Page 1 of 9

### Challenges

Posted: February 18th, 2017, 5:13 pm
For challenges of any type related to cellular automata.

I'll give two to start off:

1. Who can find the non-totalistic rule with the most speeds exhibited by spaceships with <=10 cells in any phase?

[nevermind]2. Find a non-explosive B1e rule.[/nevermind]
This one has been solved by @gmc_nxtman. Feel free to come up with other examples, though.

### Re: Challenges

Posted: February 18th, 2017, 5:31 pm
A for awesome wrote:2. Find a non-explosive B1e rule.

B1e/S12 has natural infinite growth in the form of one-cell-thick ladders, but I wouldn't call it explosive.

In fact, I think that any survival conditions can be added to the rulestring and patterns still won't explode.

### Re: Challenges

Posted: February 18th, 2017, 6:06 pm
gameoflifeboy wrote:B1e/S12 has natural infinite growth in the form of one-cell-thick ladders, but I wouldn't call it explosive.

In fact, I think that any survival conditions can be added to the rulestring and patterns still won't explode.

That's probably true. Congratulations on solving my challenge, even though that's really not what I was imagining at all. The second statement I would call incorrect, however:
`x = 113, y = 82, rule = B1e/S012b4ob4ob2obo2bobob2ob4obo3bob3o2bobo2b4o6bo2bobob2o2b2obo4bo2bobob4obo3bobo4bo2b3o2bo5b2o\$bobob5o2bobob2ob6o2bo2bob3o5bob3ob3ob2o7b3ob2o2b2ob3o3b7ob4ob3obo3bo3bo3b4o3bo\$3b2ob2obobobobob3o3bo3b2obo6bobob3o2b8o3b2o3bo2bo6b3o2b2obo2b2o2b3obob2ob5o3bo4bo\$2b2ob2obobob2o5b2obo5bobo2b3o2bob2ob3o3b2o2bob2ob3o2bobo2b2ob4obo3bo4b3obo3bobo2b3o3bo4bo2bo\$2bobobob10obo4bob2o4bo2bo2bob2obob10ob3o3bo2bob3ob3ob2obob2ob2o2bo4b2o2b2o4b3o5b2o\$b4o2b5obobob2obo2bobob4ob2obob5o5bo2b3obo3b2obobob2obo2bob2o3bo2b3obob2obo3bobo2b2o2bob2ob5o\$2obob3o3bobo2b4obo2b4o2bo2bob2obo2bo3bob2o2b2ob3o5bob2o3bobobob2o3bobobo4b3ob3obo3b2o2b2o3bo\$2b4o4bo2bobob8o2bob2obo3b3o2bob2obob10o2bo2b3o2bo2b4o3bobobo2bob2obo4b6ob6o4bo\$4bob5o4b2o2b3obobobo2b3o3b2o2b3ob3o3b2obob6ob3obo3bo2b2o2bo2b5ob2ob3o2b2o2b4o2bo3b3obo\$3b3obo4b4o2b2ob2obobo2b4o4bo2b6o3b2obob4o3bo4bobob7o3b3obobo3bo2bob2obo2b2obo2b5o\$3o2b3o3bobo2bob2ob2o2b2ob2o3b3o2b3obo3b2o3b3ob3obobo2b2o3b3ob4ob3ob2o2b2obo2b2o2bo2b3o4bo4b2o\$2obo2bobob2ob2o2bob3obob4o2b2o2bo2bo5b3o2bo3bo3b2o3b4obo3bo4bo2bobobo7bo2bob5obob3ob2obo\$2b3o2b2ob2obob4o2b3o10b3obob2obob2obo3bobob2o2bobo2b6ob3o4bobobo3bobobo2bo2bob5ob4o2bo\$4bobob4o2b2o3b2o2bo2b2obo2bo5b3o2bobo3bo4bob3o5b4ob2o3bobo3b2obo2b2o2b2ob2o3bobob2ob3obo2bo\$obob6obobob2o4bob4ob3ob3ob3ob3o2bobo2b2obo2bobo2bobo3b4obob2obob2o4bob2obob3obo6b2o5b2o\$2o3bo2bo6bo4bo2bo2bo3bo3bob3o2b4o2b2o2bob2ob3ob3ob3ob2o3bob2o4bobo2bob5o2b4o3b4obob2obo\$2ob2obo2b3ob4o4bob2obob4obobob4o5b4ob4o7b4ob3o2b3obob2o7b3obo3bobobo2b2ob2o2b4o\$2b2ob3ob8o6b2o3b2o3bob2o2b3