ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

Synthesising Oscillators

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

Re: Synthesising Oscillators

Postby Freywa » January 3rd, 2014, 10:33 pm

They said this day wouldn't come.
We refused to run.
We've only just begun.
You'll find us chasing the sun!


Congratulations to Martin Grant, and Mark Niemiec, and all those who contributed to this impressively productive thread on ConwayLife. Should we focus on trying to prove or disprove the omniperiodicity of Life? I think we should do that.
User avatar
Freywa
 
Posts: 274
Joined: June 23rd, 2011, 3:20 am
Location: Singapore

Re: Synthesising Oscillators

Postby mniemiec » January 4th, 2014, 1:33 am

Freywa wrote:Congratulations to Martin Grant, and Mark Niemiec, and all those who contributed to this impressively productive thread on ConwayLife. Should we focus on trying to prove or disprove the omniperiodicity of Life? I think we should do that.


Thanks! (and don't forget Ivan Fomichev and Matthias Merzenich who contributed more to this effort than I did!).

Given all the evidence for other periods, it's fairly certain that Life is omniperiodic. It is unlikely that this will be proven theoretically. It is much more likely that someone will find an example of the missing period. The most likely constructive way this will come about is if someone finds a reflector that can deal with period 19 streams (although I suspect that will be quite difficult). Possibly some kind of Rube-Goldberg construction (similar in design to the Caterpillar or the original AK-47 gun) that constructs P19 glider streams to ultimately sustain a P19 reaction. Then throw in a spurious beacon or somesuch to get P38. (P38 itself would be much easier to get, but it would still leave P19 with the same problems).
mniemiec
 
Posts: 725
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Sokwe » January 4th, 2014, 3:16 am

I wrote:I think we might be hitting a point of diminishing returns for our efforts on the 16-bit still lifes.

hmm...

I guess it's open season on the easy 17-bit still lifes. Here's six obvious ones:
x = 430, y = 242, rule = B3/S23
60bo$25bo33bo$26bo32b3o$18b2o4b3o3bo17b2o$17bo2bo7b2o17bo2bo6b2o$18bob
o8b2o17bobo2b2ob2o$17b2obob2o23b2obobobo3bo$17bo2bobobo22bo2bo2bo$18b
2o3bo25b2o4$16b2o$16bobo$12b2o2bo$11bobo$13bo6b2o$20bobo$20bo12$60bo$
25bo33bo$26bo32b3o$17bobo4b3o3bo16bobo$17b2obo7b2o17b2obo6b2o$20bo8b2o
19bo2b2ob2o$17b2obob2o23b2obobobo3bo$17bo2bobobo22bo2bo2bo$18b2o3bo25b
2o4$16b2o$16bobo$12b2o2bo$11bobo$13bo6b2o$20bobo$20bo17$8bobo$9b2o$9bo
2$23bo$24bo$22b3o$2bobo3bobo$3b2o4b2o$3bo5bo16bo3bo$24bobob2o$25b2o2b
2o$34bo$34bobo$34b2o2$38bo$36b2o$18b2o17b2o$17bo2bo$18bobo$17b2obob2o$
6b2o12bobo$5bobo12bobo$7bo13bo6$35b2o$35bobo$35bo10$13bobo$14b2o$14bo$
33bo$32bo$32b3o11$17b3o$19bo$18bo$27bo$26b2o$26bobo$15bo$15b2o19bo$14b
obo18b2o$35bobo$18b2o$17bo2bo$17bo2bo5b2o$18b2o6bobo$26bo13$bo$2bo$3o
7$8bo$9bo$7b3o2$2bo16b2o$obo3b3o9bo2bob2o$b2o5bo8bobob2obo$7bo10bobo$
20bo$20b2o16$359bo$357bobo$358b2o4$312bo74bo$311bo74bo8bobo$311b3o72b
3o6b2o$368bo14bo12bo$50bo84bo233b2o11bo$51bo84bo231b2o12b3o$49b3o3bo
78b3o239bo14bo$45bo7b2o83bo238bo11b2o$46b2o6b2o82bobo234b3o12b2o$45b2o
58bo32b2o5bo235bo$104bo38b2o234bobo$42bo61b3o37b2o234b2o$43b2o3bo$42b
2o5bo3b2o36bo39bo39bo39bo39bo39bo39bo39bo$47b3o4bo33bobobob2o32bobobob
2o32bobobo6bobo26bobobo35bobobo35bobobo35bobobo7bo27bobobo45bob2o$13b
2o39bobo30bob2obobobo30bob2obobo32bob2obo6b2o26bob2obo34bob2obo34bob2o
bo34bob2obo8b2o24bob2obo44bob2o2bo$14b2o39b2o30bo4bo2bo31bo4bobo32bo4b
ob2o4bo26bo4bob2o31bo4bob2o31bo4bob2o31bo4bob2o4b2o25bo4bob2o15bo25bo
4b2o3bobo$13bo3b2o64bo4b3obo35b3obob2o32b3obob2o7b3o22b3obobobo31b3obo
bo33b3obobo33b3obobo33b3obobo5b2o7b2o27b3obo4b2o$17bobo61bobo6b2o38bob
o37bobo10bo26bobo2bo34bobobo35bobobo35bobobo35bobobo5bobo7b2o28bobo5bo
$17bo64b2o47b2o15b2o21b2o11bo26b2o38b2ob2o35b2ob2o36bobob2o3b3o28bobob
2o3bo40bob2o$147b2o30b2o150b2obo2bo3bo29b2obo2bo43b2ob2o$108b2o39bo28b
2o35b3o117b2o5bo32b2o51bo$39b2o67bobo32b3o34bo36bo2bo76b2o128b2o$40b2o
46b2o12b2o4bo34bo72bo2bo37b2o37bo2bo120b3o4bobo$39bo17b2o28bobo11b2o
41bo74b3o30b3ob2o38bo2bo120bo$56b2o31bo13bo150bo3bo38b2o118bo3bo$58bo
32b3o159bo163b2o$91bo189bo134bobo$92bo186bobo104b2o$280b2o31b2o70b2o$
313bobo55b3o13bo$313bo59bo$284b2o80b3o3bo$285bo82bo$244b2o39bobo79bo$
245b2o39b2o12bo$244bo3b2o51bo14bo$248bobo48b3o13b2o$248bo66bobo$300bo$
300b2o$299bobo8$273bo$273b2o$272bobo!

Here are two that I found a while ago, but I assumed they were already done (moving the blocks to the other side is trivial):
x = 49, y = 79, rule = B3/S23
4bo43bo$5b2o39bobo$4b2o41b2o3$16b2o29bo$16bo29bobo$17b3o27b2o$19bo$45b
4o$44bo3bo$45b3o$43bobo$43b2o2$20b3o$20bo$8bo12bo$8b2o$7bobo$16b3o$16b
o$17bo2$9b2o$10b2o$9bo$2o$b2o$o21$4bo43bo$5b2o39bobo$4b2o41b2o3$16b2o
29bo$16bo29bobo$17b3o27b2o$19bo$45b4o$44bo3bo$43bob3o$43bobo$44bo2$20b
3o$20bo$8bo12bo$8b2o$7bobo$16b3o$16bo$17bo2$9b2o$10b2o$4bo4bo$4b2o$3bo
bo!

I recognize several of these from Lewis' soup results. For example, I had previously saved these seeds:
x = 101, y = 40, rule = B3/S23
49b2o43bobo$48bo2bo42b2o$48bob2o39bo3bo$47b2o2bob2o37bo$46bo2bo2bobo
35b3o$7b2o38b2o$8bo$8bob2o35b2o5b3o33b2o$7b2obobo34b2o5bo34bobo$7bo4bo
42bo34bo$9b3o76bobobo$8b2o39b3o35bobobobo$49bo37bobobobo$50bo37bo3bo7$
b3o4b2obobobob2o21b2ob2ob4o4bo2b3o21bo4bob3o3b2o2b3o$2ob3ob3ob5ob3o22b
obob5obo2b3obo26b2obob3ob2ob3o$b2ob2obob2ob2obo25b2o7bo2bobo25bobo3b2o
5b6o$2bob2o4bo3b2o28bo2bobo2b2o27b2o2bo3bo3bob4o$b2ob3obo3b8o20bo2b6ob
3o2b3o27bob2o2b2o5bobo$2o4b3obobobobo2bo21bobo2b10ob2o22b2o4b2o2bob2ob
obo$ob2o2b4ob3ob4o21b3o3bobob2o4bo2bo21bob2obo2bob2o4bo2bo$ob3ob2o4bob
ob3o21b6obo3b3o4bo22bobobob2obo7b2o$obob2o4bob2o2bob2o20b5obobobob3obo
25bob2obobo3b2ob3obo$o2bo3b2obo4bo2bo21bobobob2obo2bo2b5o25bo2bob3ob6o
$2b2o2bobo2bob2o4bo20bo4b3ob2o5b4o26b2o3b4obo2bo$3o2bo3bo2b2obob3o20b
3o3b2o3bo2b3o2bo21b6o2bobo2b3ob3o$2b3o3bobobo3b2obo20b2obob2ob2obo2b2o
28bob3o2bob3o2bobo$bo4b2o3b2o6bo20bo5bo2b2ob2o2b4o24b2obob2ob2o2b2obo$
2o2b2o2bo5bob3o26bo2bobobobo3bo22bo2bobobo2b2obo4b2o$2b2ob2o2bob2obo2b
2o21bo3b2o2bobob4ob2o23bobobob2ob4obobo$b4o2bob3ob2o4bo22b3ob2o6b2o25b
4obob7ob4o$2obo5b3o5bobo20b2o5bo2bo3b2ob2o23bobo2bobo2bob3obo$bo3bo2b
3ob3o2bo23bo4bo2b2o2bob3obo23b2ob2o7bobo2bo$b2o5b2o7b3o20b3obob5o2bob
2o24b3o2bo3b2ob3o3bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1067
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby mniemiec » January 4th, 2014, 3:43 am

Sokwe wrote:I think we might be hitting a point of diminishing returns for our efforts on the 16-bit still lifes.

