,a1,0,0,0,0,0,a2,a3,10,a1,0,a2,0,0,0,0,a3,10,a1,0,0,0,a2,0,0,a3,1#B6-e0,a1,0,a2,a3,a4,a5,a6,0,10,a1,a2,0,a3,a4,a5,a6,0,10,0,a1,a2,a3,a4,a5,a6,0,10,a1,a2,a3,0,a4,a5,a6,0,10,0,a1,a2,a3,0,a4,a5,a6,1#Death at 01,0,0,0,0,0,0,0,0,02,0,0,0,0,0,0,0,0,0#Death at 61,a1,0,a2,a3,a4,a5,a6,0,01,0,a1,a2,a3,a4,a5,0,a6,01,a1,a2,0,a3,a4,a5,a6,0,01,0,a1,a2,a3,a4,a5,a6,0,01,a1,a2,a3,0,a4,a5,a6,0,01,0,a1,a2,a3,0,a4,a5,a6,02,a1,0,a2,a3,a4,a5,a6,0,02,0,a1,a2,a3,a4,a5,0,a6,02,a1,a2,0,a3,a4,a5,a6,0,02,0,a1,a2,a3,a4,a5,a6,0,02,a1,a2,a3,0,a4,a5,a6,0,02,0,a1,a2,a3,0,a4,a5,a6,0# Death at 71,a1,a2,a3,a4,a5,a6,a7,0,01,0,a1,a2,a3,a4,a5,a6,a7,02,a1,a2,a3,a4,a5,a6,a7,0,02,0,a1,a2,a3,a4,a5,a6,a7,0# Death at 81,a1,a2,a3,a4,a5,a6,a7,a8,02,a1,a2,a3,a4,a5,a6,a7,a8,0

It has an extra live state that acts the same as a regular live cell, though can't be born.

EDIT4,7,9 : Smallest oscillators so far. If I have missed some, please tell me.
x = 244, y = 258, rule = Billiard26.2B2.2B2.2B2.B51.2B12.2B6.B39.2B2.2B2.2B12.2B6.2B2.2B34.2B6.2B4.2B2.2B2.2B6.B2.B$6.2B2.2B2.2B2.3B49.2B12.2B4.3B39.2B2.2B2.2B12.2B46.2B6.2B4.2B2.2B2.2B4.8B$19.A70.B.B.B65.8B62.B3.A2.B$18.3B67.B.B.B2.B64.B.A66.2BAB.3AB.B$14.2B4.B49.2B12.2B2.B.B.2A2B44.2B12.2B2.B.B.B3.2B34.2B6.2B4.2B6.2B2.B.B.A.A.AB.B$14.2B54.2B12.2B4.B.A.A45.2B12.2B3.B2AB.B37.2B6.2B4.2B6.2B4.B.A3.AB$90.BAB.B.B63.BAB.B.2B62.8B$89.2BAB.B.B61.B.B.3B70.B$6.2B2.2B2.2B54.2B12.2B4.B41.2B2.2B2.2B12.2B3.B4.B37.2B2.2B2.2B4.2B6.2B6.B$6.2B2.2B2.2B54.2B12.2B4.B41.2B2.2B2.2B12.2B46.2B2.2B2.2B4.2B6.2B6.B3$6.2B62.2B12.2B46.2B20.2B54.2B4.2B6.2B$6.2B62.2B12.2B46.2B20.2B54.2B4.2B6.2B3$6.2B2.2B2.2B54.2B12.2B46.2B2.2B2.2B12.2B54.2B4.2B2.2B2.2B$6.2B2.2B2.2B54.2B12.2B46.2B2.2B2.2B12.2B54.2B4.2B2.2B2.2B13$6.2B2.2B2.2B4.B5.B.2B40.2B4.2B2.2B2.2B7.2B37.2B2.2B2.2B4.2B2.2B2.2B6.2B.B.2B33.2B6.2B4.2B2.2B2.2B4.2B.2B$6.2B2.2B2.2B4.B5.BAB41.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B6.2B.B.2B33.2B6.2B4.2B2.2B2.2B$18.2BA2B2.2B.B62.3B.B69.B64.7B$27.B.2B60.B.B.B62.B.4BABA2B61.B.A.B.B$14.2B2.2BA2B4.BAB40.2B12.2B3.3B.B.2B43.2B12.2B2.B.B5.2A34.2B6.2B4.2B6.2B2.B.B3AB.3B$14.2B4.B5.2B.B40.2B12.2B54.2B12.2B4.B.BA.4B33.2B6.2B4.2B6.2B2.B.B.A.A$20.B67.B.B.B.B.3B61.B.B.B3.B61.B.A.A2B$88.B.BAB.B.B61.B.B.BAB2.B60.B.B2.A$6.2B2.2B2.2B54.2B4.2B2.2B2.2B4.B.B.B37.2B2.2B2.2B4.2B2.2B2.2B3.2B.B.2B36.2B2.2B2.2B4.2B2.2B2.2B2.B.B3AB.3B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B4.5B37.2B2.2B2.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B4.B3.B.B$230.7B$92.B$14.2B54.2B4.2B14.B39.2B12.2B62.2B4.2B6.2B4.2B.2B$14.2B54.2B4.2B54.2B12.2B62.2B4.2B6.2B3$6.2B2.2B2.2B54.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B54.2B4.2B2.2B2.2B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B54.2B4.2B2.2B2.2B13$6.2B6.2B4.2B48.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B11.B34.2B2.2B2.2B4.2B2.2B2.2B7.B2.B.B$6.2B6.2B54.2B4.2B2.2B2.2B6.2B2.2B10.B23.2B2.2B2.2B4.2B2.2B2.2B6.B3.B35.2B2.2B2.2B4.2B2.2B2.2B7.B2.B.B$18.4B86.3B49.5B$21.B68.10B6.B.B51.B.A.B.B64.10B$6.2B6.2B2.2B.2B47.2B12.2B4.B3.2A3.B4.3B.BA3B27.2B4.2B10.B.BAB.B.B35.2B6.2B4.2B6.2B5.B4.3A.B$6.2B6.2B3.B.B48.2B12.2B2.B.B.A4.A.B.B6.A3.B27.2B4.2B10.B.B.A.A37.2B6.2B4.2B6.2B2.2B.B.BA6B.2B$19.B.B66.B.B.A4.A.B.B4.2BA.A.B.2B44.B.2A2B65.B2A6.B$90.B3.2A3.B12.B46.2BA2B64.2B.BAB.2B.3B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B4.10B6.7B19.2B2.2B2.2B4.2B2.2B2.2B2.B.B2.B38.2B2.2B2.2B4.2B6.2B5.BAB.2B.B.B.2B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B6.B39.2B2.2B2.2B4.2B6.2B5.BAB4.B.B$92.2B2.2B10.B.B117.2B.B.4BABAB.2B$108.2B121.B2.2A4.B$14.2B54.2B12.2B46.2B20.2B46.2B6.2B4.2B6.2B5.10B$14.2B54.2B12.2B46.2B20.2B46.2B6.2B4.2B6.2B$233.B.B2.B$233.B.B2.B$14.2B54.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B$14.2B54.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B13$6.2B2.2B2.2B5.B.B.B44.2B4.2B6.2B7.B38.2B2.2B2.2B4.2B2.2B2.2B6.2B2.2B28.2B4.2B2.2B2.2B4.2B2.2B2.2B5.B.2B$6.2B2.2B2.2B5.BAB.3B42.2B4.2B6.2B5.3B38.2B2.2B2.2B4.2B2.2B2.2B40.2B4.2B2.2B2.2B4.2B2.2B2.2B4.B$18.2B.B2A67.B68.8B61.B.6B$21.BA3B63.B.B.3B64.B.A65.B.B2A3.B$6.2B13.B.A46.2B4.2B6.2B2.B.B4.B44.2B4.2B6.2B2.B.B.B3.2B28.2B4.2B6.2B4.2B6.2B4.B2A.2AB.B$6.2B12.6B44.2B4.2B6.2B4.BA2BAB.B42.2B4.2B6.2B2.B.BAB.B31.2B4.2B6.2B4.2B6.2B2.B.B4A.B.B$89.2B2.2AB.B62.BAB.B.2B60.B.B.A.2AB$22.2B67.B.BAB64.B.3B65.B3.2AB.B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B5.B.B.B36.2B2.2B2.2B4.2B2.2B2.2B8.B31.2B4.2B6.2B4.2B6.2B4.6B.B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B40.2B4.2B6.2B4.2B6.2B10.B$232.2B.B2$14.2B54.2B12.2B46.2B12.2B6.2B40.2B4.2B6.2B4.2B6.2B$14.2B54.2B12.2B46.2B12.2B6.2B40.2B4.2B6.2B4.2B6.2B3$6.2B2.2B2.2B54.2B12.2B46.2B2.2B2.2B4.2B2.2B2.2B40.2B4.2B2.2B2.2B4.2B2.2B2.2B$6.2B2.2B2.2B54.2B12.2B46.2B2.2B2.2B4.2B2.2B2.2B40.2B4.2B2.2B2.2B4.2B2.2B2.2B13$6.2B2.2B2.2B5.2B47.2B4.2B2.2B2.2B5.B.B.B36.2B2.2B2.2B4.2B6.2B10.B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B2.B2.B.BAB36.2B2.2B2.2B4.2B6.2B5.B4.B$19.6B64.B.B.2AB.2B61.B.B.B.3B.B$19.B71.B.A.B66.BAB3.B.B$6.2B10.2B.2B47.2B4.2B12.B2.A.B44.2B4.2B6.2B5.B4A3B$6.2B11.BAB48.2B4.2B12.4B.B.2B41.2B4.2B6.2B5.B.2A3.B.B$19.B.B66.B.B.A2.B62.2B.B.5AB.B$88.B.6B65.B4.A.B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B6.2B38.2B2.2B2.2B4.2B2.2B2.2B5.8B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B$163.2B2.2B2$6.2B6.2B54.2B12.2B54.2B12.2B$6.2B6.2B54.2B12.2B54.2B12.2B3$6.2B2.2B2.2B54.2B4.2B2.2B2.2B46.2B2.2B2.2B12.2B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B46.2B2.2B2.2B12.2B13$6.2B2.2B2.2B5.B.B46.2B4.2B2.2B2.2B7.B38.2B2.2B2.2B4.2B2.2B2.2B4.B2.B2.B2.B2.B$6.2B2.2B2.2B2.B2.BA3B.B42.2B4.2B2.2B2.2B6.B39.2B2.2B2.2B4.2B2.2B2.2B4.13B$19.B.B.A.B.B131.2B4.A.A4.2B$21.B.BAB64.5B65.B2A3B.3B2AB$14.2B4.2BAB.B44.2B4.2B16.B45.2B4.2B12.BAB2.3A2.BAB$14.2B5.B48.2B4.2B12.3B.B.2B42.2B4.2B14.B2.BAB2.B$21.B70.A.B63.8B.8B$88.3B.BAB65.B2.B5.B2.B$14.2B54.2B4.2B2.2B2.2B4.B.BAB.2B34.2B2.2B2.2B4.2B2.2B2.2B$14.2B54.2B4.2B2.2B2.2B6.BAB37.2B2.2B2.2B4.2B2.2B2.2B$92.B.B2$14.2B54.2B4.2B6.2B54.2B12.2B$14.2B54.2B4.2B6.2B54.2B12.2B3$14.2B54.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B$14.2B54.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B13$6.2B2.2B2.2B9.2B43.2B4.2B2.2B2.2B7.B2.B35.2B2.2B2.2B4.2B2.2B2.2B4.2B2.2B$6.2B2.2B2.2B9.B44.2B4.2B2.2B2.2B7.B2.B35.2B2.2B2.2B4.2B2.2B2.2B$21.B.BAB134.8B.B$21.B.BA2B64.8B61.B.2A3.B.B$6.2B6.2B2.2B.B.A.B44.2B12.2B5.B.A4.B41.2B4.2B10.B.B5A.B$6.2B6.2B5.B.3B44.2B12.2B2.2B.BA5.2B40.2B4.2B10.B.B2A2.2AB.B$21.B.B67.B.A4.B61.B.5AB.B$91.8B59.B.B3.2A.B$6.2B2.2B2.2B54.2B12.2B46.2B2.2B2.2B4.2B2.2B2.2B2.B.8B$6.2B2.2B2.2B54.2B12.2B7.B2.B35.2B2.2B2.2B4.2B2.2B2.2B$93.B2.B65.2B2.2B2$6.2B6.2B54.2B12.2B54.2B4.2B6.2B$6.2B6.2B54.2B12.2B54.2B4.2B6.2B3$6.2B2.2B2.2B54.2B12.2B46.2B2.2B2.2B4.2B2.2B2.2B$6.2B2.2B2.2B54.2B12.2B46.2B2.2B2.2B4.2B2.2B2.2B13$6.2B2.2B2.2B6.B47.2B4.2B2.2B2.2B6.2B38.2B2.2B2.2B4.2B2.2B2.2B9.2B$6.2B2.2B2.2B6.3B.B43.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B2.B.B.B$20.B.B.B.B63.6B62.B.B.5B$18.3B.B.B65.B.A.B.B63.B2.A.B2.2B$6.2B6.2B9.B44.2B4.2B6.2B2.B.B.B.B2.B42.2B4.2B6.2B3.5BAB$6.2B6.2B4.3B.B45.2B4.2B6.2B2.B.B2A.AB.B42.2B4.2B6.2B7.BA5B$24.B.B63.B4.A.B.B59.2B2.B4.B2.2B$20.5B.B63.8B.B62.5B.B$6.2B2.2B2.2B6.B47.2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B10.B.5B$6.2B2.2B2.2B54.2B4.2B2.2B2.2B4.2B2.2B36.2B2.2B2.2B4.2B2.2B2.2B6.2B2.B4.B2.2B$165.5B.B$169.B.5B$14.2B54.2B12.2B54.2B4.2B6.2B9.2B2.B4.B$14.2B54.2B12.2B54.2B4.2B6.2B12.5B.B$172.BAB.B$168.2B2.B.B.B$14.2B54.2B12.2B46.2B2.2B2.2B4.2B2.2B2.2B$14.2B54.2B12.2B46.2B2.2B2.2B4.2B2.2B2.2B13$2B4.2B2.2B2.2B7.B38.2B2.2B2.2B4.2B2.2B2.2B8.2B2.B.B31.2B2.2B2.2B4.2B2.2B2.2B5.B$2B4.2B2.2B2.2B8.B37.2B2.2B2.2B4.2B2.2B2.2B9.B2.B.B31.2B2.2B2.2B4.2B2.2B2.2B5.3B$21.3B.B69.2B2A.B.2B54.2B.B.B$21.B.B65.2B2.2B.A.A.B60.B.B.2B$2B4.2B6.2B2.2B.B.B46.2B4.2B6.2B10.B.BAB39.2B4.2B6.2B2.3B2.B.2B$2B4.2B6.2B2.B.2B2A2B44.2B4.2B6.2B3.6B.BAB.B.2B36.2B4.2B6.2B5.B.B$20.A.3A64.B.A8.B57.2B.BABA4B$19.7B62.13B60.B.A4.B$2B4.2B6.2B5.B40.2B2.2B2.2B4.2B6.2B46.2B2.2B2.2B4.2B2.2B2.2B5.4BABAB.2B$2B4.2B6.2B7.B38.2B2.2B2.2B4.2B6.2B4.2B2.B2.2B33.2B2.2B2.2B4.2B2.2B2.2B10.B.B$24.B69.B68.2B.B.B$164.B$2B4.2B6.2B46.2B12.2B6.2B54.2B12.2B8.B$2B4.2B6.2B46.2B12.2B6.2B54.2B12.2B3$2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B46.2B2.2B2.2B12.2B$2B4.2B2.2B2.2B46.2B2.2B2.2B4.2B2.2B2.2B46.2B2.2B2.2B12.2B! EDIT5,6: P13 in desperate need of improvement... x = 13, y = 12, rule = Billiard29.B$7.3B$3.B3.B$3.3B.3B$.3B.B3.B$.B.B.BA3B.B$3B5.AB2.B$2.3B4AB.2B$2.B.2A2.AB$.9B2$3.2B.2B! EDIT8: P20 that could also do with improvement: x = 16, y = 11, rule = Billiard26.2B2.B.B$7.B2.B.B$7.2B2A.B.2B$.2B2.2B.A.A.B$8.B.BAB$.6B.BAB.B.2B$.B.A8.B$13B2$2.2B2.B2.2B$6.B!
▄▀
▀▀▀

