ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

"One-way travel" oscillators?

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

"One-way travel" oscillators?

Postby Extrementhusiast » June 2nd, 2016, 3:09 pm

Suppose one has a hypothetical agent, able to move at any speed (even faster than c), which travels orthogonally on the dead squares of a Life grid, and dies if any live cells are born on top of it. (This is intended for another game, in which the player controls said agent via the mouse.) Are there any oscillators in which the agent can travel through the rotor in one direction but not the other? (The agent is supposed to enter through one part of the stator, and exit through another part, but parts of the stator can be blocked off, subject to Life limitations, of course.)

I do know that any such oscillators must operate somewhat like a wave pool, with an advancing wall of live cells. When that wall dies, there must be another wall behind it, and there cannot be any holes in the wall, or safe spaces to hide if the next wall has not yet fully formed.

I haven't yet found any examples (even when looking through jslife, Sokwe's jslife-osc-supplement, and the Oscillator Discoveries thread), but I have found a few near misses that should help illustrate my point:
x = 61, y = 11, rule = LifeHistory
3.2E26.E20.2E$.E2.E2.E22.E.E19.E$.2E.E.E.E20.E.E.E15.2E.E.A2B.2E$2.B.
E.E.E17.E2.E.B.E15.E2.E.E3BE.E$2.2BA.E.2E15.E.E.EA.AE.2E13.2E.E.ABD2.
E$2E.E.A2B18.2E.E.B.E.2E16.E.BA3E$.E.E.E.B20.3BA.E19.E.E.E$.E.E.E.2E
19.B.BE.E20.2E$2.E2.E2.E18.2E.E2.2E21.4E$5.2E18.E2.E.E.E23.E2.E$25.2E
4.2E!

The wall in the first oscillator doesn't go far enough out before reforming, so no travel in either direction (center to sides or vice versa) is possible. In the second oscillator, the wall is broken in one phase, and the agent can pass right through that gap. In the third oscillator, the wall remains intact, but the agent can still get through from top to bottom by waiting at the location of the red cell, and then continuing once the wall has passed.

As for what periods to search, P3 through P6 seems like the sweet spot, with an emphasis on P4. However, another, higher-period option is possible using signal terminations, which are stable at rest; thus, only the times around the signals' arrivals are crucial, as the stable walls do the rest of the work.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1638
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: "One-way travel" oscillators?

Postby dvgrn » June 2nd, 2016, 3:52 pm

Extrementhusiast wrote:Suppose one has a hypothetical agent, able to move at any speed (even faster than c), which travels orthogonally on the dead squares of a Life grid, and dies if any live cells are born on top of it. (This is intended for another game, in which the player controls said agent via the mouse.) Are there any oscillators in which the agent can travel through the rotor in one direction but not the other? (The agent is supposed to enter through one part of the stator, and exit through another part, but parts of the stator can be blocked off, subject to Life limitations, of course.)

Clarification: this agent can move along a path of rookwise-connected empty cells of any length, between one tick and the next -- right? The path doesn't have to be a straight line, it just can't be diagonal?

My first thought would be to try to engineer a very-high-period solution to this, but it's not easy. Maybe start with a series of three "walls", with two "rooms" between the walls, and open and close gaps in the walls in order from one side to the other. The tough part is burning something-or-other to sterilize the appropriate room, first one and then the other, when the gaps are closed -- turn on every cell in the area, somehow, without leaving any space to dodge.

That's probably not completely impossible, if you're willing to trigger some kind of fuse to a structure in the room -- a small region of block agar or some such -- that then gets completely rebuilt before the next cycle. It will be hard to avoid burning down Room #2 while sterilizing Room #1, but it might be solvable somehow.

I think if I really had to solve this one, I'd write some kind of brute-force Permeability Analysis utility, run it on every oscillator above P2 in Koenig's Object Database, and just hope that something will turn up that randomly happens to fit the criteria.

If I were an agent, I'd want to just go around the whole oscillator, of course...
dvgrn
Moderator
 
Posts: 3874
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: "One-way travel" oscillators?

Postby Extrementhusiast » June 3rd, 2016, 9:42 pm

The best I've come up with so far is this unfinished example in two variants:
x = 41, y = 23, rule = B3/S23
6bo$5bo$5b3o$3bo$4bo$2b3o$7bo20bobo$6bo17bo3b2o$6b3o16b2o2bo6b2o$24b2o
11bo$37bob2o$o8b2o23b2obo2bo$b2o7bo24bob2o$2o5b3o22b3o2bo$7bo16bo7bo4b
o$7bob3o12b2o6bob3o$5bobobo2bo10bobo4bobobo$5b2o4b2o17b2o$27bo$27b5o$
31bo$29bo$29b2o!

(Obviously, the final oscillator would not be stabilized with gliders.)
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1638
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: "One-way travel" oscillators?

Postby Kiran » November 8th, 2016, 8:39 pm

Something like this (for 2c particles)?
x = 53, y = 27, rule = B3/S23
31bo$26b4o3bo$29bo3bo$33bo$30bo$31b2o7$21bo$19bo3b4o$19bo3bo$19bo$22bo
$20b2o$26bo$25bobo$26bo$2b2o2b2o2b2o2b2o2b2o2b2o5b2o2b2o2b2o2b2o2b2o2b
2o$2b2o2b2o2b2o2b2o2b2o2b2o5b2o2b2o2b2o2b2o2b2o2b2o3$2o2b2o2b2o2b2o2b
2o2b2o2b2ob2o2b2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b2ob2o2b
2o2b2o2b2o2b2o2b2o2b2o!

I am not sure if this particular pattern works.
Kiran Linsuain
User avatar
Kiran
 
Posts: 284
Joined: March 4th, 2015, 6:48 pm

Re: "One-way travel" oscillators?

Postby Extrementhusiast » November 8th, 2016, 9:57 pm

Kiran wrote:Something like this (for 2c particles)?
RLE

...No, not at all like that. It'd be more like this:
x = 17, y = 30, rule = LifeHistory
.F$F.F$3F$F.F$F.F7.C$9.C.C$4.F5.C$5.F$6.F.5C$9.C3.C$7.C4.2C$5.4C4.C.
2C$4.C4.B.A.C2.C$4.C2.2C3BC.2C$3.2C.C.A2B.C$4.C.CABDC.C$2.C2.C2.CD2CD
2C$2.2C.C.2C4DC$5.C2.CD2CDC$5.2C2.C.2C2$8.F$9.F$10.F2$12.2F$12.F.F$
12.2F$12.F.F$12.2F!

If the red region were somehow inaccessible, then the agent would not be able to get from A to B without going around, but would still be able to get from B to A going through the oscillator.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1638
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: "One-way travel" oscillators?

Postby A for awesome » November 8th, 2016, 10:23 pm

Would this be an example:
x = 5, y = 4, rule = B2c3e4t5j/S012ae3-y4a
2bo$o3bo$5o!

I know it's not in Life, but just to be sure I have the idea right...
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce
User avatar
A for awesome
 
Posts: 1354
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

Re: "One-way travel" oscillators?

Postby Extrementhusiast » November 8th, 2016, 11:09 pm

A for awesome wrote:Would this be an example:
x = 5, y = 4, rule = B2c3e4t5j/S012ae3-y4a
2bo$o3bo$5o!

I know it's not in Life, but just to be sure I have the idea right...

Yes, you have the idea right.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1638
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: "One-way travel" oscillators?

Postby Scorbie » November 11th, 2016, 2:12 am

I see this is quite hard, as no blank cells should be on the path...
Edit: I was looking at this, which is a near miss because of a single cell in the middle:
x = 40, y = 24, rule = B3/S23
3$20b2o2b2o$20b2o2b2o2$18bo8bo$17bo10bo$17bo10bo$15b2ob10ob2o$14bo2b3o
6b3o2bo$15b2o12b2o2$13b4o12b4o$13bo2bo12bo2bo$16bo12bo$11b4obo12bob4ob
2o$11bo2b2o14b2o2bobo$12bo2b2o12b2o2bo2bo$9b3o3bo14bo3b2o$9bo!


@EE BTW, if you are designing a game, I don't think we could make many levels with this restriction. Is that okay?
Best wishes to you, Scorbie
User avatar
Scorbie
 
Posts: 1322
Joined: December 7th, 2013, 1:05 am

Re: "One-way travel" oscillators?

Postby Extrementhusiast » November 12th, 2016, 3:09 am

Scorbie wrote:@EE BTW, if you are designing a game, I don't think we could make many levels with this restriction. Is that okay?

Yes, as it's only going to be part of one giant level.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1638
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: "One-way travel" oscillators?

Postby drc » November 12th, 2016, 5:44 pm

Would this be another example of one way travel (not life though):
x = 2, y = 5, rule = B2ei3-ak4i/S23-k4ei6
2o$bo$2o$bo$2o!
This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.)

B2-ac3i4a/S12
User avatar
drc
 
Posts: 1594
Joined: December 3rd, 2015, 4:11 pm
Location: creating useless things in OCA

Re: "One-way travel" oscillators?

Postby Extrementhusiast » March 12th, 2017, 5:55 pm

drc wrote:Would this be another example of one way travel (not life though):
x = 2, y = 5, rule = B2ei3-ak4i/S23-k4ei6
2o$bo$2o$bo$2o!

No, that's essentially equivalent to a wall. Remember, the agent is traveling along the empty cells!