Well, considering that all the unknown ones have been solved, there are none left to do!
Sokwe wrote:I guess it's open season on the easy 17-bit still lifes. Here's six obvious ones:

Excellent! That's why I posted them. New year, new land rush :)
Sokwe wrote:Here are two that I found a while ago, but I assumed they were already done (moving the blocks to the other side is trivial):

Clearly, whenever there is a block on one side of a line-of-4 inductor, there are two related still-lifes, each of which can be used as a predecessor for the other. My search engine has one very carefully crafted block-mover tool that will only willingly move a block in one specific configuration, to avoid looping. Sometimes one of the two forms will be buildable a different way, which should give both of them, but that won't be automatically detected. This particular one looks like something that would have fallen out of one of your many recent conversions. Unfortunately, I haven't yet had time to process all of those, as I've been concentrating on the 16s, plus other completing other tedious and mostly trivial lists (like the 21-bit P3s and easy 18-bit P2s).
Sokwe wrote:I recognize several of these from Lewis' soup results. For example, I had previously saved these seeds:

I had totally forgotten to search these for 17-bit still-lifes when pruning my list! I'll need to look at them again.
mniemiec
 
Posts: 725
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Sokwe » January 4th, 2014, 4:00 am

I am surprised that you don't already have this beehive-to-loaf converter:
x = 31, y = 38, rule = B3/S23
17bo$16bo$16b3o3$6bo3bo3bo$4bobo4b2obobo$5b2o3b2o2b2o4$21b2ob2o$22bobo
$21bo3bo$11bo8bob2obo$10bobo7bobobo$9bo2bo8bo$10b2o5b2o$18bo$18bobo$
19b2o5$bo$b2o$obo3$28b3o$9b3o16bo$11bo17bo$10bo2$25b3o$25bo$26bo!


Here are four more based on previous syntheses:
x = 118, y = 173, rule = B3/S23
9bo$7b2o$8b2o$5bo$6bo$4b3o$9bo$7b2o$8b2o3$5bo$4bobo$5bobo3b2obo$6b2o2b
ob2obo$10bo4bo$6b2o3b4o$5bo2bo$5bo2bo2b2o$6b2o3b2o5$3b3o$5bo$4bo$9b3o$
9bo$10bo11$9bo$7b2o$8b2o$5bo$6bo$4b3o$9bo$7b2o$8b2o3$5bo$4bobo$5bobo3b
2ob2o$6b2o2bobobo$10bo4bo$6b2o3b4o$5bo2bo$5bo2bo2b2o$6b2o3b2o5$3b3o$5b
o$4bo$9b3o$9bo$10bo15$obo8bo$b2o9bo$bo8b3o9bo$14bo6bo$14bobo4b3o$5bo8b
2o$6bo$4b3o2$2b2o$bobo7b2o$3bo7bobo$12b2o5$24b3o$24bo$25bo$4b2o$3bobo$
5bo$18b2o$18bobo$18bo11$59bo$57bobo$58b2o5$62bo$60bobo22bo$61b2o22bobo
$85b2o5$42bo$42bobo57bobo$27bo14b2o59b2o$28bo43b2o29bo$26b3o11b3o28bo
2bo$30bo11bo28bobo27b2o$29bo11bo30bo16bo10bobo$29b3o13b2o28b2o12bobo
10bo$45b2o14bobo11b2o8bo3b2o24bo$10bo51b2o20bo19bo9bobo$10bobo12b2o14b
2o19bo8b2o11b3o17b2o5b2o2bobo$10b2o13b2o2b2o10b2o2b2o24b2o2b2o26bobo4b
o2b2o2bo$13b3o13b2o14b2o14b3o11b2o8bo24bobo2b2o$13bo49bo20b2o25bobo$
14bo26b2o14b2o3bo8b2o11bobo25bo$24b3o14b2o13bobo12b2o$26bo19bo11bo16bo
$25bo19bo28bobo27b2o$27b3o15b3o25bo2bo26bobo$27bo46b2o29bo$28bo15b2o$
43bobo$45bo5$61b2o$60bobo22b2o$62bo22bobo$85bo5$88b2o$88bobo$88bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1067
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby mniemiec » January 4th, 2014, 4:35 am

Sokwe wrote:I am surprised that you don't already have this beehive-to-loaf converter:

This one is similar to mine, but a bit more streamlined, so it will probably work in several places mine won't.
Sokwe wrote:Here are four more based on previous syntheses:

I seem to remember the two blocks on siamese tables from the multi-Unix oscillator, but I didn't record it as a still-life synthesis at the time.
mniemiec
 
Posts: 725
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Extrementhusiast » January 4th, 2014, 2:27 pm

Another one down:
x = 16, y = 9, rule = B3/S23
5b2o2b2ob2o$6b2o2bobo2bo$5bo4bobob2o$o10bobo$b2o10bo$2o11b2o$4b2o2b2o$
5b2ob2o$4bo!

Also, while there are still so many, can we post which group the SL was in? (This one was in the first group.)
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1617
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » January 4th, 2014, 5:51 pm

Group 2:
x = 107, y = 192, rule = B3/S23
23bo$22bo$22b3o35bo$60bobo$13bobo44b2o$14b2o40bobo$14bo11bobo28b2o$26b
2o29bo7bo38bobo$27bo2b3o30b2o33b2o4b2o$30bo29b2o2b2o31bobo5bo$6bob2ob
2o18bo14bob2ob2o3b2o2bobo23bob2ob2o3bo$6b2obobobob2o29b2obobobobobo2bo
25b2obobobobo$11bobob2o5b2o27bob2o36bob2o$10bobo9bobo25bobo37bobo$11bo
10bo27bobo37bobo$51bo39bo$98bobo$98b2o$99bo$12b2o$11b2o77b2o4b3o$6b2o
5bo67b2o6b2o5bo$7b2o73b2o7bo5bo$6bo74bo3b3o$85bo$13b2o71bo$12b2o$14bo
3$82b3o$84bo$83bo12$100bo$99bo$99b3o3$97b3o$86bob2ob2o4bo$86b2obobobo
4bo$91bobo$90bobo8b3o$90bo10bo$89b2o11bo22$43bo$42bo$42b3o$40bo$41bo$
39b3o2$65bo$41bobo22bo$41b2o21b3o$15bo26bo25bo$16bo51bobo$14b3o51b2o$
6b2o10b2o16b2o18b2o2bo$6bo2bob2o6b2o15bo2bobob2o11bo2bobob2o$8b2ob2o5b
o19b2ob2obo13b2ob2obo$9bo29bo19bo$7bobo12b3o12bobo17bobo$7b2o13bo14b2o
18b2o$23bo2$68bo$12b2o53b2o$11bobo53bobo$13bo2$61b3o$63bo$62bo$68b3o$
68bo$69bo22$6b2o2b2o$6bo2bo2bo3b2o$7bobobo3b2o$8bobo6bo$9bo$13b3o$15bo
$7b2o5bo$8b2o$7bo$11b3o$11bo$12bo17$27bo$27bobo$27b2o6$21bo$20bo$20b3o
$6b2o2b2o5bo$6bo2bo2bo5b2o$7bobobo5b2o$8bobo10b3o$9bo11bo$22bo7$2bo$2b
2o$bobo13bo6b2o$16b2o5b2o$16bobo6bo3$bo$b2o$obo!

