## "One-way travel" oscillators?

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

### "One-way travel" oscillators?

Suppose one has a hypothetical agent, able to move at any speed (even faster than c), which travels orthogonally on the dead squares of a Life grid, and dies if any live cells are born on top of it. (This is intended for another game, in which the player controls said agent via the mouse.) Are there any oscillators in which the agent can travel through the rotor in one direction but not the other? (The agent is supposed to enter through one part of the stator, and exit through another part, but parts of the stator can be blocked off, subject to Life limitations, of course.)

I do know that any such oscillators must operate somewhat like a wave pool, with an advancing wall of live cells. When that wall dies, there must be another wall behind it, and there cannot be any holes in the wall, or safe spaces to hide if the next wall has not yet fully formed.

I haven't yet found any examples (even when looking through jslife, Sokwe's jslife-osc-supplement, and the Oscillator Discoveries thread), but I have found a few near misses that should help illustrate my point:
x = 61, y = 11, rule = LifeHistory3.2E26.E20.2E$.E2.E2.E22.E.E19.E$.2E.E.E.E20.E.E.E15.2E.E.A2B.2E$2.B.E.E.E17.E2.E.B.E15.E2.E.E3BE.E$2.2BA.E.2E15.E.E.EA.AE.2E13.2E.E.ABD2.E$2E.E.A2B18.2E.E.B.E.2E16.E.BA3E$.E.E.E.B20.3BA.E19.E.E.E$.E.E.E.2E19.B.BE.E20.2E$2.E2.E2.E18.2E.E2.2E21.4E$5.2E18.E2.E.E.E23.E2.E$25.2E4.2E!

The wall in the first oscillator doesn't go far enough out before reforming, so no travel in either direction (center to sides or vice versa) is possible. In the second oscillator, the wall is broken in one phase, and the agent can pass right through that gap. In the third oscillator, the wall remains intact, but the agent can still get through from top to bottom by waiting at the location of the red cell, and then continuing once the wall has passed.

As for what periods to search, P3 through P6 seems like the sweet spot, with an emphasis on P4. However, another, higher-period option is possible using signal terminations, which are stable at rest; thus, only the times around the signals' arrivals are crucial, as the stable walls do the rest of the work.
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1695
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: "One-way travel" oscillators?

Extrementhusiast wrote:Suppose one has a hypothetical agent, able to move at any speed (even faster than c), which travels orthogonally on the dead squares of a Life grid, and dies if any live cells are born on top of it. (This is intended for another game, in which the player controls said agent via the mouse.) Are there any oscillators in which the agent can travel through the rotor in one direction but not the other? (The agent is supposed to enter through one part of the stator, and exit through another part, but parts of the stator can be blocked off, subject to Life limitations, of course.)

Clarification: this agent can move along a path of rookwise-connected empty cells of any length, between one tick and the next -- right? The path doesn't have to be a straight line, it just can't be diagonal?

My first thought would be to try to engineer a very-high-period solution to this, but it's not easy. Maybe start with a series of three "walls", with two "rooms" between the walls, and open and close gaps in the walls in order from one side to the other. The tough part is burning something-or-other to sterilize the appropriate room, first one and then the other, when the gaps are closed -- turn on every cell in the area, somehow, without leaving any space to dodge.

That's probably not completely impossible, if you're willing to trigger some kind of fuse to a structure in the room -- a small region of block agar or some such -- that then gets completely rebuilt before the next cycle. It will be hard to avoid burning down Room #2 while sterilizing Room #1, but it might be solvable somehow.

I think if I really had to solve this one, I'd write some kind of brute-force Permeability Analysis utility, run it on every oscillator above P2 in Koenig's Object Database, and just hope that something will turn up that randomly happens to fit the criteria.

If I were an agent, I'd want to just go around the whole oscillator, of course...

dvgrn
Moderator

Posts: 4573
Joined: May 17th, 2009, 11:00 pm

### Re: "One-way travel" oscillators?

The best I've come up with so far is this unfinished example in two variants:
x = 41, y = 23, rule = B3/S236bo$5bo$5b3o$3bo$4bo$2b3o$7bo20bobo$6bo17bo3b2o$6b3o16b2o2bo6b2o$24b2o11bo$37bob2o$o8b2o23b2obo2bo$b2o7bo24bob2o$2o5b3o22b3o2bo$7bo16bo7bo4bo$7bob3o12b2o6bob3o$5bobobo2bo10bobo4bobobo$5b2o4b2o17b2o$27bo$27b5o$31bo$29bo$29b2o!

(Obviously, the final oscillator would not be stabilized with gliders.)
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1695
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: "One-way travel" oscillators?

Something like this (for 2c particles)?
x = 53, y = 27, rule = B3/S2331bo$26b4o3bo$29bo3bo$33bo$30bo$31b2o7$21bo$19bo3b4o$19bo3bo$19bo$22bo$20b2o$26bo$25bobo$26bo$2b2o2b2o2b2o2b2o2b2o2b2o5b2o2b2o2b2o2b2o2b2o2b2o$2b2o2b2o2b2o2b2o2b2o2b2o5b2o2b2o2b2o2b2o2b2o2b2o3$2o2b2o2b2o2b2o2b2o2b2o2b2ob2o2b2o2b2o2b2o2b2o2b2o2b2o$2o2b2o2b2o2b2o2b2o2b2o2b2ob2o2b2o2b2o2b2o2b2o2b2o2b2o!