obobo2bo2b2ob4ob4obo2b3o4bo2bo3b2obo4b3o2b3ob5o2bob4o\$7o4bobobo2bobob2ob3o2bob3ob3o2b2obo3b2ob2ob6o3bobob4o3bo4b2o2b2o3bobo2b2o2bob4ob2o3b3o\$bob2o2b2ob3ob3ob2obobob2o3bo2b2obo3bo6b2obo4b4ob2ob3o5bo3b3ob5obob4o2b2o3bobob2ob4o2bo\$2o4b5obobobobobobo4bo2b2o2b2o2bo2bob3o2bobob6obo7b2o3b2obob2o7b2o2bo5bobobo4bob3ob2o\$ob2ob4obobo2bo2bob3obo3b2o3b2o3bo2bob4o2bo6bo5b4o7bob4obob4o4b4o3bo3b3ob6o\$obo3bobobob3o2bobobob3obobo5bobo2bobobob2ob2o2b3o2b2o3b2o2b4o3bobo2bo2bob2obobob2obo2bo2b3o2b3obo\$b2obobo2bob3o3b3ob2ob2o2b2o4b3o2bo2bobob2obob4o4bobo2b2obo2bo4bo2b4obob3ob2o4bo3b2obo2b2o2b2o\$bo2bob2o2b3o2b2obo3bob2o2bo3b2ob2o3b3o4b2ob3o6bo3b8o3bob6o2bo4bobo2bo2b5o2bo2b2ob2o\$2o2b4ob3o2bob3o2b3obo2b3o2bo2b3ob3obo2b3ob4o6bob3obo2bo4b2o2bobo3b3obob2o3bo2bo2bo2bob3o\$ob2o3b2o2bob2ob5o3bob3obo4b5obob3ob2ob2obobob5obo3b2o2b5obo3bo2bob2o2b4o2bobob3ob6ob2o\$bob2o3b4o9b3ob3o2bobo2bo5bo2b3obobo3bo7bo5bobo2bo2bo5bob2o2b2obob9obobob2obo\$bobo5b3o4b2obob2o5bobobobo3b3o3bo2b2o3b4o3bo2b2obo2b3o3b2obobob4ob3ob4o2bo4bo2bob7o\$o3bobob4o2b3o3b5o2b9o3b4obo3b3ob2o3bobob2o2bo2bo2bo2b2o4bob3ob2obobob3ob3obob2obob5o\$2o7bo5bo4bobo2b5o2b6obo3b2obobobo3b2ob2ob2ob2o3b3o2b3o2bo2b2o2b3o2bo3b4o2bobobo4b2obo\$bobob2obo3b3o3bobobo2bob7o3bobo3b3obo2bob2ob3obobo2bo2bob3ob2obo2b2obob7o2bo2bobob2ob2o2b2ob2o\$obo3b2o2bobo3bo3b2obo6bo2b3ob2ob2ob3obob2ob3o2b5o4b2ob2o4bo6b2ob3o2b4o3bob5o2bob3obo\$obob3obo2b4obob3obo2bo4bo2bo2b3ob2obobobo4b4o3b4ob2ob2o2b2o6bob3o3b3obo3bob2obo3b2obobo\$2ob3ob2o5b2o4b2o2bo2b2o3b2ob5o4b2obo5b2ob2o2bob2obob6o3b4o4b5obob4o2b3o2bo2bo3b2o\$2bobo2bob3o2bobob2o4bob2o3b2o2b2o4bo6bobo6b3obo2b2ob6ob3ob3ob4obo2b2ob3obo3b3o2bo\$7bo2bo4bo4b2o2b6o2b4ob4obob3ob3obob3o3b8ob3o5bob2o2bobobob4obo4bo2b4o3b2o\$2o2b3ob2o3b2o3bo7bob3obobo2b3o2bo3bob2o4bob3ob5obobo2b2ob3obobobo3b3o3bo2b8ob2ob3o2bo\$obobobob2ob3ob2o6b3o2b2obo3bo3bo2b3obo3b2obo8bobo2bob4o3b7o2b2ob3o5b5ob2o2bo3b2o\$6b2o2b3o4bo2b2o5bobo2bob4obobo6b2o2bobo2b3o4b4o2bo2bobo3b2o2b2obob2ob6o3b2o4bob2ob2o\$bo5bobo3b2o3bobob2ob2obobo2bo5bobobob2o2bob4o3bob3o2b2o4bobo2b7o2b2ob2o4b6ob2o2b2ob4o\$b3o2b2o2bob2ob5obob2o2b3o3bobob6ob3obob3o2b4o3b3o6bobo2bo2b4ob2o2b2obobo2bobob2o2b2o5b2o\$b2o4b4obobobo3b2o4b4o3bo3bo5b2ob2ob5ob6obob3o2b2o2b3o3bo2bob2o2bob2ob3o2b2obo4b3obobo\$2b3o3bobo3b2o2b2obobob2ob2obobob2o6b4o2bobo4bo4b2obob3obobobo4bo5bo2bobo2b2o2bob4ob3o4bo\$ob3obob5obob2o3bo2b3o3bob2o6bo3b3obo3b2obobobo3b2ob2obobo2b3ob3ob2obob2o2bob5o2bo3bo3bobo\$2bo4bo3bobob7ob2obobobo4b8obobo4b3o3bob2o3bo5bobo6b2o2b3obo2b2o3b3o2bo2bob2o2b4o\$2o3b2obo3b3obo2b2o3b2obob2o3b5o3bobob2o2bobo2bob2ob3o2b2o2bo3bobo2bobobobobobobo2bo3b2ob7o\$o2bo3b2ob2obo3b2obo3bo6b4o3bo3bob6o3b4obo2bo2b3o5b2obobob4obo4bobob5o2b5obobobo\$2bobobo6bo3b3obo2b3obo2b2o7b3ob4o2b2o2b4ob2ob2obo2bobobo6bobo3bo2bobo2bob3o3bob2o4b2o\$2b2ob2obo3bo2b2obobobob4o2b3o5b3obo3b6o3bo