Group 3:
x = 65, y = 85, rule = B3/S23
39bo$38bo$38b3o$36bo$37bo$35b3o3$37bobo$37b2o$11bo26bo23bo$12bo49bobo$
10b3o49b2o$2b2o10b2o16b2o18b2o2bo$2bo2bob2o6b2o15bo2bobob2o11bo2bobob
2o$4b2ob2o5bo19b2ob2obo13b2ob2obo$5bo29bo19bo$3bobo12b3o12bobo17bobo$
2bobo13bo13bobo17bobo$3bo15bo13bo19bo3$8b2o$7bobo$9bo8$44bo$44bobo$44b
2o2$41bo$39bobo$5bo34b2o$3bobo$2o2b2o$b2o$o$23b2o18b2o$3b2o3b2o12bo2bo
2b2o6b2o4bo2bo2b2o$3bo2bo2bo13bo2bo2bo7b2o4bo2bo2bo$4b2ob2o11bo3b2ob2o
7bo7b2ob2o$5bobo13bo3bobo12b2o3bobo$5bobo11b3o3bobo12b2o3bobo$6bo19bo
19bo$19b3o18b2o$21bo18b2o$20bo22b2o$43bobo$43bo8$44bo$44bobo$44b2o2$
41bo$39bobo$5bo34b2o$3bobo$2o2b2o$b2o$o$8b2o13b2o3b2o13b2o3b2o$3b2o3bo
13bo2bo2bo7b2o4bo2bo2bo$3bo2bobo14bo2bobo8b2o4bo2bobo$4b2obo12bo3b2obo
8bo7b2obo$5bo15bo3bo14b2o3bo$5bobo11b3o3bobo12b2o3bobo$6b2o18b2o18b2o$
19b3o18b2o$21bo18b2o$20bo22b2o$43bobo$43bo!


Here are possible starting points for two more based off of unsynthesized 17-bit and 18-bit still lifes (groups 1 and 2 respectively):
x = 39, y = 54, rule = B3/S23
5bo$4bo$4b3o$2bo$obo$b2o$10bo$6b2obobob2obo$6bob2obobob2o$11bo$11b2o4$
2bo$2b2o$bobo3$7b3o$7bo$8bo$3o$2bo$bo12$8b2o18b2o$9bo19bo$9bob2obo14bo
b2obo$6b2obobob2o11b2obobob2o$6bobobo15bobobo$9bo18bo7b2o$27b2o7bobo$
36bo$10b2o$10bobo$6b2o2bo$5bobo$7bo3$11b2o$11bobo$11bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1067
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » January 4th, 2014, 10:41 pm

Predecessors for two G1s and a G2:
x = 61, y = 131, rule = B3/S23
28bo$26b2o$27b2o6$2bo$3b2o$2b2o$27bo4bo$28b2obo$27b2o2b3o4$17bo37bo$o
15bobo35bobob2o$b2o12bobo37b2obo$2o13bo42bo$12b2ob2o22b2o14b2ob2o$11bo
2bo2bo20b2o15bobo2bo$11b2o3b2o22bo18b2o8$3bo$3b2o$2bobo10$28bo$26b2o$
27b2o6$2bo$3b2o$2b2o$27bo4bo$28b2obo$27b2o2b3o4$17bo37bo$o15bobo35bobo
b2o$b2o12bobo37b2obo$2o13bo42bo$12b2ob2o22b2o14b2ob2o$11bo2bo2bo20b2o
15bobo2bo$11b2o2b2o23bo17b2o8$3bo$3b2o$2bobo37$15bo$16bo$14b3o3bo$10bo
7b2o$11b2o6b2o$10b2o2$22bo$21bo$21b3o2$11bo22b2o$10bobo20bobo$10bo2bo
19bo2b2o$11b2obob2o16b2o2bo$12bob2obo17bob2o$12bo22bo$11b2o21b2o!

In the G1s, the Component strikes back.

EDIT: Another G2:
x = 23, y = 16, rule = B3/S23
bo$2bo$3o7b2o3bo$9bo2bobobo$10b2o3bo$12b3o$12bo$20bo$20bobo$20b2o$15b
3o$17bo$2b2o12bo$bobo16b2o$3bo16bobo$20bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1617
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » January 5th, 2014, 5:42 am

Extrementhusiast wrote:Another one down...

This same method solves another still life from group 1:
x = 16, y = 9, rule = B3/S23
5b2o2b2ob2o$6b2o2bobo$5bo4bobobo$o10bobobo$b2o10bobo$2o11b2o$4b2o2b2o$
5b2ob2o$4bo!


Here are two still lifes from a known (expensive) converter (groups 2 and 3 respectively):
x = 26, y = 54, rule = B3/S23
4bobo$5b2o$5bo6bo$10b2o11bo$2o9b2o10bobo$b2o2b2o11bo4b2o$o4b2o11bobo$
18b2o$8bo3b2ob2o$3b2o2bobo3bob2o$3bo2bobo4bo$4b3o5b2o$7bo10bo$6bo10bo$
6b2o4b2o3b3o$12b2o2$17b2o$7b2o7bo2bo$8b2o6bo2bo$7bo9b2o13$7bo9b2o$8b2o
6bo2bo$7b2o7bo2bo$17b2o2$5bo6b2o$4bobo5b2o3b3o$4bo2bo9bo$3b2ob2o10bo$
6bo5b2o$6bobo4bo$7bobo3bob2o$8bo3b2ob2o$18b2o$o4b2o11bobo$b2o2b2o11bo
4b2o$2o9b2o10bobo$10b2o11bo$5bo6bo$5b2o$4bobo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1067
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » January 5th, 2014, 2:27 pm

A component I had previously used solves a G1:
x = 28, y = 32, rule = B3/S23
2bo$obo5bo$b2o3bobo$7b2o11$19b2o$18bo2bo2b2obo$19b2o3bob2o$21b3o$21bo
2$3b2o$2bobo$4bo3$15bobo$16b2o$8b2o6bo$9b2o$8bo4b3o$15bo$14bo!


EDIT: It also solves another G1:
x = 110, y = 33, rule = B3/S23
75bobo$75b2o11bo$76bo5bo5bobo$82bobo3b2o$44bo37b2o$45bo$43b3o3bo$39bo
7b2o$40b2o6b2o$2bobo34b2o$3b2o$3bo$10bobo$2o8b2o24b2o26b2o$obo8bo24bob
o25bobo$2bo16bo18bo4bo22bo3b2o31b2ob2o$2b2o14bo19b2o2bobo21b2obo2bo30b
2obo$18b3o21b2o26b2o35b3o$2b4o10bo21b4o24b4o33b4o2bo$2bo2bo9b2o21bo2bo
24bo2bo33bo2bo$15bobo$11b2o10bo62b2o$11bobo8b2o62bobo$11bo10bobo61bo2$
3b2o$4b2o67bobo$3bo69b2o$74bo6b2o$80b2o$75b3o4bo$75bo$76bo!


Also...
mniemiec wrote:
Extrementhusiast wrote:Copying the method verbatim for the griddle with cross-snake solves a sixth:

I don't remember this one being solved yet. Did I miss something? (Do you remember when this was last discussed? I can't find it using the site's search function).


From page seven:
Extrementhusiast wrote:EDIT: Griddle with cross-snake in 46 gliders:
x = 323, y = 39, rule = B3/S23
3bo$4b2o$3b2o290bo$294bo$294b3o5bo$285bo14b2o$224bo61b2o13b2o$223bo61b
2o$223b3o16bobo$243b2o$12bobo228bo41bo$13b2o40b2o21b2o22b2o25b2o34b2o
23b2o29b3o59b2o13b2o$13bo39b3obo11bo6b3obo19b3obo22b3obo31b3obo20b3obo
22b2o4bo19b2o13b2o26b2o6b2o4bobo19bo$52bo4bo12bo4bo4bo18bo4bo14bo6bo4b
o3bo26bo4bo19bo4bo20b3obo4bo17bobo11b3o22bobo8b3o5bo19bobo$32bo20b4o
11b3o5b4o19b5o16bo5b5o3bo27b5o20b5o20bo4bo24bo10bo4bo21b2o7bo4bo22bo4b
o$31bo86b3o13b3o75b5o8b3o25b6o21bo8b6o22b6o$31b3o19b2o21b2o21b3o24b3o
31b7o18b3ob3o33bo18bo25b3o$29bo23b2o20bo2bo20bo2bo13b2o7bo3bo7b2o21bo
2bo2bo17bo2bobo2bo17b3ob3o9bo17b2o5b4obo15bo16b2obo24b2obo$28b2o19bo
20b2o4b2o5bo17b2o12bobo7b2ob2o7bobo44b2o5b2o16bo2bobo2bo25bobo4bo2bob
2o14bo17bob2o24bob2o$28bobo19b2o19b2o8b2o34bo19bo71b2o2bo2b2o32b2o$49b
2o2b2o15bo11b2o196b3o$53bobo130bo95bo$53bo27bo104b2o34b2o57bo$80b2o21b
2o80bobo29bo3b2o20bo$80bobo12b2o6bobo56b2o45bo6b2o5bo19b2o$94bobo6bo
57bobo2b2o41b2o5bobo23bobo$96bo66bo2bobo18b3o18bobo$115b2o21b2o26bo20b
o$99b2o15b2o19b2o49bo$4b2o92bobo14bo23bo44b3o$3bobo94bo85bo$5bo179bo$
165b3o$165bo$166bo$38b2o$b2o35bobo$obo35bo$2bo!