I am not sure if this particular pattern works.
Kiran Linsuain

Kiran

Posts: 284
Joined: March 4th, 2015, 6:48 pm

### Re: "One-way travel" oscillators?

Kiran wrote:Something like this (for 2c particles)?
RLE

...No, not at all like that. It'd be more like this:
x = 17, y = 30, rule = LifeHistory.F$F.F$3F$F.F$F.F7.C$9.C.C$4.F5.C$5.F$6.F.5C$9.C3.C$7.C4.2C$5.4C4.C.2C$4.C4.B.A.C2.C$4.C2.2C3BC.2C$3.2C.C.A2B.C$4.C.CABDC.C$2.C2.C2.CD2CD2C$2.2C.C.2C4DC$5.C2.CD2CDC$5.2C2.C.2C2$8.F$9.F$10.F2$12.2F$12.F.F$12.2F$12.F.F$12.2F! If the red region were somehow inaccessible, then the agent would not be able to get from A to B without going around, but would still be able to get from B to A going through the oscillator. I Like My Heisenburps! (and others) Extrementhusiast Posts: 1695 Joined: June 16th, 2009, 11:24 pm Location: USA ### Re: "One-way travel" oscillators? Would this be an example: x = 5, y = 4, rule = B2c3e4t5j/S012ae3-y4a2bo$o3bo$5o! I know it's not in Life, but just to be sure I have the idea right... x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt) $$x_1=\eta x$$ $$V^*_\eta=c^2\sqrt{\Lambda\eta}$$ $$K=\frac{\Lambda u^2}2$$ $$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$ http://conwaylife.com/wiki/A_for_all Aidan F. Pierce A for awesome Posts: 1616 Joined: September 13th, 2014, 5:36 pm Location: 0x-1 ### Re: "One-way travel" oscillators? A for awesome wrote:Would this be an example: x = 5, y = 4, rule = B2c3e4t5j/S012ae3-y4a2bo$o3bo$5o! I know it's not in Life, but just to be sure I have the idea right... Yes, you have the idea right. I Like My Heisenburps! (and others) Extrementhusiast Posts: 1695 Joined: June 16th, 2009, 11:24 pm Location: USA ### Re: "One-way travel" oscillators? I see this is quite hard, as no blank cells should be on the path... Edit: I was looking at this, which is a near miss because of a single cell in the middle: x = 40, y = 24, rule = B3/S233$20b2o2b2o$20b2o2b2o2$18bo8bo$17bo10bo$17bo10bo$15b2ob10ob2o$14bo2b3o6b3o2bo$15b2o12b2o2$13b4o12b4o$13bo2bo12bo2bo$16bo12bo$11b4obo12bob4ob2o$11bo2b2o14b2o2bobo$12bo2b2o12b2o2bo2bo$9b3o3bo14bo3b2o$9bo! @EE BTW, if you are designing a game, I don't think we could make many levels with this restriction. Is that okay? Best wishes to you, Scorbie Scorbie Posts: 1349 Joined: December 7th, 2013, 1:05 am ### Re: "One-way travel" oscillators? Scorbie wrote:@EE BTW, if you are designing a game, I don't think we could make many levels with this restriction. Is that okay? Yes, as it's only going to be part of one giant level. I Like My Heisenburps! (and others) Extrementhusiast Posts: 1695 Joined: June 16th, 2009, 11:24 pm Location: USA ### Re: "One-way travel" oscillators? Would this be another example of one way travel (not life though): x = 2, y = 5, rule = B2ei3-ak4i/S23-k4ei62o$bo$2o$bo$2o! This post was brought to you by the letter D, for dishes that Andrew J. Wade won't do. (Also Daniel, which happens to be me.) Current rule interest: B2ce3-ir4a5y/S2-c3-y drc Posts: 1665 Joined: December 3rd, 2015, 4:11 pm Location: creating useless things in OCA ### Re: "One-way travel" oscillators? drc wrote:Would this be another example of one way travel (not life though): x = 2, y = 5, rule = B2ei3-ak4i/S23-k4ei62o$bo$2o$bo$2o! No, that's essentially equivalent to a wall. Remember, the agent is traveling along the empty cells! A horribly large (too large to be usable) but working example in Life: x = 677, y = 731, rule = B3/S2338bo$36b3o$35bo$35b2o$49bo$47b3o$46bo$46b2o$52b2o$52bo$50bobo$50b2o5$21b2o$20bobo$20bo$19b2o11b3o$31bo2bo$31b2o2bo$34b2o5$25b2o$24bobo$24bo$23b2o9$43bo$41bobo$42b2o15$48b2o$48b2o2$19bo$17b3o$16bo$16b2o$30bo$28b3o$27bo$27b2o4b2o$33b2o4$20b2o$19bobo$19bo$19b2obo$2b2o17b2o$bobo$bo51b2o$2o51bo$54b3o$56bo$40bo39bo$41bo39b2o$39b3o38b2o2$36b2o51bo$6b2o27bobo49bobo$5bobo27bo15b2o35b2o$5bo28b2o15b2o$4b2o$10b2o$11bo$8b3o$8bo3$45bo5bo$44b3o3b3o$43b2obo3bob2o3$46bo3bo$46bo3bo10$46b2ob2o$47bobo$47bobo$48bo12$126bo$127b2o$119b2o5b2o$119b2o$135bo$90bo42bobo$88b3o43b2o$87bo$87b2o$101bo$99b3o$98bo$98b2o4b2o$104b2o4$91b2o$90bobo$90bo$90b2obo$73b2o17b2o$72bobo$72bo51b2o$71b2o51bo$125b3o$127bo$111bo39bo$112bo39b2o$110b3o38b2o2$107b2o$77b2o27bobo$76bobo27bo15b2o$76bo28b2o15b2o$75b2o$81b2o$82bo$79b3o$79bo3$116bo5bo$115b3o3b3o$114b2obo3bob2o2$172bo$117bo3bo51b2o$117bo3bo50b2o2$181bo$179bobo$180b2o6$117b2ob2o$118bobo$118bobo$119bo12$187b2o8bo$187b2o9b2o$197b2o$158bo$156b3o$155bo$155b2o$169bo$167b3o$166bo$166b2o4b2o$172b2o4$159b2o$158bobo$158bo$158b2obo$141b2o17b2o56bo$140bobo76b2o$140bo51b2o24b2o$139b2o51bo$193b3o31bo$195bo29bobo$179bo39bo6b2o$180bo39b2o$178b3o38b2o2$175b2o$145b2o27bobo$144bobo27bo15b2o$144bo28b2o15b2o$143b2o$149b2o$150bo$147b3o$147bo3$184bo5bo$183b3o3b3o$182b2obo3bob2o3$185bo3bo$185bo3bo53bo$244b2o$243b2o8$185b2ob2o$186bobo$186bobo$187bo6$264bo$265b2o$264b2o2$273bo$271bobo$265bo6b2o$266b2o$256b2o7b2o$256b2o2$227bo$225b3o$224bo$224b2o$238bo$236b3o$235bo$235b2o4b2o$241b2o4$228b2o$227bobo$227bo$227b2obo$210b2o17b2o58bo$209bobo78b2o$209bo51b2o26b2o$208b2o51bo$262b3o$264bo$248bo39bo$249bo39b2o$247b3o38b2o2$244b2o$214b2o27bobo$213bobo27bo15b2o$213bo28b2o15b2o$212b2o$218b2o$219bo$216b3o$216bo$310bo$311b2o$253bo5bo50b2o$252b3o3b3o$251b2obo3bob2o57bo$317bobo$311bo6b2o$254bo3bo53b2o$254bo3bo52b2o10$254b2ob2o$255bobo$255bobo$256bo6$335bo88bo$336b2o84b3o$335b2o84bo$421b2o$435bo$433b3o$334bo97bo$335b2o95b2o$334b2o102b2o$438bo$436bobo$436b2o5$407b2o$406bobo$406bo$356bo48b2o12bo$357b2o59b3o$356b2o55b2o2b2o2bo$420b2o$344b2o19bo$344b2o17bobo$357bo6b2o$315bo42b2o$313b3o41b2o52b2o$312bo97bobo$312b2o96bo246bo$326bo82b2o246b3o$324b3o333bo$323bo335b2o$323b2o4b2o81b2o232bo$329b2o81b2o20bo211b3o$432b3o214bo$431bo216b2o$431b2o209b2o$316b2o325bo$315bobo109bobo213bobo$315bo112b2o214b2o$315b2obo109bo$298b2o17b2o$297bobo$297bo51b2o92b3o$296b2o51bo93bo3bo225b2o$350b3o28bo61bo4bo9bo214bobo$352bo29b2o60bo3bo9b3o201bo12bo$336bo39bo4b2o19b2o57bo199b3o11b2o$337bo39b2o23b2o40bo3bo9b3o199b2o2bo$335b3o38b2o65bo4bo9bo201bob3o$433b2o8bo3bo212b2o$332b2o46bo52b2o8b3o$302b2o27bobo47b2o40b2o$301bobo27bo15b2o31b2o41bobo$301bo28b2o15b2o76bo$300b2o123b2o242b2o$306b2o361bobo$307bo363bo$304b3o364b2o$304bo3$341bo5bo$340b3o3b3o$339b2obo3bob2o52bo$403b2o$402b2o$342bo3bo306bo$342bo3bo64bo239b2o$409bobo240b2o$403bo6b2o$404b2o$403b2o6$342b2ob2o81bo$343bobo83bo$343bobo81b3o$344bo8$411b2o$411b2o$427bo$382bo45b2o$380b3o39bo4b2o$379bo43b2o$379b2o41b2o$393bo$391b3o32bo$390bo36b2o$390b2o4b2o28b2o$396b2o4$383b2o$381b2ob2o$381bo2b2o$381bo3bo$365b2o15b2obo234b2o$364bobo17bo235b2o$364bo51b2o30bo$363b2o51bo32b2o199bo$417b3o28b2o200b3o$419bo187bo45bo$457bo147b2o45b2o$404bo38bobo9bobo148b2o31bo$402bobo39b2o3bo6b2o181b3o$403b2o39bo5b2o190bo$399b2o48b2o184b2o4b2o$369b2o27bobo234b2o$368bobo27bo15b2o$368bo28b2o15b2o$367b2o$373b2o273b2o$374bo99bo173bobo$371b3o101bo172bob2o$371bo101b3o171bob2o$647b3o16b2o$408bo5bo251bobo$407b3o3b3o199b2o51bo$406bo2b2ob2o2bo199bo51b2o$406b3o5b3o196b3o$613bo$588bo$587bo40bobo$587b3o38b2o$629bo$473bo158b2o$474b2o156bobo27b2o$468bo4b2o142b2o15bo27bobo$469b2o146b2o15b2o28bo$468b2o194b2o$658b2o$472bo185bo$473b2o184b3o$409b2ob2o58b2o187bo$410bobo$410bobo$411bo205b3o3b3o$616bo2bo3bo2bo$616b2obo3bob2o6$494bo$495b2o$494b2o$561bo$503bo55b2o$489bobo9bobo56b2o$490b2o3bo6b2o$490bo5b2o$495b2o122b2ob2o$620bobo$620bobo$621bo3$520bo$521bo$519b3o7$542bo$541bo$541b3o2$519bo$520b2o$514bo4b2o$515b2o$514b2o2$518bo20b2o$519b2o17bobo$518b2o18bo$525b2o10b2o$524bobo$526bo8b6o$535bo4bo$532b2obobobo$532bo2bob2o$533b2obo$536bo$536b2o12$516b2o$517b2o$516bo15$493b2o$494b2o$493bo7$479b2o$478bobo$480bo12$401bo$400bobo$400bobo$399b2ob2o3$470b2o$471b2o$470bo5$399b2ob2o$398bo5bo2$397bo7bo$397bo2bobo2bo$397b3o3b3o4$361bo$361b3o83b2o$364bo83b2o$363b2o82bo$357b2o$358bo28b2o15b2o$358bobo27bo15b2o$359b2o27bobo$389b2o2$392b2o39b2o$393b2o37bobo$392bo41bo$409bo$407b3o$353b2o51bo$354bo51b2o$354bobo$355b2o17b2o$373bobo$372b2o$373b2o$374bo3$374bo$374bo11b2o$380b2o4b2o$380bo$381b3o$383bo40b2o$369b2o54b2o$369bo54bo$370b3o$372bo2$401b2o$401b2o10$401b2o$402b2o$401bo7$421b2o$421bo$419bobo$419b2o18b2o$429b2o7bobo$429b2o6b2obo$438b2o14bo$398b2o39bo14b3o$398b2o57bo$439bo14b3o$438b2o14bo$437b2obo$438bobo$439b2o2$424b3o$426bo$425bo2$427b2o$427bo$428b3o$408b2o20bo$408b2o3$405b2o$324bo81bo$324b3o79bobo$327bo79b2o$326b2o$320b2o$321bo$321bobo$322b2o90b4o$413b3o2bo$413bo3bo$355b2o44b2o11bo2bo$356b2o44bo11b3o$355bo46bobo$403b2o2$316b2o$317bo$317bobo$318b2o17b2o93b2o$336bobo93bobo$335b2o97bo$336b2o96b2o$337bo90b2o$428bo$429b3o$337bo93bo$337bo79b2o$343b2o72bo$343bo74b3o$344b3o73bo$346bo$332b2o$332bo$333b3o$335bo!

The agent can exit the cavity of the fancy still life, but cannot enter it again from the outside. This is because there is a continuously advancing solid wall of cells. With no places to hide and let the wall bypass, an entering agent is forced back. By the time the wall breaks (to allow the agent out), the next wall is already fully formed. (If this explanation doesn't help, think of the giant rolling boulder from Indiana Jones, except that there's many of them dropping in periodically.)

As for how to find much smaller examples, I don't have any advice except to search for large, otherwise-useless oscillators, and see if there is a part that fulfills these conditions. (If there is, then we can just work on improving that oscillator.) Alternatively, we could look for signal fizzles with dr or similar programs.
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1695
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: "One-way travel" oscillators?

Here's a version of Extremeenthusiast's one-way transporter with a bigger cavity:

x = 677, y = 731, rule = B3/S2338bo$36b3o$35bo$35b2o$49bo$47b3o$46bo$46b2o$52b2o$52bo$50bobo$50b2o5$21b2o$20bobo$20bo$19b2o11b3o$31bo2bo$31b2o2bo$34b2o5$25b2o$24bobo$24bo$23b2o9$43bo$41bobo$42b2o15$48b2o$48b2o2$19bo$17b3o$16bo$16b2o$30bo$28b3o$27bo$27b2o4b2o$33b2o4$20b2o$19bobo$19bo$19b2obo$2b2o17b2o$bobo$bo51b2o$2o51bo$54b3o$56bo$40bo39bo$41bo39b2o$39b3o38b2o2$36b2o51bo$6b2o27bobo49bobo$5bobo27bo15b2o35b2o$5bo28b2o15b2o$4b2o$10b2o$11bo$8b3o$8bo3$45bo5bo$44b3o3b3o$43b2obo3bob2o3$46bo3bo$46bo3bo10$46b2ob2o$47bobo$47bobo$48bo12$126bo$127b2o$119b2o5b2o$119b2o$135bo$90bo42bobo$88b3o43b2o$87bo$87b2o$101bo$99b3o$98bo$98b2o4b2o$104b2o4$91b2o$90bobo$90bo$90b2obo$73b2o17b2o$72bobo$72bo51b2o$71b2o51bo$125b3o$127bo$111bo39bo$112bo39b2o$110b3o38b2o2$107b2o$77b2o27bobo$76bobo27bo15b2o$76bo28b2o15b2o$75b2o$81b2o$82bo$79b3o$79bo3$116bo5bo$115b3o3b3o$114b2obo3bob2o2$172bo$117bo3bo51b2o$117bo3bo50b2o2$181bo$179bobo$180b2o6$117b2ob2o$118bobo$118bobo$119bo12$187b2o8bo$187b2o9b2o$197b2o$158bo$156b3o$155bo$155b2o$169bo$167b3o$166bo$166b2o4b2o$172b2o4$159b2o$158bobo$158bo$158b2obo$141b2o17b2o56bo$140bobo76b2o$140bo51b2o24b2o$139b2o51bo$193b3o31bo$195bo29bobo$179bo39bo6b2o$180bo39b2o$178b3o38b2o2$175b2o$145b2o27bobo$144bobo27bo15b2o$144bo28b2o15b2o$143b2o$149b2o$150bo$147b3o$147bo3$184bo5bo$183b3o3b3o$182b2obo3bob2o3$185bo3bo$185bo3bo53bo$244b2o$243b2o8$185b2ob2o$186bobo$186bobo$187bo6$264bo$265b2o$264b2o2$273bo$271bobo$265bo6b2o$266b2o$256b2o7b2o$256b2o2$227bo$225b3o$224bo$224b2o$238bo$236b3o$235bo$235b2o4b2o$241b2o4$228b2o$227bobo$227bo$227b2obo$210b2o17b2o58bo$209bobo78b2o$209bo51b2o26b2o$208b2o51bo$262b3o$264bo$248bo39bo$249bo39b2o$247b3o38b2o2$244b2o$214b2o27bobo$213bobo27bo15b2o$213bo28b2o15b2o$212b2o$218b2o$219bo$216b3o$216bo$310bo$311b2o$253bo5bo50b2o$252b3o3b3o$251b2obo3bob2o57bo$317bobo$311bo6b2o$254bo3bo53b2o$254bo3bo52b2o10$254b2ob2o$255bobo$255bobo$256bo6$335bo88bo$336b2o84b3o$335b2o84bo$421b2o$435bo$433b3o$334bo97bo$335b2o95b2o$334b2o102b2o$438bo$436bobo$436b2o5$407b2o$406bobo$406bo$356bo48b2o12bo$357b2o59b3o$356b2o55b2o2b2o2bo$420b2o$344b2o19bo$344b2o17bobo$357bo6b2o$315bo42b2o$313b3o41b2o52b2o$312bo97bobo$312b2o96bo246bo$326bo82b2o246b3o$324b3o333bo$323bo335b2o$323b2o4b2o81b2o232bo$329b2o81b2o20bo211b3o$432b3o214bo$431bo216b2o$431b2o209b2o$316b2o325bo$315bobo109bobo213bobo$315bo112b2o214b2o$315b2obo109bo$298b2o17b2o$297bobo$297bo51b2o92b3o$296b2o51bo93bo3bo225b2o$350b3o28bo61bo4bo9bo214bobo$352bo29b2o60bo3bo9b3o201bo12bo$336bo39bo4b2o19b2o57bo199b3o11b2o$337bo39b2o23b2o40bo3bo9b3o199b2o2bo$335b3o38b2o65bo4bo9bo201bob3o$433b2o8bo3bo212b2o$332b2o46bo52b2o8b3o$302b2o27bobo47b2o40b2o$301bobo27bo15b2o31b2o41bobo$301bo28b2o15b2o76bo$300b2o123b2o242b2o$306b2o361bobo$307bo363bo$304b3o364b2o$304bo3$341bo5bo$340b3o3b3o$339b2obo3bob2o52bo$403b2o$402b2o$342bo3bo306bo$342bo3bo64bo239b2o$409bobo240b2o$403bo6b2o$404b2o$403b2o6$342b2ob2o81bo$343bobo83bo$343bobo81b3o$344bo8$411b2o$411b2o$427bo$382bo45b2o$380b3o39bo4b2o$379bo43b2o$379b2o41b2o$393bo$391b3o32bo$390bo36b2o$390b2o4b2o28b2o$396b2o4$383b2o$381b2ob2o$381bo2b2o$381bo3bo$365b2o15b2obo234b2o$364bobo17bo235b2o$364bo51b2o30bo$363b2o51bo32b2o199bo$417b3o28b2o200b3o$419bo187bo45bo$457bo147b2o45b2o$404bo38bobo9bobo148b2o31bo$402bobo39b2o3bo6b2o181b3o$403b2o39bo5b2o190bo$399b2o48b2o184b2o4b2o$369b2o27bobo234b2o$368bobo27bo15b2o$368bo28b2o15b2o$367b2o$373b2o273b2o$374bo99bo173bobo$371b3o101bo172bob2o$371bo101b3o171bob2o$647b3o16b2o$408bo5bo251bobo$407b3o3b3o199b2o51bo$406bo2b2ob2o2bo199bo51b2o$406b3o5b3o196b3o$613bo$588bo$587bo40bobo$587b3o38b2o$629bo$473bo158b2o$474b2o156bobo27b2o$468bo4b2o142b2o15bo27bobo$469b2o146b2o15b2o28bo$468b2o194b2o$658b2o$472bo185bo$473b2o184b3o$409b2ob2o58b2o187bo$410bobo$410bobo$411bo205b3o3b3o$616bo2bo3bo2bo$616b2obo3bob2o6$494bo$495b2o$494b2o$561bo$503bo55b2o$489bobo9bobo56b2o$490b2o3bo6b2o$490bo5b2o$495b2o75b2o45b2ob2o$570bo2bo46bobo$570b3o47bobo$621bo$568b3o$567bobobo$520bo45bo5bo$521bo43bo7bo$519b3o42bo9bo$563bo11bo$562bo13bo$561bo15bo$560bo17bo$559bo19bo$558bo21bo$542bo14bo23bo$541bo14bo25bo$541b3o11bo27bo$554bo29bo$519bo33bo31bo$520b2o30bo33bo$514bo4b2o30bo35bo$515b2o33bo37bo$514b2o33bo39bo$548bo41bo$518bo20b2o6bo43bo$519b2o17bobo5bo45bo$518b2o18bo6bo47bo$525b2o10b2o5bo49bo$524bobo16bo51bo$526bo8b6obo53bo$535bo4b2o55bo$532b2obobo60bo$532bo2bob5o57bo$533b2obo5bo57bo$536bo2b2obo58bo$536b2o2bobobo57bo$538b2o3b2o58bo$534b3o8b2o57bo$535bo9bobo57bo$533bo3bo10bo57bo$533b5o11bo57bo$550bo57bo$535bo15bo57bo$534bobo15bo57bo$535bo17bo57bo$554bo57bo$555bo57bo$516b2o38bo57bo$517b2o38bo57bo$516bo41bo57bo$559bo57bo$560bo57bo$561bo57bo$562bo57bo$563bo57bo$564bo57bo$565bo57bo$566bo57bo$567bo57bo$568bo57bo$569bo57bo$570bo57bo$571bo57bo$572bo57bo$493b2o78bo57bo$494b2o78bo57bo$493bo81bo57bo$576bo57bo$577bo57bo$578bo57bo$579bo57bo$580bo57bo$581bo57bo$479b2o101bo57bo$478bobo102bo57bo$480bo103bo55b2o$585bo55bob2o$586bo53bo2bo$587bo51bo3bobo$588bo49bo5b2o$589bo47bo$590bo45bo$591bo43bo$592bo41bo$593bo39bo$594bo37bo$595bo35bo$401bo194bo33bo$400bobo194bo31bo$400bobo195bo29bo$399b2ob2o195bo27bo$600bo25bo$601bo23bo$470b2o130bo21bo$471b2o130bo19bo$470bo133bo17bo$605bo15bo$606bo13bo$607bo11bo$608bo9bo$399b2ob2o205bo7bo$398bo5bo205bo5bo$611bobobo$397bo7bo206b3o$397bo2bobo2bo$397b3o3b3o204b3o$609bo2bo$609b2o2$361bo$361b3o83b2o$364bo83b2o$363b2o82bo$357b2o$358bo28b2o15b2o$358bobo27bo15b2o$359b2o27bobo$389b2o2$392b2o39b2o$393b2o37bobo$392bo41bo$409bo$407b3o$353b2o51bo$354bo51b2o$354bobo$355b2o17b2o$373bobo$372b2o$373b2o$374bo3$374bo$374bo11b2o$380b2o4b2o$380bo$381b3o$383bo40b2o$369b2o54b2o$369bo54bo$370b3o$372bo2$401b2o$401b2o10$401b2o$402b2o$401bo7$421b2o$421bo$419bobo$419b2o18b2o$429b2o7bobo$429b2o6b2obo$438b2o14bo$398b2o39bo14b3o$398b2o57bo$439bo14b3o$438b2o14bo$437b2obo$438bobo$439b2o2$424b3o$426bo$425bo2$427b2o$427bo$428b3o$408b2o20bo$408b2o3$405b2o$324bo81bo$324b3o79bobo$327bo79b2o$326b2o$320b2o$321bo$321bobo$322b2o90b4o$413b3o2bo$413bo3bo$355b2o44b2o11bo2bo$356b2o44bo11b3o$355bo46bobo$403b2o2$316b2o$317bo$317bobo$318b2o17b2o93b2o$336bobo93bobo$335b2o97bo$336b2o96b2o$337bo90b2o$428bo$429b3o$337bo93bo$337bo79b2o$343b2o72bo$343bo74b3o$344b3o73bo$346bo$332b2o$332bo$333b3o$335bo!

It's not surprising from EE's construction that a bigger cavity is possible just by changing the still life, and I'm sure EE could make a simpler still that's also expandable as shown in this pattern (I just played around with it until I got something that worked), but I wanted a chance to build something on my own.
itaibn

Posts: 10
Joined: October 31st, 2013, 8:45 am

### Re: "One-way travel" oscillators?

itaibn wrote:Here's a version of Extremeenthusiast's one-way transporter with a bigger cavity:

x = 677, y = 731, rule = B3/S2338bo$36b3o$35bo$35b2o$49bo$47b3o$46bo$46b2o$52b2o$52bo$50bobo$50b2o5$21b2o$20bobo$20bo$19b2o11b3o$31bo2bo$31b2o2bo$34b2o5$25b2o$24bobo$24bo$23b2o9$43bo$41bobo$42b2o15$48b2o$48b2o2$19bo$17b3o$16bo$16b2o$30bo$28b3o$27bo$27b2o4b2o$33b2o4$20b2o$19bobo$19bo$19b2obo$2b2o17b2o$bobo$bo51b2o$2o51bo$54b3o$56bo$40bo39bo$41bo39b2o$39b3o38b2o2$36b2o51bo$6b2o27bobo49bobo$5bobo27bo15b2o35b2o$5bo28b2o15b2o$4b2o$10b2o$11bo$8b3o$8bo3$45bo5bo$44b3o3b3o$43b2obo3bob2o3$46bo3bo$46bo3bo10$46b2ob2o$47bobo$47bobo$48bo12$126bo$127b2o$119b2o5b2o$119b2o$135bo$90bo42bobo$88b3o43b2o$87bo$87b2o$101bo$99b3o$98bo$98b2o4b2o$104b2o4$91b2o$90bobo$90bo$90b2obo$73b2o17b2o$72bobo$72bo51b2o$71b2o51bo$125b3o$127bo$111bo39bo$112bo39b2o$110b3o38b2o2$107b2o$77b2o27bobo$76bobo27bo15b2o$76bo28b2o15b2o$75b2o$81b2o$82bo$79b3o$79bo3$116bo5bo$115b3o3b3o$114b2obo3bob2o2$172bo$117bo3bo51b2o$117bo3bo50b2o2$181bo$179bobo$180b2o6$117b2ob2o$118bobo$118bobo$119bo12$187b2o8bo$187b2o9b2o$197b2o$158bo$156b3o$155bo$155b2o$169bo$167b3o$166bo$166b2o4b2o$172b2o4$159b2o$158bobo$158bo$158b2obo$141b2o17b2o56bo$140bobo76b2o$140bo51b2o24b2o$139b2o51bo$193b3o31bo$195bo29bobo$179bo39bo6b2o$180bo39b2o$178b3o38b2o2$175b2o$145b2o27bobo$144bobo27bo15b2o$144bo28b2o15b2o$143b2o$149b2o$150bo$147b3o$147bo3$184bo5bo$183b3o3b3o$182b2obo3bob2o3$185bo3bo$185bo3bo53bo$244b2o$243b2o8$185b2ob2o$186bobo$186bobo$187bo6$264bo$265b2o$264b2o2$273bo$271bobo$265bo6b2o$266b2o$256b2o7b2o$256b2o2$227bo$225b3o$224bo$224b2o$238bo$236b3o$235bo$235b2o4b2o$241b2o4$228b2o$227bobo$227bo$227b2obo$210b2o17b2o58bo$209bobo78b2o$209bo51b2o26b2o$208b2o51bo$262b3o$264bo$248bo39bo$249bo39b2o$247b3o38b2o2$244b2o$214b2o27bobo$213bobo27bo15b2o$213bo28b2o15b2o$212b2o$218b2o$219bo$216b3o$216bo$310bo$311b2o$253bo5bo50b2o$252b3o3b3o$251b2obo3bob2o57bo$317bobo$311bo6b2o$254bo3bo53b2o$254bo3bo52b2o10$254b2ob2o$255bobo$255bobo$256bo6$335bo88bo$336b2o84b3o$335b2o84bo$421b2o$435bo$433b3o$334bo97bo$335b2o95b2o$334b2o102b2o$438bo$436bobo$436b2o5$407b2o$406bobo$406bo$356bo48b2o12bo$357b2o59b3o$356b2o55b2o2b2o2bo$420b2o$344b2o19bo$344b2o17bobo$357bo6b2o$315bo42b2o$313b3o41b2o52b2o$312bo97bobo$312b2o96bo246bo$326bo82b2o246b3o$324b3o333bo$323bo335b2o$323b2o4b2o81b2o232bo$329b2o81b2o20bo211b3o$432b3o214bo$431bo216b2o$431b2o209b2o$316b2o325bo$315bobo109bobo213bobo$315bo112b2o214b2o$315b2obo109bo$298b2o17b2o$297bobo$297bo51b2o92b3o$296b2o51bo93bo3bo225b2o$350b3o28bo61bo4bo9bo214bobo$352bo29b2o60bo3bo9b3o201bo12bo$336bo39bo4b2o19b2o57bo199b3o11b2o$337bo39b2o23b2o40bo3bo9b3o199b2o2bo$335b3o38b2o65bo4bo9bo201bob3o$433b2o8bo3bo212b2o$332b2o46bo52b2o8b3o$302b2o27bobo47b2o40b2o$301bobo27bo15b2o31b2o41bobo$301bo28b2o15b2o76bo$300b2o123b2o242b2o$306b2o361bobo$307bo363bo$304b3o364b2o$304bo3$341bo5bo$340b3o3b3o$339b2obo3bob2o52bo$403b2o$402b2o$342bo3bo306bo$342bo3bo64bo239b2o$409bobo240b2o$403bo6b2o$404b2o$403b2o6$342b2ob2o81bo$343bobo83bo$343bobo81b3o$344bo8$411b2o$411b2o$427bo$382bo45b2o$380b3o39bo4b2o$379bo43b2o$379b2o41b2o$393bo$391b3o32bo$390bo36b2o$390b2o4b2o28b2o$396b2o4$383b2o$381b2ob2o$381bo2b2o$381bo3bo$365b2o15b2obo234b2o$364bobo17bo235b2o$364bo51b2o30bo$363b2o51bo32b2o199bo$417b3o28b2o200b3o$419bo187bo45bo$457bo147b2o45b2o$404bo38bobo9bobo148b2o31bo$402bobo39b2o3bo6b2o181b3o$403b2o39bo5b2o190bo$399b2o48b2o184b2o4b2o$369b2o27bobo234b2o$368bobo27bo15b2o$368bo28b2o15b2o$367b2o$373b2o273b2o$374bo99bo173bobo$371b3o101bo172bob2o$371bo101b3o171bob2o$647b3o16b2o$408bo5bo251bobo$407b3o3b3o199b2o51bo$406bo2b2ob2o2bo199bo51b2o$406b3o5b3o196b3o$613bo$588bo$587bo40bobo$587b3o38b2o$629bo$473bo158b2o$474b2o156bobo27b2o$468bo4b2o142b2o15bo27bobo$469b2o146b2o15b2o28bo$468b2o194b2o$658b2o$472bo185bo$473b2o184b3o$409b2ob2o58b2o187bo$410bobo$410bobo$411bo205b3o3b3o$616bo2bo3bo2bo$616b2obo3bob2o6$494bo$495b2o$494b2o$561bo$503bo55b2o$489bobo9bobo56b2o$490b2o3bo6b2o$490bo5b2o$495b2o75b2o45b2ob2o$570bo2bo46bobo$570b3o47bobo$621bo$568b3o$567bobobo$520bo45bo5bo$521bo43bo7bo$519b3o42bo9bo$563bo11bo$562bo13bo$561bo15bo$560bo17bo$559bo19bo$558bo21bo$542bo14bo23bo$541bo14bo25bo$541b3o11bo27bo$554bo29bo$519bo33bo31bo$520b2o30bo33bo$514bo4b2o30bo35bo$515b2o33bo37bo$514b2o33bo39bo$548bo41bo$518bo20b2o6bo43bo$519b2o17bobo5bo45bo$518b2o18bo6bo47bo$525b2o10b2o5bo49bo$524bobo16bo51bo$526bo8b6obo53bo$535bo4b2o55bo$532b2obobo60bo$532bo2bob5o57bo$533b2obo5bo57bo$536bo2b2obo58bo$536b2o2bobobo57bo$538b2o3b2o58bo$534b3o8b2o57bo$535bo9bobo57bo$533bo3bo10bo57bo$533b5o11bo57bo$550bo57bo$535bo15bo57bo$534bobo15bo57bo$535bo17bo57bo$554bo57bo$555bo57bo$516b2o38bo57bo$517b2o38bo57bo$516bo41bo57bo$559bo57bo$560bo57bo$561bo57bo$562bo57bo$563bo57bo$564bo57bo$565bo57bo$566bo57bo$567bo57bo$568bo57bo$569bo57bo$570bo57bo$571bo57bo$572bo57bo$493b2o78bo57bo$494b2o78bo57bo$493bo81bo57bo$576bo57bo$577bo57bo$578bo57bo$579bo57bo$580bo57bo$581bo57bo$479b2o101bo57bo$478bobo102bo57bo$480bo103bo55b2o$585bo55bob2o$586bo53bo2bo$587bo51bo3bobo$588bo49bo5b2o$589bo47bo$590bo45bo$591bo43bo$592bo41bo$593bo39bo$594bo37bo$595bo35bo$401bo194bo33bo$400bobo194bo31bo$400bobo195bo29bo$399b2ob2o195bo27bo$600bo25bo$601bo23bo$470b2o130bo21bo$471b2o130bo19bo$470bo133bo17bo$605bo15bo$606bo13bo$607bo11bo$608bo9bo$399b2ob2o205bo7bo$398bo5bo205bo5bo$611bobobo$397bo7bo206b3o$397bo2bobo2bo$397b3o3b3o204b3o$609bo2bo$609b2o2$361bo$361b3o83b2o$364bo83b2o$363b2o82bo$357b2o$358bo28b2o15b2o$358bobo27bo15b2o$359b2o27bobo$389b2o2$392b2o39b2o$393b2o37bobo$392bo41bo$409bo$407b3o$353b2o51bo$354bo51b2o$354bobo$355b2o17b2o$373bobo$372b2o$373b2o$374bo3$374bo$374bo11b2o$380b2o4b2o$380bo$381b3o$383bo40b2o$369b2o54b2o$369bo54bo$370b3o$372bo2$401b2o$401b2o10$401b2o$402b2o$401bo7$421b2o$421bo$419bobo$419b2o18b2o$429b2o7bobo$429b2o6b2obo$438b2o14bo$398b2o39bo14b3o$398b2o57bo$439bo14b3o$438b2o14bo$437b2obo$438bobo$439b2o2$424b3o$426bo$425bo2$427b2o$427bo$428b3o$408b2o20bo$408b2o3$405b2o$324bo81bo$324b3o79bobo$327bo79b2o$326b2o$320b2o$321bo$321bobo$322b2o90b4o$413b3o2bo$413bo3bo$355b2o44b2o11bo2bo$356b2o44bo11b3o$355bo46bobo$403b2o2$316b2o$317bo$317bobo$318b2o17b2o93b2o$336bobo93bobo$335b2o97bo$336b2o96b2o$337bo90b2o$428bo$429b3o$337bo93bo$337bo79b2o$343b2o72bo$343bo74b3o$344b3o73bo$346bo$332b2o$332bo$333b3o$335bo!

It's not surprising from EE's construction that a bigger cavity is possible just by changing the still life, and I'm sure EE could make a simpler still that's also expandable as shown in this pattern (I just played around with it until I got something that worked), but I wanted a chance to build something on my own.