2b3o3b2obo2bobo3b2o3b2o2b6o2bobo2b2o11bo\$o4b2obobo2bobob4o5bob2ob2o2bo7b2o4b3o5bob3o2bo3b4o2b2ob3o2bob3o2b3o2bobo3bobobob3o3bo\$3b6obo2b2o5bob4o2b2o7bo2bo4bo3b4ob4o2bo2b2o3b2ob3o2bob5ob3o2bo4b3o3b3o2bo2bo2b2o\$ob2obob3o4b3ob3obobobo3bob2o6b2obo2bo7bo2bobo2b4o5b2ob2ob2o2bob5obob3obob3o5bobo2b3o\$2bobob3obo2bo2b2ob2o8bo3b2o3bo4b4o3bo2b3ob3ob6ob2ob2o2bo4b2obo3bobob3o3b2o3b3ob2obobo\$b2o2b2ob2o2b5obobo3bo2b3obob2obobo3bo2b2o5b3o3bo2b2ob4ob2o2bo8bob8obo2b4ob3obo4bobo\$3obo2b3o4b3obob2ob7obobob2obo3bob4ob3obob4obob10ob2ob3o2b3o2bob4ob2ob2ob3o2bobob3obo\$3obobob5obo4bob5obo4bo3bobo2bob2ob4obob2ob2obo2bo2b2obob2o2bob3obo2b3ob2obo2b4o2bob3obo2b2o\$bo2bobo3b2o3b3o3b2o2b2obob2o2b6obobobobo2bob2o2b4ob2o2b2ob4obob2o3bob3o2bo2bobob3obobo4b2ob2o\$2ob2o4bob3o2bobo2bob2o2b2ob5o2b3obobobobob3obobob2o3b2o2bobo3b2o3b2ob4o3b3ob3obob8o2b2o2bo\$obo9bobo6b2o3bobo3b4ob3obo2bo3b2obo2b4ob2o4b2o3bob2o3b2o7bo2bob4o2b3o2b3o2b2o2b2o\$2obo3bob4ob2o2b2obob2ob2obo2bob3ob2o2b7o2bo2b6o3bo6b2obo3b2o4bobobob6o2b2o2b3o5bob2o\$2ob2o2bobobo2b2ob10obobo2b3o2bobo3b3o3bo2bobo2bob3o5b2obo2b6ob3o5b2ob2ob2ob3o2b2o3bobobo\$2bobobo3b2o2b3o2b2o2bo3bo2bo6bo5b2ob2ob2obob2o10bob4ob3o3b3ob2ob2o4bob4o4b2obob3o\$b2o2b2o5b2o2b2o2b2o4bob2ob3o4bob2o2b4ob2obo2b2o3bo2bo2b3ob2o3bobo2bo2b2obo2bob6ob4ob3o2b2o\$3ob7o3bob3o2b4o5bo5bo2b3ob3obobob2o4b2o5b4o4bobo6bo2b2o2bobo4bobobobobob4o2bo\$o2bob2o2bo3b3ob4ob4o2bobo7bob7ob2o3b3ob5obobo4b2o3bobo3b2o3b6obob2obo4bobobob3o\$b3obo6bobob2ob3o2b2o5bobo2b3o3b5ob4o2bob6ob2ob3o4bobo4b4o2b2o4bobo3bo2b4ob3obobo\$2o3b4o4b2o2b4obobo3b2ob2o3b6obo2b2o4b3o5bo3bobob2o2b4o3bo5bo2bobo2bo3b2obobobobo2bo2bo\$2bo3bob9o2b2obo3bobob3o4b2obob8o5bob4obo4b5o4b3obobo2bo4bo4b2o2bo4b3ob3obo\$5bo3bobo5bo8bobobo5b2o2bob2o3bob3ob2obo3b2o2b3ob2o4b2o7b3o4b2o3bobo2b2ob2o3bo2b2o\$b2o3b3o2bobob2o5b5obob2o2bobobo3bobobobobobob4o2bo5bobo3b2o5bob2o3bob2obo3b3obobob3o6bo\$bo5b4o2b4o3bo4b6o3b3ob2obob4o2bob5ob6o3bobobo3bo3bobob4o4b3ob4o2b2obobob2o2bo\$3ob5o2b2ob2ob3o4bo2bo2b7o2bo3bo3b5o5bob2o3b2o2b5o2b2o3b2o2b2obob2o4bobobobo4b2ob2o\$2obobob4o3bo4bob2ob2ob2obo4b4o5bo4b2o2b4o2b3ob2ob3o2b2o3bobo3bob3o2bo6b4o2b3o3bobo\$5o2bob3o3bobo2b2o5bob3obobobobob2o3b2o3b4obo3b2o2bobobo3b2ob2o2b4ob2o2bob2o5bobo3bob2o\$b4o2bo4b3o2b4o2bo4b2o2bo2bob5o2bo2b2o2bob2o3bob2o3b4o3bo2bobo4bo3b5obo2b3ob2obob4obo2bo\$bo2bo3b3ob4o3b3ob5o2bobo3bo2bo2bobob4ob2ob3o2b3ob6o2bob2obobo2bobob2o2b6obo5bo3bo4bo\$2b4ob2obob4obo6b2obo4b2o2b3o2bo7b2ob3o3b2ob3o4b2o2bo3bo2b3o2bo4b2obo2b5obob4obo3bo\$3o5b2o4b2o3bob7ob2obo7bobo5bo6b2obo2bo2b2o4b2o2bo2bob3o3b4ob2ob2o2b5o3bobobo\$bob3ob6obo2b4o3b2o4bo2b2obo3bobo3bobob2o2b4ob2o2bo3bo2bob3ob2o2b4o3bo3bo2b2o4b3obo2bo3bo\$ob5o2bob2o4b2obobobo3bobob2o2b2obo2b5o3b5obo3b6o2b2o2bo2bob4o2b2obo3b3o2bobob7ob6o\$3o4b2ob2obobobo4bob2obo5b4o3bob2ob6obo3b2o3b3o2bobo2bobob2o4bo3bo2bo2b4o2bobobob2o4bo!`

