gameoflifemaniac wrote:What's the definition of trivial?
x = 81, y = 96, rule = LifeHistory
58.2A$58.2A3$59.2A17.2A$59.2A17.2A3$79.2A$79.2A2$57.A$56.A$56.3A4$27.
A$27.A.A$27.2A21$3.2A$3.2A2.2A$7.2A18$7.2A$7.2A2.2A$11.2A11$2A$2A2.2A
$4.2A18$4.2A$4.2A2.2A$8.2A!
A for awesome wrote:Anyone have any idea how to find real-valued solutions f(r) to the equation f(f(r)) = x^r for given real x and a real variable r?
Macbi wrote:A for awesome wrote:Anyone have any idea how to find real-valued solutions f(r) to the equation f(f(r)) = x^r for given real x and a real variable r?
x^(r/2)?
A for awesome wrote:Anyone have any idea how to find (EDIT for clarification: or at least approximate) real-valued solutions f(r) to the equation f(f(r)) = x^r for given real x and a real variable r?
x = 17, y = 10, rule = B3/S23
b2ob2obo5b2o$11b4obo$2bob3o2bo2b3o$bo3b2o4b2o$o2bo2bob2o3b4o$bob2obo5b
o2b2o$2b2o4bobo2b3o$bo3b5ob2obobo$2bo5bob2o$4bob2o2bobobo!
Macbi wrote:A for awesome wrote:Anyone have any idea how to find real-valued solutions f(r) to the equation f(f(r)) = x^r for given real x and a real variable r?
x^(r/2)?
Bullet51 wrote:Macbi wrote:A for awesome wrote:Anyone have any idea how to find real-valued solutions f(r) to the equation f(f(r)) = x^r for given real x and a real variable r?
x^(r/2)?
x^sqrt(r) may work for positive r:
f(x)=x^sqrt(r)
f(f(x))=(x^sqrt(r))^sqrt(r)=x^(sqrt(r)*sqrt(r))=x^r
muzik wrote:Also, are there any other numbers where n, n+2, n+6, n+8, n+90, n+92, 9+96 and n+98 are all prime (or as I call them, twin prime-quadruplets)?
The only numbers I can find where this works are 11 and 101.
muzik wrote:Also, are there any other numbers where n, n+2, n+6, n+8, n+90, n+92, 9+96 and n+98 are all prime (or as I call them, twin prime-quadruplets)?
The only numbers I can find where this works are 11 and 101.
muzik wrote:Nothing came of the OEIS, but punching "11 101 15641" in Google including the quotation marks led to a German paper which seems to give multiple more numbers which look like they might fit this sequence.
11, 101, 15641, 3512981, 6655541, 20769311, 26919791, 41487071, 71541641, 160471601, 189425981
x = 80, y = 74, rule = B3ai4a/S3ai4a5ai6ac7c8
62b9ob2o$59b3o12bo$58bo16b2o$56b2o19bo$54b2o22bo$53bo24bo$52bo26bo$51b
o27bo$50bo28bo$49bo29bo$23b13o12bo30bo$19b4o12b3o9bo31bo$17b2o19bo7bo
32bo$16bo22bo6bo32bo$13b3o24bo4bo33bo$13bo27bo3bo33bo$11b2o28bo2bo34bo
$9b2o31b2o35bo$8bo33b2o35bo$8bo33b2o35bo$7bo33bo2bo33bo$6bo34bo3bo32bo
$5bo34bo5bo31bo$5bo34bo6bo29bo$4bo34bo7bo29bo$3bo35bo8bo27bo$2bo35bo
10bo25bo$bo36bo10bo24bo$bo35bo12bo23bo$o36bo13bo21bo$o36bo13bo20bo$o
35bo15bo18bo$o35bo15bo17bo$o34bo17bo15bo$o34bo17bo14bo$o33bo19bo11b2o$
o33bo19bo9b2o$bo31bo21bo5b3o$bo31bo22bob3o$b2o29bo21b4o$2bo29bo17b4o3b
o$3bo28bo14b3o7bo$4b3o25bo7b7o10bo$7bo23bob7o17bo$8b25o24bo$31bo25bo$
30bo27bo$30bo27bo$29bo28bo$29bo28bo$28bo29bo$28bo29bo$28bo29bo$28bo29b
o$28bo29bo$28bo29bo$28bo29bo$28bo29bo$28bo29bo$28bo29bo$28bo28bo$28bo
28bo$28bo27bo$28bo26bo$28bo24b2o$28bo23bo$28bo22bo$29bo20bo$29bo19bo$
29bo17b2o$29bo16bo$30bo13b2o$30bo11b2o$31b11o!