A horribly large (too large to be usable) but working example in Life:
x = 677, y = 731, rule = B3/S23
38bo$36b3o$35bo$35b2o$49bo$47b3o$46bo$46b2o$52b2o$52bo$50bobo$50b2o5$
21b2o$20bobo$20bo$19b2o11b3o$31bo2bo$31b2o2bo$34b2o5$25b2o$24bobo$24bo
$23b2o9$43bo$41bobo$42b2o15$48b2o$48b2o2$19bo$17b3o$16bo$16b2o$30bo$
28b3o$27bo$27b2o4b2o$33b2o4$20b2o$19bobo$19bo$19b2obo$2b2o17b2o$bobo$b
o51b2o$2o51bo$54b3o$56bo$40bo39bo$41bo39b2o$39b3o38b2o2$36b2o51bo$6b2o
27bobo49bobo$5bobo27bo15b2o35b2o$5bo28b2o15b2o$4b2o$10b2o$11bo$8b3o$8b
o3$45bo5bo$44b3o3b3o$43b2obo3bob2o3$46bo3bo$46bo3bo10$46b2ob2o$47bobo$
47bobo$48bo12$126bo$127b2o$119b2o5b2o$119b2o$135bo$90bo42bobo$88b3o43b
2o$87bo$87b2o$101bo$99b3o$98bo$98b2o4b2o$104b2o4$91b2o$90bobo$90bo$90b
2obo$73b2o17b2o$72bobo$72bo51b2o$71b2o51bo$125b3o$127bo$111bo39bo$112b
o39b2o$110b3o38b2o2$107b2o$77b2o27bobo$76bobo27bo15b2o$76bo28b2o15b2o$
75b2o$81b2o$82bo$79b3o$79bo3$116bo5bo$115b3o3b3o$114b2obo3bob2o2$172bo
$117bo3bo51b2o$117bo3bo50b2o2$181bo$179bobo$180b2o6$117b2ob2o$118bobo$
118bobo$119bo12$187b2o8bo$187b2o9b2o$197b2o$158bo$156b3o$155bo$155b2o$
169bo$167b3o$166bo$166b2o4b2o$172b2o4$159b2o$158bobo$158bo$158b2obo$
141b2o17b2o56bo$140bobo76b2o$140bo51b2o24b2o$139b2o51bo$193b3o31bo$
195bo29bobo$179bo39bo6b2o$180bo39b2o$178b3o38b2o2$175b2o$145b2o27bobo$
144bobo27bo15b2o$144bo28b2o15b2o$143b2o$149b2o$150bo$147b3o$147bo3$
184bo5bo$183b3o3b3o$182b2obo3bob2o3$185bo3bo$185bo3bo53bo$244b2o$243b
2o8$185b2ob2o$186bobo$186bobo$187bo6$264bo$265b2o$264b2o2$273bo$271bob
o$265bo6b2o$266b2o$256b2o7b2o$256b2o2$227bo$225b3o$224bo$224b2o$238bo$
236b3o$235bo$235b2o4b2o$241b2o4$228b2o$227bobo$227bo$227b2obo$210b2o
17b2o58bo$209bobo78b2o$209bo51b2o26b2o$208b2o51bo$262b3o$264bo$248bo
39bo$249bo39b2o$247b3o38b2o2$244b2o$214b2o27bobo$213bobo27bo15b2o$213b
o28b2o15b2o$212b2o$218b2o$219bo$216b3o$216bo$310bo$311b2o$253bo5bo50b
2o$252b3o3b3o$251b2obo3bob2o57bo$317bobo$311bo6b2o$254bo3bo53b2o$254bo
3bo52b2o10$254b2ob2o$255bobo$255bobo$256bo6$335bo88bo$336b2o84b3o$335b
2o84bo$421b2o$435bo$433b3o$334bo97bo$335b2o95b2o$334b2o102b2o$438bo$
436bobo$436b2o5$407b2o$406bobo$406bo$356bo48b2o12bo$357b2o59b3o$356b2o
55b2o2b2o2bo$420b2o$344b2o19bo$344b2o17bobo$357bo6b2o$315bo42b2o$313b
3o41b2o52b2o$312bo97bobo$312b2o96bo246bo$326bo82b2o246b3o$324b3o333bo$
323bo335b2o$323b2o4b2o81b2o232bo$329b2o81b2o20bo211b3o$432b3o214bo$
431bo216b2o$431b2o209b2o$316b2o325bo$315bobo109bobo213bobo$315bo112b2o
214b2o$315b2obo109bo$298b2o17b2o$297bobo$297bo51b2o92b3o$296b2o51bo93b
o3bo225b2o$350b3o28bo61bo4bo9bo214bobo$352bo29b2o60bo3bo9b3o201bo12bo$
336bo39bo4b2o19b2o57bo199b3o11b2o$337bo39b2o23b2o40bo3bo9b3o199b2o2bo$
335b3o38b2o65bo4bo9bo201bob3o$433b2o8bo3bo212b2o$332b2o46bo52b2o8b3o$
302b2o27bobo47b2o40b2o$301bobo27bo15b2o31b2o41bobo$301bo28b2o15b2o76bo
$300b2o123b2o242b2o$306b2o361bobo$307bo363bo$304b3o364b2o$304bo3$341bo
5bo$340b3o3b3o$339b2obo3bob2o52bo$403b2o$402b2o$342bo3bo306bo$342bo3bo
64bo239b2o$409bobo240b2o$403bo6b2o$404b2o$403b2o6$342b2ob2o81bo$343bob
o83bo$343bobo81b3o$344bo8$411b2o$411b2o$427bo$382bo45b2o$380b3o39bo4b
2o$379bo43b2o$379b2o41b2o$393bo$391b3o32bo$390bo36b2o$390b2o4b2o28b2o$
396b2o4$383b2o$381b2ob2o$381bo2b2o$381bo3bo$365b2o15b2obo234b2o$364bob
o17bo235b2o$364bo51b2o30bo$363b2o51bo32b2o199bo$417b3o28b2o200b3o$419b
o187bo45bo$457bo147b2o45b2o$404bo38bobo9bobo148b2o31bo$402bobo39b2o3bo
6b2o181b3o$403b2o39bo5b2o190bo$399b2o48b2o184b2o4b2o$369b2o27bobo234b
2o$368bobo27bo15b2o$368bo28b2o15b2o$367b2o$373b2o273b2o$374bo99bo173bo
bo$371b3o101bo172bob2o$371bo101b3o171bob2o$647b3o16b2o$408bo5bo251bobo
$407b3o3b3o199b2o51bo$406bo2b2ob2o2bo199bo51b2o$406b3o5b3o196b3o$613bo
$588bo$587bo40bobo$587b3o38b2o$629bo$473bo158b2o$474b2o156bobo27b2o$
468bo4b2o142b2o15bo27bobo$469b2o146b2o15b2o28bo$468b2o194b2o$658b2o$
472bo185bo$473b2o184b3o$409b2ob2o58b2o187bo$410bobo$410bobo$411bo205b
3o3b3o$616bo2bo3bo2bo$616b2obo3bob2o6$494bo$495b2o$494b2o$561bo$503bo
55b2o$489bobo9bobo56b2o$490b2o3bo6b2o$490bo5b2o$495b2o122b2ob2o$620bob
o$620bobo$621bo3$520bo$521bo$519b3o7$542bo$541bo$541b3o2$519bo$520b2o$
514bo4b2o$515b2o$514b2o2$518bo20b2o$519b2o17bobo$518b2o18bo$525b2o10b
2o$524bobo$526bo8b6o$535bo4bo$532b2obobobo$532bo2bob2o$533b2obo$536bo$
536b2o12$516b2o$517b2o$516bo15$493b2o$494b2o$493bo7$479b2o$478bobo$
480bo12$401bo$400bobo$400bobo$399b2ob2o3$470b2o$471b2o$470bo5$399b2ob
2o$398bo5bo2$397bo7bo$397bo2bobo2bo$397b3o3b3o4$361bo$361b3o83b2o$364b
o83b2o$363b2o82bo$357b2o$358bo28b2o15b2o$358bobo27bo15b2o$359b2o27bobo
$389b2o2$392b2o39b2o$393b2o37bobo$392bo41bo$409bo$407b3o$353b2o51bo$
354bo51b2o$354bobo$355b2o17b2o$373bobo$372b2o$373b2o$374bo3$374bo$374b
o11b2o$380b2o4b2o$380bo$381b3o$383bo40b2o$369b2o54b2o$369bo54bo$370b3o
$372bo2$401b2o$401b2o10$401b2o$402b2o$401bo7$421b2o$421bo$419bobo$419b
2o18b2o$429b2o7bobo$429b2o6b2obo$438b2o14bo$398b2o39bo14b3o$398b2o57bo
$439bo14b3o$438b2o14bo$437b2obo$438bobo$439b2o2$424b3o$426bo$425bo2$
427b2o$427bo$428b3o$408b2o20bo$408b2o3$405b2o$324bo81bo$324b3o79bobo$
327bo79b2o$326b2o$320b2o$321bo$321bobo$322b2o90b4o$413b3o2bo$413bo3bo$
355b2o44b2o11bo2bo$356b2o44bo11b3o$355bo46bobo$403b2o2$316b2o$317bo$
317bobo$318b2o17b2o93b2o$336bobo93bobo$335b2o97bo$336b2o96b2o$337bo90b
2o$428bo$429b3o$337bo93bo$337bo79b2o$343b2o72bo$343bo74b3o$344b3o73bo$
346bo$332b2o$332bo$333b3o$335bo!

The agent can exit the cavity of the fancy still life, but cannot enter it again from the outside. This is because there is a continuously advancing solid wall of cells. With no places to hide and let the wall bypass, an entering agent is forced back. By the time the wall breaks (to allow the agent out), the next wall is already fully formed. (If this explanation doesn't help, think of the giant rolling boulder from Indiana Jones, except that there's many of them dropping in periodically.)

As for how to find much smaller examples, I don't have any advice except to search for large, otherwise-useless oscillators, and see if there is a part that fulfills these conditions. (If there is, then we can just work on improving that oscillator.) Alternatively, we could look for signal fizzles with dr or similar programs.
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1638
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: "One-way travel" oscillators?

Postby itaibn » March 20th, 2017, 10:56 pm

Here's a version of Extremeenthusiast's one-way transporter with a bigger cavity:

x = 677, y = 731, rule = B3/S23
38bo$36b3o$35bo$35b2o$49bo$47b3o$46bo$46b2o$52b2o$52bo$50bobo$50b2o5$
21b2o$20bobo$20bo$19b2o11b3o$31bo2bo$31b2o2bo$34b2o5$25b2o$24bobo$24bo
$23b2o9$43bo$41bobo$42b2o15$48b2o$48b2o2$19bo$17b3o$16bo$16b2o$30bo$
28b3o$27bo$27b2o4b2o$33b2o4$20b2o$19bobo$19bo$19b2obo$2b2o17b2o$bobo$b
o51b2o$2o51bo$54b3o$56bo$40bo39bo$41bo39b2o$39b3o38b2o2$36b2o51bo$6b2o
27bobo49bobo$5bobo27bo15b2o35b2o$5bo28b2o15b2o$4b2o$10b2o$11bo$8b3o$8b
o3$45bo5bo$44b3o3b3o$43b2obo3bob2o3$46bo3bo$46bo3bo10$46b2ob2o$47bobo$
47bobo$48bo12$126bo$127b2o$119b2o5b2o$119b2o$135bo$90bo42bobo$88b3o43b
2o$87bo$87b2o$101bo$99b3o$98bo$98b2o4b2o$104b2o4$91b2o$90bobo$90bo$90b
2obo$73b2o17b2o$72bobo$72bo51b2o$71b2o51bo$125b3o$127bo$111bo39bo$112b
o39b2o$110b3o38b2o2$107b2o$77b2o27bobo$76bobo27bo15b2o$76bo28b2o15b2o$
75b2o$81b2o$82bo$79b3o$79bo3$116bo5bo$115b3o3b3o$114b2obo3bob2o2$172bo
$117bo3bo51b2o$117bo3bo50b2o2$181bo$179bobo$180b2o6$117b2ob2o$118bobo$
118bobo$119bo12$187b2o8bo$187b2o9b2o$197b2o$158bo$156b3o$155bo$155b2o$
169bo$167b3o$166bo$166b2o4b2o$172b2o4$159b2o$158bobo$158bo$158b2obo$
141b2o17b2o56bo$140bobo76b2o$140bo51b2o24b2o$139b2o51bo$193b3o31bo$
195bo29bobo$179bo39bo6b2o$180bo39b2o$178b3o38b2o2$175b2o$145b2o27bobo$
144bobo27bo15b2o$144bo28b2o15b2o$143b2o$149b2o$150bo$147b3o$147bo3$
184bo5bo$183b3o3b3o$182b2obo3bob2o3$185bo3bo$185bo3bo53bo$244b2o$243b
2o8$185b2ob2o$186bobo$186bobo$187bo6$264bo$265b2o$264b2o2$273bo$271bob
o$265bo6b2o$266b2o$256b2o7b2o$256b2o2$227bo$225b3o$224bo$224b2o$238bo$
236b3o$235bo$235b2o4b2o$241b2o4$228b2o$227bobo$227bo$227b2obo$210b2o
17b2o58bo$209bobo78b2o$209bo51b2o26b2o$208b2o51bo$262b3o$264bo$248bo
39bo$249bo39b2o$247b3o38b2o2$244b2o$214b2o27bobo$213bobo27bo15b2o$213b
o28b2o15b2o$212b2o$218b2o$219bo$216b3o$216bo$310bo$311b2o$253bo5bo50b
2o$252b3o3b3o$251b2obo3bob2o57bo$317bobo$311bo6b2o$254bo3bo53b2o$254bo
3bo52b2o10$254b2ob2o$255bobo$255bobo$256bo6$335bo88bo$336b2o84b3o$335b
2o84bo$421b2o$435bo$433b3o$334bo97bo$335b2o95b2o$334b2o102b2o$438bo$
436bobo$436b2o5$407b2o$406bobo$406bo$356bo48b2o12bo$357b2o59b3o$356b2o
55b2o2b2o2bo$420b2o$344b2o19bo$344b2o17bobo$357bo6b2o$315bo42b2o$313b
3o41b2o52b2o$312bo97bobo$312b2o96bo246bo$326bo82b2o246b3o$324b3o333bo$
323bo335b2o$323b2o4b2o81b2o232bo$329b2o81b2o20bo211b3o$432b3o214bo$
431bo216b2o$431b2o209b2o$316b2o325bo$315bobo109bobo213bobo$315bo112b2o
214b2o$315b2obo109bo$298b2o17b2o$297bobo$297bo51b2o92b3o$296b2o51bo93b
o3bo225b2o$350b3o28bo61bo4bo9bo214bobo$352bo29b2o60bo3bo9b3o201bo12bo$
336bo39bo4b2o19b2o57bo199b3o11b2o$337bo39b2o23b2o40bo3bo9b3o199b2o2bo$
335b3o38b2o65bo4bo9bo201bob3o$433b2o8bo3bo212b2o$332b2o46bo52b2o8b3o$
302b2o27bobo47b2o40b2o$301bobo27bo15b2o31b2o41bobo$301bo28b2o15b2o76bo
$300b2o123b2o242b2o$306b2o361bobo$307bo363bo$304b3o364b2o$304bo3$341bo
5bo$340b3o3b3o$339b2obo3bob2o52bo$403b2o$402b2o$342bo3bo306bo$342bo3bo
64bo239b2o$409bobo240b2o$403bo6b2o$404b2o$403b2o6$342b2ob2o81bo$343bob
o83bo$343bobo81b3o$344bo8$411b2o$411b2o$427bo$382bo45b2o$380b3o39bo4b
2o$379bo43b2o$379b2o41b2o$393bo$391b3o32bo$390bo36b2o$390b2o4b2o28b2o$
396b2o4$383b2o$381b2ob2o$381bo2b2o$381bo3bo$365b2o15b2obo234b2o$364bob
o17bo235b2o$364bo51b2o30bo$363b2o51bo32b2o199bo$417b3o28b2o200b3o$419b
o187bo45bo$457bo147b2o45b2o$404bo38bobo9bobo148b2o31bo$402bobo39b2o3bo
6b2o181b3o$403b2o39bo5b2o190bo$399b2o48b2o184b2o4b2o$369b2o27bobo234b
2o$368bobo27bo15b2o$368bo28b2o15b2o$367b2o$373b2o273b2o$374bo99bo173bo
bo$371b3o101bo172bob2o$371bo101b3o171bob2o$647b3o16b2o$408bo5bo251bobo
$407b3o3b3o199b2o51bo$406bo2b2ob2o2bo199bo51b2o$406b3o5b3o196b3o$613bo
$588bo$587bo40bobo$587b3o38b2o$629bo$473bo158b2o$474b2o156bobo27b2o$
468bo4b2o142b2o15bo27bobo$469b2o146b2o15b2o28bo$468b2o194b2o$658b2o$
472bo185bo$473b2o184b3o$409b2ob2o58b2o187bo$410bobo$410bobo$411bo205b
3o3b3o$616bo2bo3bo2bo$616b2obo3bob2o6$494bo$495b2o$494b2o$561bo$503bo
55b2o$489bobo9bobo56b2o$490b2o3bo6b2o$490bo5b2o$495b2o75b2o45b2ob2o$
570bo2bo46bobo$570b3o47bobo$621bo$568b3o$567bobobo$520bo45bo5bo$521bo
43bo7bo$519b3o42bo9bo$563bo11bo$562bo13bo$561bo15bo$560bo17bo$559bo19b
o$558bo21bo$542bo14bo23bo$541bo14bo25bo$541b3o11bo27bo$554bo29bo$519bo
33bo31bo$520b2o30bo33bo$514bo4b2o30bo35bo$515b2o33bo37bo$514b2o33bo39b
o$548bo41bo$518bo20b2o6bo43bo$519b2o17bobo5bo45bo$518b2o18bo6bo47bo$
525b2o10b2o5bo49bo$524bobo16bo51bo$526bo8b6obo53bo$535bo4b2o55bo$532b
2obobo60bo$532bo2bob5o57bo$533b2obo5bo57bo$536bo2b2obo58bo$536b2o2bobo
bo57bo$538b2o3b2o58bo$534b3o8b2o57bo$535bo9bobo57bo$533bo3bo10bo57bo$
533b5o11bo57bo$550bo57bo$535bo15bo57bo$534bobo15bo57bo$535bo17bo57bo$
554bo57bo$555bo57bo$516b2o38bo57bo$517b2o38bo57bo$516bo41bo57bo$559bo
57bo$560bo57bo$561bo57bo$562bo57bo$563bo57bo$564bo57bo$565bo57bo$566bo
57bo$567bo57bo$568bo57bo$569bo57bo$570bo57bo$571bo57bo$572bo57bo$493b
2o78bo57bo$494b2o78bo57bo$493bo81bo57bo$576bo57bo$577bo57bo$578bo57bo$
579bo57bo$580bo57bo$581bo57bo$479b2o101bo57bo$478bobo102bo57bo$480bo
103bo55b2o$585bo55bob2o$586bo53bo2bo$587bo51bo3bobo$588bo49bo5b2o$589b
o47bo$590bo45bo$591bo43bo$592bo41bo$593bo39bo$594bo37bo$595bo35bo$401b
o194bo33bo$400bobo194bo31bo$400bobo195bo29bo$399b2ob2o195bo27bo$600bo
25bo$601bo23bo$470b2o130bo21bo$471b2o130bo19bo$470bo133bo17bo$605bo15b
o$606bo13bo$607bo11bo$608bo9bo$399b2ob2o205bo7bo$398bo5bo205bo5bo$611b
obobo$397bo7bo206b3o$397bo2bobo2bo$397b3o3b3o204b3o$609bo2bo$609b2o2$
361bo$361b3o83b2o$364bo83b2o$363b2o82bo$357b2o$358bo28b2o15b2o$358bobo
27bo15b2o$359b2o27bobo$389b2o2$392b2o39b2o$393b2o37bobo$392bo41bo$409b
o$407b3o$353b2o51bo$354bo51b2o$354bobo$355b2o17b2o$373bobo$372b2o$373b
2o$374bo3$374bo$374bo11b2o$380b2o4b2o$380bo$381b3o$383bo40b2o$369b2o
54b2o$369bo54bo$370b3o$372bo2$401b2o$401b2o10$401b2o$402b2o$401bo7$
421b2o$421bo$419bobo$419b2o18b2o$429b2o7bobo$429b2o6b2obo$438b2o14bo$
398b2o39bo14b3o$398b2o57bo$439bo14b3o$438b2o14bo$437b2obo$438bobo$439b
2o2$424b3o$426bo$425bo2$427b2o$427bo$428b3o$408b2o20bo$408b2o3$405b2o$
324bo81bo$324b3o79bobo$327bo79b2o$326b2o$320b2o$321bo$321bobo$322b2o
90b4o$413b3o2bo$413bo3bo$355b2o44b2o11bo2bo$356b2o44bo11b3o$355bo46bob
o$403b2o2$316b2o$317bo$317bobo$318b2o17b2o93b2o$336bobo93bobo$335b2o
97bo$336b2o96b2o$337bo90b2o$428bo$429b3o$337bo93bo$337bo79b2o$343b2o
72bo$343bo74b3o$344b3o73bo$346bo$332b2o$332bo$333b3o$335bo!


It's not surprising from EE's construction that a bigger cavity is possible just by changing the still life, and I'm sure EE could make a simpler still that's also expandable as shown in this pattern (I just played around with it until I got something that worked), but I wanted a chance to build something on my own.
itaibn
 
Posts: 9
Joined: October 31st, 2013, 8:45 am

Re: "One-way travel" oscillators?

Postby Gamedziner » March 21st, 2017, 6:59 am

itaibn wrote:Here's a version of Extremeenthusiast's one-way transporter with a bigger cavity:

x = 677, y = 731, rule = B3/S23
38bo$36b3o$35bo$35b2o$49bo$47b3o$46bo$46b2o$52b2o$52bo$50bobo$50b2o5$
21b2o$20bobo$20bo$19b2o11b3o$31bo2bo$31b2o2bo$34b2o5$25b2o$24bobo$24bo
$23b2o9$43bo$41bobo$42b2o15$48b2o$48b2o2$19bo$17b3o$16bo$16b2o$30bo$
28b3o$27bo$27b2o4b2o$33b2o4$20b2o$19bobo$19bo$19b2obo$2b2o17b2o$bobo$b
o51b2o$2o51bo$54b3o$56bo$40bo39bo$41bo39b2o$39b3o38b2o2$36b2o51bo$6b2o
27bobo49bobo$5bobo27bo15b2o35b2o$5bo28b2o15b2o$4b2o$10b2o$11bo$8b3o$8b
o3$45bo5bo$44b3o3b3o$43b2obo3bob2o3$46bo3bo$46bo3bo10$46b2ob2o$47bobo$
47bobo$48bo12$126bo$127b2o$119b2o5b2o$119b2o$135bo$90bo42bobo$88b3o43b
2o$87bo$87b2o$101bo$99b3o$98bo$98b2o4b2o$104b2o4$91b2o$90bobo$90bo$90b
2obo$73b2o17b2o$72bobo$72bo51b2o$71b2o51bo$125b3o$127bo$111bo39bo$112b
o39b2o$110b3o38b2o2$107b2o$77b2o27bobo$76bobo27bo15b2o$76bo28b2o15b2o$
75b2o$81b2o$82bo$79b3o$79bo3$116bo5bo$115b3o3b3o$114b2obo3bob2o2$172bo
$117bo3bo51b2o$117bo3bo50b2o2$181bo$179bobo$180b2o6$117b2ob2o$118bobo$
118bobo$119bo12$187b2o8bo$187b2o9b2o$197b2o$158bo$156b3o$155bo$155b2o$
169bo$167b3o$166bo$166b2o4b2o$172b2o4$159b2o$158bobo$158bo$158b2obo$
141b2o17b2o56bo$140bobo76b2o$140bo51b2o24b2o$139b2o51bo$193b3o31bo$
195bo29bobo$179bo39bo6b2o$180bo39b2o$178b3o38b2o2$175b2o$145b2o27bobo$
144bobo27bo15b2o$144bo28b2o15b2o$143b2o$149b2o$150bo$147b3o$147bo3$
184bo5bo$183b3o3b3o$182b2obo3bob2o3$185bo3bo$185bo3bo53bo$244b2o$243b
2o8$185b2ob2o$186bobo$186bobo$187bo6$264bo$265b2o$264b2o2$273bo$271bob
o$265bo6b2o$266b2o$256b2o7b2o$256b2o2$227bo$225b3o$224bo$224b2o$238bo$
236b3o$235bo$235b2o4b2o$241b2o4$228b2o$227bobo$227bo$227b2obo$210b2o
17b2o58bo$209bobo78b2o$209bo51b2o26b2o$208b2o51bo$262b3o$264bo$248bo
39bo$249bo39b2o$247b3o38b2o2$244b2o$214b2o27bobo$213bobo27bo15b2o$213b
o28b2o15b2o$212b2o$218b2o$219bo$216b3o$216bo$310bo$311b2o$253bo5bo50b
2o$252b3o3b3o$251b2obo3bob2o57bo$317bobo$311bo6b2o$254bo3bo53b2o$254bo
3bo52b2o10$254b2ob2o$255bobo$255bobo$256bo6$335bo88bo$336b2o84b3o$335b
2o84bo$421b2o$435bo$433b3o$334bo97bo$335b2o95b2o$334b2o102b2o$438bo$
436bobo$436b2o5$407b2o$406bobo$406bo$356bo48b2o12bo$357b2o59b3o$356b2o
55b2o2b2o2bo$420b2o$344b2o19bo$344b2o17bobo$357bo6b2o$315bo42b2o$313b
3o41b2o52b2o$312bo97bobo$312b2o96bo246bo$326bo82b2o246b3o$324b3o333bo$
323bo335b2o$323b2o4b2o81b2o232bo$329b2o81b2o20bo211b3o$432b3o214bo$
431bo216b2o$431b2o209b2o$316b2o325bo$315bobo109bobo213bobo$315bo112b2o
214b2o$315b2obo109bo$298b2o17b2o$297bobo$297bo51b2o92b3o$296b2o51bo93b
o3bo225b2o$350b3o28bo61bo4bo9bo214bobo$352bo29b2o60bo3bo9b3o201bo12bo$
336bo39bo4b2o19b2o57bo199b3o11b2o$337bo39b2o23b2o40bo3bo9b3o199b2o2bo$
335b3o38b2o65bo4bo9bo201bob3o$433b2o8bo3bo212b2o$332b2o46bo52b2o8b3o$
302b2o27bobo47b2o40b2o$301bobo27bo15b2o31b2o41bobo$301bo28b2o15b2o76bo
$300b2o123b2o242b2o$306b2o361bobo$307bo363bo$304b3o364b2o$304bo3$341bo
5bo$340b3o3b3o$339b2obo3bob2o52bo$403b2o$402b2o$342bo3bo306bo$342bo3bo
64bo239b2o$409bobo240b2o$403bo6b2o$404b2o$403b2o6$342b2ob2o81bo$343bob
o83bo$343bobo81b3o$344bo8$411b2o$411b2o$427bo$382bo45b2o$380b3o39bo4b
2o$379bo43b2o$379b2o41b2o$393bo$391b3o32bo$390bo36b2o$390b2o4b2o28b2o$
396b2o4$383b2o$381b2ob2o$381bo2b2o$381bo3bo$365b2o15b2obo234b2o$364bob
o17bo235b2o$364bo51b2o30bo$363b2o51bo32b2o199bo$417b3o28b2o200b3o$419b
o187bo45bo$457bo147b2o45b2o$404bo38bobo9bobo148b2o31bo$402bobo39b2o3bo
6b2o181b3o$403b2o39bo5b2o190bo$399b2o48b2o184b2o4b2o$369b2o27bobo234b
2o$368bobo27bo15b2o$368bo28b2o15b2o$367b2o$373b2o273b2o$374bo99bo173bo
bo$371b3o101bo172bob2o$371bo101b3o171bob2o$647b3o16b2o$408bo5bo251bobo
$407b3o3b3o199b2o51bo$406bo2b2ob2o2bo199bo51b2o$406b3o5b3o196b3o$613bo
$588bo$587bo40bobo$587b3o38b2o$629bo$473bo158b2o$474b2o156bobo27b2o$
468bo4b2o142b2o15bo27bobo$469b2o146b2o15b2o28bo$468b2o194b2o$658b2o$
472bo185bo$473b2o184b3o$409b2ob2o58b2o187bo$410bobo$410bobo$411bo205b
3o3b3o$616bo2bo3bo2bo$616b2obo3bob2o6$494bo$495b2o$494b2o$561bo$503bo
55b2o$489bobo9bobo56b2o$490b2o3bo6b2o$490bo5b2o$495b2o75b2o45b2ob2o$
570bo2bo46bobo$570b3o47bobo$621bo$568b3o$567bobobo$520bo45bo5bo$521bo
43bo7bo$519b3o42bo9bo$563bo11bo$562bo13bo$561bo15bo$560bo17bo$559bo19b
o$558bo21bo$542bo14bo23bo$541bo14bo25bo$541b3o11bo27bo$554bo29bo$519bo
33bo31bo$520b2o30bo33bo$514bo4b2o30bo35bo$515b2o33bo37bo$514b2o33bo39b
o$548bo41bo$518bo20b2o6bo43bo$519b2o17bobo5bo45bo$518b2o18bo6bo47bo$
525b2o10b2o5bo49bo$524bobo16bo51bo$526bo8b6obo53bo$535bo4b2o55bo$532b
2obobo60bo$532bo2bob5o57bo$533b2obo5bo57bo$536bo2b2obo58bo$536b2o2bobo
bo57bo$538b2o3b2o58bo$534b3o8b2o57bo$535bo9bobo57bo$533bo3bo10bo57bo$
533b5o11bo57bo$550bo57bo$535bo15bo57bo$534bobo15bo57bo$535bo17bo57bo$
554bo57bo$555bo57bo$516b2o38bo57bo$517b2o38bo57bo$516bo41bo57bo$559bo
57bo$560bo57bo$561bo57bo$562bo57bo$563bo57bo$564bo57bo$565bo57bo$566bo
57bo$567bo57bo$568bo57bo$569bo57bo$570bo57bo$571bo57bo$572bo57bo$493b
2o78bo57bo$494b2o78bo57bo$493bo81bo57bo$576bo57bo$577bo57bo$578bo57bo$
579bo57bo$580bo57bo$581bo57bo$479b2o101bo57bo$478bobo102bo57bo$480bo
103bo55b2o$585bo55bob2o$586bo53bo2bo$587bo51bo3bobo$588bo49bo5b2o$589b
o47bo$590bo45bo$591bo43bo$592bo41bo$593bo39bo$594bo37bo$595bo35bo$401b
o194bo33bo$400bobo194bo31bo$400bobo195bo29bo$399b2ob2o195bo27bo$600bo
25bo$601bo23bo$470b2o130bo21bo$471b2o130bo19bo$470bo133bo17bo$605bo15b
o$606bo13bo$607bo11bo$608bo9bo$399b2ob2o205bo7bo$398bo5bo205bo5bo$611b
obobo$397bo7bo206b3o$397bo2bobo2bo$397b3o3b3o204b3o$609bo2bo$609b2o2$
361bo$361b3o83b2o$364bo83b2o$363b2o82bo$357b2o$358bo28b2o15b2o$358bobo
27bo15b2o$359b2o27bobo$389b2o2$392b2o39b2o$393b2o37bobo$392bo41bo$409b
o$407b3o$353b2o51bo$354bo51b2o$354bobo$355b2o17b2o$373bobo$372b2o$373b
2o$374bo3$374bo$374bo11b2o$380b2o4b2o$380bo$381b3o$383bo40b2o$369b2o
54b2o$369bo54bo$370b3o$372bo2$401b2o$401b2o10$401b2o$402b2o$401bo7$
421b2o$421bo$419bobo$419b2o18b2o$429b2o7bobo$429b2o6b2obo$438b2o14bo$
398b2o39bo14b3o$398b2o57bo$439bo14b3o$438b2o14bo$437b2obo$438bobo$439b
2o2$424b3o$426bo$425bo2$427b2o$427bo$428b3o$408b2o20bo$408b2o3$405b2o$
324bo81bo$324b3o79bobo$327bo79b2o$326b2o$320b2o$321bo$321bobo$322b2o
90b4o$413b3o2bo$413bo3bo$355b2o44b2o11bo2bo$356b2o44bo11b3o$355bo46bob
o$403b2o2$316b2o$317bo$317bobo$318b2o17b2o93b2o$336bobo93bobo$335b2o
97bo$336b2o96b2o$337bo90b2o$428bo$429b3o$337bo93bo$337bo79b2o$343b2o
72bo$343bo74b3o$344b3o73bo$346bo$332b2o$332bo$333b3o$335bo!


It's not surprising from EE's construction that a bigger cavity is possible just by changing the still life, and I'm sure EE could make a simpler still that's also expandable as shown in this pattern (I just played around with it until I got something that worked), but I wanted a chance to build something on my own.