### Re: Challenges

Posted: February 18th, 2017, 11:20 pm
Here are a couple of Conway's Life challenges that came to mind today, while I was trying to sort out possible new patterns for Golly's collection -- especially ones that might be amenable to having LifeViewer waypoint scripts added, to show off lifeviewer.lua.

I put together Life/Miscellaneous/Cambrian-Explosion.rle a decade ago, as a representative sample of the amazing things that had been invented up to 2006. But the pattern kind of gets boring after you run it for a while -- it just keeps expanding and gets awkward to look at.

So -- what about a pattern that goes the other way?

A. What is the largest number of distinct spaceship types that can be crashed together and mutually annihilate each other? Different phases don't count -- no two spaceships in the pattern can have the same apgcode. Bonus points if no proper subset of the spaceships can be removed and still result in an empty universe.

EDIT: Instead of bonus points, maybe that no-proper-subset rule needs to be part of the requirement. Otherwise it's easy to set up an unlimited number of spaceships with different apgcodes to collide in head-on vanish reactions, e.g.,

`x = 209, y = 25, rule = B3/S2381b2o47b2o\$79bo4bo43bo4bo\$b4o80bo41bo76b4o\$6o73bo5bo41bo5bo69b6o\$4ob2o73b6o41b6o69b2ob4o\$4b2o197b2o3\$2bo80b2o43b2o76bo\$79b4ob2o41b2ob4o\$2b3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3o3b5o43b5o3b3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3ob3o\$81b3o45b3o2\$81b3o45b3o\$58b3ob3ob3ob3ob3o3b5o43b5o3b3ob3ob3o\$79b4ob2o41b2ob4o\$83b2o43b2o2\$56b4o85b4o\$55b6o83b6o\$55b4ob2o18b6o41b6o10b2ob4o\$59b2o18bo5bo41bo5bo10b2o\$85bo41bo\$79bo4bo43bo4bo\$81b2o47b2o!`

That might not be good enough to prevent boring solutions, though -- e.g., there might be a way to hit something like a block with an extensible spaceship, and wind up with a block. Probably simpler to allow only one representative of each class of extensible spaceships.

B. Same question as (A), but now only glider-constructible spaceships are allowed. The initial pattern starts out with four glider salvos in the four quadrants of the pattern, but all-but-optionally-one of the gliders has to build a spaceship at some point. And as before, no two of the constructed spaceships can have the same apgcode, and only one member of each class of extensible spaceship is allowed.

For (B) I guess it's not a requirement that all the constructed spaceships have to exist simultaneously at some particular generation of the pattern, though maybe it would be nice if that were an option.

### Re: Challenges

Posted: February 19th, 2017, 12:03 am
dvgrn wrote:I put together Life/Miscellaneous/Cambrian-Explosion.rle a decade ago, as a representative sample of the amazing things that had been invented up to 2006. But the pattern kind of gets boring after you run it for a while -- it just keeps expanding and gets awkward to look at.