x = 115, y = 123, rule = B3ai4a/S3ai4a5ai6ac7c8
39b11o$35b4o11b2o$32b3o16b2o22b12o$29b3o21bo11b11o10b5o$27b2o25b2o7b2o
25b3o$26bo28bo4b3o29b2o$23b3o30bo2bo33b3o$22bo33bobo36b2o$21bo34b2o38b
2o$19b2o33b5o38b2o$17b3o33b2o2bobo38b2o$16bo36bo3b2obo38bo$15bo36bo7bo
38bo$14bo36bo9bo37bo$13bo37bo9bo37bo$12bo37bo10bo37bo$11bo37bo12bo36bo
$10b2o36bo13bo36bo$10bo37bo14bo35bo$9bo38bo14bo35bo$9bo38bo14bo35bo$9b
o37bo15bo35bo$9b2o36bo16bo34bo$10bo35bo17bo34bo$10bo35bo17bo34bo$10bo
35bo17bo34bo$10bo34bo18bo33b2o$10bo34bo18bo33bo$10b2o15b45o26bo$11bo
12b3o18bo19bo6b10o15bo$11bo10b2o21bo19bo16b3o11bo$12bo7b2o22bo20bo19bo
3bo5b2o$13bo5b2o23bo20bo20b2o2b3o2bo$14b2o2b2o24bo20bo21bo5b3o$16b2o
26bo21bo20bo5b5o$17b2o24bo22bo20b2o4bo3b3o$16bobo24bo22bo21bo3b2o5b2o$
15bo3bo23bo23bo20bo2bo8b2o$14b2o4bo22bo23bo19bo2b2o10bo$14bo6bo20bo24b
o19bo2bo12bo$13b2o7bo19bo24bo18bo2bo13b2o$13bo9b2o16bo26bo16bo2b2o14bo
$12bo12bo15bo26bo15b2o2bo16bo$11b2o13bo14bo26bo14bo3b2o17b2o$10b2o15bo
13bo27bo11b2o3b2o19b2o$10bo17bo11bo28bo10bo4bo22b2o$9bo19bo10bo28bo9bo
4bo24b2o$8b2o20bo9bo29bo8bo30bo$8bo22bo8bo29bo6b2o31b2o$7bo24bo7bo29bo
5bo34bo$6bo26b2o4bo31bo3bo35bo$6bo28bo3bo31bob2o36bo$5bo30bobo32bobo
37b2o$4bo31bobo33bo39bo$4bo32b2o32b2o39bo$3bo33bobo31b2o39bo$3bo33bo2b
o29bobo39bo$2bo34bo3bo27bo3bo39bo$2bo34bo4bo25bo4bo39bo$2bo34bo5bo23bo
5bo39bo$bo35bo6bo22bo5bo40bo$bo34bo8bo20bo6bo40bo$bo34bo9bo19bo7bo39bo
$bo34bo10bo17bo8bo39bo$bo34bo11bo16bo9bo38bo$o34bo13bo14bo10bo38bo$o
34bo14bo12bo11bo38bo$o34bo14bo12bo11bo38bo$o34bo15b2o10bo11bo38bo$o33b
o18bo8bo12bo38bo$o33bo19bo6bo13bo38bo$o33bo20bo4bo14bo38bo$o33bo21bo3b
o14bo38bo$o33bo22b3o15bo38bo$o33bo23b2o15bo38bo$o33bo22bobo15bo37bo$o
33bo21bo3b2o13bo36b2o$o33bo20bo6bo12bo36bo$o33b2o18bo8b2o10bo35bo$o33b
2o17b2o10b3o7bo35bo$o34bo15b2o14b9o34bo$o35bo12b2o17b2o6bo32bo$o35b2o
9b2o21b2o4bo30b2o$o36b2o5b3o24b3o3bo27b2o$o35bo2b5o30b5o24b2o$o35bo4bo
35b5o14b7o$bo34bo2b2o37bo3b15o$bo35b2o39bo$bo31b5o40bo$2bo28b2o4bo41bo
$2bo26b3o5b2o40bo$2bo22b4o9bo41bo$3bo17b5o12bo41bo$3b2o16bo16bo42bo$4b
2o14bo18bo41bo$6b2o9b3o19bo41b2o$8b10o21bo42bo$39bo42bo$39bo42bo$39bo
42bo$39bo42bo$39b2o41bo$40bo41bo$40bo41bo$40bo41bo$40bo41bo$41bo40bo$
41bo40bo$42bo39bo$42bo39bo$43bo37b2o$43bo37bo$44bo36bo$44bo35bo$45bo
34bo$45bo34bo$46bo32b2o$46bo32bo$47bo30b2o$47b2o28b2o$48b2o24b4o$50b2o
15b8o$52b15o!
muzik wrote:Are there any more well known names for this shape (aside from "fidget spinner" or "that one weird shape you always find drawn in old textbooks")?
x = 11, y = 5, rule = B2ck3-ij5n78/S01e2ei3-k5ai
8b2o$2o3b2o$bo4bo3bo$2bo2b2o$o7bo!
x = 81, y = 96, rule = LifeHistory
58.2A$58.2A3$59.2A17.2A$59.2A17.2A3$79.2A$79.2A2$57.A$56.A$56.3A4$27.
A$27.A.A$27.2A21$3.2A$3.2A2.2A$7.2A18$7.2A$7.2A2.2A$11.2A11$2A$2A2.2A
$4.2A18$4.2A$4.2A2.2A$8.2A!
muzik wrote:Is 11 truly the only number where n, n+2, n+6, n+8, n+90, n+92, 9+96, n+98, n+180, n+182, n+186 and n+188 are all prime? If there are any more such numbers out there I will be surprised.
muzik wrote:Is 11 truly the only number where n, n+2, n+6, n+8, n+90, n+92, 9+96, n+98, n+180, n+182, n+186 and n+188 are all prime? If there are any more such numbers out there I will be surprised.
Users browsing this forum: No registered users and 2 guests