Still-life reduction:

x = 677, y = 731, rule = B3/S23
38bo$36b3o$35bo$35b2o$49bo$47b3o$46bo$46b2o$52b2o$52bo$50bobo$50b2o5$
21b2o$20bobo$20bo$19b2o11b3o$31bo2bo$31b2o2bo$34b2o5$25b2o$24bobo$24bo
$23b2o9$43bo$41bobo$42b2o15$48b2o$48b2o2$19bo$17b3o$16bo$16b2o$30bo$
28b3o$27bo$27b2o4b2o$33b2o4$20b2o$19bobo$19bo$19b2obo$2b2o17b2o$bobo$b
o51b2o$2o51bo$54b3o$56bo$40bo39bo$41bo39b2o$39b3o38b2o2$36b2o51bo$6b2o
27bobo49bobo$5bobo27bo15b2o35b2o$5bo28b2o15b2o$4b2o$10b2o$11bo$8b3o$8b
o3$45bo5bo$44b3o3b3o$43b2obo3bob2o3$46bo3bo$46bo3bo10$46b2ob2o$47bobo$
47bobo$48bo12$126bo$127b2o$119b2o5b2o$119b2o$135bo$90bo42bobo$88b3o43b
2o$87bo$87b2o$101bo$99b3o$98bo$98b2o4b2o$104b2o4$91b2o$90bobo$90bo$90b
2obo$73b2o17b2o$72bobo$72bo51b2o$71b2o51bo$125b3o$127bo$111bo39bo$112b
o39b2o$110b3o38b2o2$107b2o$77b2o27bobo$76bobo27bo15b2o$76bo28b2o15b2o$
75b2o$81b2o$82bo$79b3o$79bo3$116bo5bo$115b3o3b3o$114b2obo3bob2o2$172bo
$117bo3bo51b2o$117bo3bo50b2o2$181bo$179bobo$180b2o6$117b2ob2o$118bobo$
118bobo$119bo12$187b2o8bo$187b2o9b2o$197b2o$158bo$156b3o$155bo$155b2o$
169bo$167b3o$166bo$166b2o4b2o$172b2o4$159b2o$158bobo$158bo$158b2obo$
141b2o17b2o56bo$140bobo76b2o$140bo51b2o24b2o$139b2o51bo$193b3o31bo$
195bo29bobo$179bo39bo6b2o$180bo39b2o$178b3o38b2o2$175b2o$145b2o27bobo$
144bobo27bo15b2o$144bo28b2o15b2o$143b2o$149b2o$150bo$147b3o$147bo3$
184bo5bo$183b3o3b3o$182b2obo3bob2o3$185bo3bo$185bo3bo53bo$244b2o$243b
2o8$185b2ob2o$186bobo$186bobo$187bo6$264bo$265b2o$264b2o2$273bo$271bob
o$265bo6b2o$266b2o$256b2o7b2o$256b2o2$227bo$225b3o$224bo$224b2o$238bo$
236b3o$235bo$235b2o4b2o$241b2o4$228b2o$227bobo$227bo$227b2obo$210b2o
17b2o58bo$209bobo78b2o$209bo51b2o26b2o$208b2o51bo$262b3o$264bo$248bo
39bo$249bo39b2o$247b3o38b2o2$244b2o$214b2o27bobo$213bobo27bo15b2o$213b
o28b2o15b2o$212b2o$218b2o$219bo$216b3o$216bo$310bo$311b2o$253bo5bo50b
2o$252b3o3b3o$251b2obo3bob2o57bo$317bobo$311bo6b2o$254bo3bo53b2o$254bo
3bo52b2o10$254b2ob2o$255bobo$255bobo$256bo6$335bo88bo$336b2o84b3o$335b
2o84bo$421b2o$435bo$433b3o$334bo97bo$335b2o95b2o$334b2o102b2o$438bo$
436bobo$436b2o5$407b2o$406bobo$406bo$356bo48b2o12bo$357b2o59b3o$356b2o
55b2o2b2o2bo$420b2o$344b2o19bo$344b2o17bobo$357bo6b2o$315bo42b2o$313b
3o41b2o52b2o$312bo97bobo$312b2o96bo246bo$326bo82b2o246b3o$324b3o333bo$
323bo335b2o$323b2o4b2o81b2o232bo$329b2o81b2o20bo211b3o$432b3o214bo$
431bo216b2o$431b2o209b2o$316b2o325bo$315bobo109bobo213bobo$315bo112b2o
214b2o$315b2obo109bo$298b2o17b2o$297bobo$297bo51b2o92b3o$296b2o51bo93b
o3bo225b2o$350b3o28bo61bo4bo9bo214bobo$352bo29b2o60bo3bo9b3o201bo12bo$
336bo39bo4b2o19b2o57bo199b3o11b2o$337bo39b2o23b2o40bo3bo9b3o199b2o2bo$
335b3o38b2o65bo4bo9bo201bob3o$433b2o8bo3bo212b2o$332b2o46bo52b2o8b3o$
302b2o27bobo47b2o40b2o$301bobo27bo15b2o31b2o41bobo$301bo28b2o15b2o76bo
$300b2o123b2o242b2o$306b2o361bobo$307bo363bo$304b3o364b2o$304bo3$341bo
5bo$340b3o3b3o$339b2obo3bob2o52bo$403b2o$402b2o$342bo3bo306bo$342bo3bo
64bo239b2o$409bobo240b2o$403bo6b2o$404b2o$403b2o6$342b2ob2o81bo$343bob
o83bo$343bobo81b3o$344bo8$411b2o$411b2o$427bo$382bo45b2o$380b3o39bo4b
2o$379bo43b2o$379b2o41b2o$393bo$391b3o32bo$390bo36b2o$390b2o4b2o28b2o$
396b2o4$383b2o$381b2ob2o$381bo2b2o$381bo3bo$365b2o15b2obo234b2o$364bob
o17bo235b2o$364bo51b2o30bo$363b2o51bo32b2o199bo$417b3o28b2o200b3o$419b
o187bo45bo$457bo147b2o45b2o$404bo38bobo9bobo148b2o31bo$402bobo39b2o3bo
6b2o181b3o$403b2o39bo5b2o190bo$399b2o48b2o184b2o4b2o$369b2o27bobo234b
2o$368bobo27bo15b2o$368bo28b2o15b2o$367b2o$373b2o273b2o$374bo99bo173bo
bo$371b3o101bo172bob2o$371bo101b3o171bob2o$647b3o16b2o$408bo5bo251bobo
$407b3o3b3o199b2o51bo$406bo2b2ob2o2bo199bo51b2o$406b3o5b3o196b3o$613bo
$588bo$587bo40bobo$587b3o38b2o$629bo$473bo158b2o$474b2o156bobo27b2o$
468bo4b2o142b2o15bo27bobo$469b2o146b2o15b2o28bo$468b2o194b2o$658b2o$
472bo185bo$473b2o184b3o$409b2ob2o58b2o187bo$410bobo$410bobo$411bo205b
3o3b3o$616bo2bo3bo2bo$616b2obo3bob2o6$494bo$495b2o$494b2o$561bo$503bo
55b2o$489bobo9bobo56b2o$490b2o3bo6b2o$490bo5b2o$495b2o75b2o45b2ob2o$
570bo2bo46bobo$570b3o47bobo$621bo$568b3o$567bobobo$520bo45bo5bo$521bo
43bo7bo$519b3o42bo9bo$563bo11bo$562bo13bo$561bo15bo$560bo17bo$559bo19b
o$558bo21bo$542bo14bo23bo$541bo14bo25bo$541b3o11bo27bo$554bo29bo$519bo
33bo31bo$520b2o30bo33bo$514bo4b2o30bo35bo$515b2o33bo37bo$514b2o33bo39b
o$548bo41bo$518bo20b2o6bo43bo$519b2o17bobo5bo45bo$518b2o18bo6bo47bo$
525b2o10b2o5bo49bo$524bobo16bo51bo$526bo8b6obo53bo$535bo4b2o55bo$532b
2obobo60bo$532bo2bob5o57bo$533b2obo5bo57bo$536bo2b2obo58bo$536b2o2bobo
bo57bo$538b2o3b2o58bo$536b2o7b2o57bo$535bobo7bobo57bo$536bo11bo57bo$
549bo57bo$550bo57bo$551bo57bo$552bo57bo$553bo57bo$
554bo57bo$555bo57bo$516b2o38bo57bo$517b2o38bo57bo$516bo41bo57bo$559bo
57bo$560bo57bo$561bo57bo$562bo57bo$563bo57bo$564bo57bo$565bo57bo$566bo
57bo$567bo57bo$568bo57bo$569bo57bo$570bo57bo$571bo57bo$572bo57bo$493b
2o78bo57bo$494b2o78bo57bo$493bo81bo57bo$576bo57bo$577bo57bo$578bo57bo$
579bo57bo$580bo57bo$581bo57bo$479b2o101bo57bo$478bobo102bo57bo$480bo
103bo55b2o$585bo55bob2o$586bo53bo2bo$587bo51bo3bobo$588bo49bo5b2o$589b
o47bo$590bo45bo$591bo43bo$592bo41bo$593bo39bo$594bo37bo$595bo35bo$401b
o194bo33bo$400bobo194bo31bo$400bobo195bo29bo$399b2ob2o195bo27bo$600bo
25bo$601bo23bo$470b2o130bo21bo$471b2o130bo19bo$470bo133bo17bo$605bo15b
o$606bo13bo$607bo11bo$608bo9bo$399b2ob2o205bo7bo$398bo5bo205bo5bo$611b
obobo$397bo7bo206b3o$397bo2bobo2bo$397b3o3b3o204b3o$609bo2bo$609b2o2$
361bo$361b3o83b2o$364bo83b2o$363b2o82bo$357b2o$358bo28b2o15b2o$358bobo
27bo15b2o$359b2o27bobo$389b2o2$392b2o39b2o$393b2o37bobo$392bo41bo$409b
o$407b3o$353b2o51bo$354bo51b2o$354bobo$355b2o17b2o$373bobo$372b2o$373b
2o$374bo3$374bo$374bo11b2o$380b2o4b2o$380bo$381b3o$383bo40b2o$369b2o
54b2o$369bo54bo$370b3o$372bo2$401b2o$401b2o10$401b2o$402b2o$401bo7$
421b2o$421bo$419bobo$419b2o18b2o$429b2o7bobo$429b2o6b2obo$438b2o14bo$
398b2o39bo14b3o$398b2o57bo$439bo14b3o$438b2o14bo$437b2obo$438bobo$439b
2o2$424b3o$426bo$425bo2$427b2o$427bo$428b3o$408b2o20bo$408b2o3$405b2o$
324bo81bo$324b3o79bobo$327bo79b2o$326b2o$320b2o$321bo$321bobo$322b2o
90b4o$413b3o2bo$413bo3bo$355b2o44b2o11bo2bo$356b2o44bo11b3o$355bo46bob
o$403b2o2$316b2o$317bo$317bobo$318b2o17b2o93b2o$336bobo93bobo$335b2o
97bo$336b2o96b2o$337bo90b2o$428bo$429b3o$337bo93bo$337bo79b2o$343b2o
72bo$343bo74b3o$344b3o73bo$346bo$332b2o$332bo$333b3o$335bo!
A base-2 ruler for all your measuring needs in CGOL:
32b32o$16b16o16b16o$8b8o8b8o8b8o8b8o$4b4o4b4o4b4o4b4o4b4o4b4o4b4o4b4o$2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o2b2o$bobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo
Gamedziner
 
Posts: 344
Joined: May 30th, 2016, 8:47 pm

Re: "One-way travel" oscillators?