So -- what about a pattern that goes the other way?

This is somewhat unrelated, but I think a subpattern like one of these might have a place in that pattern:
`x = 90, y = 103, rule = B3/S2370bobo\$73bo\$69bo3bo\$69bo3bo\$73bo\$70bo2bo\$71b3o6\$64b6o\$63bo6bo\$27bo\$25b3o\$22bobo5b2o\$25b3o3bo\$18bo4b2o2bo2bo29bo12bo\$19b4o2bobobo31b12o\$24b2obob4o\$25bobo5bo\$24bo3bob3o\$16b7o2b4obo27b18o\$15bo7b2o32bo18bo\$25bob2obo\$22bob2obob4o\$25bobo5bo\$22bobo3bob3o\$25b4obo\$12bo10b2o29bo24bo\$13b10o2bob2obo24b24o\$24b2obob4o\$25bobo5bo\$24bo3bob3o\$10b13o2b4obo21b30o\$9bo13b2o26bo30bo\$25bob2obo\$22bob2obob4o\$25bobo5bo\$22bobo3bob3o\$25b4obo\$6bo16b2o23bo36bo\$7b16o2bob2obo18b36o\$24b2obob4o\$25bobo5bo\$24bo3bob3o\$4b19o2b4obo15b42o\$3bo19b2o20bo42bo\$25bob2obo\$22bob2obob4o\$25bobo5bo\$22bobo3bob3o\$25b4obo\$o22b2o20bo42bo\$b22o2bob2obo15b42o\$24b2obob4o\$25bobo5bo\$24bo3bob3o\$4b19o2b4obo18b36o\$3bo19b2o23bo36bo\$25bob2obo\$22bob2obob4o\$25bobo5bo\$22bobo3bob3o\$25b4obo\$6bo16b2o26bo30bo\$7b16o2bob2obo21b30o\$24b2obob4o\$25bobo5bo\$24bo3bob3o\$10b13o2b4obo24b24o\$9bo13b2o29bo24bo\$25bob2obo\$22bob2obob4o\$25bobo5bo\$22bobo3bob3o\$25b4obo\$12bo10b2o32bo18bo\$13b10o2bob2obo27b18o\$24b2obob4o\$25bobo5bo\$24bo3bob3o\$16b7o2b4obo30b12o\$15bo7b2o35bo12bo\$25bob3o\$22bob2obo2bo\$25bobobo\$22bobo3bo\$25b3o\$18bo4b2o38bo6bo\$19b4o2bo38b6o\$24b2o4\$71b3o\$70bo2bo\$73bo\$69bo3bo\$69bo3bo\$73bo\$70bobo!`

The first one only retracts in one dimension, but the second one is clean. Maybe call the whole thing "Permian-Triassic Extinction" or "Great Dying"?

### Re: Challenges

Posted: February 19th, 2017, 1:02 am
dvgrn wrote:
A for awesome wrote:So -- what about a pattern that goes the other way?

This is somewhat unrelated, but I think a subpattern like one of these might have a place in that pattern...
The first one only retracts in one dimension, but the second one is clean. Maybe call the whole thing "Permian-Triassic Extinction" or "Great Dying"?

Huh, maybe something along those lines, yeah. I had thought of "Gnab Gib", a reference to Douglas Adams' _Restaurant at the End of the Universe_, but didn't really like the name enough.

I don't remember that anyone ever published an inverted spacefiller -- a "space-emptier" -- though I suppose it probably wouldn't be too hard to come up with something less trivial than the following, by sticking two back ends of diamond-shaped greyships onto a big patch of agar.

`x = 78, y = 40, rule = B3/S2338bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$39bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$40bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$41bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$38bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$39bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$40bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$41bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$10bobo25bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$10bobo26bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$8bobobobo25bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$8bobobobo26bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$6bobobobobobo21bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$6bobobobobobo22bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$4bobobobobobobobo21bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$4bobobobobobobobo22bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$2bobobobobobobobobobo17bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$2bobobobobobobobobobo18bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$obobobobobobobobobobobo17bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$obobobobobobobobobobobo18bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$obobobobobobobobobobobo15bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$obobobobobobobobobobobo16bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$2bobobobobobobobobobo19bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$2bobobobobobobobobobo20bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$4bobobobobobobobo19bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$4bobobobobobobobo20bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$6bobobobobobo23bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$6bobobobobobo24bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$8bobobobo23bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$8bobobobo24bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$10bobo27bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$10bobo28bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$38bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$39bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$40bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$41bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$38bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$39bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$40bo3bo3bo3bo3bo3bo3bo3bo3bo3bo\$41bo3bo3bo3bo3bo3bo3bo3bo3bo3bo!`