EDIT 2: This fully solves two previously-mentioned predecessors:
x = 114, y = 48, rule = B3/S23
54bo$52b2o$53b2o6$28bo$29b2o$28b2o$53bo4bo$54b2obo$53b2o2b3o4$10bo32bo
37bo$9bobo14bo15bobo35bobob2o$8bobo16b2o12bobo37b2obo$8bo17b2o13bo42bo
$6bob2o28b2ob2o22b2o14b2ob2o$6b2o2bo26bo2bo2bo20b2o15bobo2bo$bobo5b2o
26b2o3b2o22bo18b2o$2b2o$2bo2$2o$b2o$o2$29bo$29b2o$28bobo$81bo26bo$80bo
bob2o21bobob2o$81b2obo23b2obo$84bo26bo$81b2ob2o22b2ob2o$81bobo2bo21bob
o2bo$85b2o24b2o2$89b2o$89bobo$89bo$85b3o$87bo$86bo!


And a variation of another component I had used previously solves another G2 (or at least I think it was a G2):
x = 57, y = 35, rule = B3/S23
11b2o$11b3o$10bob2o$10b3o$11bo2$obo11bobo$b2o12b2o$bo13bo$7bo18bobo7bo
$8b2o16b2o6b2o$7b2o18bo7b2o2$32bo$17bo12b2o$16bobo12b2o$16bo2bo$17b2o
3$11b2o13bobo20b2o2bo$11bo2bo11b2o21bo2bobo$12b3o12bo22b3o2bo$15b2o36b
2obo$14bo2bo6b3o25bo2bo$15b2o7bo8bo19b2o$25bo6b2o$32bobo3$23b2o$22b2o$
18bo5bo$18b2o$17bobo!


EDIT 3: Another G1 down:
x = 36, y = 32, rule = B3/S23
30bo$28bobo$29b2o$32bo$32b3o$35bo$34b2o3$obo$b2o15b2o$bo12b2obo2bo$15b
obo2bo$14bo3b2o$15b3o$17bo11$20b2o$19b2o$21bo$bo$b2o$obo!


EDIT 4: A G2 and two G3s:
x = 155, y = 138, rule = B3/S23
9bo$10bo$8b3o4$19bo$18bo$18b3o2$21b2o$21bobo$11b2o8bo$9b3obo$8bo4bo$9b
4o2$9b4o$9bo2bo7$15b2o$14b2o$5b2o9bo$4bobo14b3o$6bo14bo$22bo2$15b3o$
15bo$16bo$23bo$22b2o$22bobo32$108bo$109bo$107b3o2$125bo$124bo8bobo$89b
o16bo17b3o6b2o$90bo13bobo27bo$88b3o14b2o$92bo16bo$91bo18b2o$91b3o15b2o
$20bo24bobo$20bobo22b2o13b2o9bo$20b2o20bo3bo12bobo2bo4b2o16bo3b2o$43bo
17bo2bobo3b2o13bobo3b2o28b2o$11bo29b3o20b2o20b2o33bo$9bobo71b2o6b2o30b
o$10b2o70bobo6b2o29b2o$43b2o39bo63bo$42bobo22b2o22b2o29b2o23bobob2o$
39bo2bo22bo2bo20bo2bo27bo2bo24bo3bo$24b2o9bo2bobobobo20b2obobo18b2obob
o25b2obobo23b2obobo$24bobo6bobo2bo2bob2o22bob2o20bob2o27bob2o25bob2o$
24bo9b2o3bobo25bo23bo30bo28bo$12b2o26b2o24b2o22b2o12b2o15b2o27b2o$4b2o
5b2o22b2o68b2o$5b2o6bo20bobo67bo$4bo3b2o26bo$8bobo99b2o2b2o$8bo102b2ob
obo$110bo3bo3$116b3o$116bo$117bo8$10bobo$11b2o$11bo5$2bo$obo9b2o8bo$b
2o9bobo8b2obo$15bo6b2o2bobo$13b2obob2o6b2o$13bo2bob2o$14b2o6$7b2o$6bob
o$8bo$12b3o$12bo$13bo!


EDIT 5: Modifying the construction of one of the 16-bitters solves a G3:
x = 38, y = 44, rule = B3/S23
3bo$4b2o$3b2o3$21bo$19b2o$20b2o3$31bo$30bo$30b3o2$37bo$35b2o$36b2o4$6b
2o$6bobo$9bo$10bo10b2o$7b3o3bo7bobo$7bo2b4o7bo$10bo$11bo$10b2o7$32b2o$
31b2o$33bo2$19bo$18b2o$2o12bo3bobo$b2o12b2o$o13b2o!


EDIT 6: Full synthesis of a G2:
x = 267, y = 34, rule = B3/S23
103bo64bo$101bobo65bo$102b2o63b3o3$bo242bo$2bo73bo24bo143bo$3o68bo3bo
26b2o10b2o117bobo7b3o$46bobo23b2ob3o23b2o10bo2bo36bo80b2o11bo$46b2o23b
2o40bo2bo36bobo78bo12bobo$47bo50bo4bo10b2o37b2o56bo35b2o$98b2o2bo107bo
$39b2o7b2o16b2o29bobo2b3o4b2o33b2o7bo14b2o6b2o25b2o5b3o29b2o$12bo27bo
6b2o18bo2bo39bo2bo29bo2bo5b2o13bo2bo4bo2bo23bo2bo35bo2bo18b2o$13b2o2b
2o21bob2o5bo17bobobo38bobobo28bobobo4bobo12bobobo3bo2bo23bobobo6b2o26b
obobo17bobo$12b2o2bo2bo19b2obobo21b2obo2bo36b2obo2bo26b2obo2bo17b2obo
2bo3b2o23b2obo2bo5bobo24b2obo2bo13b2obo2bo$16bo2bo20bo2b2o22bo2b2o38bo
2b2o11b2o15bo2b2o19bo2b2o30bo2b2obo4bo27bo2b3o14bo2b3o$17b2o21bo26bo
42bo15bobo14bo23bo34bo5bo22b2o8bo19bo$41b6o21b6o37b6o9bo17b6o18b6o29b
5o24b2o8b3o17b3o$19bo23bo2bo23bo2bo39bo2bo29bo2bo20bo2bo31bo25bo12bo
19bo$18b2o$18bobo3$173bo38b2o$173bobo2bo4b3o25b2o$173b2o2b2o4bo18bo10b
o$177bobo4bo17b2o$201bobo$173b2o$174b2o$26b2o145bo$26bobo$26bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1617
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby dvgrn » January 5th, 2014, 6:19 pm

Extrementhusiast wrote:A component I had previously used solves a G1:
EDIT: It also solves another G1:
EDIT: Griddle with cross-snake in 46 gliders:
EDIT 2: This fully solves two previously-mentioned predecessors:
And a variation of another component I had used previously solves another G2 (or at least I think it was a G2):
EDIT 3: Another G1 down:
EDIT 4: A G2 and two G3s:
EDIT 5: Modifying the construction of one of the 16-bitters solves a G3:
EDIT 6: Full synthesis of a G2:

This definitely looks like progress! But I have to say, the indexing system for these 17-bit still lifes leaves something to be desired... just pointing to the nearest 100 objects seems, um, unnecessarily imprecise.

Somebody could maybe start a new thread for the 17-bit objects, and put this pattern in the first post --