Billabob

Posts: 143
Joined: April 2nd, 2015, 5:28 pm

### Re: Thread For Your Unrecognised CA

Here's something for rulemakers: a "neighbor map", that shows every configuration of neighbors in a Moore Neighborhood and the sequences for them:

x = 131, y = 70, rule = LifeTemplate.B3$A4.A$.B3.B3$2A2.A.A2.A4.A7.A$.B3.B2.AB2.AB2.ABA2.B$20.A2$3A.2A2.A.A.A8.A3.A2.A.A3.A3.A$.B2.AB2.AB2.ABA2.BA.ABA.AB3.B3.B3.B$16.2A8.A2.A2.A.A.2A2$A.A.3A2.A2.A3.A.A.3A.2A2.2A2.2A2.2A2.3A.A$.B3.B2.ABA.ABA.ABA.AB2.ABA.AB3.BA2.BA2.B3.BA$A.A2.A3.A4.A15.A2.A2.A5.A.A.A2$3A2.2A2.A2.3A.3A.3A.2A2.3A.3A2.2A$AB2.AB2.ABA.ABA.AB2.AB2.ABA2.B3.B3.BA$A3.A.A.A.A7.A2.A3.A2.2A2.A.A.2A2$3A.2A3.A2.3A.3A.3A$.B2.ABA.ABA.AB2.AB2.AB$3A2.2A.3A2.2A.2A2.A.A2$3A.3A$ABA.ABA$A.A.2A2$3A$ABA$3A2$10B$B8.B$10B2$10B.10B$BA7.B.B.A6.B$10B.10B2$10B.10B.10B.10B.10B.10B$B2A6.B.BA.A5.B.B.A.A4.B.B2.2A4.B.B3.2A3.B.B2.A2.A2.B$10B.10B.10B.10B.10B.10B2$10B.10B.10B.10B.10B.10B.10B.10B.10B.10B$B3A5.B.B2A.A4.B.BA.2A4.B.BA2.2A3.B.B4.3A.B.B.A.2A3.B.B.A.A3.AB.BA.A3.A.B.B2.A2.A.AB.B2.A2.2A.B$10B.10B.10B.10B.10B.10B.10B.10B.10B.10B2$10B.10B.10B.10B.10B.10B.10B.10B.10B.10B.10B.10B$BA.A2.A.AB.B3A3.A.B.B.A.2A.A.B.BA2.2A2.AB.BA.3A3.B.B4A4.B.B2A.2A3.B.B2A.A3.AB.B2A2.A.A.B.B2A2.2A2.B.B3A4.AB.BA3.2A.AB$10B.10B.10B.10B.10B.10B.10B.10B.10B.10B.10B.10B2$10B.10B.10B.10B.10B.10B.10B.10B.10B.10B$B4A.A2.B.B.3A.A.AB.B.A.3A.AB.B5A3.B.B4A3.AB.B4A2.A.B.B2A.2A.A.B.B3A2.2A.B.B3A2.A.AB.B.2A.3A.B$10B.10B.10B.10B.10B.10B.10B.10B.10B.10B2$10B.10B.10B.10B.10B.10B$B3A2.3AB.B2A.2A.2AB.B.A.5AB.B4A2.2AB.B4A.2A.B.B4A.A.AB$10B.10B.10B.10B.10B.10B2$10B.10B$B6A.AB.B7A.B$10B.10B2$10B$B8AB$10B!

gmc_nxtman

Posts: 1147
Joined: May 26th, 2015, 7:20 pm

### Re: Thread For Your Unrecognised CA

@RULE 2xpand2@TABLEn_states:2neighborhood:Mooresymmetries:rotate4reflect0,1,1,1,0,0,0,0,0,10,1,1,0,1,0,0,0,0,10,1,1,0,0,1,0,0,0,10,1,1,0,0,0,1,0,0,10,1,1,0,0,0,0,1,0,10,1,1,0,0,0,0,0,1,10,1,0,1,0,1,0,0,0,10,1,0,1,0,0,1,0,0,10,1,0,0,1,0,1,0,0,10,0,1,0,1,0,1,0,0,11,0,0,0,0,0,0,0,0,01,1,0,0,0,0,0,0,0,11,0,1,0,0,0,0,0,0,11,1,1,0,0,0,0,0,0,11,1,0,1,0,0,0,0,0,11,1,0,0,1,0,0,0,0,11,1,0,0,0,1,0,0,0,11,0,1,0,1,0,0,0,0,11,0,1,0,0,0,1,0,0,11,1,1,1,0,0,0,0,0,01,1,1,0,1,0,0,0,0,01,1,1,0,0,1,0,0,0,01,1,1,0,0,0,1,0,0,01,1,1,0,0,0,0,1,0,01,1,1,0,0,0,0,0,1,11,1,0,1,0,1,0,0,0,11,1,0,1,0,0,1,0,0,11,1,0,0,1,0,1,0,0,01,0,1,0,1,0,1,0,0,01,1,1,1,1,0,0,0,0,01,1,1,1,0,1,0,0,0,01,1,1,1,0,0,1,0,0,01,1,1,0,1,1,0,0,0,01,1,1,0,1,0,1,0,0,01,1,1,0,1,0,0,1,0,01,1,1,0,1,0,0,0,1,01,1,1,0,0,1,1,0,0,01,1,1,0,0,1,0,1,0,01,1,1,0,0,1,0,0,1,01,1,1,0,0,0,1,1,0,01,1,0,1,0,1,0,1,0,11,0,1,0,1,0,1,0,1,11,0,0,0,1,1,1,1,1,01,0,0,1,0,1,1,1,1,01,0,0,1,1,0,1,1,1,01,0,0,1,1,1,0,1,1,01,0,0,1,1,1,1,0,1,01,0,0,1,1,1,1,1,0,01,0,1,0,1,0,1,1,1,01,0,1,0,1,1,0,1,1,01,0,1,1,0,1,0,1,1,01,1,0,1,0,1,0,1,1,01,0,0,1,1,1,1,1,1,01,0,1,0,1,1,1,1,1,01,0,1,1,0,1,1,1,1,01,0,1,1,1,0,1,1,1,01,1,0,1,0,1,1,1,1,01,1,0,1,1,1,0,1,1,01,0,1,1,1,1,1,1,1,01,1,0,1,1,1,1,1,1,01,1,1,1,1,1,1,1,1,0

This rule is similar to 2x2 in some respects. It is B3/S12 with the added survival conditions
x = 27, y = 3, rule = 2xpand27bo5bo4bobo5bo$bo4b3o3b3o4bo4b2o$3o10bo4bobo4bo!
.
It is named because the first unusual survival condition allows for patterns to expand at c/2, such as these ships:
x = 37, y = 13, rule = 2xpand23o7b3o8b3o8b3o$9bo25bo$obo9bo7bo3bo6bo4bo$8b2o10b5o6b3o$19bo5bo4bo5$21b3o2$21b3o$21b3o! The first one is common enough that I have found a rake for it: x = 21, y = 36, rule = 2xpand210bo$9bo2bo$8b5o6$10bo$9bobo5bo$9bobo5bo$b5o9bo3bo$3bo12b3o2$o5bo7bo5bo$bo3bo9b5o$10bo4bo3bo$2b3o4bobo$9bobo4b3o6$5bo$4b3o3bo3bo$4b3o4bo$12b3o2$3b5o$5bo2$2bo5bo$3bo3bo2$4b3o!

Apart from that, the only other rule-specific thing of interest that I've found is this p22:
x = 6, y = 4, rule = 2xpand2b3o$o4bo$o4bo$2b3o! Last edited by A for awesome on December 21st, 2015, 5:48 pm, edited 1 time in total. x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt) $$x_1=\eta x$$ $$V^*_\eta=c^2\sqrt{\Lambda\eta}$$ $$K=\frac{\Lambda u^2}2$$ $$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$ http://conwaylife.com/wiki/A_for_all Aidan F. Pierce A for awesome Posts: 1862 Joined: September 13th, 2014, 5:36 pm Location: 0x-1 ### Re: Thread For Your Unrecognised CA A for awesome wrote: @RULE 2xpand2@TABLEn_states:2neighborhood:Mooresymmetries:rotate4reflecttable entries Your patterns don't seem to work--the rule table may be wrong. "What's purple and commutes? The Evanston Express." thunk Posts: 165 Joined: October 3rd, 2015, 8:50 pm Location: Central USA ### Re: Thread For Your Unrecognised CA thunk wrote: A for awesome wrote: @RULE 2xpand2@TABLEn_states:2neighborhood:Mooresymmetries:rotate4reflecttable entries Your patterns don't seem to work--the rule table may be wrong. Fixed. x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt) $$x_1=\eta x$$ $$V^*_\eta=c^2\sqrt{\Lambda\eta}$$ $$K=\frac{\Lambda u^2}2$$ $$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$ http://conwaylife.com/wiki/A_for_all Aidan F. Pierce A for awesome Posts: 1862 Joined: September 13th, 2014, 5:36 pm Location: 0x-1 ### Re: Thread For Your Unrecognised CA @A for awesome rule specific p8 oscillator found from a single D8_4 soup: x = 8, y = 5, rule = 2xpand23b2o$obo2bobo$bo4bo$o6bo$3b2o! And the soup: x = 32, y = 32, rule = 2xpand22bo5b3o2bob2obo2b3o5bo$b3o2b3o2bob2o2b2obo2b3o2b3o$7o3bobo2b2o2bobo3b7o$b2obobobo5bo2bo5bobobob2o$2b5obob2o8b2obob5o$2bobo3bob2o2bo2bo2b2obo3bobo$b4o2b5obo4bob5o2b4o$bo4bob7o2b7obo4bo$2ob6o2bo8bo2b6ob2o$o5b2o6bo2bo6b2o5bo$obob4o2bob8obo2b4obobo$bo2b5o4bo4bo4b5o2bo$2bo4bo2bo2b2o2b2o2bo2bo4bo$2o4b2o2b4ob2ob4o2b2o4b2o$bobobobob2obob4obob2obobobobo$obo7bo2b2o2b2o2bo7bobo$obo7bo2b2o2b2o2bo7bobo$bobobobob2obob4obob2obobobobo$2o4b2o2b4ob2ob4o2b2o4b2o$2bo4bo2bo2b2o2b2o2bo2bo4bo$bo2b5o4bo4bo4b5o2bo$obob4o2bob8obo2b4obobo$o5b2o6bo2bo6b2o5bo$2ob6o2bo8bo2b6ob2o$bo4bob7o2b7obo4bo$b4o2b5obo4bob5o2b4o$2bobo3bob2o2bo2bo2b2obo3bobo$2b5obob2o8b2obob5o$b2obobobo5bo2bo5bobobob2o$7o3bobo2b2o2bobo3b7o$b3o2b3o2bob2o2b2obo2b3o2b3o$2bo5b3o2bob2obo2b3o5bo!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y