Still-life reduction:

x = 677, y = 731, rule = B3/S2338bo$36b3o$35bo$35b2o$49bo$47b3o$46bo$46b2o$52b2o$52bo$50bobo$50b2o5$21b2o$20bobo$20bo$19b2o11b3o$31bo2bo$31b2o2bo$34b2o5$25b2o$24bobo$24bo$23b2o9$43bo$41bobo$42b2o15$48b2o$48b2o2$19bo$17b3o$16bo$16b2o$30bo$28b3o$27bo$27b2o4b2o$33b2o4$20b2o$19bobo$19bo$19b2obo$2b2o17b2o$bobo$bo51b2o$2o51bo$54b3o$56bo$40bo39bo$41bo39b2o$39b3o38b2o2$36b2o51bo$6b2o27bobo49bobo$5bobo27bo15b2o35b2o$5bo28b2o15b2o$4b2o$10b2o$11bo$8b3o$8bo3$45bo5bo$44b3o3b3o$43b2obo3bob2o3$46bo3bo$46bo3bo10$46b2ob2o$47bobo$47bobo$48bo12$126bo$127b2o$119b2o5b2o$119b2o$135bo$90bo42bobo$88b3o43b2o$87bo$87b2o$101bo$99b3o$98bo$98b2o4b2o$104b2o4$91b2o$90bobo$90bo$90b2obo$73b2o17b2o$72bobo$72bo51b2o$71b2o51bo$125b3o$127bo$111bo39bo$112bo39b2o$110b3o38b2o2$107b2o$77b2o27bobo$76bobo27bo15b2o$76bo28b2o15b2o$75b2o$81b2o$82bo$79b3o$79bo3$116bo5bo$115b3o3b3o$114b2obo3bob2o2$172bo$117bo3bo51b2o$117bo3bo50b2o2$181bo$179bobo$180b2o6$117b2ob2o$118bobo$118bobo$119bo12$187b2o8bo$187b2o9b2o$197b2o$158bo$156b3o$155bo$155b2o$169bo$167b3o$166bo$166b2o4b2o$172b2o4$159b2o$158bobo$158bo$158b2obo$141b2o17b2o56bo$140bobo76b2o$140bo51b2o24b2o$139b2o51bo$193b3o31bo$195bo29bobo$179bo39bo6b2o$180bo39b2o$178b3o38b2o2$175b2o$145b2o27bobo$144bobo27bo15b2o$144bo28b2o15b2o$143b2o$149b2o$150bo$147b3o$147bo3$184bo5bo$183b3o3b3o$182b2obo3bob2o3$185bo3bo$185bo3bo53bo$244b2o$243b2o8$185b2ob2o$186bobo$186bobo$187bo6$264bo$265b2o$264b2o2$273bo$271bobo$265bo6b2o$266b2o$256b2o7b2o$256b2o2$227bo$225b3o$224bo$224b2o$238bo$236b3o$235bo$235b2o4b2o$241b2o4$228b2o$227bobo$227bo$227b2obo$210b2o17b2o58bo$209bobo78b2o$209bo51b2o26b2o$208b2o51bo$262b3o$264bo$248bo39bo$249bo39b2o$247b3o38b2o2$244b2o$214b2o27bobo$213bobo27bo15b2o$213bo28b2o15b2o$212b2o$218b2o$219bo$216b3o$216bo$310bo$311b2o$253bo5bo50b2o$252b3o3b3o$251b2obo3bob2o57bo$317bobo$311bo6b2o$254bo3bo53b2o$254bo3bo52b2o10$254b2ob2o$255bobo$255bobo$256bo6$335bo88bo$336b2o84b3o$335b2o84bo$421b2o$435bo$433b3o$334bo97bo$335b2o95b2o$334b2o102b2o$438bo$436bobo$436b2o5$407b2o$406bobo$406bo$356bo48b2o12bo$357b2o59b3o$356b2o55b2o2b2o2bo$420b2o$344b2o19bo$344b2o17bobo$357bo6b2o$315bo42b2o$313b3o41b2o52b2o$312bo97bobo$312b2o96bo246bo$326bo82b2o246b3o$324b3o333bo$323bo335b2o$323b2o4b2o81b2o232bo$329b2o81b2o20bo211b3o$432b3o214bo$431bo216b2o$431b2o209b2o$316b2o325bo$315bobo109bobo213bobo$315bo112b2o214b2o$315b2obo109bo$298b2o17b2o$297bobo$297bo51b2o92b3o$296b2o51bo93bo3bo225b2o$350b3o28bo61bo4bo9bo214bobo$352bo29b2o60bo3bo9b3o201bo12bo$336bo39bo4b2o19b2o57bo199b3o11b2o$337bo39b2o23b2o40bo3bo9b3o199b2o2bo$335b3o38b2o65bo4bo9bo201bob3o$433b2o8bo3bo212b2o$332b2o46bo52b2o8b3o$302b2o27bobo47b2o40b2o$301bobo27bo15b2o31b2o41bobo$301bo28b2o15b2o76bo$300b2o123b2o242b2o$306b2o361bobo$307bo363bo$304b3o364b2o$304bo3$341bo5bo$340b3o3b3o$339b2obo3bob2o52bo$403b2o$402b2o$342bo3bo306bo$342bo3bo64bo239b2o$409bobo240b2o$403bo6b2o$404b2o$403b2o6$342b2ob2o81bo$343bobo83bo$343bobo81b3o$344bo8$411b2o$411b2o$427bo$382bo45b2o$380b3o39bo4b2o$379bo43b2o$379b2o41b2o$393bo$391b3o32bo$390bo36b2o$390b2o4b2o28b2o$396b2o4$383b2o$381b2ob2o$381bo2b2o$381bo3bo$365b2o15b2obo234b2o$364bobo17bo235b2o$364bo51b2o30bo$363b2o51bo32b2o199bo$417b3o28b2o200b3o$419bo187bo45bo$457bo147b2o45b2o$404bo38bobo9bobo148b2o31bo$402bobo39b2o3bo6b2o181b3o$403b2o39bo5b2o190bo$399b2o48b2o184b2o4b2o$369b2o27bobo234b2o$368bobo27bo15b2o$368bo28b2o15b2o$367b2o$373b2o273b2o$374bo99bo173bobo$371b3o101bo172bob2o$371bo101b3o171bob2o$647b3o16b2o$408bo5bo251bobo$407b3o3b3o199b2o51bo$406bo2b2ob2o2bo199bo51b2o$406b3o5b3o196b3o$613bo$588bo$587bo40bobo$587b3o38b2o$629bo$473bo158b2o$474b2o156bobo27b2o$468bo4b2o142b2o15bo27bobo$469b2o146b2o15b2o28bo$468b2o194b2o$658b2o$472bo185bo$473b2o184b3o$409b2ob2o58b2o187bo$410bobo$410bobo$411bo205b3o3b3o$616bo2bo3bo2bo$616b2obo3bob2o6$494bo$495b2o$494b2o$561bo$503bo55b2o$489bobo9bobo56b2o$490b2o3bo6b2o$490bo5b2o$495b2o75b2o45b2ob2o$570bo2bo46bobo$570b3o47bobo$621bo$568b3o$567bobobo$520bo45bo5bo$521bo43bo7bo$519b3o42bo9bo$563bo11bo$562bo13bo$561bo15bo$560bo17bo$559bo19bo$558bo21bo$542bo14bo23bo$541bo14bo25bo$541b3o11bo27bo$554bo29bo$519bo33bo31bo$520b2o30bo33bo$514bo4b2o30bo35bo$515b2o33bo37bo$514b2o33bo39bo$548bo41bo$518bo20b2o6bo43bo$519b2o17bobo5bo45bo$518b2o18bo6bo47bo$525b2o10b2o5bo49bo$524bobo16bo51bo$526bo8b6obo53bo$535bo4b2o55bo$532b2obobo60bo$532bo2bob5o57bo$533b2obo5bo57bo$536bo2b2obo58bo$536b2o2bobobo57bo$538b2o3b2o58bo$536b2o7b2o57bo$535bobo7bobo57bo$536bo11bo57bo$549bo57bo$550bo57bo$551bo57bo$552bo57bo$553bo57bo$554bo57bo$555bo57bo$516b2o38bo57bo$517b2o38bo57bo$516bo41bo57bo$559bo57bo$560bo57bo$561bo57bo$562bo57bo$563bo57bo$564bo57bo$565bo57bo$566bo57bo$567bo57bo$568bo57bo$569bo57bo$570bo57bo$571bo57bo$572bo57bo$493b2o78bo57bo$494b2o78bo57bo$493bo81bo57bo$576bo57bo$577bo57bo$578bo57bo$579bo57bo$580bo57bo$581bo57bo$479b2o101bo57bo$478bobo102bo57bo$480bo103bo55b2o$585bo55bob2o$586bo53bo2bo$587bo51bo3bobo$588bo49bo5b2o$589bo47bo$590bo45bo$591bo43bo$592bo41bo$593bo39bo$594bo37bo$595bo35bo$401bo194bo33bo$400bobo194bo31bo$400bobo195bo29bo$399b2ob2o195bo27bo$600bo25bo$601bo23bo$470b2o130bo21bo$471b2o130bo19bo$470bo133bo17bo$605bo15bo$606bo13bo$607bo11bo$608bo9bo$399b2ob2o205bo7bo$398bo5bo205bo5bo$611bobobo$397bo7bo206b3o$397bo2bobo2bo$397b3o3b3o204b3o$609bo2bo$609b2o2$361bo$361b3o83b2o$364bo83b2o$363b2o82bo$357b2o$358bo28b2o15b2o$358bobo27bo15b2o$359b2o27bobo$389b2o2$392b2o39b2o$393b2o37bobo$392bo41bo$409bo$407b3o$353b2o51bo$354bo51b2o$354bobo$355b2o17b2o$373bobo$372b2o$373b2o$374bo3$374bo$374bo11b2o$380b2o4b2o$380bo$381b3o$383bo40b2o$369b2o54b2o$369bo54bo$370b3o$372bo2$401b2o$401b2o10$401b2o$402b2o$401bo7$421b2o$421bo$419bobo$419b2o18b2o$429b2o7bobo$429b2o6b2obo$438b2o14bo$398b2o39bo14b3o$398b2o57bo$439bo14b3o$438b2o14bo$437b2obo$438bobo$439b2o2$424b3o$426bo$425bo2$427b2o$427bo$428b3o$408b2o20bo$408b2o3$405b2o$324bo81bo$324b3o79bobo$327bo79b2o$326b2o$320b2o$321bo$321bobo$322b2o90b4o$413b3o2bo$413bo3bo$355b2o44b2o11bo2bo$356b2o44bo11b3o$355bo46bobo$403b2o2$316b2o$317bo$317bobo$318b2o17b2o93b2o$336bobo93bobo$335b2o97bo$336b2o96b2o$337bo90b2o$428bo$429b3o$337bo93bo$337bo79b2o$343b2o72bo$343bo74b3o$344b3o73bo$346bo$332b2o$332bo$333b3o$335bo!
Gamedziner

Posts: 454
Joined: May 30th, 2016, 8:47 pm
Location: Milky Way Galaxy: Planet Earth