x = 187, y = 337, rule = LifeHistory
23.3D12.D14.3D12.3D14.D11.5D11.3D11.5D11.3D12.3D$22.D3.D10.2D13.D3.D
10.D3.D12.2D11.D14.D18.D10.D3.D10.D3.D$22.D2.2D11.D17.D14.D11.D.D11.D
14.D17.D11.D3.D10.D3.D$22.D.D.D11.D16.D13.2D11.D2.D12.3D11.4D13.D13.
3D12.4D$22.2D2.D11.D15.D16.D10.5D14.D10.D3.D11.D13.D3.D14.D$22.D3.D
11.D14.D13.D3.D13.D11.D3.D10.D3.D10.D14.D3.D14.D$23.3D11.3D12.5D11.3D
14.D12.3D12.3D11.D15.3D12.3D4$2.D4.3D14.2A9.A.2A11.2A2.2A9.2A.A11.2A.
A11.2A.A11.2A.A.A9.2A.A.2A8.2A.2A10.2A.2A12.D4.3D$.2D3.D3.D9.2A.A2.A.
2A.A3.2A.3A9.2A2.A.A8.2A.3A9.2A.3A9.2A.3A10.A.2A.A8.A.2A.A10.A.A.A9.A
.2A.A10.2D3.D3.D$2.D3.D2.2D9.A.2A2.A.A.2A9.A14.A14.A14.A14.A8.A5.A13.
A9.A5.A14.A10.D3.D2.2D$2.D3.D.D.D16.A7.2A.3A9.6A9.2A.3A9.4A.A9.6A9.A.
2A.A10.2A.A10.A.3A.A9.4A.A10.D3.D.D.D$2.D3.2D2.D24.A.2A11.A2.A11.A.2A
11.A2.2A10.A2.A12.A.2A11.2A.2A10.A.A.A10.A2.2A11.D3.2D2.D$2.D3.D3.D
161.D3.D3.D$.3D3.3D2.5D154.3D3.3D2.5D4$2.D5.D11.2A.2A10.2A.2A10.A.2A
11.2A2.2A9.2A.A2.2A7.2A.A.2A.A6.2A.2A13.A13.2A13.2A13.D5.D$.2D4.2D11.
A.2A.A9.2A.A11.2A.A2.A8.A2.A2.A8.A.2A3.A7.A.2A.A.2A7.A.A.A.2A7.5A12.A
2.2A.A6.A2.A.2A.A6.2D4.2D$2.D5.D17.A12.3A11.A.A.A8.A.A.A.A11.3A12.A
11.A3.2A.A6.A5.A.2A5.3A3.A.2A5.A.A.A.A.2A7.D5.D$2.D5.D11.A.4A9.4A2.A
8.2A.A2.A8.2A.A2.A9.2A.A11.3A13.3A11.3A2.2A.A5.A2.3A10.A2.A12.D5.D$2.
D5.D11.2A.A11.A2.A11.A.2A15.2A10.A.A12.A17.A13.A14.A15.2A11.D5.D$2.D
5.D163.D5.D$.3D3.3D2.5D154.3D3.3D2.5D4$2.D4.3D12.2A13.2A12.2A12.A.2A
2.A8.A.2A2.A8.A.2A2.2A7.2A13.2A.2A10.2A.2A10.2A.2A12.D4.3D$.2D3.D3.D
10.A.A2.2A.A6.A.3A9.A2.A11.2A.A2.3A6.2A.A2.3A6.2A.A2.A.A6.A5.A9.A.2A
10.2A.A11.2A.A12.2D3.D3.D$2.D7.D9.A5.A.2A5.A5.A.2A5.A.A.A.2A.A9.2A3.A
9.2A3.A9.2A3.A6.3A.A.A.2A5.A16.A14.A13.D7.D$2.D6.D11.5A10.3A2.2A.A6.
2A.A.A.2A11.A.A12.3A12.3A9.A.A.2A.A6.2A.A9.2A.2A10.2A.2A12.D6.D$2.D5.
D14.A14.A16.A15.2A13.A14.A12.A10.A.A.2A9.A.A2.A9.A.A2.A11.D5.D$2.D4.D
117.2A17.2A12.2A12.D4.D$.3D2.5D.5D154.3D2.5D.5D4$2.D4.3D12.2A13.2A12.
A2.A11.A2.A11.A.2A11.A.2A11.2A13.2A13.2A13.2A14.D4.3D$.2D3.D3.D9.A2.
3A9.A2.3A10.4A11.4A11.2A.A10.A.2A2.A8.A2.A11.A2.A11.A2.A2.A8.A2.A.2A
9.2D3.D3.D$2.D7.D9.2A4.A8.2A4.A13.2A13.2A13.2A8.A4.2A9.A.3A9.2A.3A9.
2A.4A8.A.2A.A11.D7.D$2.D5.2D12.3A.A9.A.2A.A8.A.2A2.A8.A.2A.A9.A.2A.A
10.3A.A9.2A4.A9.A4.A9.A14.A4.A10.D5.2D$2.D7.D11.A2.A10.A.A.A9.2A.A.A
9.2A.A.A9.2A.A.A12.A.A9.A2.3A10.A.3A10.A.2A13.3A11.D7.D$2.D3.D3.D12.
2A12.A16.A14.A14.A14.A12.2A13.2A13.A.A12.2A13.D3.D3.D$.3D3.3D2.5D154.
3D3.3D2.5D4$2.D6.D11.2A13.2A.A11.2A.A11.2A.2A9.A2.A11.A2.A11.A2.A11.A
2.2A10.A2.2A10.A2.2A12.D6.D$.2D5.2D10.A2.A.2A8.A2.2A10.A2.2A10.A.A.A.
A8.4A11.6A9.6A9.4A2.A8.4A2.A8.4A.A10.2D5.2D$2.D4.D.D10.2A.2A.A8.2A13.
2A3.2A8.A2.A2.A12.2A15.A14.A13.2A13.2A14.A10.D4.D.D$2.D3.D2.D12.A13.A
.4A10.2A.A10.A.A.A9.2A.A2.A10.3A.A8.2A2.2A11.2A.A11.3A12.3A.A10.D3.D
2.D$2.D3.5D11.A.2A10.A.A2.A10.A2.A11.A.A10.2A.A.A11.A2.A9.A2.A13.A2.A
10.A2.A12.A2.A11.D3.5D$2.D6.D13.A.A11.A15.2A13.A15.A13.2A12.2A14.2A
11.2A15.2A12.D6.D$.3D5.D2.5D154.3D5.D2.5D4$2.D3.5D9.A.A12.2A13.2A13.
2A13.2A13.2A13.2A13.2A13.2A13.2A3.A11.D3.5D$.2D3.D13.2A.A2.A8.A2.A11.
A2.A11.A2.A11.A2.2A10.A2.2A10.A.A.2A9.A.A.2A9.2A2.2A9.A.A.A.A9.2D3.D$
2.D3.D16.4A10.4A11.4A10.A.3A11.2A.A11.2A.A11.A.A.A10.2A2.A12.A.A10.A.
A.A10.D3.D$2.D4.3D10.2A19.A14.A8.2A4.A14.A14.A9.A.A2.A9.A3.2A8.4A2.A
9.A.A.A11.D4.3D$2.D7.D9.A.3A10.4A.A9.6A9.A2.3A10.A.2A.A8.6A10.A2.2A
10.A.2A10.A2.A.A10.A2.A12.D7.D$2.D3.D3.D13.A10.A2.2A10.A2.A13.2A12.2A
.2A9.A2.A11.2A15.A.A14.A12.2A13.D3.D3.D$.3D3.3D2.5D154.3D3.3D2.5D4$2.
D4.3D10.2A3.2A8.2A2.A10.2A2.A10.2A2.A10.2A2.A.A8.2A2.2A9.2A2.2A9.2A2.
2A9.2A2.2A9.2A2.2A11.D4.3D$.2D3.D13.A2.A2.A8.A2.A.A9.A2.A.A9.A2.A.A9.
A2.A.2A8.A2.A2.A8.A2.A2.A8.A2.A2.A8.A2.A2.A8.A2.A2.A9.2D3.D$2.D3.D14.
2A.2A11.2A2.A10.2A.A10.2A.A.A10.2A13.2A.2A10.2A.2A9.2A.A.A9.2A.2A10.
2A.2A11.D3.D$2.D3.4D12.A.A15.2A13.2A10.A.A.A11.A.2A11.A.A12.A.A11.A.
2A11.A.A12.A.A12.D3.4D$2.D3.D3.D10.A2.A11.A.2A11.A.2A12.A2.A12.A2.A
11.A2.A10.A2.A11.A14.A2.A10.A2.A12.D3.D3.D$2.D3.D3.D11.2A12.2A.A11.2A
.A13.2A14.2A13.2A12.2A11.2A15.2A12.2A13.D3.D3.D$.3D3.3D2.5D154.3D3.3D
2.5D4$2.D3.5D9.2A2.2A9.2A.A11.2A.A11.2A.A11.2A.A11.2A.A11.2A.2A10.2A.
2A10.2A.2A10.2A.2A12.D3.5D$.2D7.D9.A.A2.A9.A.2A11.A.2A11.A.2A2.A8.A.
4A9.A.4A10.A.A12.A.A12.A.A2.A9.A.A2.A9.2D7.D$2.D6.D12.2A15.2A13.2A13.
3A14.A14.A8.A3.A10.A2.A.A9.A3.3A8.A2.A.2A10.D6.D$2.D5.D11.A2.A.A10.3A
2.A9.3A2.A9.3A15.2A10.2A2.2A8.A.2A.A10.2A.A.A9.3A12.2A.A12.D5.D$2.D4.