drc

Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

### Re: Thread For Your Unrecognised CA

@RULE CrossLife@TABLEn_states:2neighborhood:Mooresymmetries:rotate4reflect0,1,1,1,0,0,0,0,0,10,1,1,0,1,0,0,0,0,10,1,1,0,0,1,0,0,0,10,1,1,0,0,0,1,0,0,10,1,1,0,0,0,0,1,0,10,1,1,0,0,0,0,0,1,10,1,0,1,0,1,0,0,0,10,1,0,1,0,0,1,0,0,10,1,0,0,1,0,1,0,0,10,0,1,0,1,0,1,0,0,11,0,0,0,0,0,0,0,0,01,1,0,0,0,0,0,0,0,01,0,1,0,0,0,0,0,0,01,1,1,0,0,0,0,0,0,11,1,0,1,0,0,0,0,0,11,1,0,0,1,0,0,0,0,11,1,0,0,0,1,0,0,0,11,0,1,0,1,0,0,0,0,11,0,1,0,0,0,1,0,0,11,1,1,1,0,0,0,0,0,11,1,1,0,1,0,0,0,0,11,1,1,0,0,1,0,0,0,11,1,1,0,0,0,1,0,0,11,1,1,0,0,0,0,1,0,11,1,1,0,0,0,0,0,1,11,1,0,1,0,1,0,0,0,11,1,0,1,0,0,1,0,0,11,1,0,0,1,0,1,0,0,11,0,1,0,1,0,1,0,0,11,1,1,1,1,0,0,0,0,01,1,1,1,0,1,0,0,0,01,1,1,1,0,0,1,0,0,01,1,1,0,1,1,0,0,0,01,1,1,0,1,0,1,0,0,01,1,1,0,1,0,0,1,0,01,1,1,0,1,0,0,0,1,01,1,1,0,0,1,1,0,0,01,1,1,0,0,1,0,1,0,01,1,1,0,0,0,1,1,0,01,0,1,0,1,0,1,0,1,01,0,0,0,1,1,1,1,1,01,0,0,1,0,1,1,1,1,01,0,0,1,1,0,1,1,1,01,0,0,1,1,1,0,1,1,01,0,0,1,1,1,1,0,1,01,0,0,1,1,1,1,1,0,01,0,1,0,1,0,1,1,1,01,0,1,0,1,1,0,1,1,01,0,1,1,0,1,0,1,1,01,1,0,1,0,1,0,1,1,01,0,0,1,1,1,1,1,1,01,0,1,0,1,1,1,1,1,01,0,1,1,0,1,1,1,1,01,0,1,1,1,0,1,1,1,01,1,0,1,0,1,1,1,1,01,1,0,1,1,1,0,1,1,01,0,1,1,1,1,1,1,1,01,1,0,1,1,1,1,1,1,01,1,1,1,1,1,1,1,1,0

A rule that was designed to (and does) allow this oscillator:
x = 16, y = 13, rule = CrossLife4b2o$4bo2bo2bo$5b6o2$2o3b6o3b2o$obobo6bobobo$2bob6obobo$b2obo6bob2o$5b6o2$5b6o$4bo2bo2bo$4b2o!

Interesting objects I came across while running soups:
x = 44, y = 13, rule = CrossLife35bo3bo$34bobobobo$34bobobobo$32b2o2bobo2b2o$bo9b2o18bo4bobo4bo$obo7bo2bo18b4o3b4o$bo9b2o11b2o$2b3o18bobo6b4o3b4o$3bobo5b4o7b3o6bo4bobo4bo$3bo2bo3bo4bo5bobo8b2o2bobo2b2o$4b2o4b2o2b2o5b2o11bobobobo$34bobobobo$35bo3bo!

The last one is a temporary still life from
x = 5, y = 4, rule = CrossLife2b2o$bo2bo$o3bo$b3o! Some spaceships: x = 90, y = 39, rule = CrossLife51b2o3b2o$19b2ob2o$19bo3bo27bo5bo$18bobobobo25b2o5b2o$20bobo$17bo2bobo2bo24b2o5b2o$9b2o8b2ob2o24bo11bo$2o3bob3o9b2ob2o25bo2bo3bo2bo$4bo3b2o9b2ob2o25bo2bo3bo2bo$o3bobob2o6b2obo3bob2o3bobo7bobo8b2o3b2o$b2obobo9b2obobobob2o3b3obo3bob3o9bo3bo$2bobob2o7b2ob2o3b2ob2o3bo3bobo3bo9b2o3b2o21bo5bo$3b3o9b3o3bo3b3o3bo3bobo3bo38bo3bo$4bo15b3o9b3obob3o9bo7bo20bo2bo2bo$21bo11bobobobo9b3o5b3o19b3ob3o$18bobobobo25bo7bo17bobobo3bobobo$16b5ob5o49bo3bobobo3bo$15bo2bobobobo2bo21bobo5bobo18b9o$17bob2ob2obo23bobo5bobo15b2o3bo3bo3b2o$16bo3bobo3bo48b2ob2o5b2ob2o$16b2o3bo3b2o22b3o5b3o16bob2o5b2obo$17bo7bo52bo7bo$17b3o3b3o2$16bo2bo3bo2bo$15bo3bo3bo3bo$16bobo5bobo$17b3o3b3o$18b2o3b2o$15b2ob2o3b2ob2o$15bo2b2o3b2o2bo$18bob3obo$15bo11bo2$16b2o7b2o$16b2o7b2o$17bobo3bobo$18b2obob2o$20bobo! The added survival conditions: x = 12, y = 3, rule = CrossLifebo7bo$3o6b3o$bo7bo! or 4et (B3/S234et) Unfortunately, this rule is exploding If you're the person that uploaded to Sakagolue illegally, please PM me. x = 17, y = 10, rule = B3/S23b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5bo2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!

(Check gen 2)

Saka

Posts: 3077
Joined: June 19th, 2015, 8:50 pm
Location: In the kingdom of Sultan Hamengkubuwono X

### Re: Thread For Your Unrecognised CA

Saka wrote:
rule

A rule that was designed to (and does) allow this oscillator:
rle

Interesting objects I came across while running soups:
rle

The last one is a temporary still life from
rle

Some spaceships:
rle

The added survival conditions:
rle

or 4et (B3/S234et)
Unfortunately, this rule is exploding

A p3:
x = 9, y = 5, rule = CrossLife3b3o$3bobo$b3ob3o$o2bobo2bo$2o5b2o!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

A for awesome

Posts: 1862
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

### Re: Thread For Your Unrecognised CA

This spark:
x = 7, y = 1, rule = CrossLife7o!

Is quite impressive.

Also, here's a reduction on that oscillator:
x = 14, y = 11, rule = CrossLife6b2o$6b2o2$2o2b6o2b2o$o2bo6bo2bo$bob6obobo$2obo6bob2o$4b6o2$6b2o$6b2o!

Still lifes:
x = 6, y = 14, rule = CrossLife2o2b2o$bo2bo2$bo2bo$b4o$bo2bo$2b2o$bo2bo$bo2bo2$bo2bo2$2b2o$2b2o!

x = 6, y = 13, rule = CrossLifebo2bo$2b2o3$6o$bo2bo$bo2bo$bo2bo$2b2o2$2b2o$bo2bo$o4bo! ▄▀ ▀▀▀ Billabob Posts: 143 Joined: April 2nd, 2015, 5:28 pm ### Re: Thread For Your Unrecognised CA @RULE cb2@TABLEn_states:2neighborhood:Mooresymmetries:rotate4reflectvar a={0,1}var aa=avar ab=avar ac=avar ad=avar ae=avar af=avar ag=a0,1,1,0,0,0,0,0,0,10,1,0,1,0,0,0,0,0,10,1,1,0,1,1,0,0,0,11,1,0,0,0,0,0,0,0,11,0,1,0,0,0,1,0,0,11,1,0,0,0,1,0,0,0,11,a,aa,ab,ac,ad,ae,af,ag,0 The above rule has the unusual property of having the transition 0,1,1,0,0,0,0,0,0,1 as a two-state rule but still not turning into expanding piles of total randomness, instead turning into combinations of puffers, rakes, and breeders expanding outwards at c while interacting in complex ways towards the center. Here are some example patterns: x = 86, y = 9, rule = cb223b2o22b2o$b2o5b2ob2o7b2o3bo5b2o2b2o6b2obo2bo24b2o$o2bo3bo2bo2bo5bo10bo2b2o2bo4bobo8bo2b2o2bo13b2o$23bo20bo9bo4bo24bo$9b3o9bo10b4o10b2o28b2o7bo$48bo27b2o$8bo3bo18bo4bo2$8bo3bo18bo4bo!

It seems like there must be some way to create complex technology in this rule. Here is a period doubler:
x = 8, y = 28, rule = cb27bo$6bo$o$bo13$7bo$6bo$o$bo7$o2b2o2bo$bo4bo! Edit: Adjustable-period guns: x = 25, y = 14, rule = cb2bo$o17bo$6bo10bo6bo$7bo15bo5$2bo2bo13bo2bo$3b2o15b2o$bo16bo$o16bo6bo$6bo16bo$7bo!
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

A for awesome

Posts: 1862
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

### Re: Thread For Your Unrecognised CA

@RULE zigzag@TABLEn_states:2neighborhood:Mooresymmetries:rotate4reflect0,1,1,1,0,0,0,0,0,10,1,1,0,1,0,0,0,0,10,1,1,0,0,1,0,0,0,10,1,1,0,0,0,1,0,0,10,1,1,0,0,0,0,1,0,10,1,1,0,0,0,0,0,1,10,1,0,1,0,1,0,0,0,10,1,0,1,0,0,1,0,0,10,1,0,0,1,0,1,0,0,10,0,1,0,1,0,1,0,0,11,0,0,0,0,0,0,0,0,01,1,0,0,0,0,0,0,0,01,0,1,0,0,0,0,0,0,01,1,0,0,1,0,0,0,0,01,1,1,1,1,0,0,0,0,01,1,1,1,0,1,0,0,0,01,1,1,0,1,1,0,0,0,01,1,1,0,1,0,1,0,0,01,1,1,0,1,0,0,1,0,01,1,1,0,1,0,0,0,1,01,1,1,0,0,1,1,0,0,01,1,1,0,0,1,0,1,0,01,1,1,0,0,1,0,0,1,01,1,1,0,0,0,1,1,0,01,1,0,1,0,1,0,1,0,01,0,1,0,1,0,1,0,1,01,0,0,0,1,1,1,1,1,01,0,0,1,0,1,1,1,1,01,0,0,1,1,0,1,1,1,01,0,0,1,1,1,0,1,1,01,0,0,1,1,1,1,0,1,01,0,0,1,1,1,1,1,0,01,0,1,0,1,0,1,1,1,01,0,1,0,1,1,0,1,1,01,0,1,1,0,1,0,1,1,01,1,0,1,0,1,0,1,1,01,0,0,1,1,1,1,1,1,01,0,1,0,1,1,1,1,1,01,0,1,1,0,1,1,1,1,01,0,1,1,1,0,1,1,1,01,1,0,1,0,1,1,1,1,01,1,0,1,1,1,0,1,1,01,0,1,1,1,1,1,1,1,01,1,0,1,1,1,1,1,1,01,1,1,1,1,1,1,1,1,0@COLORS0 0 0 01 255 255 255

It has several gliders:

x = 37, y = 5, rule = zigzag3o3b3o20bo4b2o$2bo3b3o20bo2b4o$bo7bo19bo6bo$7bo25b3o$7bo26b2o!

And several oscillators:

P2:

x = 57, y = 7, rule = zigzago3b3o6bo3b2o6bo6b2o10bo3b2o3b2o$o6bo3b2o4bo5b2o3bo3bo9bobo3bobo2bo$o6bo5b2o3b2o5b2obo4bobo7bobo4bo3bo$7bo4bo7bo7bo7bo3bo2bo7bo2bobo$19b2o14b2o4b2o7b2o3b2o$39b2o$41bo!

P3:

x = 83, y = 18, rule = zigzagb4o3b2o7b2o6bob4obo5b4o10bo3bo15b4o$5o4b2o5bobo6b2o4b2o5bo2bo10bo3bo12b4o2b4o$o2b2o4b2o6bo3bo14b3o2b3o8bo3bo11bob2o4b2obo$3b2o5bo6b5o3b2o4b2o3bo6bo7b2o3b2o9bobo8bobo$2b2o13b4o4bob4obo3bo6bo6bobo3bobo7bobo10bobo$10bo25b3o2b3o3b5o5b5o4b2o12b2o$10b2o26bo2bo24b2o12b2o$10b2o26b4o23b2o14b2o$11b2o52bo16bo$47b5o5b5o3bo16bo$50bobo3bobo6b2o14b2o$51b2o3b2o8b2o12b2o$52bo3bo9b2o12b2o$52bo3bo9bobo10bobo$52bo3bo10bobo8bobo$68bob2o4b2obo$69b4o2b4o$72b4o! P4: x = 32, y = 6, rule = zigzagb3o6b2o8b3o4b3o$o3bo5b2o6b2ob2o3bo3bo$b2obo5b2o6b2obo5b2obo$b2obo5b2o5bo3bo5b2ob2o$3bo6b2o5b4o8b3o$10b2o5b2o!

P5:

x = 6, y = 7, rule = zigzag4b2o$5bo$3bo$bo2bo$2bo$o$2o!