### Re: Challenges

Posted: March 10th, 2017, 1:01 am
[quote="A for awesome"]
1. Who can find the non-totalistic rule with the most speeds exhibited by spaceships with <=10 cells in any phase?/quote]
I can find 4:
`x = 44, y = 11, rule = B2i3-ck/S02-i3-ck3o13bo12b3o10bo\$o14bobo10b2ob2o8bobo\$bo13bobo23bobo\$16bo25bo2\$16bo25bo2\$16bo3\$29b3o!`

5 cell c/4 diagonal, 8 cell 3c/14, 10 cell 6c/29, 7 cell c/6.
Challenge: find the fastest diagonal spaceship possible.
Also the fastest ship in a rule with no survival conditions or b2a

### Re: Challenges

Posted: March 10th, 2017, 10:15 am
toroidalet wrote:Challenge: find the fastest diagonal spaceship possible.

3c/4 diagonal spaceship here. I think this is, in fact, the fastest possible.

### Re: Challenges

Posted: March 12th, 2017, 9:43 pm
A glider-to-c/3-spaceship converter whose RLE fits in a forum posting and so can be run in LifeViewer.

(No fair just writing to Nathaniel and asking him to bump up the maximum number of bytes in a post by 10K.)

### Re: Challenges

Posted: March 23rd, 2017, 3:49 pm
A for awesome wrote:3c/4 diagonal spaceship here. I think this is, in fact, the fastest possible.

I think so as well, and here's why:
First, we look at rules without B0.
A fast spaceship in a rule without B1c will have its leading edge travel orthogonally, forcing a maximum diagonal speed of c/2.
B1c, however, forces lightspeed diagonal expansion in all directions, preventing the existence of spaceships, or interesting non-replicator OFF-background patterns of any kind for that matter.
Therefore, any diagonal ship faster than c/2 must have B0.
By similar reasoning to the non-B0 case, at least one of the even-step rule and the odd-step rule must have B1c but both cannot or all patterns will explode.
Therefore, the fastest possible speed is the fastest speed at which the pattern does not experience B1c in two consecutive cycles.
The leading edge must then alternate between moving orthogonally and diagonally every generation.
This gives two maximum-speed paths for the leading edge, in which the leading edge travels one cell along the path each generation:
`x = 25, y = 12, rule = B3/S23o18bo\$o18bo\$b2o17bo\$3bo16bo\$3bo17bo\$4b2o15bo\$6bo15bo\$6bo15bo\$7b2o14bo\$9bo13bo\$9bo14bo\$10b2o12bo!`

As you can see, the left path corresponds to 3c/4 diagonal, and the right corresponds to (2,1)c/2 as mentioned by A for Awesome below the post he linked.
Therefore, 3c/4 diagonal is the fastest possible diagonal speed, and if (2,1)c/2 is proven infeasible, the fastest possible speed in general.
(EDIT 3-26) Realized that theoretically, you could have any ordering of the two travel directions, giving a speed of (2h+k,h+2k)/(2h+2k) for any integer h,k > 0. This equates to a Euclidean speed of 1 + (h^2+k^2)/(2h+2k)^2, so 3c/4 diagonal is actually the lowest-speed path out of all paths of this type and (2,1)c/2 is the highest. However, as "compound" fast paths are harder to search for and have higher period (>=6, although that may not be considered "high" anymore), I still expect 3c/4 to remain the fastest speed.

### Re: Challenges

Posted: March 29th, 2017, 8:24 am
Easy challenge: Find which ones are hand-made and which ones are ctrl+5 (Hint: there are 2 of each)
`x = 72, y = 48, rule = B/S01234567811bob2ob6o2bobo16b3ob2ob2obo4bo\$14b3obob2ob2obo17bob2obobob3o2bo\$2b2o7bobo2bo2bobo2bobo16bo2b4o5b2obo\$bobo10bo2bob3obo2bo16bobo4bo2b3ob2o7b3o\$o2bo7b4obobob2ob4o18b5o2b3ob2o7bo3bo\$3bo7bobo2bo2bobo2bobo16bo3b2o5bob2o6bo5bo\$3bo7bob6o2bob4o19b2ob4ob2o2bo5bo5bo\$3bo7b2obobobob3ob2o18b2ob6ob3obo11bo\$3bo9b2ob2o3bobob2o16bobo4bo4b3o12bo\$3bo7b3ob2obo2bobo2bo16b2o4b3o2b3obo10bo\$3bo7bobo2b3o2bobob2o16b5obobo2bo3bo9bo\$3bo7b2obo2bob3obobo19bob2obobob5o8bo\$3bo7bobob2obo2bo2b2o17bo2bob5o3bobo7bo\$b5o5bobob2obobobob3o16b3o4b4o3b2o6bo\$11bob4ob3ob3obo16b2ob3o3b2obo8b7o\$11bobobob3obob2obo18b2o4bobo2b3o17\$12bobo3b3o4b2o16b2obobo2b4obobo\$14b2obob3o2b3o17b2o2b2o2b2obob2o\$5o6bo2bo2b4obob2o20b2o2bo2bo3bo5bo5bo\$5bo6b2o2bobo3bo3bo17bob9o8bo5bo\$5bo5b2o3bobo3bo2b2o16bo3b4o6bo5bo5bo\$5bo6b4o2b3obo2b2o18b2o6bo2bo6bo5bo\$5bo6bo2b3o2b7o17b2o2b5ob4o5bo5bo\$5o8b2obob3ob2obo20b2ob5o2b2o5b9o\$5bo6bo2bobob2ob5o17bobo3b2o2bo14bo\$5bo5bo2bobo2bob3o22b2o5b2obo12bo\$5bo5bobobo2bob3obo20bo3b3obob2o12bo\$5bo5bob3ob5o2bo18bob5o2bob2obo11bo\$5bo5b2o2bo5bo2bo18bo4b2ob2ob4o11bo\$5o6b2ob2o2b2o4b3o16bob2o7bob2o11bo\$12bo3b2o2b7o16bo2b2ob4o3bo\$18bo3bobobo17bo4b2o2b3o2bo!`