D12.2A2.A.A9.A2.A.A8.A4.2A9.A2.A10.2A.A12.A2.A11.A.A2.A12.A.A12.A14.A
12.D4.D$2.D3.D18.A13.2A9.2A16.2A10.A.2A14.2A15.2A12.2A12.2A14.2A11.D
3.D$.3D2.D5.5D154.3D2.D5.5D4$2.D4.3D10.2A.2A10.2A.2A10.2A.2A10.2A.2A
12.2A13.2A13.2A13.2A13.2A13.2A13.D4.3D$.2D3.D3.D10.A.A2.A8.A3.A10.A.
2A11.2A.A13.A2.2A10.A.A.2A8.A2.A11.A2.A11.A2.A11.A2.A.2A8.2D3.D3.D$2.
D3.D3.D9.A2.A.2A9.2A.A.A13.A12.A14.2A2.A7.A.A.2A.A7.A.A.3A8.A.2A2.2A
7.A.2A.A.A7.A2.2A.A10.D3.D3.D$2.D4.3D10.2A.A13.A2.2A9.4A.A11.2A10.3A
2.A.A7.2A.A12.A.A3.A8.A5.A8.A2.A.2A8.2A3.A10.D4.3D$2.D3.D3.D12.A11.A.
A13.A2.A.A9.A.A2.A8.A3.A.A11.A14.A2.2A9.5A10.A.A13.A.A11.D3.D3.D$2.D
3.D3.D12.2A10.2A18.A10.2A2.2A13.A12.2A13.2A14.A13.2A13.2A12.D3.D3.D$.
3D3.3D2.5D154.3D3.3D2.5D4$2.D4.3D12.2A13.2A13.2A12.A14.A14.A3.A10.A2.
2A10.A.A12.2A13.2A14.D4.3D$.2D3.D3.D10.A2.A.2A8.A2.A.2A7.A2.A2.A8.A.A
3.2A7.A.A.A10.A.A.A.A8.A.A2.A10.2A.A10.A2.A11.A2.A12.2D3.D3.D$2.D3.D
3.D9.A2.2A.A8.A.A.A.A8.2A.A.A.A7.A.3A2.A7.A.A.3A9.2A.A.A9.2A.A14.A11.
A.A12.A.A2.A10.D3.D3.D$2.D4.4D10.2A3.A9.A.A2.A10.A2.2A9.A3.2A9.A.A3.A
10.A2.2A10.A.3A7.A.2A.2A8.2A2.2A.A7.2A.A.A.A9.D4.4D$2.D7.D12.3A12.A.A
11.A.A12.A.A13.A2.2A10.A.A12.A3.A7.2A.A.A.A9.A.A.2A7.A2.A2.A10.D7.D$
2.D7.D12.A14.2A13.2A13.2A13.2A14.2A11.2A17.A10.2A13.2A13.D7.D$.3D3.3D
2.5D154.3D3.3D2.5D4$23.3D12.D14.3D12.3D14.D11.5D11.3D11.5D11.3D12.3D$
22.D3.D10.2D13.D3.D10.D3.D12.2D11.D14.D18.D10.D3.D10.D3.D$22.D2.2D11.
D17.D14.D11.D.D11.D14.D17.D11.D3.D10.D3.D$22.D.D.D11.D16.D13.2D11.D2.
D12.3D11.4D13.D13.3D12.4D$22.2D2.D11.D15.D16.D10.5D14.D10.D3.D11.D13.
D3.D14.D$22.D3.D11.D14.D13.D3.D13.D11.D3.D10.D3.D10.D14.D3.D14.D$23.
3D11.3D12.5D11.3D14.D12.3D12.3D11.D15.3D12.3D4$.3D3.3D11.2A13.2A13.2A
13.2A3.A9.2A3.A8.A3.2A9.A.A12.A.2A.2A8.A.2A.2A8.2A14.3D3.3D$D3.D.D3.D
9.A2.A2.2A7.A2.A2.2A7.A2.A2.2A7.A2.A.A.A7.A2.A.A.A7.3A2.A9.2A.A11.2A.
A.A9.2A.A.A9.A2.A2.2A7.D3.D.D3.D$4.D.D2.2D10.2A2.A.A8.2A.A2.A8.2A.A2.
A7.2A.A.2A8.3A3.A11.2A13.A2.A13.A14.A.A8.2A.A2.A11.D.D2.2D$3.D2.D.D.D
11.A.2A11.A.A.A10.A.A.A10.A.A13.3A11.A2.3A7.2A.A.A.A11.A.2A11.A.2A9.A
.A.A11.D2.D.D.D$2.D3.2D2.D11.A2.A11.A2.A11.A2.A11.A.A12.A13.A.A3.A7.A
2.A2.A12.A2.A11.A12.A2.A11.D3.2D2.D$.D4.D3.D12.2A13.2A11.2A15.A13.2A
13.A14.2A16.2A11.2A13.2A11.D4.D3.D$5D2.3D2.5D153.5D2.3D2.5D4$.3D4.D
11.2A13.2A13.2A13.2A13.2A13.2A4.2A7.2A2.A10.2A2.A10.2A2.A10.2A2.A11.
3D4.D$D3.D2.2D11.A2.A2.2A7.A2.A.2A8.A2.2A10.A2.2A10.A2.2A.2A7.A2.2A2.
A7.A3.3A8.A2.A.A9.A2.A.A9.A2.A.A9.D3.D2.2D$4.D3.D12.2A.A2.A8.A.2A2.A
8.2A2.A.A8.2A.A11.2A.A.2A8.2A2.2A9.3A3.A8.A.A2.A9.A.A.A10.A.A.A13.D3.
D$3.D4.D13.A.A.A10.A3.2A9.A.A.2A9.A.A.2A9.A.A12.A.A13.A.A.A9.A.2A.A9.
A2.2A10.A.A.2A10.D4.D$2.D5.D13.A2.A12.3A11.A.A12.A2.A.A9.A.A12.A.A14.
A.A11.A2.A11.2A2.A11.A2.A9.D5.D$.D6.D12.2A17.A12.2A13.2A13.A14.A16.A
13.2A15.2A11.2A10.D6.D$5D2.3D2.5D153.5D2.3D2.5D4$.3D3.3D10.2A2.A10.2A
2.A10.2A2.A10.2A2.A2.A7.2A2.2A9.2A2.2A9.2A2.2A9.2A2.2A9.2A2.2A9.2A.A.
2A9.3D3.3D$D3.D.D3.D9.A2.A.A9.A2.A.A9.A2.A.A.A7.A3.4A7.A2.A2.A8.A2.A
2.A8.A2.A2.A8.A2.A2.A8.A2.A2.A8.A.3A2.A7.D3.D.D3.D$4.D5.D10.3A2.A9.3A
2.A9.2A.A.2A8.3A13.2A.A.A8.A.A.A.A8.A.A.A.A8.A.2A2.A8.2A.2A.A13.2A11.
D5.D$3.D5.D14.A.A12.2A.A9.A.A13.A.A12.A2.A10.A.A.A10.A.A.A10.A2.2A11.
A2.A12.2A12.D5.D$2.D5.D14.A2.2A10.A2.A10.A.A14.A.A9.A.A15.A14.A14.A
13.A.A12.A.A11.D5.D$.D5.D15.2A14.2A12.A16.A10.2A16.2A12.2A13.2A14.A
14.A11.D5.D$5D.5D.5D153.5D.5D.5D4$.3D3.3D10.2A.2A10.2A.2A10.2A.2A10.
2A.2A10.2A.2A13.2A12.A14.A14.2A13.2A12.3D3.3D$D3.D.D3.D10.A.A12.A.A2.
A9.A.A2.2A8.A.2A10.2A.A.A11.A2.A.2A7.A.A12.A.A.2A.A9.A11.A2.A11.D3.D.
D3.D$4.D5.D10.A2.3A9.A2.2A.A8.A2.A.A9.A16.A.A9.A2.A.2A.A7.A.A11.A2.A.
A.2A9.A.2A.A6.2A.A.2A.A10.D5.D$3.D4.2D12.2A3.A9.2A2.A10.A.A.A10.A.3A
11.A.2A8.2A.A11.2A.A.2A.A7.3A11.2A.A.A.2A8.A2.A.2A9.D4.2D$2.D7.D13.3A
12.A13.A.A12.2A2.A11.A2.A10.A14.A.A.2A10.A10.A.A.A12.A.A12.D7.D$.D4.D
3.D13.A14.2A13.A16.2A12.2A11.2A13.2A13.2A13.A14.A12.D4.D3.D$5D2.3D2.
5D153.5D2.3D2.5D4$.3D5.D11.A14.2A12.A.2A3.A7.2A13.2A13.2A13.2A13.2A
13.2A13.2A3.2A.A7.3D5.D$D3.D3.2D10.A.A.2A.2A8.A2.2A.A6.2A.A2.A.A6.A2.
2A10.A2.2A10.A2.2A10.A.A2.2A8.A.A2.2A.A6.A.A2.2A.A7.A3.A.2A6.D3.D3.2D
$4.D2.D.D11.A3.A.A8.A3.A.2A10.3A.A7.2A2.A.2A7.2A2.A.2A7.2A2.A.2A8.A2.
A11.A2.A.2A8.A2.A.2A7.A.2A14.D2.D.D$3.D2.D2.D12.2A3.A7.A.3A17.A10.A.
2A.A8.A2.2A.A8.A2.2A.A8.2A.A11.2A.A10.A.2A12.A15.D2.D2.D$2.D3.5D13.3A
8.A.A18.A11.A12.A13.A19.A.2A11.A10.A13.A.A14.D3.5D$.D7.D14.A11.A19.2A