P6:

x = 22, y = 12, rule = zigzagbo2bo7bobo2bobo$ob2obo7b6o$bo2bo5bobo6bobo$bo2bo6bob2o2b2obo$ob2obo4b2ob2o2b2ob2o$bo2bo6bo8bo$11bo8bo$10b2ob2o2b2ob2o$11bob2o2b2obo$10bobo6bobo$13b6o$12bobo2bobo! P8: x = 27, y = 8, rule = zigzagb3o6b3o7b6o$2o2bo5b2ob2o4bo6bo$bo2bo6bob2o4bo6bo$2b3o7b2o5bo6bo$3bo8b2o5bo6bo$19bo6bo$19bo6bo$20b6o!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y

drc

Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

### Re: Thread For Your Unrecognised CA

Two puffers that occurred from running 5000000 soups in 2xpand2:
x = 15, y = 26, rule = 2xpand23b4o$4b6o$6b2o3bo$7bo4bo$8b2o2b2o$13b2o$12b2o13$10bo$2b4o5bo$4bo8bo$ob2o2bobo4bo$o4bo7bo$bo3bo5bo$10bo! And the soups: x = 56, y = 16, rule = 2xpand24o2bo6bo27b2ob3ob2o2bo$3o5b4ob3o24b9ob2o3bo$2b2obobob2ob2o27b4obo2bobob3o$bobobo4b2o3bo25b2o2bobobobo3bo$2o3bob5o29b2o2b2o3b5o$2bo2b5ob3o26bobob4o2bob2o$2obo3bobobobo27bo3bo2b2o2b4o$o4bo2bo2b4o25b3ob3o5b2o$obobo2bo3bob2o27bo4b3obob3o$bob2ob2ob4ob2o26bobo3b3o2bobo$obo5b4o2bo26bo5bo2b2o2bo$o2bo2bob2o4bo29b6o2b2obo$o4b4obob2obo24bo2b5o3b3obo$2obob4o3b2obo25bob2ob6obobo$ob5o2bo3b2o26b2o2bob4ob3o$7b2o3bo2bo25bo3b4obo!

gameoflifeboy

Posts: 474
Joined: January 15th, 2015, 2:08 am

### Re: Thread For Your Unrecognised CA

gameoflifeboy wrote:Two puffers that occurred from running 5000000 soups in 2xpand2:

One evolves into a spaceship and junk and the other just breaks down. Did a copying error occur somewhere?
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

BlinkerSpawn

Posts: 1883
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

### Re: Thread For Your Unrecognised CA

BlinkerSpawn wrote:
gameoflifeboy wrote:Two puffers that occurred from running 5000000 soups in 2xpand2:

One evolves into a spaceship and junk and the other just breaks down. Did a copying error occur somewhere?

Copy the rule again. I think you have the wrong one.
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)
Current rule interest: B2ce3-ir4a5y/S2-c3-y

drc

Posts: 1664
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

### Re: Thread For Your Unrecognised CA

I just made a rule, OWSSlife:
@RULE OWSSlife@TABLEn_states:3neighborhood:Mooresymmetries:rotate4reflectvar a = {0, 1, 2}var b = avar c = avar d = avar e = avar f = avar g = avar h = a0,1,1,1,0,0,0,0,0,10,1,1,0,1,0,0,0,0,10,1,1,0,0,1,0,0,0,10,1,1,0,0,0,1,0,0,10,1,1,0,0,0,0,1,0,10,1,1,0,0,0,0,0,1,10,1,0,1,0,1,0,0,0,10,1,0,1,0,0,1,0,0,10,1,0,0,1,0,1,0,0,10,0,1,0,1,0,1,0,0,11,0,0,0,0,0,0,0,0,01,1,0,0,0,0,0,0,0,21,0,1,0,0,0,0,0,0,01,1,1,0,0,0,0,0,0,11,1,0,1,0,0,0,0,0,11,1,0,0,1,0,0,0,0,11,1,0,0,0,1,0,0,0,11,0,1,0,1,0,0,0,0,11,0,1,0,0,0,1,0,0,11,1,1,1,0,0,0,0,0,11,1,1,0,1,0,0,0,0,11,1,1,0,0,1,0,0,0,11,1,1,0,0,0,1,0,0,11,1,1,0,0,0,0,1,0,11,1,1,0,0,0,0,0,1,11,1,0,1,0,1,0,0,0,11,1,0,1,0,0,1,0,0,11,1,0,0,1,0,1,0,0,11,0,1,0,1,0,1,0,0,11,1,1,1,1,0,0,0,0,01,1,1,1,0,1,0,0,0,01,1,1,1,0,0,1,0,0,01,1,1,0,1,1,0,0,0,01,1,1,0,1,0,1,0,0,01,1,1,0,1,0,0,1,0,01,1,1,0,1,0,0,0,1,01,1,1,0,0,1,1,0,0,01,1,1,0,0,1,0,1,0,01,1,1,0,0,1,0,0,1,01,1,1,0,0,0,1,1,0,01,1,0,1,0,1,0,1,0,01,0,1,0,1,0,1,0,1,01,0,0,0,1,1,1,1,1,01,0,0,1,0,1,1,1,1,01,0,0,1,1,0,1,1,1,01,0,0,1,1,1,0,1,1,01,0,0,1,1,1,1,0,1,01,0,0,1,1,1,1,1,0,01,0,1,0,1,0,1,1,1,01,0,1,0,1,1,0,1,1,01,0,1,1,0,1,0,1,1,01,1,0,1,0,1,0,1,1,01,0,0,1,1,1,1,1,1,01,0,1,0,1,1,1,1,1,01,0,1,1,0,1,1,1,1,01,0,1,1,1,0,1,1,1,01,1,0,1,0,1,1,1,1,01,1,0,1,1,1,0,1,1,01,0,1,1,1,1,1,1,1,01,1,0,1,1,1,1,1,1,01,1,1,1,1,1,1,1,1,00,1,1,0,1,0,0,0,1,10,1,1,0,0,1,0,0,1,10,1,1,0,1,1,1,0,0,10,1,1,0,1,1,1,0,1,12,a,b,c,d,e,f,g,h,0a,2,b,c,d,e,f,g,h,0a,b,2,c,d,e,f,g,h,0

The only differences from regular life are the following transitions, and the fact that state-2 cells and everything they touch die in the next generation.

x = 45, y = 14, rule = OWSSlife.3A7.3A7.3A7.3A$41.2A$3.A8.A9.2A7.3A3$2.A9.A9.A9.A9.A$2.A9.A9.A9.A9.A$A.A.A5.A.A.A5.A.A.A5.A.A.A5.A.A.A$.3A7.3A7.3A7.3A7.3A$2.A9.A9.A9.A9.A4$2.A9.A9.A9.A9.B!

As you can guess, the rule allows indefinitely long *WSSes, which generate bigger and bigger sparks until they look like flotillae:
x = 30, y = 44, rule = OWSSlife.4A$A3.A$4.A$3.A7$.6A$A5.A$6.A$5.A7$.7A$A6.A$7.A$6.A17$.29A$A28.A$29.A$28.A! The only other spaceship I have found evolves from a parent of the B-heptomino: x = 3, y = 4, rule = OWSSlife.A$2.A$2.A$3A!

Edit: It appears that spaceships can have other backends as well:
x = 34, y = 60, rule = OWSSlife$19.15A$18.B15A$19.15A2$17.17A$16.B17A$17.17A2$15.19A$14.B19A$15.19A2$13.21A$12.B21A$13.21A2$14.20A$13.B20A$14.20A2$13.21A$12.B21A$13.21A2$15.19A$14.B19A$15.19A2$13.21A$12.B21A$13.21A2$11.23A$10.B23A$11.23A2$10.24A$9.B24A$10.24A2$12.22A$11.B22A$12.22A2$14.20A$13.B20A$14.20A2$16.18A$15.B18A$16.18A2$18.16A$17.B16A$18.16A2$20.14A$19.B14A$20.14A! Since so much of the spaceships are spark, they are very self-reparable if one doodles inside of them. gameoflifeboy Posts: 474 Joined: January 15th, 2015, 2:08 am ### Re: Thread For Your Unrecognised CA B3/S02 makes Seirpnski triangles from straight lines. x = 1, y = 29, rule = B3/S02o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o! x = 1, y = 86, rule = B3/S02o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o$o!
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik

Posts: 3412
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

### Re: Thread For Your Unrecognised CA

Am I the only one who thinks this reaction could be made into a gun?

x = 11, y = 29, rule = cb2o$bo$bo$o6$5b2o$4bo2bo17$8b2o$7bo2bo! Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace! muzik Posts: 3412 Joined: January 28th, 2016, 2:47 pm Location: Scotland ### Re: Thread For Your Unrecognised CA muzik wrote:B3/S02 makes Seirpnski triangles from straight lines. So does CGOL: x = 1, y = 1, rule = B3/S2332768o! bobo2b3o2b2o2bo3bobo$obobobo3bo2bobo3bobo$obobob2o2bo2bobo3bobo$o3bobo3bo2bobobobo$o3bob3o2b2o3bobo2bo! SuperSupermario24 Posts: 120 Joined: July 22nd, 2014, 12:59 pm Location: Within the infinite expanses of the Life universe ### Re: Thread For Your Unrecognised CA SuperSupermario24 wrote: muzik wrote:B3/S02 makes Seirpnski triangles from straight lines. So does CGOL: x = 1, y = 1, rule = B3/S2332768o! That I am aware of, just this rule does it cleaner. Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace! muzik Posts: 3412 Joined: January 28th, 2016, 2:47 pm Location: Scotland ### Re: Thread For Your Unrecognised CA B2n3/S1e245i is like 2x2, morley, and that one rule that had patterns that lasted very long (B2-a5/S???) 4-cell failed replicator: x = 1, y = 4, rule = B2n3_S1e245io$o$o$o!

6-cell 4439 gen:

x = 3, y = 4, rule = B2n3_S1e245i2bo$obo$obo$2bo! 8-cell 33481 gen: x = 19, y = 4, rule = B2n3_S1e245io$obo15bo$obo15bo$o!

8-cell 91.6k gen:

x = 20, y = 4, rule = B2n3_S1e245io$obo16bo$obo16bo$o! Last edited by drc on March 26th, 2016, 4:32 pm, edited 1 time in total. This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.) Current rule interest: B2ce3-ir4a5y/S2-c3-y drc Posts: 1664 Joined: December 3rd, 2015, 4:11 pm Location: creating useless things in OCA ### Re: Thread For Your Unrecognised CA muzik wrote:Am I the only one who thinks this reaction could be made into a gun? x = 11, y = 29, rule = cb2o$bo$bo$o6$5b2o$4bo2bo17$8b2o$7bo2bo!

This makes a gun:
x = 8, y = 9, rule = cb2o2b2o2bo$bo4bo2$bo4bo$o2b2o2bo3$4bo$3bo! EDIT: p12n gun for all integers n > 1: x = 73, y = 11, rule = cb23bo3bobo3bo8bo3bobo3bobo3bo8bo3bobo3bobo3bobo3bo$4bobo3bobo10bobo3bobo3bobo10bobo3bobo3bobo3bobo2$bo3bo2bo6bo4bo3bo2bo12bo4bo3bo2bo18bo$o4bo10bo2bo4bo16bo2bo4bo22bo$6bo18bo24bo4$12bo24bo30bo$13bo24bo30bo! EDIT 2: p2n gun for all integers n > 13: x = 88, y = 11, rule = cb24bobo5bobo10bobo5bo3bo9bobo7bobo10bobo7bo3bo$3bo3bo3bo3bo8bo3bo5bobo9bo3bo5bo3bo8bo3bo7bobo$9bo20bo21bo22bo$o7bo9bo2bo7bo9bo3bo7bo11bo2bo7bo11bo$bo6bo8bo4bo6bo10bo3bo6bo10bo4bo6bo12bo$9bo20bo21bo22bo4$14bo22bo21bo24bo$15bo20bo23bo22bo!
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

BlinkerSpawn

Posts: 1883
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

### Re: Thread For Your Unrecognised CA

This rule "lifebf7" is inspired by "extended life" (extremeenthusiaist). I tried to mobilise the birth-forcer by defining the transition 0-> birthforcer (2) as surrounded by exactly 7 normal live cells.