### Re: "One-way travel" oscillators?

EDIT 2: Best one:
x = 153, y = 148, rule = B3/S235bo$6b2o$5b2o$72bo$14bo55b2o$obo9bobo56b2o$b2o3bo6b2o$bo5b2o$6b2o3$78b2ob2o$77bobobobo$76bo3bo3bo$31bo43bo9bo$32bo41bo11bo$30b3o40bo13bo$72bo15bo$71bo17bo$70bo19bo$69bo21bo$68bo23bo$67bo25bo$53bo12bo27bo$52bo12bo29bo$52b3o9bo31bo$63bo33bo$30bo31bo35bo$31b2o28bo37bo$25bo4b2o28bo39bo$26b2o31bo41bo$25b2o31bo43bo$57bo45bo$29bo20bo5bo47bo$30b2o17bobo3bo49bo$29b2o18bobo2bo51bo$36b2o10b2obobo53bo$35bobo14bo55bo$37bo8b6o57bo$46bo63bo$43b2obobob2o59bo$43bo2bob2obo60bo$44b2obo65bo$47bo66bo$47b2o66bo$48bo67bo$47bo69bo$46bo71bo$45bo73bo$44bo75bo$43bo77bo$42bo79bo$41bo81bo$40bo83bo$39bo85bo$38bo87bo$27b2o8bo89bo$28b2o6bo91bo$27bo7bo93bo$34bo95bo$33bo97bo$32bo99bo$31bo101bo$30bo103bo$29bo105bo$28bo107bo$27bo109bo$26bo111bo$25bo113bo$24bo115bo$23bo117bo$22bo119bo$21bo121bo$4b2o14bo123bo$5b2o12bo125bo$4bo13bo127bo$18b2o127bo$20bo127bo$18b2o129bo$18bo131bo$19bo131bo$20bo131bo$21bo129b2o$22bo127bo$23bo127b2o$24bo127bo$25bo125bo$26bo123bo$27bo121bo$28bo119bo$29bo117bo$30bo115bo$31bo113bo$32bo111bo$33bo109bo$34bo107bo$35bo105bo$36bo103bo$37bo101bo$38bo99bo$39bo97bo$40bo95bo$41bo93bo$42bo91bo$43bo89bo$44bo87bo$45bo85bo$46bo83bo$47bo81bo$48bo79bo$49bo77bo$50bo75bo$51bo73bo$52bo71bo$53bo69bo$54bo67bo$55bo65bo$56bo63bo$57bo61bo$58bo59bo$59bo57bo$60bo55bo$61bo53bo$62bo51bo$63bo49bo$64bo47bo$65bo45bo$66bo43bo$67bo41bo$68bo39bo$69bo37bo$70bo35bo$71bo33bo$72bo31bo$73bo29bo$74bo27bo$75bo25bo$76bo23bo$77bo21bo$78bo19bo$79bo17bo$80bo15bo$81bo13bo$82bo11bo$83bo9bo$84bo3bo3bo$85bobobobo$86b2ob2o! Last edited by BlinkerSpawn on March 22nd, 2017, 11:03 pm, edited 6 times in total. LifeWiki: Like Wikipedia but with more spaceships. [citation needed] BlinkerSpawn Posts: 1715 Joined: November 8th, 2014, 8:48 pm Location: Getting a snacker from R-Bee's ### Re: "One-way travel" oscillators? This answers the original question! x = 1224, y = 1223, rule = B3/S2338bo1184bo$36b3o1183bo$35bo1185bo$35b2o1183bo$49bo1169bo$47b3o1168bo$46bo1170bo$46b2o1168bo$52b2o1161bo$52bo1161bo$50bobo1160bo$50b2o1160bo$1211bo$1210bo$1209bo$1208bo$21b2o1184bo$20bobo1183bo$20bo1184bo$19b2o11b3o1169bo$31bo2bo1168bo$31b2o2bo1166bo$34b2o1165bo$1200bo$1199bo$1198bo$1197bo$25b2o1169bo$24bobo1168bo$24bo1169bo$23b2o1168bo$1192bo$1191bo$1190bo$1189bo$1188bo$1187bo$1186bo$1185bo$43bo1140bo$41bobo1139bo$42b2o1138bo$1181bo$1180bo$1179bo$1178bo$1177bo$1176bo$1175bo$1174bo$1173bo$1172bo$1171bo$1170bo$1169bo$1168bo$48b2o1117bo$48b2o1116bo$1165bo$19bo1144bo$17b3o1143bo$16bo1145bo$16b2o1143bo$30bo1129bo$28b3o1128bo$27bo1130bo$27b2o4b2o1122bo$33b2o1121bo$1155bo$1154bo$1153bo$20b2o1130bo$19bobo1129bo$19bo1130bo$19b2obo1126bo$2b2o17b2o1125bo$bobo1143bo$bo51b2o1091bo$2o51bo1091bo$54b3o1087bo$56bo1086bo$40bo39bo1061bo$41bo39b2o1058bo$39b3o38b2o1058bo$1139bo$36b2o51bo1048bo$6b2o27bobo49bobo1047bo$5bobo27bo15b2o35b2o1046bo$5bo28b2o15b2o1082bo$4b2o1128bo$10b2o1121bo$11bo1120bo$8b3o1120bo$8bo1121bo$1129bo$1128bo$45bo5bo1075bo$44b3o3b3o1073bo$43b2obo3bob2o1071bo$1124bo$1123bo$46bo3bo1071bo$46bo3bo1070bo$1120bo$1119bo$1118bo$1117bo$1116bo$1115bo$1114bo$1113bo$1112bo$46b2ob2o1060bo$47bobo1060bo$47bobo1059bo$48bo1059bo$1107bo$1106bo$1105bo$1104bo$1103bo$1102bo$1101bo$1100bo$1099bo$1098bo$1097bo$126bo969bo$127b2o966bo$119b2o5b2o966bo$119b2o972bo$135bo956bo$90bo42bobo955bo$88b3o43b2o954bo$87bo1001bo$87b2o999bo$101bo985bo$99b3o984bo$98bo986bo$98b2o4b2o978bo$104b2o977bo$1082bo$1081bo$1080bo$91b2o986bo$90bobo985bo$90bo986bo$90b2obo982bo$73b2o17b2o981bo$72bobo999bo$72bo51b2o947bo$71b2o51bo947bo$125b3o943bo$127bo942bo$111bo39bo917bo$112bo39b2o914bo$110b3o38b2o914bo$1066bo$107b2o956bo$77b2o27bobo955bo$76bobo27bo15b2o939bo$76bo28b2o15b2o938bo$75b2o984bo$81b2o977bo$82bo976bo$79b3o976bo$79bo977bo$1056bo$1055bo$116bo5bo931bo$115b3o3b3o929bo$114b2obo3bob2o927bo$1051bo$172bo877bo$117bo3bo51b2o874bo$117bo3bo50b2o874bo$1047bo$181bo864bo$179bobo863bo$180b2o862bo$1043bo$1042bo$1041bo$1040bo$1039bo$117b2ob2o916bo$118bobo916bo$118bobo915bo$119bo915bo$1034bo$1033bo$1032bo$1031bo$1030bo$1029bo$1028bo$1027bo$1026bo$1025bo$1024bo$187b2o8bo825bo$187b2o9b2o822bo$197b2o822bo$158bo861bo$156b3o860bo$155bo862bo$155b2o860bo$169bo846bo$167b3o845bo$166bo847bo$166b2o4b2o839bo$172b2o838bo$1011bo$1010bo$1009bo$159b2o847bo$158bobo846bo$158bo847bo$158b2obo843bo$141b2o17b2o56bo785bo$140bobo76b2o782bo$140bo51b2o24b2o782bo$139b2o51bo808bo$193b3o31bo772bo$195bo29bobo771bo$179bo39bo6b2o770bo$180bo39b2o775bo$178b3o38b2o775bo$995bo$175b2o817bo$145b2o27bobo816bo$144bobo27bo15b2o800bo$144bo28b2o15b2o799bo$143b2o845bo$149b2o838bo$150bo837bo$147b3o837bo$147bo838bo$985bo$984bo$184bo5bo792bo$183b3o3b3o790bo$182b2obo3bob2o788bo$980bo$979bo$185bo3bo788bo$185bo3bo53bo733bo$244b2o730bo$243b2o730bo$974bo$973bo$972bo$971bo$970bo$969bo$968bo$185b2ob2o777bo$186bobo777bo$186bobo776bo$187bo776bo$963bo$962bo$961bo$960bo$959bo$264bo693bo$265b2o690bo$264b2o690bo$955bo$273bo680bo$271bobo679bo$265bo6b2o678bo$266b2o683bo$256b2o7b2o683bo$256b2o691bo$948bo$227bo719bo$225b3o718bo$224bo720bo$224b2o718bo$238bo704bo$236b3o703bo$235bo705bo$235b2o4b2o697bo$241b2o696bo$938bo$937bo$936bo$228b2o705bo$227bobo704bo$227bo705bo$227b2obo701bo$210b2o17b2o58bo641bo$209bobo78b2o638bo$209bo51b2o26b2o638bo$208b2o51bo666bo$262b3o662bo$264bo661bo$248bo39bo636bo$249bo39b2o633bo$247b3o38b2o633bo$922bo$244b2o675bo$214b2o27bobo674bo$213bobo27bo15b2o658bo$213bo28b2o15b2o657bo$212b2o703bo$218b2o696bo$219bo695bo$216b3o695bo$216bo696bo$310bo601bo$311b2o598bo$253bo5bo50b2o598bo$252b3o3b3o648bo$251b2obo3bob2o57bo588bo$317bobo587bo$311bo6b2o586bo$254bo3bo53b2o591bo$254bo3bo52b2o591bo$903bo$902bo$901bo$900bo$899bo$898bo$897bo$896bo$895bo$254b2ob2o635bo$255bobo635bo$255bobo634bo$256bo634bo$890bo$889bo$888bo$887bo$886bo$335bo88bo460bo$336b2o84b3o459bo$335b2o84bo461bo$421b2o459bo$435bo445bo$433b3o444bo$334bo97bo446bo$335b2o95b2o444bo$334b2o102b2o437bo$438bo437bo$436bobo436bo$436b2o436bo$873bo$872bo$871bo$870bo$407b2o460bo$406bobo459bo$406bo460bo$356bo48b2o12bo446bo$357b2o59b3o444bo$356b2o55b2o2b2o2bo442bo$420b2o441bo$344b2o19bo496bo$344b2o17bobo495bo$357bo6b2o494bo$315bo42b2o499bo$313b3o41b2o52b2o445bo$312bo97bobo444bo$312b2o96bo246bo198bo$326bo82b2o246b3o195bo$324b3o333bo193bo$323bo335b2o192bo$323b2o4b2o81b2o232bo205bo$329b2o81b2o20bo211b3o202bo$432b3o214bo200bo$431bo216b2o199bo$431b2o209b2o204bo$316b2o325bo203bo$315bobo109bobo213bobo200bo$315bo112b2o214b2o199bo$315b2obo109bo415bo$298b2o17b2o524bo$297bobo542bo$297bo51b2o92b3o395bo$296b2o51bo93bo3bo225b2o165bo$350b3o28bo61bo4bo9bo214bobo163bo$352bo29b2o60bo3bo9b3o201bo12bo162bo$336bo39bo4b2o19b2o57bo199b3o11b2o160bo$337bo39b2o23b2o40bo3bo9b3o199b2o2bo171bo$335b3o38b2o65bo4bo9bo201bob3o170bo$433b2o8bo3bo212b2o172bo$332b2o46bo52b2o8b3o387bo$302b2o27bobo47b2o40b2o407bo$301bobo27bo15b2o31b2o41bobo405bo$301bo28b2o15b2o76bo404bo$300b2o123b2o242b2o158bo$306b2o361bobo156bo$307bo363bo155bo$304b3o364b2o153bo$304bo520bo$824bo$823bo$341bo5bo474bo$340b3o3b3o472bo$339b2obo3bob2o52bo417bo$403b2o414bo$402b2o414bo$342bo3bo306bo163bo$342bo3bo64bo239b2o163bo$409bobo240b2o161bo$403bo6b2o402bo$404b2o407bo$403b2o407bo$811bo$810bo$809bo$808bo$807bo$342b2ob2o81bo377bo$343bobo83bo375bo$343bobo81b3o374bo$344bo458bo$802bo$801bo$800bo$799bo$798bo$797bo$796bo$411b2o382bo$411b2o381bo$427bo365bo$382bo45b2o362bo$380b3o39bo4b2o362bo$379bo43b2o365bo$379b2o41b2o365bo$393bo394bo$391b3o32bo360bo$390bo36b2o357bo$390b2o4b2o28b2o357bo$396b2o386bo$783bo$782bo$781bo$383b2o395bo$381b2ob2o393bo$381bo2b2o392bo$381bo3bo391bo$365b2o15b2obo234b2o154bo$364bobo17bo235b2o153bo$364bo51b2o30bo325bo$363b2o51bo32b2o199bo122bo$417b3o28b2o200b3o119bo$419bo187bo45bo117bo$457bo147b2o45b2o116bo$404bo38bobo9bobo148b2o31bo129bo$402bobo39b2o3bo6b2o181b3o126bo$403b2o39bo5b2o190bo124bo$399b2o48b2o184b2o4b2o123bo$369b2o27bobo234b2o128bo$368bobo27bo15b2o348bo$368bo28b2o15b2o347bo$367b2o393bo$373b2o273b2o111bo$374bo99bo173bobo109bo$371b3o101bo172bob2o107bo$371bo101b3o171bob2o107bo$647b3o16b2o89bo$408bo5bo251bobo87bo$407b3o3b3o199b2o51bo86bo$406bo2b2ob2o2bo199bo51b2o84bo$406b3o5b3o196b3o137bo$613bo138bo$588bo162bo$587bo40bobo119bo$587b3o38b2o119bo$629bo118bo$473bo158b2o113bo$474b2o156bobo27b2o82bo$468bo4b2o142b2o15bo27bobo80bo$469b2o146b2o15b2o28bo79bo$468b2o194b2o77bo$658b2o82bo$472bo185bo82bo$473b2o184b3o78bo$409b2ob2o58b2o187bo77bo$410bobo325bo$410bobo324bo$411bo205b3o3b3o110bo$616bo2bo3bo2bo108bo$616b2obo3bob2o107bo$733bo$732bo$731bo$730bo$729bo$494bo233bo$495b2o230bo$494b2o230bo$561bo163bo$503bo55b2o163bo$489bobo9bobo56b2o161bo$490b2o3bo6b2o218bo$490bo5b2o223bo$495b2o122b2ob2o96bo$620bobo96bo$620bobo95bo$621bo95bo$716bo$715bo$520bo193bo$521bo191bo$519b3o190bo$711bo$710bo$709bo$708bo$707bo$706bo$542bo162bo$541bo162bo$541b3o159bo$702bo$519bo181bo$520b2o178bo$514bo4b2o178bo$515b2o181bo$514b2o181bo$696bo$518bo20b2o154bo$519b2o17bo2bo2bob2ob2o143bo$518b2o18bobo3b2obobobo141bo$525b2o10b2ob4o4bo3bo139bo$524bobo16bo9bo137bo$526bo8b6obo11bo135