9.2A12.2A12.2A18.2A.A11.2A8.2A13.2A14.D7.D$5D4.D2.5D153.5D4.D2.5D4$.
3D2.5D13.2A11.A14.2A11.A.2A13.A14.2A13.2A13.2A13.2A13.2A12.3D2.5D$D3.
D.D14.A2.A11.A.A12.A2.A10.2A.A2.2A8.A.A13.A.A12.A.A12.A.A11.A2.A11.A
2.A10.D3.D.D$4.D.D13.A.A.A10.A2.A2.2A.A5.A.A.A14.3A.A7.A.3A14.A9.A.A
2.A9.2A2.A11.A.A2.A9.A.A2.A12.D.D$3.D3.3D11.A2.A.2A.A6.2A3.A.2A6.A2.A
.2A.A14.A5.2A4.A8.4A.A9.2A.A.A10.A.A.2A8.2A.A.2A8.2A.A.2A11.D3.3D$2.D
7.D13.A.A.2A8.3A13.A.A.2A11.3A7.A.3A9.A2.A.2A11.A.2A9.A.A2.A11.A.A11.
A.A12.D7.D$.D4.D3.D14.A12.A16.A15.A9.A.A14.A14.A13.A.A13.A.A11.A.A11.
D4.D3.D$5D2.3D2.5D65.A14.2A13.2A14.A15.A13.A11.5D2.3D2.5D4$.3D3.3D12.
2A13.2A13.2A13.2A13.2A13.2A13.2A13.2A13.2A13.2A12.3D3.3D$D3.D.D14.A2.
A11.A2.A11.A2.A11.A2.A11.A2.A11.A2.A11.A2.A11.A.A12.A.A12.A.A11.D3.D.
D$4.D.D14.A.A2.A9.A.A.A10.A.A.A9.A2.A.A9.A.A2.A9.A.A.A10.A.2A.A10.A.A
.2A9.A.A.2A9.A.A.2A12.D.D$3.D2.4D10.2A.A.2A8.2A.A2.A8.2A.A.A9.A.2A2.A
9.A.2A.A8.A2.A.2A9.A2.A.A8.2A2.A.A8.2A2.A.A8.2A.A.A12.D2.4D$2.D3.D3.D
10.A.A14.A.2A11.A.2A9.A2.2A12.A2.A9.A.A2.A10.A.A.A10.A.A11.A15.A2.A
11.D3.D3.D$.D4.D3.D10.A.A14.A14.A14.A13.A2.A11.A.A13.A.A11.A.A11.A.A
13.A.A11.D4.D3.D$5D2.3D2.5D5.A14.2A13.2A13.2A14.2A13.A15.A13.A13.2A
14.A11.5D2.3D2.5D4$.3D2.5D11.2A13.2A13.2A13.2A13.2A13.2A13.2A13.2A13.
2A13.2A12.3D2.5D$D3.D5.D10.A.A12.A.A12.A.A12.A.A12.A.A12.A.A12.A.A12.
A.A12.A.A12.A.3A9.D3.D5.D$4.D4.D10.A14.A5.A8.A5.A8.A3.2A9.A3.2A9.A2.A
.2A8.A2.A.2A8.A2.A.2A8.A2.A.2A8.A5.A12.D4.D$3.D4.D11.A.4A9.A.5A8.A.5A
9.3A2.A8.A.2A2.A9.3A.A9.2A.A.A9.3A2.A9.3A.A.A9.2A.2A12.D4.D$2.D4.D13.
A4.A9.A14.A16.A.2A9.A2.2A15.A10.A2.A14.A12.A13.A.A12.D4.D$.D4.D16.3A
11.A.A12.3A13.A14.A14.3A11.A.A12.3A12.A14.A.A11.D4.D$5D.D5.5D5.2A14.
2A14.A12.2A13.2A14.A14.A13.A14.2A14.A11.5D.D5.5D4$.3D3.3D11.A14.A.2A
11.2A13.2A13.2A13.2A13.2A13.2A13.2A13.2A13.3D3.3D$D3.D.D3.D10.3A12.2A
2.A11.A14.A14.A14.A12.A2.A11.A2.A11.A2.A11.A2.A11.D3.D.D3.D$4.D.D3.D
13.A.A12.A.A8.A2.2A10.A2.2A10.A2.2A.A8.A.A.2A10.A.A12.A.A12.2A3.A9.2A
2.A13.D.D3.D$3.D3.3D10.A.2A.2A9.3A.A9.3A2.A9.3A2.A9.2A.A.2A8.2A.A2.A
8.2A2.2A9.2A.A.2A11.4A11.2A.A11.D3.3D$2.D3.D3.D9.2A.A11.A2.A14.A.A12.
2A.A9.A.A14.A.2A10.2A2.A8.A2.A2.A9.2A13.2A2.A11.D3.D3.D$.D4.D3.D12.A
12.A.A13.A2.2A10.A2.A10.A.A14.A13.A2.A11.A.A11.A2.A11.A2.A11.D4.D3.D$
5D2.3D2.5D6.2A12.A14.2A14.2A12.A14.2A14.2A13.A14.2A12.2A11.5D2.3D2.5D
4$.3D3.3D11.2A13.2A13.2A13.2A13.2A13.2A13.2A.A11.2A.2A9.2A13.2A14.3D
3.3D$D3.D.D3.D9.A2.A11.A2.A11.A2.A.2A8.A2.A.2A8.A2.A.2A8.A.A12.A2.2A
12.A.A11.A14.A13.D3.D.D3.D$4.D.D3.D10.2A2.A9.A.A.A10.A.A3.A8.A.A3.A8.
A.A3.A8.A2.2A11.A13.A5.A9.A.2A11.A.2A.A12.D.D3.D$3.D3.4D12.2A.A9.A.A.
A10.A.2A11.A.3A10.A.3A10.2A2.A11.5A8.2A3.2A8.2A2.A10.2A.A.2A11.D3.4D$
2.D7.D10.2A2.A12.A.A12.A14.A14.A13.A.A.A11.A2.A10.A.A12.A.A.A9.A.A13.
D7.D$.D8.D9.A2.A13.A2.2A11.A.A11.A13.A15.A2.A10.A15.A.A12.A2.2A9.A.A
12.D8.D$5D2.3D2.5D4.2A14.2A15.2A11.2A12.2A13.2A13.2A15.A12.2A14.A12.
5D2.3D2.5D4$23.3D12.D14.3D12.3D14.D11.5D11.3D11.5D11.3D12.3D$22.D3.D
10.2D13.D3.D10.D3.D12.2D11.D14.D18.D10.D3.D10.D3.D$22.D2.2D11.D17.D
14.D11.D.D11.D14.D17.D11.D3.D10.D3.D$22.D.D.D11.D16.D13.2D11.D2.D12.
3D11.4D13.D13.3D12.4D$22.2D2.D11.D15.D16.D10.5D14.D10.D3.D11.D13.D3.D
14.D$22.D3.D11.D14.D13.D3.D13.D11.D3.D10.D3.D10.D14.D3.D14.D$23.3D11.
3D12.5D11.3D14.D12.3D12.3D11.D15.3D12.3D4$.3D3.3D10.2A13.2A13.2A13.2A
13.2A13.2A13.2A13.2A3.A9.2A3.2A8.2A3.2A9.3D3.3D$D3.D.D3.D10.A2.2A9.A
2.2A10.A.A12.A.A12.A.A12.A.A2.2A8.A.A2.2A9.A2.A.A9.A3.A9.A5.A8.D3.D.D
3.D$4.D.D2.2D10.A.A2.A10.2A13.A14.3A12.3A13.A2.A11.A2.A9.A.A2.A8.A5.A
10.A.A14.D.D2.2D$2.2D2.D.D.D9.2A2.2A14.A11.2A.2A9.A3.A10.A3.A10.2A.2A
10.2A.2A11.A.2A9.2A3.2A9.2A.2A11.2D2.D.D.D$4.D.2D2.D11.A.A11.A.2A.A
14.A9.A.2A.A9.A.2A.A10.A.A11.A2.A13.A13.A.A12.A.A14.D.2D2.D$D3.D.D3.D
11.A.A11.2A.A.A9.A.2A12.A2.A11.A.A.A10.A.A12.A.A11.A.A13.A.A12.A.A10.
D3.D.D3.D$.3D3.3D2.5D6.A16.A10.2A.2A12.2A15.A12.A14.A12.2A15.A14.A12.
3D3.3D2.5D4$.3D4.D11.2A3.2A8.2A3.2A8.2A3.2A8.2A3.2A8.2A2.A10.2A2.A10.
2A2.A10.2A2.A10.2A2.A10.2A2.A11.3D4.D$D3.D2.2D11.A5.A8.A4.A9.A.A3.A8.
A.A2.A9.A2.A.A9.A2.A.A9.A2.A.A9.A2.A.A9.A2.A.A9.A2.A.A9.D3.D2.2D$4.D
3.D13.A.A12.A3.A10.A2.A12.A.A10.A.A2.A9.A.A2.A9.A.A2.A9.A.A2.A9.3A2.A
9.3A2.A12.D3.D$2.2D4.D12.2A.2A10.2A2.2A9.2A.A11.2A.A12.A.2A11.A.2A11.
A.2A11.A.3A13.2A12.2A11.2D4.D$4.D3.D12.A2.A12.A.A13.A13.A16.A13.A14.A
14.A14.2A13.A15.D3.D$D3.D3.D13.A.A12.A.A13.A.A11.A.A12.A.A14.A.A9.A.A
15.A12.A.A14.A.A8.D3.D3.D$.3D3.3D2.5D6.A14.A15.2A12.2A12.2A16.2A9.2A