### Re: Challenges

Posted: March 29th, 2017, 1:11 pm
I guess 1 and 3.

### Re: Challenges

Posted: March 30th, 2017, 3:58 am
_zM wrote:I guess 1 and 3.

50% Right!

### Re: Challenges

Posted: March 30th, 2017, 6:41 am
Saka wrote:Easy challenge: Find which ones are hand-made and which ones are ctrl+5 (Hint: there are 2 of each)
`x = 72, y = 48, rule = B/S01234567811bob2ob6o2bobo16b3ob2ob2obo4bo\$14b3obob2ob2obo17bob2obobob3o2bo\$2b2o7bobo2bo2bobo2bobo16bo2b4o5b2obo\$bobo10bo2bob3obo2bo16bobo4bo2b3ob2o7b3o\$o2bo7b4obobob2ob4o18b5o2b3ob2o7bo3bo\$3bo7bobo2bo2bobo2bobo16bo3b2o5bob2o6bo5bo\$3bo7bob6o2bob4o19b2ob4ob2o2bo5bo5bo\$3bo7b2obobobob3ob2o18b2ob6ob3obo11bo\$3bo9b2ob2o3bobob2o16bobo4bo4b3o12bo\$3bo7b3ob2obo2bobo2bo16b2o4b3o2b3obo10bo\$3bo7bobo2b3o2bobob2o16b5obobo2bo3bo9bo\$3bo7b2obo2bob3obobo19bob2obobob5o8bo\$3bo7bobob2obo2bo2b2o17bo2bob5o3bobo7bo\$b5o5bobob2obobobob3o16b3o4b4o3b2o6bo\$11bob4ob3ob3obo16b2ob3o3b2obo8b7o\$11bobobob3obob2obo18b2o4bobo2b3o17\$12bobo3b3o4b2o16b2obobo2b4obobo\$14b2obob3o2b3o17b2o2b2o2b2obob2o\$5o6bo2bo2b4obob2o20b2o2bo2bo3bo5bo5bo\$5bo6b2o2bobo3bo3bo17bob9o8bo5bo\$5bo5b2o3bobo3bo2b2o16bo3b4o6bo5bo5bo\$5bo6b4o2b3obo2b2o18b2o6bo2bo6bo5bo\$5bo6bo2b3o2b7o17b2o2b5ob4o5bo5bo\$5o8b2obob3ob2obo20b2ob5o2b2o5b9o\$5bo6bo2bobob2ob5o17bobo3b2o2bo14bo\$5bo5bo2bobo2bob3o22b2o5b2obo12bo\$5bo5bobobo2bob3obo20bo3b3obob2o12bo\$5bo5bob3ob5o2bo18bob5o2bob2obo11bo\$5bo5b2o2bo5bo2bo18bo4b2ob2ob4o11bo\$5o6b2ob2o2b2o4b3o16bob2o7bob2o11bo\$12bo3b2o2b7o16bo2b2ob4o3bo\$18bo3bobobo17bo4b2o2b3o2bo!`

I guess 1 and 2 are hand-made.