lifebf7 rule table (for some reason, state 4,5,6 disappeared when generating rule table from transition function, but they are not important here anyway. )
@RULE lifebf7# lifebf7 in full means life birth forcer when 7. This rule is similar to# Conway's game of life, with an added birth forcer (state 2). An empty cell# or state1 cell turns into state2 when surrounded by exactly 7 live cells and# dies as normal cells. As to keeping cells alive, both state2 and state1# cells count as living neighbors. When there are 2 or 3 living neighbors, the# cell remains at the current state.@TABLE# rules: 69## Golly rule-table format.# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'# N.B. Where the same variable appears multiple times in a transition,# it takes the same value each time.## Default for transitions not listed: no change#n_states:4neighborhood:Mooresymmetries:rotate8var a={0,1,2,3}var b={0,1,2,3}var c={0,1,2,3}var d={0,2,3}var e={0,1,2,3}var f={0,1,2,3}var g={0,1,2,3}var h={0,3}var i={0,2,3}var j={0,2,3}var k={0,3}var l={0,1,3}var m={0,3}var n={0,3}var o={0,3}var p={1,2}var q={0,1,3}var r={0,1,3}var s={1,3}var t={0,1}var u={0,1}var v={0,2,3}var w={0,2,3}var x={0,2,3}var y={0,2,3}var z={0,1,2}var A={0,1,2}var B={0,1,2}var C={0,1,2}var D={0,2}var E={1,2}var F={0,3}var G={0,3}var H={1,2}var I={1,2}0,a,b,c,d,e,f,g,2,10,h,d,i,j,k,1,1,1,10,d,h,i,j,1,k,1,1,10,d,i,h,j,1,1,k,1,10,d,a,b,1,l,c,e,2,10,h,k,d,1,m,n,1,1,10,h,k,m,1,n,1,o,1,10,h,k,m,p,1,n,o,1,10,l,d,q,2,1,r,a,1,10,h,d,1,k,m,1,i,1,10,l,d,1,q,s,r,2,1,10,0,0,1,1,0,1,2,1,10,h,t,1,l,1,q,2,1,10,h,t,l,2,1,u,1,1,10,0,0,1,2,1,1,0,1,10,0,0,2,1,0,1,1,1,10,0,0,2,1,1,0,1,1,10,t,1,u,1,h,2,1,l,10,0,1,0,2,1,0,1,1,1t,d,1,1,1,1,1,1,1,21,d,i,j,v,w,x,y,a,01,a,b,c,d,e,f,g,3,01,d,a,t,b,z,c,3,e,01,z,t,A,B,d,3,a,C,01,D,t,a,u,A,B,C,3,01,0,0,0,0,1,0,3,1,01,0,0,0,t,1,p,0,3,0p,d,i,a,b,1,1,1,1,01,0,0,0,0,1,3,0,1,01,t,0,0,0,3,0,p,E,01,t,0,0,0,3,E,0,p,01,0,0,0,1,0,A,E,3,01,0,0,0,1,0,1,0,3,0E,d,a,b,1,i,1,1,1,01,0,0,0,1,1,0,0,3,0E,d,a,b,1,1,i,1,1,01,d,A,B,s,1,1,D,1,01,0,0,0,3,0,0,1,1,01,0,0,0,3,0,1,0,1,01,0,0,0,3,1,0,0,1,0E,a,d,1,i,b,1,1,1,0E,d,i,1,j,1,v,1,1,0E,d,i,1,j,1,1,v,1,0E,d,i,1,1,j,v,1,1,0E,d,i,1,1,j,1,v,1,0E,d,1,i,1,j,1,v,1,0E,1,1,1,1,1,1,1,1,02,h,k,m,n,o,F,G,a,02,a,b,c,e,E,p,H,I,02,0,0,0,0,1,1,2,1,02,0,0,0,0,1,2,1,1,02,F,a,b,E,G,H,I,p,02,0,0,0,1,0,1,2,1,02,0,0,0,1,0,2,1,1,02,F,a,b,E,H,G,I,p,02,0,0,0,1,1,0,2,1,02,F,G,h,E,H,I,k,p,02,F,G,E,h,k,H,I,p,02,0,0,1,0,0,1,2,1,02,0,0,1,0,0,2,1,1,02,F,G,E,h,H,k,I,p,02,0,0,1,0,1,0,2,1,02,F,G,E,h,H,I,k,p,02,0,0,1,0,1,2,0,1,02,F,G,E,H,h,k,I,p,02,0,0,1,1,0,0,2,1,02,F,G,E,H,h,I,k,p,02,0,0,1,1,0,2,0,1,02,F,E,G,H,h,I,k,p,0

As compared to lifebf5,lifebf6 that exhibits unlimited expansion, lifebf7 allows chaotic oscillation similar to those in Conway's life. Here are some oscillators, puffers and spaceships that escaped the chaotic soup and manually tested Methuselahs, recorded in one graph.