Postby BlinkerSpawn » March 21st, 2017, 11:13 am

EDIT 2: Best one:
x = 153, y = 148, rule = B3/S23
5bo$6b2o$5b2o$72bo$14bo55b2o$obo9bobo56b2o$b2o3bo6b2o$bo5b2o$6b2o3$78b
2ob2o$77bobobobo$76bo3bo3bo$31bo43bo9bo$32bo41bo11bo$30b3o40bo13bo$72b
o15bo$71bo17bo$70bo19bo$69bo21bo$68bo23bo$67bo25bo$53bo12bo27bo$52bo
12bo29bo$52b3o9bo31bo$63bo33bo$30bo31bo35bo$31b2o28bo37bo$25bo4b2o28bo
39bo$26b2o31bo41bo$25b2o31bo43bo$57bo45bo$29bo20bo5bo47bo$30b2o17bobo
3bo49bo$29b2o18bobo2bo51bo$36b2o10b2obobo53bo$35bobo14bo55bo$37bo8b6o
57bo$46bo63bo$43b2obobob2o59bo$43bo2bob2obo60bo$44b2obo65bo$47bo66bo$
47b2o66bo$48bo67bo$47bo69bo$46bo71bo$45bo73bo$44bo75bo$43bo77bo$42bo
79bo$41bo81bo$40bo83bo$39bo85bo$38bo87bo$27b2o8bo89bo$28b2o6bo91bo$27b
o7bo93bo$34bo95bo$33bo97bo$32bo99bo$31bo101bo$30bo103bo$29bo105bo$28bo
107bo$27bo109bo$26bo111bo$25bo113bo$24bo115bo$23bo117bo$22bo119bo$21bo
121bo$4b2o14bo123bo$5b2o12bo125bo$4bo13bo127bo$18b2o127bo$20bo127bo$
18b2o129bo$18bo131bo$19bo131bo$20bo131bo$21bo129b2o$22bo127bo$23bo127b
2o$24bo127bo$25bo125bo$26bo123bo$27bo121bo$28bo119bo$29bo117bo$30bo
115bo$31bo113bo$32bo111bo$33bo109bo$34bo107bo$35bo105bo$36bo103bo$37bo
101bo$38bo99bo$39bo97bo$40bo95bo$41bo93bo$42bo91bo$43bo89bo$44bo87bo$
45bo85bo$46bo83bo$47bo81bo$48bo79bo$49bo77bo$50bo75bo$51bo73bo$52bo71b
o$53bo69bo$54bo67bo$55bo65bo$56bo63bo$57bo61bo$58bo59bo$59bo57bo$60bo
55bo$61bo53bo$62bo51bo$63bo49bo$64bo47bo$65bo45bo$66bo43bo$67bo41bo$
68bo39bo$69bo37bo$70bo35bo$71bo33bo$72bo31bo$73bo29bo$74bo27bo$75bo25b
o$76bo23bo$77bo21bo$78bo19bo$79bo17bo$80bo15bo$81bo13bo$82bo11bo$83bo
9bo$84bo3bo3bo$85bobobobo$86b2ob2o!
Last edited by BlinkerSpawn on March 22nd, 2017, 11:03 pm, edited 6 times in total.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1428
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: "One-way travel" oscillators?