### Re: Challenges

Posted: March 30th, 2017, 6:50 am
Gamedziner wrote:
Saka wrote:Easy challenge: Find which ones are hand-made and which ones are ctrl+5 (Hint: there are 2 of each)
`x = 72, y = 48, rule = B/S01234567811bob2ob6o2bobo16b3ob2ob2obo4bo\$14b3obob2ob2obo17bob2obobob3o2bo\$2b2o7bobo2bo2bobo2bobo16bo2b4o5b2obo\$bobo10bo2bob3obo2bo16bobo4bo2b3ob2o7b3o\$o2bo7b4obobob2ob4o18b5o2b3ob2o7bo3bo\$3bo7bobo2bo2bobo2bobo16bo3b2o5bob2o6bo5bo\$3bo7bob6o2bob4o19b2ob4ob2o2bo5bo5bo\$3bo7b2obobobob3ob2o18b2ob6ob3obo11bo\$3bo9b2ob2o3bobob2o16bobo4bo4b3o12bo\$3bo7b3ob2obo2bobo2bo16b2o4b3o2b3obo10bo\$3bo7bobo2b3o2bobob2o16b5obobo2bo3bo9bo\$3bo7b2obo2bob3obobo19bob2obobob5o8bo\$3bo7bobob2obo2bo2b2o17bo2bob5o3bobo7bo\$b5o5bobob2obobobob3o16b3o4b4o3b2o6bo\$11bob4ob3ob3obo16b2ob3o3b2obo8b7o\$11bobobob3obob2obo18b2o4bobo2b3o17\$12bobo3b3o4b2o16b2obobo2b4obobo\$14b2obob3o2b3o17b2o2b2o2b2obob2o\$5o6bo2bo2b4obob2o20b2o2bo2bo3bo5bo5bo\$5bo6b2o2bobo3bo3bo17bob9o8bo5bo\$5bo5b2o3bobo3bo2b2o16bo3b4o6bo5bo5bo\$5bo6b4o2b3obo2b2o18b2o6bo2bo6bo5bo\$5bo6bo2b3o2b7o17b2o2b5ob4o5bo5bo\$5o8b2obob3ob2obo20b2ob5o2b2o5b9o\$5bo6bo2bobob2ob5o17bobo3b2o2bo14bo\$5bo5bo2bobo2bob3o22b2o5b2obo12bo\$5bo5bobobo2bob3obo20bo3b3obob2o12bo\$5bo5bob3ob5o2bo18bob5o2bob2obo11bo\$5bo5b2o2bo5bo2bo18bo4b2ob2ob4o11bo\$5o6b2ob2o2b2o4b3o16bob2o7bob2o11bo\$12bo3b2o2b7o16bo2b2ob4o3bo\$18bo3bobobo17bo4b2o2b3o2bo!`

I guess 1 and 2 are hand-made.
50%

### Re: Challenges

Posted: March 30th, 2017, 10:37 am
1 and 4?

### Re: Challenges

Posted: March 30th, 2017, 2:39 pm
_zM wrote:1 and 4?

If not, then necessarily 2 and 3.

### Re: Challenges

Posted: March 30th, 2017, 3:43 pm
Obviously 1 and 3.

### Re: Challenges

Posted: March 30th, 2017, 3:49 pm
drc wrote:Obviously 1 and 3.

### Re: Challenges

Posted: March 30th, 2017, 4:34 pm
This somehow feels similar to Mastermind (a board game)

### Re: Challenges

Posted: March 30th, 2017, 8:04 pm
_zM wrote:1 and 4?

You won! I used 2 different methods to make them:
1. Line by line (For 1)
2. Random clicking (For 4)

### Re: Challenges

Posted: April 1st, 2017, 6:30 am
Seems there indeed is a (2,1)c/2 (compared with c/2 orthogonal and diagonal from the same rule):

`x = 8, y = 25, rule = B012356/S23474b3o\$4bo2bo\$4bo2bo2\$4bo2bo\$4bo2bo\$4b3o4\$5b3o\$5bobo\$4obo\$ob2obobo\$4o3bo4\$4b3o\$4bobo\$7bo\$b2o2bobo\$bo2b2obo\$b2o\$3b3o!`

### Re: Challenges

Posted: April 1st, 2017, 8:09 am
muzik wrote:Seems there indeed is a (2,1)c/2 (compared with c/2 orthogonal and diagonal from the same rule):

`x = 8, y = 25, rule = B012356/S23474b3o\$4bo2bo\$4bo2bo2\$4bo2bo\$4bo2bo\$4b3o4\$5b3o\$5bobo\$4obo\$ob2obobo\$4o3bo4\$4b3o\$4bobo\$7bo\$b2o2bobo\$bo2b2obo\$b2o\$3b3o!`

That's actually (2,1)c/4.

### Re: Challenges

Posted: April 14th, 2017, 12:23 pm
Find a Polythlonia rule, which is a rule that allows all (or most) polythlons, one of which is the pentadecathlon.
Find a Beconia rule, same as above except with beacons. except the beacon blocks get bigger.
Find a Toadia rule, same as above but they get longer instead of just bigger in general. I have examples for this one:
`x = 2, y = 3, rule = B3/S2e3bo\$2o\$o!`

`x = 2, y = 4, rule = B3/S23bo\$2o\$2o\$o!`

`x = 2, y = 5, rule = B34-air/S34-aibo\$2o\$2o\$2o\$o!`
`x = 1, y = 5, rule = B3-a/S1258o\$o\$o\$o\$o!`
`x = 1, y = 3, rule = B3/S23o\$o\$o!`