A tidier version

x = 540, y = 303, rule = lifebf7390.C$540C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C14.2A32.C$C88.2C88.2C88.2C88.2C88.2C39.C14.A2.A30.C$C88.2C88.2C88.2C88.2C88.2C39.C10.4A2.B.A3.2A24.C$C88.2C88.2C88.2C88.2C88.2C39.C3.5A2.A7.2A.A2.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C3.AB.3A2.2A5.2A.AB.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C3.6A4.2A.A7.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C2.2A.A12.2A.A.A24.C$C88.2C88.2C88.2C88.2C88.2C39.C2.AB2A42.C$C88.2C88.2C88.2C88.2C88.2C39.C3.3A4.3A35.C$C88.2C88.2C88.2C88.2C88.2C39.C3.3A7.A6.A27.C$C88.2C88.2C88.2C88.2C88.2C39.C3.A5.2A.2A5.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.C6.A7.A4.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.C8.7A5.A27.C$C88.2C88.2C88.2C88.2C88.2C39.C5.2A6.2A33.C$C88.2C88.2C88.2C88.2C88.2C39.C9.2A4.2A31.C$C88.2C88.2C88.2C88.2C88.2C39.C11.B2.A.A31.C$C88.2C88.2C88.2C88.2C88.2C39.C.3A7.2A.A33.C$C88.2C88.2C88.2C88.2C88.2C39.C3.BA.A41.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A.A3.A2.2A2.2A.2A26.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.A2.A2.A3.2A3.A2.A25.C$C88.2C88.2C88.2C88.2C88.2C39.C3A.A5.A6.A2.2A26.C$C88.2C88.2C45.B42.2C88.2C88.2C39.C.A2.A5.A4.2A31.C$C88.2C88.2C42.B45.2C88.2C41.3A7.3A34.2C39.C.A2.2A8.5A29.C$C88.2C88.2C88.2C88.2C42.A.A5.A.A35.2C39.C3.B2A2.A2.B6.2A28.C$C88.2C88.2C44.B43.2C88.2C36.2A.3A11.3A.2A29.2C39.C.A2.A3.A2.B.A3.3A28.C$C88.2C44.B43.2C41.B46.2C88.2C36.A3.2A2.BA3.AB2.2A3.A29.2C39.C3.B4.A3.A35.C$C88.2C88.2C88.2C88.2C37.A7.A3.A7.A30.2C39.C4.A4.3A3.A32.C$C88.2C88.2C88.2C88.2C40.A13.A33.2C39.C2.3A43.C$C88.2C88.2C88.2C47.B40.2C40.A.2A7.2A.A33.2C39.C48.C$C42.B3.B41.2C45.B42.2C88.2C88.2C41.A11.A34.2C39.C2.3A43.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A4.3A3.A32.C$C88.2C88.2C88.2C88.2C88.2C39.C3.B4.A3.A35.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.A3.A2.B.A3.3A28.C$C88.2C88.2C88.2C41.B46.2C88.2C39.C3.B2A2.A2.B6.2A28.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.2A8.5A29.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.A5.A4.2A31.C$C88.2C88.2C88.2C88.2C88.2C39.C3A.A5.A6.A2.2A26.C$C88.2C88.2C88.2C88.2C88.2C39.C.A2.A2.A2.A3.2A3.A2.A25.C$C88.2C88.2C88.2C88.2C88.2C39.C4.A.A3.A2.2A2.2A.2A26.C$C88.2C88.2C88.2C88.2C88.2C39.C3.BA.A41.C$C88.2C88.2C88.2C88.2C88.2C39.C.3A7.2A.A33.C$C88.2C88.2C88.2C88.2C88.2C39.C11.B2.A.A31.C$C88.2C88.2C88.2C88.2C88.2C39.C9.2A4.2A31.C$C88.2C88.2C88.2C88.2C88.2C39.C5.2A6.2A33.C$C88.2C88.2C88.2C88.2C88.2C39.C8.7A5.A27.C$C88.2C88.2C88.2C88.2C88.2C39.C6.A7.A4.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.C3.A5.2A.2A5.A.A26.C$C88.2C88.2C88.2C88.2C88.2C39.C3.3A7.A6.A27.C$C88.2C88.2C88.2C88.2C88.2C39.C3.3A4.3A35.C$C88.2C88.2C88.2C88.2C88.2C39.C2.AB2A42.C$C88.2C88.2C88.2C88.2C88.2C39.C2.2A.A12.2A.A.A24.C$C88.2C88.2C88.2C88.2C88.2C39.C3.6A4.2A.A7.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C3.AB.3A2.2A5.2A.AB.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C3.5A2.A7.2A.A2.A23.C$C88.2C88.2C88.2C88.2C88.2C39.C10.4A2.B.A3.2A24.C$C88.2C88.2C88.2C88.2C88.2C39.C14.A2.A30.C$C88.2C88.2C88.2C88.2C88.2C39.C14.2A32.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$C88.2C88.2C88.2C88.2C88.2C39.C48.C$540C$540C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C41.2A45.2C88.2C88.2C88.2C88.2C88.C$C30.2A8.A2.2A43.2C88.2C88.2C88.2C88.2C88.C$C30.2A7.3A2.A43.2C88.2C88.2C88.2C88.2C88.C$C31.A.A5.A4.A43.2C29.A58.2C44.2A42.2C88.2C88.2C88.C$C33.A5.5A44.2C26.5A57.2C42.A3.A41.2C88.2C88.2C88.C$C88.2C25.2AB.3A56.2C41.A2.B.A41.2C88.2C88.2C88.C$C33.A5.5A44.2C25.6A57.2C42.A3.A41.2C88.2C88.2C88.C$C31.A.A5.A4.A43.2C26.2A.A58.2C44.2A42.2C88.2C88.2C88.C$C30.2A7.3A2.A43.2C88.2C88.2C88.2C88.2C88.C$C30.2A8.A2.2A43.2C88.2C88.2C88.2C88.2C88.C$C41.2A45.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$C88.2C88.2C88.2C88.2C88.2C88.C$540C$361C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C28.B59.2C88.2C88.2C88.2C$C36.B51.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C38.B8.B40.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$C88.2C88.2C88.2C88.2C$361C35$38.A$35.5A$35.A2.3A$35.5A$38.A28$39.A$36.5A$37.B.3A$36.5A$39.A! I am not aware of codes readily available for searching under a custom 3-state totalistic rule. Please do advise. EDIT: As it turns out, death-enforcers are much harder to incorporate. Thus I made attenuated-death-enforcers that count as '-1' when cells transit from 'live' to 'live'. These rules are lifeb7ad5, lifeb7ad6 and lifeb7ad8. While lifeb7ad8 exhibits chaotic growth, the other two stablise fairly quickly and emit spaceships. lifeb7ad5: @RULE lifeb7ad5@TABLE# rules: 97## Golly rule-table format.# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'# N.B. Where the same variable appears multiple times in a transition,# it takes the same value each time.## Default for transitions not listed: no change#n_states:4neighborhood:Mooresymmetries:rotate8var a={0,1,2,3}var b={0,1,2,3}var c={0,1,2,3}var d={0,2,3}var e={0,1,2,3}var f={0,1,2,3}var g={0,1,2,3}var h={0,3}var i={0,2,3}var j={0,2,3}var k={0,3}var l={0,1,3}var m={0,3}var n={0,3}var o={0,3}var p={1,2}var q={0,1,3}var r={0,1,3}var s={1,3}var t={0,1}var u={0,1}var v={0,2,3}var w={0,2,3}var x={0,2,3}var y={0,2,3}var z={0,1,2}var A={0,1,2}var B={0,1,2}var C={0,1,2}var D={0,2}var E={1,2,3}var F={1,2}var G={1,3}var H={1,3}var I={1,3}var J={1,3}var K={0,3}var L={0,3}var M={1,2}var N={1,2}var O={0,2}var P={0,2}var Q={0,2}var R={0,2}var S={0,2}var T={0,2}0,a,b,c,d,e,f,g,2,10,h,d,i,j,k,1,1,1,10,d,h,i,j,1,k,1,1,10,d,i,h,j,1,1,k,1,10,d,a,b,1,l,c,e,2,10,h,k,d,1,m,n,1,1,10,h,k,m,1,n,1,o,1,10,h,k,m,p,1,n,o,1,10,h,k,m,1,1,1,1,1,30,l,d,q,2,1,r,a,1,10,h,d,1,k,m,1,i,1,10,h,k,1,m,1,1,1,1,30,l,d,1,q,s,r,2,1,10,h,k,1,1,m,1,1,1,30,0,0,1,1,0,1,2,1,10,h,k,1,1,1,m,1,1,30,h,t,1,l,1,q,2,1,10,h,k,1,1,1,1,m,1,30,h,t,l,2,1,u,1,1,10,0,0,1,2,1,1,0,1,10,0,0,2,1,0,1,1,1,10,0,0,2,1,1,0,1,1,10,h,1,k,1,m,1,1,1,30,t,1,u,1,h,2,1,l,10,h,1,k,1,1,m,1,1,30,0,1,0,2,1,0,1,1,1t,d,1,1,1,1,1,1,1,21,d,i,j,v,w,x,y,a,01,a,b,c,d,e,f,g,3,01,d,a,t,b,z,c,3,e,01,z,t,A,B,d,3,a,C,01,D,t,a,u,A,B,C,3,01,0,0,0,0,1,0,3,1,01,0,0,0,t,1,p,0,3,0E,d,i,a,b,1,1,1,1,01,0,0,0,0,1,3,0,1,01,t,0,0,0,3,0,p,F,01,t,0,0,0,3,F,0,p,01,0,0,0,1,0,A,F,3,01,0,0,0,1,0,1,0,3,0E,d,a,b,1,i,1,1,1,01,0,0,0,1,1,0,0,3,0E,d,a,b,1,1,i,1,1,0s,d,a,b,G,H,I,i,J,01,0,0,0,3,0,0,1,1,01,0,0,0,3,0,1,0,1,01,0,0,0,3,1,0,0,1,0E,a,d,1,i,b,1,1,1,0E,d,i,1,j,1,v,1,1,0E,d,i,1,j,1,1,v,1,0E,d,i,1,1,j,v,1,1,0E,d,i,1,1,j,1,v,1,0E,d,1,i,1,j,1,v,1,01,1,1,1,1,1,1,1,1,32,h,k,m,n,o,K,L,a,02,a,b,c,e,F,p,M,N,02,0,0,0,0,1,1,2,1,02,0,0,0,0,1,2,1,1,02,K,a,b,F,L,M,N,p,02,0,0,0,1,0,1,2,1,02,0,0,0,1,0,2,1,1,02,K,a,b,F,M,L,N,p,02,0,0,0,1,1,0,2,1,02,K,L,h,F,M,N,k,p,02,K,L,F,h,k,M,N,p,02,0,0,1,0,0,1,2,1,02,0,0,1,0,0,2,1,1,02,K,L,F,h,M,k,N,p,02,0,0,1,0,1,0,2,1,02,K,L,F,h,M,N,k,p,02,0,0,1,0,1,2,0,1,02,K,L,F,M,h,k,N,p,02,0,0,1,1,0,0,2,1,02,K,L,F,M,h,N,k,p,02,0,0,1,1,0,2,0,1,02,K,F,L,M,h,N,k,p,03,D,O,P,Q,R,S,T,a,03,a,b,c,e,G,H,I,J,03,0,0,0,0,1,1,3,1,03,0,0,0,0,1,3,1,1,03,D,a,b,G,O,H,I,J,03,0,0,0,1,0,1,3,1,03,0,0,0,1,0,3,1,1,03,D,a,b,G,H,O,I,J,03,0,0,0,1,1,0,3,1,03,D,O,G,P,Q,H,I,J,03,0,0,1,0,0,1,3,1,03,0,0,1,0,0,3,1,1,03,D,O,G,P,H,Q,I,J,03,0,0,1,0,1,0,3,1,03,D,O,G,P,H,I,Q,J,03,0,0,1,0,1,3,0,1,03,D,O,G,H,P,Q,I,J,03,0,0,1,1,0,0,3,1,03,D,O,G,H,P,I,Q,J,03,0,0,1,1,0,3,0,1,03,D,G,O,H,P,I,Q,J,0 lifeb7ad6 @RULE lifeb7ad6@TABLE# rules: 94## Golly rule-table format.# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'# N.B. Where the same variable appears multiple times in a transition,# it takes the same value each time.## Default for transitions not listed: no change#n_states:4neighborhood:Mooresymmetries:rotate8var a={0,1,2,3}var b={0,1,2,3}var c={0,1,2,3}var d={0,2,3}var e={0,1,2,3}var f={0,1,2,3}var g={0,1,2,3}var h={0,3}var i={0,2,3}var j={0,2,3}var k={0,3}var l={0,1,3}var m={0,3}var n={0,3}var o={0,3}var p={1,2}var q={0,1,3}var r={0,1,3}var s={1,3}var t={0,1}var u={0,1}var v={0,2,3}var w={0,2,3}var x={0,2,3}var y={0,2,3}var z={0,1,2}var A={0,1,2}var B={0,1,2}var C={0,1,2}var D={0,2}var E={1,2,3}var F={1,2}var G={1,3}var H={1,3}var I={1,3}var J={1,3}var K={0,3}var L={0,3}var M={1,2}var N={1,2}var O={0,2}var P={0,2}var Q={0,2}var R={0,2}var S={0,2}var T={0,2}0,a,b,c,d,e,f,g,2,10,h,d,i,j,k,1,1,1,10,d,h,i,j,1,k,1,1,10,d,i,h,j,1,1,k,1,10,d,a,b,1,l,c,e,2,10,h,k,d,1,m,n,1,1,10,h,k,m,1,n,1,o,1,10,h,k,m,p,1,n,o,1,10,l,d,q,2,1,r,a,1,10,h,d,1,k,m,1,i,1,10,l,d,1,q,s,r,2,1,10,0,0,1,1,0,1,2,1,10,h,t,1,l,1,q,2,1,10,h,k,1,1,1,1,1,1,30,h,t,l,2,1,u,1,1,10,0,0,1,2,1,1,0,1,10,0,0,2,1,0,1,1,1,10,0,0,2,1,1,0,1,1,10,t,1,u,1,h,2,1,l,10,h,1,k,1,1,1,1,1,30,0,1,0,2,1,0,1,1,10,h,1,1,k,1,1,1,1,30,h,1,1,1,k,1,1,1,3t,d,1,1,1,1,1,1,1,21,d,i,j,v,w,x,y,a,01,a,b,c,d,e,f,g,3,01,d,a,t,b,z,c,3,e,01,z,t,A,B,d,3,a,C,01,D,t,a,u,A,B,C,3,01,0,0,0,0,1,0,3,1,01,0,0,0,t,1,p,0,3,0E,d,i,a,b,1,1,1,1,01,0,0,0,0,1,3,0,1,01,t,0,0,0,3,0,p,F,01,t,0,0,0,3,F,0,p,01,0,0,0,1,0,A,F,3,01,0,0,0,1,0,1,0,3,0E,d,a,b,1,i,1,1,1,01,0,0,0,1,1,0,0,3,0E,d,a,b,1,1,i,1,1,0s,d,a,b,G,H,I,i,J,01,0,0,0,3,0,0,1,1,01,0,0,0,3,0,1,0,1,01,0,0,0,3,1,0,0,1,0E,a,d,1,i,b,1,1,1,0E,d,i,1,j,1,v,1,1,0E,d,i,1,j,1,1,v,1,0E,d,i,1,1,j,v,1,1,0E,d,i,1,1,j,1,v,1,0E,d,1,i,1,j,1,v,1,01,1,1,1,1,1,1,1,1,32,h,k,m,n,o,K,L,a,02,a,b,c,e,F,p,M,N,02,0,0,0,0,1,1,2,1,02,0,0,0,0,1,2,1,1,02,K,a,b,F,L,M,N,p,02,0,0,0,1,0,1,2,1,02,0,0,0,1,0,2,1,1,02,K,a,b,F,M,L,N,p,02,0,0,0,1,1,0,2,1,02,K,L,h,F,M,N,k,p,02,K,L,F,h,k,M,N,p,02,0,0,1,0,0,1,2,1,02,0,0,1,0,0,2,1,1,02,K,L,F,h,M,k,N,p,02,0,0,1,0,1,0,2,1,02,K,L,F,h,M,N,k,p,02,0,0,1,0,1,2,0,1,02,K,L,F,M,h,k,N,p,02,0,0,1,1,0,0,2,1,02,K,L,F,M,h,N,k,p,02,0,0,1,1,0,2,0,1,02,K,F,L,M,h,N,k,p,03,D,O,P,Q,R,S,T,a,03,a,b,c,e,G,H,I,J,03,0,0,0,0,1,1,3,1,03,0,0,0,0,1,3,1,1,03,D,a,b,G,O,H,I,J,03,0,0,0,1,0,1,3,1,03,0,0,0,1,0,3,1,1,03,D,a,b,G,H,O,I,J,03,0,0,0,1,1,0,3,1,03,D,O,G,P,Q,H,I,J,03,0,0,1,0,0,1,3,1,03,0,0,1,0,0,3,1,1,03,D,O,G,P,H,Q,I,J,03,0,0,1,0,1,0,3,1,03,D,O,G,P,H,I,Q,J,03,0,0,1,0,1,3,0,1,03,D,O,G,H,P,Q,I,J,03,0,0,1,1,0,0,3,1,03,D,O,G,H,P,I,Q,J,03,0,0,1,1,0,3,0,1,03,D,G,O,H,P,I,Q,J,0 lifeb7ad8 @RULE lifeb7ad8@TABLE# rules: 91## Golly rule-table format.# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'# N.B. Where the same variable appears multiple times in a transition,# it takes the same value each time.## Default for transitions not listed: no change#n_states:4neighborhood:Mooresymmetries:rotate8var a={0,1,2,3}var b={0,1,2,3}var c={0,1,2,3}var d={0,2,3}var e={0,1,2,3}var f={0,1,2,3}var g={0,1,2,3}var h={0,3}var i={0,2,3}var j={0,2,3}var k={0,3}var l={0,1,3}var m={0,3}var n={0,3}var o={0,3}var p={1,2}var q={0,1,3}var r={0,1,3}var s={1,3}var t={0,1}var u={0,1}var v={0,2,3}var w={0,2,3}var x={0,2,3}var y={0,2,3}var z={0,1,2}var A={0,1,2}var B={0,1,2}var C={0,1,2}var D={0,2}var E={1,2,3}var F={1,2}var G={1,3}var H={1,3}var I={1,3}var J={1,3}var K={0,3}var L={0,3}var M={1,2}var N={1,2}var O={0,2}var P={0,2}var Q={0,2}var R={0,2}var S={0,2}var T={0,2}0,a,b,c,d,e,f,g,2,10,h,d,i,j,k,1,1,1,10,d,h,i,j,1,k,1,1,10,d,i,h,j,1,1,k,1,10,d,a,b,1,l,c,e,2,10,h,k,d,1,m,n,1,1,10,h,k,m,1,n,1,o,1,10,h,k,m,p,1,n,o,1,10,l,d,q,2,1,r,a,1,10,h,d,1,k,m,1,i,1,10,l,d,1,q,s,r,2,1,10,0,0,1,1,0,1,2,1,10,h,t,1,l,1,q,2,1,10,h,t,l,2,1,u,1,1,10,0,0,1,2,1,1,0,1,10,0,0,2,1,0,1,1,1,10,0,0,2,1,1,0,1,1,10,t,1,u,1,h,2,1,l,10,0,1,0,2,1,0,1,1,1t,d,1,1,1,1,1,1,1,20,1,1,1,1,1,1,1,1,31,d,i,j,v,w,x,y,a,01,a,b,c,d,e,f,g,3,01,d,a,t,b,z,c,3,e,01,z,t,A,B,d,3,a,C,01,D,t,a,u,A,B,C,3,01,0,0,0,0,1,0,3,1,01,0,0,0,t,1,p,0,3,0E,d,i,a,b,1,1,1,1,01,0,0,0,0,1,3,0,1,01,t,0,0,0,3,0,p,F,01,t,0,0,0,3,F,0,p,01,0,0,0,1,0,A,F,3,01,0,0,0,1,0,1,0,3,0E,d,a,b,1,i,1,1,1,01,0,0,0,1,1,0,0,3,0E,d,a,b,1,1,i,1,1,0s,d,a,b,G,H,I,i,J,01,0,0,0,3,0,0,1,1,01,0,0,0,3,0,1,0,1,01,0,0,0,3,1,0,0,1,0E,a,d,1,i,b,1,1,1,0E,d,i,1,j,1,v,1,1,0E,d,i,1,j,1,1,v,1,0E,d,i,1,1,j,v,1,1,0E,d,i,1,1,j,1,v,1,0E,d,1,i,1,j,1,v,1,0E,1,1,1,1,1,1,1,1,02,h,k,m,n,o,K,L,a,02,a,b,c,e,F,p,M,N,02,0,0,0,0,1,1,2,1,02,0,0,0,0,1,2,1,1,02,K,a,b,F,L,M,N,p,02,0,0,0,1,0,1,2,1,02,0,0,0,1,0,2,1,1,02,K,a,b,F,M,L,N,p,02,0,0,0,1,1,0,2,1,02,K,L,h,F,M,N,k,p,02,K,L,F,h,k,M,N,p,02,0,0,1,0,0,1,2,1,02,0,0,1,0,0,2,1,1,02,K,L,F,h,M,k,N,p,02,0,0,1,0,1,0,2,1,02,K,L,F,h,M,N,k,p,02,0,0,1,0,1,2,0,1,02,K,L,F,M,h,k,N,p,02,0,0,1,1,0,0,2,1,02,K,L,F,M,h,N,k,p,02,0,0,1,1,0,2,0,1,02,K,F,L,M,h,N,k,p,03,D,O,P,Q,R,S,T,a,03,a,b,c,e,G,H,I,J,03,0,0,0,0,1,1,3,1,03,0,0,0,0,1,3,1,1,03,D,a,b,G,O,H,I,J,03,0,0,0,1,0,1,3,1,03,0,0,0,1,0,3,1,1,03,D,a,b,G,H,O,I,J,03,0,0,0,1,1,0,3,1,03,D,O,G,P,Q,H,I,J,03,0,0,1,0,0,1,3,1,03,0,0,1,0,0,3,1,1,03,D,O,G,P,H,Q,I,J,03,0,0,1,0,1,0,3,1,03,D,O,G,P,H,I,Q,J,03,0,0,1,0,1,3,0,1,03,D,O,G,H,P,Q,I,J,03,0,0,1,1,0,0,3,1,03,D,O,G,H,P,I,Q,J,03,0,0,1,1,0,3,0,1,03,D,G,O,H,P,I,Q,J,0 lifeb7ad8a, a variant of lifeb7ad8 @RULE lifeb7ad8a@TABLE# rules: 90## Golly rule-table format.# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'# N.B. Where the same variable appears multiple times in a transition,# it takes the same value each time.## Default for transitions not listed: no change#n_states:4neighborhood:Mooresymmetries:rotate8var a={0,1,2,3}var b={0,1,2,3}var c={0,1,2,3}var d={0,2,3}var e={0,1,2,3}var f={0,1,2,3}var g={0,1,2,3}var h={0,3}var i={0,2,3}var j={0,2,3}var k={0,3}var l={0,1,3}var m={0,3}var n={0,3}var o={0,3}var p={1,2}var q={0,1,3}var r={0,1,3}var s={1,3}var t={0,1}var u={0,1}var v={0,2,3}var w={0,2,3}var x={0,2,3}var y={0,2,3}var z={0,1,2}var A={0,1,2}var B={0,1,2}var C={0,1,2}var D={0,2}var E={1,2,3}var F={1,2}var G={1,3}var H={1,3}var I={1,3}var J={1,3}var K={0,3}var L={0,3}var M={1,2}var N={1,2}var O={0,2}var P={0,2}var Q={0,2}var R={0,2}var S={0,2}var T={0,2}0,a,b,c,d,e,f,g,2,10,h,d,i,j,k,1,1,1,10,d,h,i,j,1,k,1,1,10,d,i,h,j,1,1,k,1,10,d,a,b,1,l,c,e,2,10,h,k,d,1,m,n,1,1,10,h,k,m,1,n,1,o,1,10,h,k,m,p,1,n,o,1,10,l,d,q,2,1,r,a,1,10,h,d,1,k,m,1,i,1,10,l,d,1,q,s,r,2,1,10,0,0,1,1,0,1,2,1,10,h,t,1,l,1,q,2,1,10,h,t,l,2,1,u,1,1,10,0,0,1,2,1,1,0,1,10,0,0,2,1,0,1,1,1,10,0,0,2,1,1,0,1,1,10,t,1,u,1,h,2,1,l,10,0,1,0,2,1,0,1,1,1t,d,1,1,1,1,1,1,1,2t,1,1,1,1,1,1,1,1,31,d,i,j,v,w,x,y,a,01,a,b,c,d,e,f,g,3,01,d,a,t,b,z,c,3,e,01,z,t,A,B,d,3,a,C,01,D,t,a,u,A,B,C,3,01,0,0,0,0,1,0,3,1,01,0,0,0,t,1,p,0,3,0E,d,i,a,b,1,1,1,1,01,0,0,0,0,1,3,0,1,01,t,0,0,0,3,0,p,F,01,t,0,0,0,3,F,0,p,01,0,0,0,1,0,A,F,3,01,0,0,0,1,0,1,0,3,0E,d,a,b,1,i,1,1,1,01,0,0,0,1,1,0,0,3,0E,d,a,b,1,1,i,1,1,0s,d,a,b,G,H,I,i,J,01,0,0,0,3,0,0,1,1,01,0,0,0,3,0,1,0,1,01,0,0,0,3,1,0,0,1,0E,a,d,1,i,b,1,1,1,0E,d,i,1,j,1,v,1,1,0E,d,i,1,j,1,1,v,1,0E,d,i,1,1,j,v,1,1,0E,d,i,1,1,j,1,v,1,0E,d,1,i,1,j,1,v,1,02,h,k,m,n,o,K,L,a,02,a,b,c,e,F,p,M,N,02,0,0,0,0,1,1,2,1,02,0,0,0,0,1,2,1,1,02,K,a,b,F,L,M,N,p,02,0,0,0,1,0,1,2,1,02,0,0,0,1,0,2,1,1,02,K,a,b,F,M,L,N,p,02,0,0,0,1,1,0,2,1,02,K,L,h,F,M,N,k,p,02,K,L,F,h,k,M,N,p,02,0,0,1,0,0,1,2,1,02,0,0,1,0,0,2,1,1,02,K,L,F,h,M,k,N,p,02,0,0,1,0,1,0,2,1,02,K,L,F,h,M,N,k,p,02,0,0,1,0,1,2,0,1,02,K,L,F,M,h,k,N,p,02,0,0,1,1,0,0,2,1,02,K,L,F,M,h,N,k,p,02,0,0,1,1,0,2,0,1,02,K,F,L,M,h,N,k,p,03,D,O,P,Q,R,S,T,a,03,a,b,c,e,G,H,I,J,03,0,0,0,0,1,1,3,1,03,0,0,0,0,1,3,1,1,03,D,a,b,G,O,H,I,J,03,0,0,0,1,0,1,3,1,03,0,0,0,1,0,3,1,1,03,D,a,b,G,H,O,I,J,03,0,0,0,1,1,0,3,1,03,D,O,G,P,Q,H,I,J,03,0,0,1,0,0,1,3,1,03,0,0,1,0,0,3,1,1,03,D,O,G,P,H,Q,I,J,03,0,0,1,0,1,0,3,1,03,D,O,G,P,H,I,Q,J,03,0,0,1,0,1,3,0,1,03,D,O,G,H,P,Q,I,J,03,0,0,1,1,0,0,3,1,03,D,O,G,H,P,I,Q,J,03,0,0,1,1,0,3,0,1,03,D,G,O,H,P,I,Q,J,0 Last edited by shouldsee on April 9th, 2016, 12:00 pm, edited 5 times in total. shouldsee Posts: 406 Joined: April 8th, 2016, 8:29 am ### Re: Thread For Your Unrecognised CA Error: rule lifefb not found. Corrected version: x = 461, y = 475, rule = lifebf7:T489,477368.3C$367.C$366.C$224.C140.C$225.C138.C$226.C137.C$227.2C134.C$229.2C131.C$231.C129.C$195.15C22.C128.C$187.8C14.C19.C2.C127.C$178.9C21.C21.C2.C125.C$170.8C30.C22.C2.C123.C$149.21C37.C24.C2.C122.C$124.25C58.C25.C.2C120.C$80.44C83.C25.C122.C$68.12C126.C27.C120.C$52.16C138.C28.C119.C$43.9C154.C29.C117.C$38.5C163.C29.C116.C$21.17C168.C30.C115.C$6.C8.6C185.C31.C113.C$15C191.C32.C112.C$6.C199.C32.C111.C$6.C199.C33.C109.C$6.C199.C34.C108.C$6.C199.C34.C107.C$6.C199.C35.C105.C$6.C199.C35.C105.C$6.C199.C36.C103.C$6.C199.C37.C102.C$6.C199.C37.C101.C$6.C199.C38.C66.76C$6.C199.C33.C5.C48.17C33.C42.69C$6.C199.C34.2C3.C39.9C49.C111.C$6.C199.C36.2C2.C24.14C57.C112.C$6.C199.C38.27C71.C112.C$6.C199.C41.C93.C113.C$6.C199.C41.C92.C114.C$6.C199.C42.C90.C115.C$6.C199.C42.C90.C115.C$6.C199.C43.C88.C116.C$6.C199.C43.C87.C117.C$6.C199.C44.C85.C118.C$6.C199.C44.C85.C118.C$6.C199.C44.C84.C119.C$6.C199.C45.C82.C120.C$6.C199.C45.C81.C121.C$6.C199.C46.C80.C121.C$6.C199.C46.C79.C122.C$6.C199.C47.C77.C123.C$6.C199.C47.C77.C123.C$6.C199.C48.C75.C124.C$6.C199.C48.C74.C126.C$6.C199.C48.C73.C127.C$6.C199.C49.C72.C127.C$6.C200.C48.C71.C128.C$6.C200.C49.C69.C129.C$6.C200.C49.C69.C129.C$6.C200.C50.C67.C130.C$6.C200.C51.C65.C131.C$6.C200.C51.C64.C132.C$6.C200.C52.C63.C132.C$6.C200.C52.C62.C133.C$6.C200.C52.C62.C133.C$6.C200.C53.C60.C134.C$6.C200.C54.C59.C134.C$6.C200.C54.C58.C136.C$6.C200.C55.2C56.C136.C$6.C200.C55.2C55.C137.C$6.C200.C56.C53.2C57.C81.C$6.C200.C56.C32.3A18.C58.C81.C$6.C200.C57.C31.A.A18.C58.C81.C$6.C200.C57.2C30.3A18.C58.C81.C$6.C200.C57.3C50.C31.C26.C81.C$6.C200.C57.C2.C29.3A17.C28.C29.C47.C33.C$6.C200.C57.C32.A.A17.C58.C47.C34.C$6.C201.C56.C32.3A17.C30.C27.C47.C34.C$6.C201.C56.C52.C27.C30.C48.C33.C$6.C201.C56.C52.C58.C48.C33.C$6.C201.C56.C52.C57.C49.C33.C$6.C201.C56.C52.C57.C49.C33.C$6.C201.C56.C51.C58.C50.C32.C$6.C201.C56.C51.C58.C50.C32.C$6.C201.C56.C51.C58.C50.C32.C$6.C202.C55.C51.C58.C50.C32.C$6.C202.C55.C51.C58.C19.3A29.C31.C$6.C202.C55.C51.C58.C8.2A7.A3.2A28.C31.C$6.C202.C55.C51.C57.C18.A.A2.2A27.C31.C$6.C202.C55.C51.C57.C9.2A6.A.B3.A28.C31.C$6.C202.C55.C51.C57.C11.A6.5A29.C31.C$6.C202.C55.C51.C57.C52.C31.C$6.C202.C55.C51.C57.C11.A6.5A29.C31.C$6.C202.C55.C51.C57.C9.2A6.A.B3.A28.C31.C$6.C202.C54.C52.C57.C18.A.A2.2A27.C31.C$6.C202.C27.48C32.C57.C9.2A7.A3.2A28.C31.C$6.C202.C54.C20.8C24.C57.C20.3A29.C31.C$6.C202.C54.C28.9C15.C56.C52.C5.7C20.C$6.C202.C54.C37.8C7.C56.C52.6C7.7C12.C$6.C202.C54.C45.8C56.C47.6C31.C$6.C202.C54.C51.C.9C47.C41.6C5.C31.C$6.C202.C54.C51.C10.8C39.C35.6C11.C31.C$6.C202.C54.C51.C18.9C30.C29.6C17.C31.C$6.C202.C54.C51.C27.8C22.C10.19C23.C$6.C202.C54.C51.C35.9C13.C10.3C39.C$6.C202.C54.C51.C44.24C42.C$6.C202.C54.C51.C57.C52.C$6.C202.C54.C51.C57.C52.C$6.C202.C53.C52.C56.C53.C$6.C202.C53.C52.C56.C53.C$6.C202.C53.C52.C56.C53.C$6.C202.C53.C52.C56.C53.C$6.C203.C52.C52.C56.C52.C$6.C203.C52.C52.C56.C52.C$6.C203.C52.C52.C56.C52.C$6.C77.3A.3A119.C52.C52.C56.C41.A10.C$6.C77.A.A.A.A119.C52.C52.C56.C41.A10.C$6.C77.3A.3A119.C52.C52.C27.3A26.C40.3A9.C$6.C203.C52.C52.C27.A.A26.C40.A.A9.C$6.C203.C52.C14.3A35.C27