bo$535bo4b2o13bo133bo$532b2obob2o17bo131bo$532bo2bobob2obo14bo129bo$533b2obo2bob2o15bo127bo$536bobo4b2o14bo125bo$536b2o5bo16bo123bo$544bo16bo121bo$545bo16bo119bo$546bo16bo117bo$547bo16bo115bo$548bo16bo113bo$549bo16bo111bo$550bo16bo109bo$551bo16bo107bo$552bo16bo105bo$553bo16bo103bo$554bo16bo101bo$516b2o37bo16bo99bo$517b2o37bo16bo97bo$516bo40bo16bo95bo$558bo16bo93bo$559bo16bo91bo$560bo16bo89bo$561bo16bo87bo$562bo16bo85bo$563bo16bo83bo$564bo16bo81bo$565bo16bo79bo$566bo16bo77bo$567bo16bo75bo$568bo16bo73bo$569bo16bo71bo$570bo16bo69bo$571bo16bo67bo$493b2o77bo16bo65bo$494b2o77bo16bo63bo$493bo80bo16bo61bo$575bo16bo59bo$576bo16bo57bo$577bo16bo55bo$578bo16bo53bo$579bo16bo51bo$580bo16bo49bo$479b2o100bo16bo47bo$478bobo101bo16bo45bo$480bo102bo16bo43bo$584bo16bo41bo$585bo16bo39bo$586bo16bo37bo$587bo16bo35bo$588bo16bo33bo$589bo16bo31bo$590bo16bo29bo$591bo16bo27bo$592bo16bo25bo$593bo16bo23bo$594bo16bo21bo$401bo193bo16bo19bo$400bobo193bo16bo17bo$400bobo194bo16bo15bo$399b2ob2o194bo16bo13bo$599bo16bo11bo$600bo16bo9bo$470b2o129bo16bo3bo3bo$471b2o129bo16bobobobo$470bo132bo16b2ob2o$604bo$605bo$606bo$607bo$399b2ob2o204bo$398bo5bo204bo$610bo$397bo7bo205bo$397bo2bobo2bo204b2o$397b3o3b3o203bo$610b2o$611bo$610bo$361bo247bo$361b3o83b2o159bo$364bo83b2o157bo$363b2o82bo158bo$357b2o246bo$358bo28b2o15b2o198bo$358bobo27bo15b2o197bo$359b2o27bobo211bo$389b2o210bo$600bo$392b2o39b2o164bo$393b2o37bobo163bo$392bo41bo162bo$409bo186bo$407b3o185bo$353b2o51bo187bo$354bo51b2o185bo$354bobo235bo$355b2o17b2o215bo$373bobo214bo$372b2o215bo$373b2o213bo$374bo212bo$586bo$585bo$374bo209bo$374bo11b2o195bo$380b2o4b2o194bo$380bo200bo$381b3o196bo$383bo40b2o153bo$369b2o54b2o151bo$369bo54bo152bo$370b3o203bo$372bo202bo$574bo$401b2o170bo$401b2o169bo$571bo$570bo$569bo$568bo$567bo$566bo$565bo$564bo$563bo$401b2o159bo$402b2o157bo$401bo158bo$559bo$558bo$557bo$556bo$555bo$554bo$421b2o130bo$421bo130bo$419bobo129bo$419b2o18b2o109bo$429b2o7bobo108bo$429b2o6b2obo107bo$438b2o14bo92bo$398b2o39bo14b3o89bo$398b2o57bo87bo$439bo14b3o87bo$438b2o14bo88bo$437b2obo101bo$438bobo100bo$439b2o99bo$539bo$424b3o111bo$426bo110bo$425bo110bo$535bo$427b2o105bo$427bo105bo$428b3o101bo$408b2o20bo100bo$408b2o120bo$529bo$528bo$405b2o120bo$324bo81bo119bo$324b3o79bobo116bo$327bo79b2o115bo$326b2o195bo$320b2o200bo$321bo199bo$321bobo196bo$322b2o90b4o101bo$413b3o2bo99bo$413bo3bo99bo$355b2o44b2o11bo2bo98bo$356b2o44bo11b3o98bo$355bo46bobo109bo$403b2o108bo$512bo$316b2o193bo$317bo192bo$317bobo189bo$318b2o17b2o93b2o74bo$336bobo93bobo72bo$335b2o97bo71bo$336b2o96b2o69bo$337bo90b2o74bo$428bo74bo$429b3o70bo$337bo93bo69bo$337bo79b2o81bo$343b2o72bo81bo$343bo74b3o77bo$344b3o73bo76bo$346bo149bo$332b2o161bo$332bo161bo$333b3o157bo$335bo156bo$491bo$490bo$489bo$488bo$487bo$486bo$485bo$484bo$483bo$482bo$481bo$480bo$479bo$478bo$477bo$476bo$475bo$474bo$473bo$472bo$471bo$470bo$469bo$468bo$467bo$466bo$465bo$464bo$463bo$462bo$461bo$460bo$459bo$458bo$457bo$456bo$455bo$454bo$453bo$452bo$451bo$450bo$449bo$448bo$447bo$446bo$445bo$444bo$443bo$442bo$441bo$440bo$439bo$438bo$437bo$436bo$435bo$434bo$433bo$432bo$431bo$430bo$429bo$428bo$427bo$426bo$425bo$424bo$423bo$422bo$421bo$420bo$419bo$418bo$417bo$416bo$415bo$414bo$413bo$412bo$411bo$410bo$409bo$408bo$407bo$406bo$405bo$404bo$403bo$402bo$401bo$400bo$399bo$398bo$397bo$396bo$395bo$394bo$393bo$392bo$391bo$390bo$389bo$388bo$387bo$386bo$385bo$384bo$383bo$382bo$381bo$380bo$379bo$378bo$377bo$376bo$375bo$374bo$373bo$372bo$371bo$370bo$369bo$368bo$367bo$366bo$365bo$364bo$363bo$362bo$361bo$360bo$359bo$358bo$357bo$356bo$355bo$354bo$353bo$352bo$351bo$350bo$349bo$348bo$347bo$346bo$345bo$344bo$343bo$342bo$341bo$340bo$339bo$338bo$337bo$336bo$335bo$334bo$333bo$332bo$331bo$330bo$329bo$328bo$327bo$326bo$325bo$324bo$323bo$322bo$321bo$320bo$319bo$318bo$317bo$316bo$315bo$314bo$313bo$312bo$311bo$310bo$309bo$308bo$307bo$306bo$305bo$304bo$303bo$302bo$301bo$300bo$299bo$298bo$297bo$296bo$295bo$294bo$293bo$292bo$291bo$290bo$289bo$288bo$287bo$286bo$285bo$284bo$283bo$282bo$281bo$280bo$279bo$278bo$277bo$276bo$275bo$274bo$273bo$272bo$271bo$270bo$269bo$268bo$267bo$266bo$265bo$264bo$263bo$262bo$261bo$260bo$259bo$258bo$257bo$256bo$255bo$254bo$253bo$252bo$251bo$250bo$249bo$248bo$247bo$246bo$245bo$244bo$243bo$242bo$241bo$240bo$239bo$238bo$237bo$236bo$235bo$234bo$233bo$232bo$231bo$230bo$229bo$228bo$227bo$226bo$225bo$224bo$223bo$222bo$221bo$220bo$219bo$218bo$217bo$216bo$215bo$214bo$213bo$212bo$211bo$210bo$209bo$208bo$207bo$206bo$205bo$204bo$203bo$202bo$201bo$200bo$199bo$198bo$197bo$196bo$195bo$194bo$193bo$192bo$191bo$190bo$189bo$188bo$187bo$186bo$185bo$184bo$183bo$182bo$181bo$180bo$179bo$178bo$177bo$176bo$175bo$174bo$173bo$172bo$171bo$170bo$169bo$168bo$167bo$166bo$165bo$164bo$163bo$162bo$161bo$160bo$159bo$158bo$157bo$156bo$155bo$154bo$153bo$152bo$151bo$150bo$149bo$148bo$147bo$146bo$145bo$144bo$143bo$142bo$141bo$140bo$139bo$138bo$137bo$136bo$135bo$134bo$133bo$132bo$131bo$130bo$129bo$128bo$127bo$126bo$125bo$124bo$123bo$122bo$121bo$120bo$119bo$118bo$117bo$116bo$115bo$114bo$113bo$112bo$111bo$110bo$109bo$108bo$107bo$106bo$105bo$104bo$103bo$102bo$101bo$100bo$99bo$98bo$97bo$96bo$95bo$94bo$93bo$92bo$91bo$90bo$89bo$88bo$87bo$86bo$85bo$84bo$83bo$82bo$81bo$80bo$79bo$78bo$77bo$76bo$75bo$74bo$73bo$72bo$71bo$70bo$69bo$68bo$67bo$66bo$65bo$64bo$63bo$62bo$61bo$60bo$59bo$58bo$57bo$56bo$55bo$54bo$53bo$52bo$51bo$50bo$49bo$48bo$47bo$46bo$45bo$44bo$43bo$42bo$41bo$40bo$39bo$38bo$37bo$36bo$35bo$34bo$33bo$32bo$31bo$30bo$29bo$28bo$27bo$26bo$25bo$24bo$23bo$22bo$21bo$20bo$19bo$18bo$17bo$16bo$15bo$14bo$13bo$12bo$11bo$10bo$9bo$8bo$7bo$6bo$5bo$4bo$3bo$2bo$bo$o! Kiran Linsuain Kiran Posts: 284 Joined: March 4th, 2015, 6:48 pm ### Re: "One-way travel" oscillators? Extrementhusiast wrote: Scorbie wrote:@EE BTW, if you are designing a game, I don't think we could make many levels with this restriction. Is that okay? Yes, as it's only going to be part of one giant level. Ok, so how are door transitions going to be implemented anyway (in relation to gameplay and flow and whatever)? On that note, how's this whole game going to work? LifeWiki: Like Wikipedia but with more spaceships. [citation needed] BlinkerSpawn Posts: 1715 Joined: November 8th, 2014, 8:48 pm Location: Getting a snacker from R-Bee's ### Re: "One-way travel" oscillators? BlinkerSpawn wrote: Extrementhusiast wrote: Scorbie wrote:@EE BTW, if you are designing a game, I don't think we could make many levels with this restriction. Is that okay? Yes, as it's only going to be part of one giant level. Ok, so how are door transitions going to be implemented anyway (in relation to gameplay and flow and whatever)? On that note, how's this whole game going to work? One generation every second (likely even just a bit faster), and if the agent is caught within a forming cell, it dies and must respawn outside of the oscillator. As for how this whole level is going to work, it mainly involves coding the level to be read by a preexisting engine. (I've already gotten all of the hard parts done; what's left is just the oscillator and building the actual level.) (I know I'm being a bit secretive, but I have a habit of withholding the exact context for small problems, so that the big reveal is all that much more impressive. (It also has to do with security in not linking online accounts.)) I Like My Heisenburps! (and others) Extrementhusiast Posts: 1695 Joined: June 16th, 2009, 11:24 pm Location: USA ### Re: "One-way travel" oscillators? Found one hiding in DRH-oscillators.rle, right under my nose! x = 54, y = 15, rule = LifeHistory9.2A$9.A$6.2A.A7.2A16.2A$6.ADA2D6.2A16.2A3.2A$3.BA.A4D2A10.2A.2D.2A10.A2.2A3.AB$.B2A.A.A2DA.A2.6A2.A.A2DA.A2.6A2.A.A2DA.A.2AB$A.AB.A.A2DA.A.A6.A.A.A2DA.A.A6.A.A.A2DA.A.BA.A$2A2.ABA4DAB2ABA2BAB2ABA4DAB2ABA2BAB2ABA4DABA2.2A$6.BA2DAB2.A2B2A2BA2.BA2DAB2.A2B2A2BA2.BA2DAB$2A2.ABA4DAB2ABA2BAB2ABA4DAB2ABA2BAB2ABA4DABA2.2A$A.AB.A.A2DA.A.A6.A.A.A2DA.A.A6.A.A.A2DA.A.BA.A$.B2A.A.A2DA.A2.6A2.A.A2DA.A2.6A2.A.A2DA.A.2AB$3.BA3.2A2.A10.A2.2A2.A10.A2.2A3.AB$12.2A3.2A3.2A6.2A3.2A3.2A$17.2A16.2A! While the singular version is impressively small, I can't seem to find a way to allow the agent to escape the one-way portion without resorting to the above extension: x = 18, y = 9, rule = LifeHistory3.BA3.2A3.AB$.B2A.A.A2DA.A.2AB$A.AB.A.A2DA.A.BA.A$2A2.ABA4DABA2.2A$6.BA2DAB$2A2.ABA4DABA2.2A$A.AB.A.A2DA.A.BA.A$.B2A.A.A2DA.A.2AB$3.BA3.2A3.AB! Is there another, shorter way to stabilize one of the halves, or to allow escape from the singular version? I Like My Heisenburps! (and others) Extrementhusiast Posts: 1695 Joined: June 16th, 2009, 11:24 pm Location: USA ### Re: "One-way travel" oscillators? Here's my best attempt: (Edit: I added some cells to prevent cheating through the supporting p3 rotor) x = 22, y = 14, rule = B3/S232b2o14b2o$3bo14bo$3bob2o8b2obo$b2obobo8bobob2o$obobobobo4bobobobobo$obob2obobo2bobob2obobo$bobobo3bo2bo3bobobo$3bo2bobo4bobo2bo$3b2o4bo2bo4b2o$8bo4bo$7bobo2bobo$5b3obo2bob3o$4bo5b2o5bo$4b2o10b2o!