Postby Kiran » March 22nd, 2017, 6:00 pm

This answers the original question!
x = 1224, y = 1223, rule = B3/S23
38bo1184bo$36b3o1183bo$35bo1185bo$35b2o1183bo$49bo1169bo$47b3o1168bo$
46bo1170bo$46b2o1168bo$52b2o1161bo$52bo1161bo$50bobo1160bo$50b2o1160bo
$1211bo$1210bo$1209bo$1208bo$21b2o1184bo$20bobo1183bo$20bo1184bo$19b2o
11b3o1169bo$31bo2bo1168bo$31b2o2bo1166bo$34b2o1165bo$1200bo$1199bo$
1198bo$1197bo$25b2o1169bo$24bobo1168bo$24bo1169bo$23b2o1168bo$1192bo$
1191bo$1190bo$1189bo$1188bo$1187bo$1186bo$1185bo$43bo1140bo$41bobo
1139bo$42b2o1138bo$1181bo$1180bo$1179bo$1178bo$1177bo$1176bo$1175bo$
1174bo$1173bo$1172bo$1171bo$1170bo$1169bo$1168bo$48b2o1117bo$48b2o
1116bo$1165bo$19bo1144bo$17b3o1143bo$16bo1145bo$16b2o1143bo$30bo1129bo
$28b3o1128bo$27bo1130bo$27b2o4b2o1122bo$33b2o1121bo$1155bo$1154bo$
1153bo$20b2o1130bo$19bobo1129bo$19bo1130bo$19b2obo1126bo$2b2o17b2o
1125bo$bobo1143bo$bo51b2o1091bo$2o51bo1091bo$54b3o1087bo$56bo1086bo$
40bo39bo1061bo$41bo39b2o1058bo$39b3o38b2o1058bo$1139bo$36b2o51bo1048bo
$6b2o27bobo49bobo1047bo$5bobo27bo15b2o35b2o1046bo$5bo28b2o15b2o1082bo$
4b2o1128bo$10b2o1121bo$11bo1120bo$8b3o1120bo$8bo1121bo$1129bo$1128bo$
45bo5bo1075bo$44b3o3b3o1073bo$43b2obo3bob2o1071bo$1124bo$1123bo$46bo3b
o1071bo$46bo3bo1070bo$1120bo$1119bo$1118bo$1117bo$1116bo$1115bo$1114bo
$1113bo$1112bo$46b2ob2o1060bo$47bobo1060bo$47bobo1059bo$48bo1059bo$
1107bo$1106bo$1105bo$1104bo$1103bo$1102bo$1101bo$1100bo$1099bo$1098bo$
1097bo$126bo969bo$127b2o966bo$119b2o5b2o966bo$119b2o972bo$135bo956bo$
90bo42bobo955bo$88b3o43b2o954bo$87bo1001bo$87b2o999bo$101bo985bo$99b3o
984bo$98bo986bo$98b2o4b2o978bo$104b2o977bo$1082bo$1081bo$1080bo$91b2o
986bo$90bobo985bo$90bo986bo$90b2obo982bo$73b2o17b2o981bo$72bobo999bo$
72bo51b2o947bo$71b2o51bo947bo$125b3o943bo$127bo942bo$111bo39bo917bo$
112bo39b2o914bo$110b3o38b2o914bo$1066bo$107b2o956bo$77b2o27bobo955bo$
76bobo27bo15b2o939bo$76bo28b2o15b2o938bo$75b2o984bo$81b2o977bo$82bo
976bo$79b3o976bo$79bo977bo$1056bo$1055bo$116bo5bo931bo$115b3o3b3o929bo
$114b2obo3bob2o927bo$1051bo$172bo877bo$117bo3bo51b2o874bo$117bo3bo50b
2o874bo$1047bo$181bo864bo$179bobo863bo$180b2o862bo$1043bo$1042bo$1041b
o$1040bo$1039bo$117b2ob2o916bo$118bobo916bo$118bobo915bo$119bo915bo$
1034bo$1033bo$1032bo$1031bo$1030bo$1029bo$1028bo$1027bo$1026bo$1025bo$
1024bo$187b2o8bo825bo$187b2o9b2o822bo$197b2o822bo$158bo861bo$156b3o
860bo$155bo862bo$155b2o860bo$169bo846bo$167b3o845bo$166bo847bo$166b2o
4b2o839bo$172b2o838bo$1011bo$1010bo$1009bo$159b2o847bo$158bobo846bo$
158bo847bo$158b2obo843bo$141b2o17b2o56bo785bo$140bobo76b2o782bo$140bo
51b2o24b2o782bo$139b2o51bo808bo$193b3o31bo772bo$195bo29bobo771bo$179bo
39bo6b2o770bo$180bo39b2o775bo$178b3o38b2o775bo$995bo$175b2o817bo$145b
2o27bobo816bo$144bobo27bo15b2o800bo$144bo28b2o15b2o799bo$143b2o845bo$
149b2o838bo$150bo837bo$147b3o837bo$147bo838bo$985bo$984bo$184bo5bo792b
o$183b3o3b3o790bo$182b2obo3bob2o788bo$980bo$979bo$185bo3bo788bo$185bo
3bo53bo733bo$244b2o730bo$243b2o730bo$974bo$973bo$972bo$971bo$970bo$
969bo$968bo$185b2ob2o777bo$186bobo777bo$186bobo776bo$187bo776bo$963bo$
962bo$961bo$960bo$959bo$264bo693bo$265b2o690bo$264b2o690bo$955bo$273bo
680bo$271bobo679bo$265bo6b2o678bo$266b2o683bo$256b2o7b2o683bo$256b2o
691bo$948bo$227bo719bo$225b3o718bo$224bo720bo$224b2o718bo$238bo704bo$
236b3o703bo$235bo705bo$235b2o4b2o697bo$241b2o696bo$938bo$937bo$936bo$
228b2o705bo$227bobo704bo$227bo705bo$227b2obo701bo$210b2o17b2o58bo641bo
$209bobo78b2o638bo$209bo51b2o26b2o638bo$208b2o51bo666bo$262b3o662bo$
264bo661bo$248bo39bo636bo$249bo39b2o633bo$247b3o38b2o633bo$922bo$244b
2o675bo$214b2o27bobo674bo$213bobo27bo15b2o658bo$213bo28b2o15b2o657bo$
212b2o703bo$218b2o696bo$219bo695bo$216b3o695bo$216bo696bo$310bo601bo$
311b2o598bo$253bo5bo50b2o598bo$252b3o3b3o648bo$251b2obo3bob2o57bo588bo
$317bobo587bo$311bo6b2o586bo$254bo3bo53b2o591bo$254bo3bo52b2o591bo$
903bo$902bo$901bo$900bo$899bo$898bo$897bo$896bo$895bo$254b2ob2o635bo$
255bobo635bo$255bobo634bo$256bo634bo$890bo$889bo$888bo$887bo$886bo$
335bo88bo460bo$336b2o84b3o459bo$335b2o84bo461bo$421b2o459bo$435bo445bo
$433b3o444bo$334bo97bo446bo$335b2o95b2o444bo$334b2o102b2o437bo$438bo
437bo$436bobo436bo$436b2o436bo$873bo$872bo$871bo$870bo$407b2o460bo$
406bobo459bo$406bo460bo$356bo48b2o12bo446bo$357b2o59b3o444bo$356b2o55b
2o2b2o2bo442bo$420b2o441bo$344b2o19bo496bo$344b2o17bobo495bo$357bo6b2o
494bo$315bo42b2o499bo$313b3o41b2o52b2o445bo$312bo97bobo444bo$312b2o96b
o246bo198bo$326bo82b2o246b3o195bo$324b3o333bo193bo$323bo335b2o192bo$
323b2o4b2o81b2o232bo205bo$329b2o81b2o20bo211b3o202bo$432b3o214bo200bo$
431bo216b2o199bo$431b2o209b2o204bo$316b2o325bo203bo$315bobo109bobo213b
obo200bo$315bo112b2o214b2o199bo$315b2obo109bo415bo$298b2o17b2o524bo$
297bobo542bo$297bo51b2o92b3o395bo$296b2o51bo93bo3bo225b2o165bo$350b3o
28bo61bo4bo9bo214bobo163bo$352bo29b2o60bo3bo9b3o201bo12bo162bo$336bo
39bo4b2o19b2o57bo199b3o11b2o160bo$337bo39b2o23b2o40bo3bo9b3o199b2o2bo
171bo$335b3o38b2o65bo4bo9bo201bob3o170bo$433b2o8bo3bo212b2o172bo$332b
2o46bo52b2o8b3o387bo$302b2o27bobo47b2o40b2o407bo$301bobo27bo15b2o31b2o
41bobo405bo$301bo28b2o15b2o76bo404bo$300b2o123b2o242b2o158bo$306b2o
361bobo156bo$307bo363bo155bo$304b3o364b2o153bo$304bo520bo$824bo$823bo$
341bo5bo474bo$340b3o3b3o472bo$339b2obo3bob2o52bo417bo$403b2o414bo$402b
2o414bo$342bo3bo306bo163bo$342bo3bo64bo239b2o163bo$409bobo240b2o161bo$
403bo6b2o402bo$404b2o407bo$403b2o407bo$811bo$810bo$809bo$808bo$807bo$
342b2ob2o81bo377bo$343bobo83bo375bo$343bobo81b3o374bo$344bo458bo$802bo
$801bo$800bo$799bo$798bo$797bo$796bo$411b2o382bo$411b2o381bo$427bo365b
o$382bo45b2o362bo$380b3o39bo4b2o362bo$379bo43b2o365bo$379b2o41b2o365bo
$393bo394bo$391b3o32bo360bo$390bo36b2o357bo$390b2o4b2o28b2o357bo$396b
2o386bo$783bo$782bo$781bo$383b2o395bo$381b2ob2o393bo$381bo2b2o392bo$
381bo3bo391bo$365b2o15b2obo234b2o154bo$364bobo17bo235b2o153bo$364bo51b
2o30bo325bo$363b2o51bo32b2o199bo122bo$417b3o28b2o200b3o119bo$419bo187b
o45bo117bo$457bo147b2o45b2o116bo$404bo38bobo9bobo148b2o31bo129bo$402bo
bo39b2o3bo6b2o181b3o126bo$403b2o39bo5b2o190bo124bo$399b2o48b2o184b2o4b
2o123bo$369b2o27bobo234b2o128bo$368bobo27bo15b2o348bo$368bo28b2o15b2o
347bo$367b2o393bo$373b2o273b2o111bo$374bo99bo173bobo109bo$371b3o101bo
172bob2o107bo$371bo101b3o171bob2o107bo$647b3o16b2o89bo$408bo5bo251bobo
87bo$407b3o3b3o199b2o51bo86bo$406bo2b2ob2o2bo199bo51b2o84bo$406b3o5b3o
196b3o137bo$613bo138bo$588bo162bo$587bo40bobo119bo$587b3o38b2o119bo$
629bo118bo$473bo158b2o113bo$474b2o156bobo27b2o82bo$468bo4b2o142b2o15bo
27bobo80bo$469b2o146b2o15b2o28bo79bo$468b2o194b2o77bo$658b2o82bo$472bo
185bo82bo$473b2o184b3o78bo$409b2ob2o58b2o187bo77bo$410bobo325bo$410bob
o324bo$411bo205b3o3b3o110bo$616bo2bo3bo2bo108bo$616b2obo3bob2o107bo$
733bo$732bo$731bo$730bo$729bo$494bo233bo$495b2o230bo$494b2o230bo$561bo
163bo$503bo55b2o163bo$489bobo9bobo56b2o161bo$490b2o3bo6b2o218bo$490bo
5b2o223bo$495b2o122b2ob2o96bo$620bobo96bo$620bobo95bo$621bo95bo$716bo$
715bo$520bo193bo$521bo191bo$519b3o190bo$711bo$710bo$709bo$708bo$707bo$
706bo$542bo162bo$541bo162bo$541b3o159bo$702bo$519bo181bo$520b2o178bo$
514bo4b2o178bo$515b2o181bo$514b2o181bo$696bo$518bo20b2o154bo$519b2o17b
o2bo2bob2ob2o143bo$518b2o18bobo3b2obobobo141bo$525b2o10b2ob4o4bo3bo
139bo$524bobo16bo9bo137bo$526bo8b6obo11bo135bo$535bo4b2o13bo133bo$532b
2obob2o17bo131bo$532bo2bobob2obo14bo129bo$533b2obo2bob2o15bo127bo$536b
obo4b2o14bo125bo$536b2o5bo16bo123bo$544bo16bo121bo$545bo16bo119bo$546b
o16bo117bo$547bo16bo115bo$548bo16bo113bo$549bo16bo111bo$550bo16bo109bo
$551bo16bo107bo$552bo16bo105bo$553bo16bo103bo$554bo16bo101bo$516b2o37b
o16bo99bo$517b2o37bo16bo97bo$516bo40bo16bo95bo$558bo16bo93bo$559bo16bo
91bo$560bo16bo89bo$561bo16bo87bo$562bo16bo85bo$563bo16bo83bo$564bo16bo
81bo$565bo16bo79bo$566bo16bo77bo$567bo16bo75bo$568bo16bo73bo$569bo16bo
71bo$570bo16bo69bo$571bo16bo67bo$493b2o77bo16bo65bo$494b2o77bo16bo63bo
$493bo80bo16bo61bo$575bo16bo59bo$576bo16bo57bo$577bo16bo55bo$578bo16bo
53bo$579bo16bo51bo$580bo16bo49bo$479b2o100bo16bo47bo$478bobo101bo16bo
45bo$480bo102bo16bo43bo$584bo16bo41bo$585bo16bo39bo$586bo16bo37bo$587b
o16bo35bo$588bo16bo33bo$589bo16bo31bo$590bo16bo29bo$591bo16bo27bo$592b
o16bo25bo$593bo16bo23bo$594bo16bo21bo$401bo193bo16bo19bo$400bobo193bo
16bo17bo$400bobo194bo16bo15bo$399b2ob2o194bo16bo13bo$599bo16bo11bo$
600bo16bo9bo$470b2o129bo16bo3bo3bo$471b2o129bo16bobobobo$470bo132bo16b
2ob2o$604bo$605bo$606bo$607bo$399b2ob2o204bo$398bo5bo204bo$610bo$397bo
7bo205bo$397bo2bobo2bo204b2o$397b3o3b3o203bo$610b2o$611bo$610bo$361bo
247bo$361b3o83b2o159bo$364bo83b2o157bo$363b2o82bo158bo$357b2o246bo$
358bo28b2o15b2o198bo$358bobo27bo15b2o197bo$359b2o27bobo211bo$389b2o
210bo$600bo$392b2o39b2o164bo$393b2o37bobo163bo$392bo41bo162bo$409bo
186bo$407b3o185bo$353b2o51bo187bo$354bo51b2o185bo$354bobo235bo$355b2o
17b2o215bo$373bobo214bo$372b2o215bo$373b2o213bo$374bo212bo$586bo$585bo
$374bo209bo$374bo11b2o195bo$380b2o4b2o194bo$380bo200bo$381b3o196bo$
383bo40b2o153bo$369b2o54b2o151bo$369bo54bo152bo$370b3o203bo$372bo202bo
$574bo$401b2o170bo$401b2o169bo$571bo$570bo$569bo$568bo$567bo$566bo$
565bo$564bo$563bo$401b2o159bo$402b2o157bo$401bo158bo$559bo$558bo$557bo
$556bo$555bo$554bo$421b2o130bo$421bo130bo$419bobo129bo$419b2o18b2o109b
o$429b2o7bobo108bo$429b2o6b2obo107bo$438b2o14bo92bo$398b2o39bo14b3o89b
o$398b2o57bo87bo$439bo14b3o87bo$438b2o14bo88bo$437b2obo101bo$438bobo
100bo$439b2o99bo$539bo$424b3o111bo$426bo110bo$425bo110bo$535bo$427b2o
105bo$427bo105bo$428b3o101bo$408b2o20bo100bo$408b2o120bo$529bo$528bo$
405b2o120bo$324bo81bo119bo$324b3o79bobo116bo$327bo79b2o115bo$326b2o
195bo$320b2o200bo$321bo199bo$321bobo196bo$322b2o90b4o101bo$413b3o2bo
99bo$413bo3bo99bo$355b2o44b2o11bo2bo98bo$356b2o44bo11b3o98bo$355bo46bo
bo109bo$403b2o108bo$512bo$316b2o193bo$317bo192bo$317bobo189bo$318b2o
17b2o93b2o74bo$336bobo93bobo72bo$335b2o97bo71bo$336b2o96b2o69bo$337bo
90b2o74bo$428bo74bo$429b3o70bo$337bo93bo69bo$337bo79b2o81bo$343b2o72bo
81bo$343bo74b3o77bo$344b3o73bo76bo$346bo149bo$332b2o161bo$332bo161bo$
333b3o157bo$335bo156bo$491bo$490bo$489bo$488bo$487bo$486bo$485bo$484bo
$483bo$482bo$481bo$480bo$479bo$478bo$477bo$476bo$475bo$474bo$473bo$
472bo$471bo$470bo$469bo$468bo$467bo$466bo$465bo$464bo$463bo$462bo$461b
o$460bo$459bo$458bo$457bo$456bo$455bo$454bo$453bo$452bo$451bo$450bo$
449bo$448bo$447bo$446bo$445bo$444bo$443bo$442bo$441bo$440bo$439bo$438b
o$437bo$436bo$435bo$434bo$433bo$432bo$431bo$430bo$429bo$428bo$427bo$
426bo$425bo$424bo$423bo$422bo$421bo$420bo$419bo$418bo$417bo$416bo$415b
o$414bo$413bo$412bo$411bo$410bo$409bo$408bo$407bo$406bo$405bo$404bo$
403bo$402bo$401bo$400bo$399bo$398bo$397bo$396bo$395bo$394bo$393bo$392b
o$391bo$390bo$389bo$388bo$387bo$386bo$385bo$384bo$383bo$382bo$381bo$
380bo$379bo$378bo$377bo$376bo$375bo$374bo$373bo$372bo$371bo$370bo$369b
o$368bo$367bo$366bo$365bo$364bo$363bo$362bo$361bo$360bo$359bo$358bo$
357bo$356bo$355bo$354bo$353bo$352bo$351bo$350bo$349bo$348bo$347bo$346b
o$345bo$344bo$343bo$342bo$341bo$340bo$339bo$338bo$337bo$336bo$335bo$
334bo$333bo$332bo$331bo$330bo$329bo$328bo$327bo$326bo$325bo$324bo$323b
o$322bo$321bo$320bo$319bo$318bo$317bo$316bo$315bo$314bo$313bo$312bo$
311bo$310bo$309bo$308bo$307bo$306bo$305bo$304bo$303bo$302bo$301bo$300b
o$299bo$298bo$297bo$296bo$295bo$294bo$293bo$292bo$291bo$290bo$289bo$
288bo$287bo$286bo$285bo$284bo$283bo$282bo$281bo$280bo$279bo$278bo$277b
o$276bo$275bo$274bo$273bo$272bo$271bo$270bo$269bo$268bo$267bo$266bo$
265bo$264bo$263bo$262bo$261bo$260bo$259bo$258bo$257bo$256bo$255bo$254b
o$253bo$252bo$251bo$250bo$249bo$248bo$247bo$246bo$245bo$244bo$243bo$
242bo$241bo$240bo$239bo$238bo$237bo$236bo$235bo$234bo$233bo$232bo$231b
o$230bo$229bo$228bo$227bo$226bo$225bo$224bo$223bo$222bo$221bo$220bo$
219bo$218bo$217bo$216bo$215bo$214bo$213bo$212bo$211bo$210bo$209bo$208b
o$207bo$206bo$205bo$204bo$203bo$202bo$201bo$200bo$199bo$198bo$197bo$
196bo$195bo$194bo$193bo$192bo$191bo$190bo$189bo$188bo$187bo$186bo$185b
o$184bo$183bo$182bo$181bo$180bo$179bo$178bo$177bo$176bo$175bo$174bo$
173bo$172bo$171bo$170bo$169bo$168bo$167bo$166bo$165bo$164bo$163bo$162b
o$161bo$160bo$159bo$158bo$157bo$156bo$155bo$154bo$153bo$152bo$151bo$
150bo$149bo$148bo$147bo$146bo$145bo$144bo$143bo$142bo$141bo$140bo$139b
o$138bo$137bo$136bo$135bo$134bo$133bo$132bo$131bo$130bo$129bo$128bo$
127bo$126bo$125bo$124bo$123bo$122bo$121bo$120bo$119bo$118bo$117bo$116b
o$115bo$114bo$113bo$112bo$111bo$110bo$109bo$108bo$107bo$106bo$105bo$
104bo$103bo$102bo$101bo$100bo$99bo$98bo$97bo$96bo$95bo$94bo$93bo$92bo$
91bo$90bo$89bo$88bo$87bo$86bo$85bo$84bo$83bo$82bo$81bo$80bo$79bo$78bo$
77bo$76bo$75bo$74bo$73bo$72bo$71bo$70bo$69bo$68bo$67bo$66bo$65bo$64bo$
63bo$62bo$61bo$60bo$59bo$58bo$57bo$56bo$55bo$54bo$53bo$52bo$51bo$50bo$
49bo$48bo$47bo$46bo$45bo$44bo$43bo$42bo$41bo$40bo$39bo$38bo$37bo$36bo$
35bo$34bo$33bo$32bo$31bo$30bo$29bo$28bo$27bo$26bo$25bo$24bo$23bo$22bo$
21bo$20bo$19bo$18bo$17bo$16bo$15bo$14bo$13bo$12bo$11bo$10bo$9bo$8bo$7b
o$6bo$5bo$4bo$3bo$2bo$bo$o!
Kiran Linsuain
User avatar
Kiran
 