.3A25.C40.5A8.C$7.C203.C51.C14.A.A35.C55.C41.3A9.C$7.C203.C51.C14.3A35.C55.C42.A10.C$7.C203.C51.C52.C21.3A31.C53.C$7.C203.C51.C52.C21.A.A31.C25.2A.A24.C$7.C203.C50.C53.C21.3A31.C24.A3.3A21.C$7.C203.C50.C53.C55.C24.A.2B24.C$7.C203.C50.C53.C55.C24.A27.C$7.C203.C50.C14.3A36.C55.C25.2A3.A21.C$7.C203.C50.C14.A.A36.C55.C52.C$7.C203.C50.C14.3A36.C55.C52.C$7.C203.C50.C53.C54.C53.C$7.C203.C50.C53.C54.C53.C$7.C203.C50.C53.C54.C53.C$7.C203.C50.C53.C54.C52.C$7.C204.C49.C53.C54.C52.C$7.C204.C49.C53.C54.C52.C$7.C204.C24.10C15.C53.C54.C52.C$7.C204.C34.16C53.C54.C52.C$7.C204.C49.20C34.C54.C52.C$7.C204.C49.C19.21C13.C54.C52.C$7.C204.C49.C40.19C49.C52.C$7.C204.C49.C52.C6.18C31.C51.C$7.C204.C49.C52.C24.18C13.C51.C$7.C204.C49.C52.C42.18C47.C$7.C204.C49.C52.C55.C4.19C28.C$7.C204.C49.C52.C54.C24.20C8.C$7.C204.C49.C52.C54.C44.28C$7.C204.C48.C53.C54.C52.C$7.C204.C48.C53.C54.C51.C$7.C204.C48.C53.C54.C51.C$7.C204.C48.C27.A25.C54.C51.C$7.C204.C48.C25.2A.2A23.C54.C51.C$7.C204.C48.C27.B25.C54.C51.C$7.C205.C47.C25.A.B.A23.C54.C51.C$7.C205.C47.C25.A3.A23.C54.C51.C$8.C204.C47.C26.3A23.C55.C51.C$8.C204.C47.C52.C55.C50.C$8.C204.C47.C52.C12.A.2A39.C50.C$8.C204.C47.C52.C11.2A3.A38.C50.C$8.C204.C47.C52.C10.A.3B.A38.C50.C$8.C204.C47.C52.C11.2A3.A38.C50.C$8.C204.C47.C52.C12.A.2A39.C50.C$8.C204.C47.C52.C55.C50.C$8.C204.C47.C52.C55.C50.C$8.C204.C47.C52.C54.C51.C$8.C204.C47.C52.C34.3A17.C51.C$8.C204.C47.C52.C33.A3.A16.C50.C$8.C204.C47.C52.C33.A.B.A16.C26.A23.C$8.C204.C36.C10.C52.C35.B18.C24.2A.2A21.C$9.C203.C37.2C8.C52.C33.2A.2A16.C26.B23.C$9.C203.C39.4C4.C52.C35.A18.C24.A.B.A21.C$9.C203.C43.5C107.C24.A3.A21.C$9.C203.C47.7C101.C25.3A22.C$9.C203.C47.C6.5C96.C50.C$9.C203.C47.C11.6C90.C50.C$9.C203.C47.C17.7C83.C50.C$9.C203.C47.C24.9C74.C50.C$9.C203.C47.C33.9C65.C50.C$10.C202.C90.9C56.C50.C$11.C201.C99.9C47.C50.C$12.4C197.C108.9C38.C49.C$16.10C187.C117.9C29.C49.C$26.9C178.C126.8C21.C49.C$35.7C171.C134.9C12.C49.C$42.8C163.C143.13C49.C$50.8C148.8C155.5C45.C$58.19C115.14C163.C4.5C40.C$77.21C82.12C177.C9.11C29.C$98.14C48.20C189.C20.13C16.C$112.11C26.11C209.C33.8C8.C$123.26C220.C41.5C3.C$369.C46.4C$369.C49.3C$419.C2.2C$419.C4.C$419.C$419.C$419.C$419.C$419.C$419.C$419.C$125.49C245.C$124.C49.98C147.C$124.C147.49C98.C$124.C195.C98.C$124.C115.22C58.C98.C$124.C72.43C21.C58.C98.C$124.C50.22C64.C58.C98.C$124.C50.C85.C58.C98.C$124.C50.C85.C58.C98.C$124.C50.C85.C58.C98.C$124.C50.C51.3A5.3A23.C58.C99.C$124.C50.C30.3A18.A.A5.A.A23.C58.C99.C$124.C50.C30.A.A18.3A5.3A23.C58.C99.C$124.C50.C30.3A26.3A23.C58.C99.C$124.C50.C59.A.A23.C58.C99.C$124.C50.C59.3A23.C58.C$124.C50.C21.3A61.C58.C$124.C50.C21.A.A60.C59.C$124.C50.C21.5A34.3A21.C59.C$124.C50.C23.A.A34.A.A21.C59.C$124.C50.C23.3A28.3A3.3A21.C15.3A41.C$124.C50.C54.A.A27.C15.A.A41.C$124.C50.C25.3A26.3A27.C15.3A41.C$124.C50.C25.A.A56.C59.C$124.C50.C25.3A29.3A24.C59.C$124.C50.C57.A.A24.C59.C$124.C24.A9.A15.C57.3A24.C37.3A19.C$124.C23.3A7.3A14.C84.C37.A.A19.C$124.C50.C84.C37.3A19.C$124.C18.2A.A2.4A3.4A2.A.2A9.C39.3A42.C59.C$124.C18.A.2A.A.AB5.BA.A.2A.A9.C39.A.A42.C59.C$124.C22.2A.2A5.2A.2A13.C39.3A42.C59.C$124.C23.A11.A14.C46.3A12.3A20.C59.C$124.C22.A.A9.A.A13.C46.A.A12.A.A20.C58.C$124.C23.2A9.2A14.C46.3A12.3A20.C58.C$124.C50.C53.6A25.C58.C$124.C50.C32.3A18.A.2A.A25.C58.C$124.C50.C32.A.A18.6A25.C58.C$124.C50.C32.3A49.C58.C$124.C50.C32.3A49.C58.C$124.C50.C32.A.A49.C58.C$124.C50.C32.3A23.3A23.C58.C$124.C50.C58.A.A23.C58.C$124.C50.C34.3A21.3A.3A18.C59.C$124.C50.C34.A.A25.A.A18.C59.C$124.C50.C34.3A25.3A18.C59.C$124.C50.C83.C59.C$124.C50.C83.C59.C$124.C50.C83.C59.C$124.C50.C52.3A28.C59.C$124.C50.C52.A.A28.C59.C$124.C50.C52.3A28.C59.C$124.C50.C83.C59.C$124.C50.C83.C59.C.C$124.C50.C83.C59.C.C$124.C50.C83.C59.C.C$124.C50.C83.C59.C.C$124.17C34.C83.C59.C.C$124.C16.32C2.C83.C59.C.C$124.C48.33C53.C59.C.C$124.C50.C30.32C21.C59.C.C$123.C51.C62.33C48.C.C$123.C51.C83.C11.32C16.C.C$123.C51.C83.C43.17C.C$123.C51.C83.C59.C.C$123.C51.C83.C59.C.C$123.C44.3A4.C83.C59.C.C$123.C28.3A13.A.A4.C83.C59.C.C$123.C28.A.A13.3A4.C83.C59.C.C$123.C28.3A20.C82.C60.C.C$123.C51.C82.C60.C.C$123.C51.C82.C60.C.C$123.C51.C82.C60.C.C$123.C51.C22.3A57.C60.C.C$123.C51.C22.A.A57.C60.C.C$123.C51.C22.3A57.C60.C.C$123.C51.C65.3A14.C41.3A16.C.C$123.C17.3A31.C65.A.A14.C18.3A6.3A11.A.A16.C.C$123.C17.A.3A29.C65.3A14.C18.A.A6.A.A11.3A16.C.C$123.C17.3A.A29.C20.3A34.3A2.3A17.C18.3A6.3A16.3A11.3C$123.C19.3A29.C20.A.A34.A.A2.A.3A15.C16.3A20.3A4.A.A11.3C$123.C51.C20.3A34.3A2.3A.A15.C16.A.A20.A.A4.3A11.3C$123.C6.3A21.3A10.3A5.C64.3A15.C16.3A20.3A18.3C$123.C6.A.A21.A.A.3A6.A.A5.C82.C60.3C$123.C6.3A21.3A.A.A6.3A5.C55.3A24.C60.3C$123.C34.3A6.3A5.C55.A.A24.C15.3A42.3C$123.C43.A.A5.C55.3A24.C15.A.A42.3C$123.C41.5A5.C82.C15.3A42.3C$123.C6.3A32.A.A7.C82.C31.3A26.3C$123.C6.A.A32.3A7.C59.3A20.C31.A.A18.3A5.3C$123.C6.3A42.C59.A.A9.3A8.C31.3A18.A.A5.3C$123.C6.A.A42.C47.3A9.3A9.A.A8.C52.3A5.3C$123.C6.3A42.C16.3A7.3A11.3A4.A.A21.3A8.C60.3C$123.C51.C16.A.A7.A.A11.A.A4.3A32.C41.3A16.3C$123.C51.C16.3A7.3A11.3A39.C35.3A3.A.A16.C.C$123.C21.3A27.C57.3A21.C35.2A.A3.3A16.3C$123.C21.A.A27.C24.3A30.A.A21.C35.A.2A2.3A17.3C$123.C21.3A27.C24.A.A30.3A21.C28.3A4.3A3.A.A17.3C$123.C51.C24.3A54.C28.A.A10.3A17.3C$123.C13.3A35.C81.C28.3A31.2C$123.C13.A.A35.C81.C62.2C$123.C13.3A19.3A13.C81.C62.2C$123.C35.A.A13.C81.C62.2C$123.C35.3A13.C28.3A10.3A37.C62.2C$123.C51.C28.A.A10.A.A37.C62.2C$123.C51.C28.3A10.3A16.3A5.3A10.C34.3A25.2C$123.C51.C60.A.A5.A.A10.C34.A.A25.2C$123.C51.C22.3A25.3A7.3A5.3A10.C34.3A2.3A20.2C$123.C51.C22.A.A25.A.A28.C39.A.A20.2C$123.C51.C22.3A25.3A28.C12.3A24.3A20.2C$123.C51.C81.C12.A.A47.2C$123.C27.5A19.C81.C12.3A47.2C$123.C23.3A.A.A.A19.C81.C62.2C$123.C23.A.A.5A19.C81.C62.2C$123.C23.3A25.C81.C62.2C$123.C51.C81.C62.2C$123.C51.C81.C62.2C$123.C51.C81.C62.2C$123.C51.C81.C22.C39.2C$123.C51.C81.C22.C39.2C$123.13C39.C81.C22.C39.2C$123.39C13.C80.C23.C39.2C$123.C16.36C80.C23.C39.2C$123.C49.33C50.C23.C39.2C$123.C51.C30.33C17.C23.C39.2C$123.C51.C63.33C8.C39.2C$123.C51.C80.C15.33C15.2C$122.C52.C80.C23.C24.17C$122.C52.C80.C23.C39.2C$122.C52.C80.C23.C39.2C$122.C38.3A11.C80.C23.C39.2C$122.C38.A.A4.3A4.C80.C23.C39.2C$122.C38.3A4.A.A4.C80.C63.2C$122.C45.3A4.C80.C63.2C$122.C52.C80.C63.2C$122.C28.3A21.C80.C63.2C$122.C28.A.A21.C80.C63.2C$122.C28.3A21.C80.C63.2C$122.C52.C80.C63.2C$122.C52.C80.C63.2C$122.C52.C80.C63.2C$121.C54.C79.C63.2C$121.C54.C79.C63.2C$121.C33.3A18.C79.C63.2C14.2A$121.C13.3A17.A.A5.3A10.C79.C63.2C11.2A.3A$121.C10.4A.A17.3A5.A.A10.C79.C63.2C4.3A3.4A.A.3A2.2A$121.C10.A.4A25.3A10.C79.C63.2C3.3A2.3A2.A.3A3.4A$121.C10.3A41.C78.C64.2C2.A2.3B.A.3A3.3A2.B3A$121.C35.3A16.C78.C64.2C8.A3.2A3.A3.4A$121.C35.A.A16.C37.3A38.C64.2C2.A.B2.A$121.C35.3A16.C37.A.A38.C64.2C2.A3.A4.A$121.C54.C37.3A38.C64.2C2.A.B.A4.2A$121.C37.3A14.C78.C64.2C2.A2.A3.A3.A6.A$121.C37.A.A14.C78.C64.2C3.A.A6.3A4.A.A$121.C37.3A14.C78.C64.2C8.A5.A4.A.A$120.C33.3A19.C78.C64.2C5.3A.4A2.A4.A$120.C33.A.A19.C78.C64.2C8.A$120.C33.3A19.C78.C64.2C11.3A2.A$120.C55.C78.C64.2C2.A7.AB3A.A$120.C11.3A41.C78.C64.2C2.3A5.A2.A.A$120.C11.A.A41.C78.C64.2C2.A.A6.2A.A$120.C11.3A41.C78.C64.2C2.3A.2A5.3A2.4A$120.C21.3A31.C78.C64.2C3A.A4.3A.5A.A2.A$120.C21.A.A25.3A3.C12.3A63.C64.2C2.A.2A3.3A2.A5.2A$120.C21.3A17.4A4.A.A3.C12.A.A63.C64.2C4.A9.A3.A$120.C41.A2.A4.3A3.C12.3A63.C64.2C2.2A6.3A.A3.2A$120.C41.4A4.A.A3.C78.C64.2C2.AB6.A.A.2A$120.C49.3A3.C78.C64.2C2.4A.4ABA4.A.A$119.C10.3A43.C37.3A6.3A29.C64.2C2.ABA3.A.3A5.A$119.C10.A.A43.C37.A.A6.A.A11.3A15.C64.2C2.3A4.3A$119.C10.3A17.3A23.C37.3A6.3A11.A.A15.C64.2C3.2A5.A$119.C30.A.A23.C60.3A15.C64.2C$119.C30.3A23.C78.C64.2C3.2A5.A$119.C56.C77.C66.C2.3A4.3A$119.C38.3A15.C77.C66.C2.ABA3.A.3A5.A$119.C29.3A6.A.A3.3A9.C77.C66.C2.4A.4ABA4.A.A$119.C29.A.A6.3A3.A.A9.C77.C66.C2.AB6.A.A.2A$119.C29.3A12.4A8.C77.C66.C2.2A6.3A.A3.2A$119.C9.3A33.A.A8.C77.C66.C4.A9.A3.A$119.C9.A.A33.3A8.C77.C66.C2.A.2A3.3A2.A5.2A$119.C9.3A44.C77.C66.C3A.A4.3A.5A.A2.A$119.C56.C77.C66.C2.3A.2A5.3A2.4A$118.C57.C77.C66.C2.A.A6.2A.A$118.C19.3A35.C77.C66.C2.3A5.A2.A.A$118.C19.A.A35.C77.C66.C2.A7.AB3A.A$118.C19.3A35.C77.C66.C11.3A2.A$118.C58.C76.C66.C8.A$118.C58.C76.C66.C5.3A.4A2.A4.A$118.C58.C76.C66.C8.A5.A4.A.A$118.C43.3A12.C76.C66.C3.A.A6.3A4.A.A$118.C43.A.A5.3A4.C76.C66.C2.A2.A3.A3.A6.A$118.C29.3A11.3A5.A.A4.C76.C66.C2.A.B.A4.2A$118.C29.A.A19.3A4.C76.C66.C2.A3.A4.A$118.C29.3A26.C76.C66.C2.A.B2.A$118.C58.C76.C66.C8.A3.2A3.A3.4A$118.C27.3A28.C76.C66.C2.A2.3B.A.3A3.3A2.B3A$117.C10.3A15.A.A28.C76.C66.C3.3A2.3A2.A.3A3.4A$117.C10.A.A15.3A4.3A21.C76.C66.C4.3A3.4A.A.3A2.2A$117.C10.3A22.A.A21.C76.C66.C11.2A.3A$117.C35.3A21.C75.C26.C40.C14.2A$117.C59.C75.C26.C40.C$117.C59.C75.C26.C40.C$117.13C47.C75.C26.C40.C$130.26C21.C75.C26.C40.C$156.25C72.C26.C40.C$177.C3.26C46.C26.C40.C$177.C29.25C21.C26.C40.C$177.C54.26C22.C40.C$177.10C66.C4.25C38.C$187.19C47.C26.C2.26C12.C$206.19C28.C26.C28.13C$225.19C9.C26.C40.C$244.10C26.C40.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C$321.C! Though you should probably check your patterns before posting. I like making rules fluffykitty Posts: 604 Joined: June 14th, 2014, 5:03 pm ### Re: Thread For Your Unrecognised CA A c/4 diagonal spaceship bigger than a glider: x = 5, y = 7, rule = lifebf73.A$2.2A$.4A$3A.A$.4A$3.A\$3.A!

gameoflifeboy

Posts: 474
Joined: January 15th, 2015, 2:08 am

PreviousNext

Return to Other Cellular Automata

### Who is online

Users browsing this forum: No registered users and 7 guests