(Note for someone wondering like me: The traveler comes from the bottom and goes to the top through the oscillator.)

If you're okay with bidirectional paths with other starting points, here's a slightly better one:
x = 24, y = 11, rule = B3/S239bo4bo$8bobo2bobo$6b3obo2bob3o$bo3bo3bo4bo3bo3bo$obobob2o2bo2bo2b2obobobo$b2obo4bo4bo4bob2o$3b2o2b2obo2bob2o2b2o$3bobo2bobo2bobo2bobo$2b2obobo3b2o3bobob2o$o2bob2o10b2obo2bo$2o20b2o!

And here's just a pretty open variant. Traveler comes from the bottom and exits to the side.
x = 13, y = 28, rule = B3/S232bo7bo$bobo5bobo$o2bo5bo2bo2$bobo5bobo$3b2o3b2o$3b2o3b2o$bobo5bobo2$o2bo5bo2bo$bobo5bobo$2bo2b3o2bo$3b7o3$3b7o$2bo2b3o2bo$bobo5bobo$o2bo5bo2bo2$bobo5bobo$3b2o3b2o$3b2o3b2o$bobo5bobo2$o2bo5bo2bo$bobo5bobo$2bo7bo! Best wishes to you, Scorbie Scorbie Posts: 1349 Joined: December 7th, 2013, 1:05 am ### Re: "One-way travel" oscillators? Scorbie's solution can be hybridised with the DRH oscillator to yield a smaller asymmetric solution: Code: Select all x = 20, y = 14, rule = LifeHistory2.2A5.2A$3.A6.A$3.A.2A3.A.2A$.2A.A.A4.A.A$A.A.B.A.A4.A.2A$A.A.2A.A.A2DA.A.2BA$.A.A.B.A.A2CA.A.AB.A$3.A.AB.BD2CDBAB2.2A$3.2A2.A2B2C2B$8.BD2CDBAB2.2A$7.A.A2CA.A.AB.A$5.3A.A2DA.A.2BA$4.A5.2A3.2A$4.2A!

Enter through the bottom; exit through the top.
What do you do with ill crystallographers? Take them to the mono-clinic!

calcyman

Posts: 1569
Joined: June 1st, 2009, 4:32 pm

### Re: "One-way travel" oscillators?

Hmm... Does this count?
x = 19, y = 17, rule = B3/S234bo$4b3o$7bo$6b2o9b2o$17bo$15bobo$8b3o4b2o$7bo3bo$6bo5bo$7bo3bo$2b2o4b3o$bobo$bo$2o9b2o$11bo$12b3o$14bo!

You can escape from the center cell but cannot go back in.

Edit: I am quite confused myself. You cannot go back in, right???
Best wishes to you, Scorbie

Scorbie

Posts: 1349
Joined: December 7th, 2013, 1:05 am

### Re: "One-way travel" oscillators?

Scorbie wrote:Hmm... Does this count?
x = 19, y = 17, rule = B3/S234bo$4b3o$7bo$6b2o9b2o$17bo$15bobo$8b3o4b2o$7bo3bo$6bo5bo$7bo3bo$2b2o4b3o$bobo$bo$2o9b2o$11bo$12b3o$14bo!

You can escape from the center cell but cannot go back in.

Edit: I am quite confused myself. You cannot go back in, right???

You indeed cannot go back in, but this does not really count because it cannot be used as a "gate".

Also, besides a one-way travel oscillator, is there a "crossover" (a pattern that allows the agent to travel along two intersecting paths, but not turn from one to the other)?
Kiran Linsuain

Kiran

Posts: 284
Joined: March 4th, 2015, 6:48 pm

### Re: "One-way travel" oscillators?

Kiran wrote:You indeed cannot go back in, but this does not really count because it cannot be used as a "gate".
I get your point. Was just wondering if that can be used in EE's game.
Best wishes to you, Scorbie

Scorbie

Posts: 1349
Joined: December 7th, 2013, 1:05 am

### Re: "One-way travel" oscillators?

Scorbie wrote:
Kiran wrote:You indeed cannot go back in, but this does not really count because it cannot be used as a "gate".
I get your point. Was just wondering if that can be used in EE's game.

It can, as there are one-square teleporters that can be included in the level. However, the oscillator itself is a bit too open for my tastes, as I want the player (represented by the agent) to feel "boxed in". (The final level will resemble a maze, much like this, but with some oscillators embedded within.)
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1695
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: "One-way travel" oscillators?

Extrementhusiast wrote:It can, as there are one-square teleporters that can be included in the level.

If teleporters exist, why bother with the oscillators in the first place?
Kiran Linsuain

Kiran

Posts: 284
Joined: March 4th, 2015, 6:48 pm

Next