Posts: 284
Joined: March 4th, 2015, 6:48 pm

Re: "One-way travel" oscillators?

Postby BlinkerSpawn » March 22nd, 2017, 10:18 pm

Extrementhusiast wrote:
Scorbie wrote:@EE BTW, if you are designing a game, I don't think we could make many levels with this restriction. Is that okay?

Yes, as it's only going to be part of one giant level.

Ok, so how are door transitions going to be implemented anyway (in relation to gameplay and flow and whatever)?
On that note, how's this whole game going to work?
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]
User avatar
BlinkerSpawn
 
Posts: 1428
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

Re: "One-way travel" oscillators?

Postby Extrementhusiast » March 23rd, 2017, 6:18 pm

BlinkerSpawn wrote:
Extrementhusiast wrote:
Scorbie wrote:@EE BTW, if you are designing a game, I don't think we could make many levels with this restriction. Is that okay?

Yes, as it's only going to be part of one giant level.

Ok, so how are door transitions going to be implemented anyway (in relation to gameplay and flow and whatever)?
On that note, how's this whole game going to work?

One generation every second (likely even just a bit faster), and if the agent is caught within a forming cell, it dies and must respawn outside of the oscillator.

As for how this whole level is going to work, it mainly involves coding the level to be read by a preexisting engine. (I've already gotten all of the hard parts done; what's left is just the oscillator and building the actual level.)

(I know I'm being a bit secretive, but I have a habit of withholding the exact context for small problems, so that the big reveal is all that much more impressive. (It also has to do with security in not linking online accounts.))
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1638
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: "One-way travel" oscillators?

Postby Extrementhusiast » May 7th, 2017, 3:58 pm

Found one hiding in DRH-oscillators.rle, right under my nose!
x = 54, y = 15, rule = LifeHistory
9.2A$9.A$6.2A.A7.2A16.2A$6.ADA2D6.2A16.2A3.2A$3.BA.A4D2A10.2A.2D.2A
10.A2.2A3.AB$.B2A.A.A2DA.A2.6A2.A.A2DA.A2.6A2.A.A2DA.A.2AB$A.AB.A.A2D
A.A.A6.A.A.A2DA.A.A6.A.A.A2DA.A.BA.A$2A2.ABA4DAB2ABA2BAB2ABA4DAB2ABA
2BAB2ABA4DABA2.2A$6.BA2DAB2.A2B2A2BA2.BA2DAB2.A2B2A2BA2.BA2DAB$2A2.AB
A4DAB2ABA2BAB2ABA4DAB2ABA2BAB2ABA4DABA2.2A$A.AB.A.A2DA.A.A6.A.A.A2DA.
A.A6.A.A.A2DA.A.BA.A$.B2A.A.A2DA.A2.6A2.A.A2DA.A2.6A2.A.A2DA.A.2AB$3.
BA3.2A2.A10.A2.2A2.A10.A2.2A3.AB$12.2A3.2A3.2A6.2A3.2A3.2A$17.2A16.2A
!

While the singular version is impressively small, I can't seem to find a way to allow the agent to escape the one-way portion without resorting to the above extension:
x = 18, y = 9, rule = LifeHistory
3.BA3.2A3.AB$.B2A.A.A2DA.A.2AB$A.AB.A.A2DA.A.BA.A$2A2.ABA4DABA2.2A$6.
BA2DAB$2A2.ABA4DABA2.2A$A.AB.A.A2DA.A.BA.A$.B2A.A.A2DA.A.2AB$3.BA3.2A
3.AB!

Is there another, shorter way to stabilize one of the halves, or to allow escape from the singular version?
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1638
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: "One-way travel" oscillators?

Postby Scorbie » May 8th, 2017, 1:06 am

Here's my best attempt: (Edit: I added some cells to prevent cheating through the supporting p3 rotor)
x = 22, y = 14, rule = B3/S23
2b2o14b2o$3bo14bo$3bob2o8b2obo$b2obobo8bobob2o$obobobobo4bobobobobo$ob
ob2obobo2bobob2obobo$bobobo3bo2bo3bobobo$3bo2bobo4bobo2bo$3b2o4bo2bo4b
2o$8bo4bo$7bobo2bobo$5b3obo2bob3o$4bo5b2o5bo$4b2o10b2o!

(Note for someone wondering like me: The traveler comes from the bottom and goes to the top through the oscillator.)

If you're okay with bidirectional paths with other starting points, here's a slightly better one:
x = 24, y = 11, rule = B3/S23
9bo4bo$8bobo2bobo$6b3obo2bob3o$bo3bo3bo4bo3bo3bo$obobob2o2bo2bo2b2obob
obo$b2obo4bo4bo4bob2o$3b2o2b2obo2bob2o2b2o$3bobo2bobo2bobo2bobo$2b2obo
bo3b2o3bobob2o$o2bob2o10b2obo2bo$2o20b2o!


And here's just a pretty open variant. Traveler comes from the bottom and exits to the side.
x = 13, y = 28, rule = B3/S23
2bo7bo$bobo5bobo$o2bo5bo2bo2$bobo5bobo$3b2o3b2o$3b2o3b2o$bobo5bobo2$o
2bo5bo2bo$bobo5bobo$2bo2b3o2bo$3b7o3$3b7o$2bo2b3o2bo$bobo5bobo$o2bo5bo
2bo2$bobo5bobo$3b2o3b2o$3b2o3b2o$bobo5bobo2$o2bo5bo2bo$bobo5bobo$2bo7b
o!
Best wishes to you, Scorbie
User avatar
Scorbie
 
Posts: 1322
Joined: December 7th, 2013, 1:05 am

Re: "One-way travel" oscillators?

Postby calcyman » May 8th, 2017, 3:11 am

Scorbie's solution can be hybridised with the DRH oscillator to yield a smaller asymmetric solution:

Code: Select all
x = 20, y = 14, rule = LifeHistory
2.2A5.2A$3.A6.A$3.A.2A3.A.2A$.2A.A.A4.A.A$A.A.B.A.A4.A.2A$A.A.2A.A.A
2DA.A.2BA$.A.A.B.A.A2CA.A.AB.A$3.A.AB.BD2CDBAB2.2A$3.2A2.A2B2C2B$8.BD
2CDBAB2.2A$7.A.A2CA.A.AB.A$5.3A.A2DA.A.2BA$4.A5.2A3.2A$4.2A!


Enter through the bottom; exit through the top.
What do you do with ill crystallographers? Take them to the mono-clinic!
User avatar
calcyman
 
Posts: 1307
Joined: June 1st, 2009, 4:32 pm

Re: "One-way travel" oscillators?

Postby Scorbie » May 8th, 2017, 5:30 am

Hmm... Does this count?
x = 19, y = 17, rule = B3/S23
4bo$4b3o$7bo$6b2o9b2o$17bo$15bobo$8b3o4b2o$7bo3bo$6bo5bo$7bo3bo$2b2o4b
3o$bobo$bo$2o9b2o$11bo$12b3o$14bo!

You can escape from the center cell but cannot go back in.

Edit: I am quite confused myself. You cannot go back in, right???
Best wishes to you, Scorbie
User avatar
Scorbie
 
Posts: 1322
Joined: December 7th, 2013, 1:05 am

Re: "One-way travel" oscillators?

Postby Kiran » May 8th, 2017, 10:49 am

Scorbie wrote:Hmm... Does this count?
x = 19, y = 17, rule = B3/S23
4bo$4b3o$7bo$6b2o9b2o$17bo$15bobo$8b3o4b2o$7bo3bo$6bo5bo$7bo3bo$2b2o4b
3o$bobo$bo$2o9b2o$11bo$12b3o$14bo!

You can escape from the center cell but cannot go back in.

Edit: I am quite confused myself. You cannot go back in, right???

You indeed cannot go back in, but this does not really count because it cannot be used as a "gate".

Also, besides a one-way travel oscillator, is there a "crossover" (a pattern that allows the agent to travel along two intersecting paths, but not turn from one to the other)?
Kiran Linsuain
User avatar
Kiran
 
Posts: 284
Joined: March 4th, 2015, 6:48 pm

Re: "One-way travel" oscillators?

Postby Scorbie » May 8th, 2017, 3:56 pm

Kiran wrote:You indeed cannot go back in, but this does not really count because it cannot be used as a "gate".
I get your point. Was just wondering if that can be used in EE's game.
Best wishes to you, Scorbie
User avatar
Scorbie
 
Posts: 1322
Joined: December 7th, 2013, 1:05 am

Re: "One-way travel" oscillators?

Postby Extrementhusiast » May 8th, 2017, 5:57 pm

Scorbie wrote:
Kiran wrote:You indeed cannot go back in, but this does not really count because it cannot be used as a "gate".
I get your point. Was just wondering if that can be used in EE's game.

It can, as there are one-square teleporters that can be included in the level. However, the oscillator itself is a bit too open for my tastes, as I want the player (represented by the agent) to feel "boxed in". (The final level will resemble a maze, much like this, but with some oscillators embedded within.)
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1638
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: "One-way travel" oscillators?

Postby Kiran » May 8th, 2017, 6:23 pm

Extrementhusiast wrote:It can, as there are one-square teleporters that can be included in the level.

If teleporters exist, why bother with the oscillators in the first place?
Kiran Linsuain
User avatar
Kiran
 
Posts: 284
Joined: March 4th, 2015, 6:48 pm

Next

Return to Patterns

Who is online

Users browsing this forum: No registered users and 8 guests