15.2A13.A16.2A9.3D3.3D2.5D4$.3D3.3D10.2A2.A10.2A2.2A9.2A2.2A9.2A2.2A
9.2A2.2A9.2A.A2.A8.2A.2A10.2A.2A10.2A.2A10.2A.2A11.3D3.3D$D3.D.D3.D9.
A2.A.A10.A2.A10.A3.A10.A2.A2.A8.A2.A2.A8.A.5A9.A.A12.A.A12.A.A.A10.A.
A.A9.D3.D.D3.D$4.D5.D10.3A.A9.A5.A10.A.A.A10.2A.2A9.2A2.A25.A2.3A8.A
4.A10.A4.A9.A4.A12.D5.D$2.2D5.D15.2A8.2A3.2A9.2A2.2A11.A14.2A14.A12.
2A2.A9.4A.A10.3A.A10.4A11.2D5.D$4.D3.D14.2A12.A.A12.A13.A.A14.A13.3A
13.A16.A14.A28.D3.D$D3.D2.D14.A.A12.A.A11.A13.A.A13.A.A12.A15.A15.A
15.A14.2A9.D3.D2.D$.3D2.5D.5D6.A14.A12.2A13.A14.2A13.2A14.2A14.2A14.
2A13.2A10.3D2.5D.5D4$.3D3.3D10.2A.2A10.2A.2A10.2A.2A10.2A.2A10.2A.2A.
A10.A14.A14.A14.A14.A13.3D3.3D$D3.D.D3.D10.A.A.A10.A.A.A9.2A.A11.2A.A
12.A.A.2A9.A.A12.A.A12.A.A12.A.A12.A.A2.2A7.D3.D.D3.D$4.D5.D10.A4.A9.
A4.A11.A2.A11.A.A9.A15.A2.A.2A8.A.A2.A8.A.A.A10.A.A.A.2A7.A.A.A2.A11.
D5.D$2.2D4.2D12.4A11.4A12.4A11.2A.A9.2A12.2A.2A.A8.2A.A.A.A7.A3.A10.A
3.A.2A7.A3.2A11.2D4.2D$4.D5.D13.A13.A32.A10.A15.A2.A9.A.A2.A9.A2.A.2A
8.A2.A11.A2.A14.D5.D$D3.D.D3.D15.A9.A18.2A11.3A11.A.A13.A.A10.A.A13.A
.A.2A9.A.A12.A.A10.D3.D.D3.D$.3D3.3D2.5D8.2A9.2A17.2A11.A14.2A14.A12.
A15.A14.A14.A12.3D3.3D2.5D4$.3D5.D12.2A13.2A13.2A.A10.A14.A14.A14.A
14.2A13.2A13.2A13.3D5.D$D3.D3.2D11.A2.A11.A2.A11.A2.2A10.3A11.A.A.A
10.A.A.A10.A.A.2A11.A14.A13.A13.D3.D3.2D$4.D2.D.D10.A2.A2.A8.A.A.3A8.
A.A3.2A11.A.2A8.2A.3A8.A.A.3A9.A3.A11.A.2A.A8.A15.A3.A12.D2.D.D$2.2D
2.D2.D11.2A.2A.A8.A.A3.A8.A4.A9.2A.2A.A10.A3.A8.A.A3.A9.2A.A.A8.2A.A.
2A7.A.3A.2A10.A.A.A9.2D2.D2.D$4.D.5D12.A2.A11.A2.A12.A.A8.A2.A14.A.A.
A10.A2.A12.A.2A7.A15.A2.A.A8.3A3.A12.D.5D$D3.D4.D13.A.A12.A.A12.A.A
10.A.A15.A.A11.A.A13.A11.3A14.A2.A8.A2.3A9.D3.D4.D$.3D5.D2.5D7.A14.A
14.A12.A17.A13.A13.2A13.A15.2A12.A12.3D5.D2.5D4$.3D2.5D10.2A13.2A13.
2A12.A14.A14.A5.A8.2A13.2A13.2A13.2A14.3D2.5D$D3.D.D14.A2.2A.A7.A2.A
11.A2.A2.2A7.3A12.3A3.A8.3A2.A.A8.A4.2A8.A2.A11.A2.2A9.A14.D3.D.D$4.D
.D15.A.A.2A8.2A.A11.A.A3.A10.A2.A11.A.A.A10.A2.A9.A.2A2.A8.A.A.A10.A.
A2.A10.A.2A.A11.D.D$2.2D3.3D11.2A14.A.A12.A.3A10.A2.A.A9.A3.A10.A.2A
11.A.3A10.A.A.A10.A.A2.A8.2A.A.2A9.2D3.3D$4.D5.D9.A2.A13.A.A.2A11.A
12.A.2A.A8.A.3A10.A.A30.A.A12.3A10.A.A14.D5.D$D3.D.D3.D10.A.A14.A.A.A
9.A15.A2.A9.A.A12.A.A14.2A13.A2.2A10.A13.A.A10.D3.D.D3.D$.3D3.3D2.5D
5.A16.A12.2A15.2A11.A14.A15.2A13.2A13.2A13.A12.3D3.3D2.5D4$.3D3.3D10.
2A13.2A13.2A13.2A13.2A13.2A13.2A13.2A13.2A13.2A14.3D3.3D$D3.D.D13.A
14.A14.A5.2A7.A4.2A8.A2.A11.A2.2A10.A2.2A10.A.A12.A.A12.A.A12.D3.D.D$
4.D.D15.A.2A.A8.3A2.2A9.A2.A.A8.3A2.A9.3A12.A.A.A10.2A2.A12.A14.A14.A
2.2A11.D.D$2.2D2.4D11.2A.A.2A10.A3.A8.2A2.A12.A.A26.A3.A11.A.A10.2A.A
.2A8.2A.A.2A8.2A.A2.A9.2D2.4D$4.D.D3.D9.A18.3A10.A.2A14.2A11.3A.A10.
3A.A10.A.2A9.A2.A.A9.A2.2A.A8.A2.A.A12.D.D3.D$D3.D.D3.D10.3A13.A.A12.
A16.A2.A8.A2.A.2A12.A.A11.A2.A10.A2.A11.A14.A.A9.D3.D.D3.D$.3D3.3D2.
5D6.A13.2A12.2A17.2A9.2A18.A13.2A12.2A11.2A15.A11.3D3.3D2.5D4$.3D2.5D
9.2A13.2A13.2A13.2A13.2A13.2A3.A9.2A2.A10.2A2.2A9.2A.A2.A8.2A.A.2A9.
3D2.5D$D3.D5.D9.A.A12.A.A12.A.A4.A7.A.A3.2A7.A.A.A10.A3.A.A8.A2.A.A9.
A2.A.A9.A.5A8.A.3A2.A7.D3.D5.D$4.D4.D12.A14.A2.A11.A2.3A9.A2.A.A9.2A.
A10.A2.A2.A9.2A2.A9.A.A32.A12.D4.D$2.2D4.D12.2A.2A.A8.2A.A.A9.2A.A11.
2A.A11.A3.A11.A.3A11.A3.A9.A2.A13.A14.2A11.2D4.D$4.D2.D16.A.2A10.A.A.
A10.A.A12.A12.2A.A13.A14.A.A.A10.2A.A12.3A12.A14.D2.D$D3.D.D14.3A14.A
2.A11.A.A12.A.A14.3A11.A14.A.A14.A15.A12.A9.D3.D.D$.3D2.D5.5D4.A17.2A
13.A14.2A16.A10.2A15.A15.2A13.2A11.2A10.3D2.D5.5D4$.3D3.3D10.A.2A11.
2A13.2A13.2A13.2A13.2A16.2A11.A14.2A12.2A14.3D3.3D$D3.D.D3.D9.2A.A3.
2A6.A14.A14.A.A12.A.A12.A.A14.A.A10.A.A2.2A9.A.A12.A13.D3.D.D3.D$4.D.
D3.D13.2A2.A7.3A3.2A7.3A.A2.A8.A14.3A12.A13.A14.A2.A2.A10.A2.A9.A.2A
14.D.D3.D$2.2D3.3D16.2A10.A2.A.A9.A.4A8.2A12.A3.A11.2A11.A5.2A9.2A2.A
10.2A.A.A9.A2.A11.2D3.3D$4.D.D3.D15.A12.3A12.A15.2A.A7.2A2.3A11.A2.2A
.A5.3A3.A11.2A12.A2.A12.A.A12.D.D3.D$D3.D.D3.D16.A14.A13.A10.2A.A.2A
14.A10.A2.A.2A7.A2.A12.A11.A.A14.2A2.A7.D3.D.D3.D$.3D3.3D2.5D9.2A13.
2A12.2A10.A.A17.2A11.2A11.A.A14.A9.A.A17.A.A8.3D3.3D2.5D$114.A14.2A
10.A18.2A3$.3D3.3D10.2A13.2A13.2A13.2A13.2A13.2A.A11.A14.2A44.3D3.3D$
D3.D.D3.D10.A14.A14.A13.A.A3.A8.A.A2.2A8.A.2A11.3A12.A44.D3.D.D3.D$4.
D.D3.D10.A.2A11.A.2A11.A.2A12.A2.A.A9.A2.A27.A12.3A45.D.D3.D$2.2D3.4D
11.A.A12.A.A12.A.A12.2A2.A10.2A.A10.3A13.A2.A12.A2.A40.2D3.4D$4.D5.D
14.2A12.A.A12.A.A12.2A13.A11.A2.A12.A.2A13.3A42.D5.D$D3.D5.D12.2A2.A
10.A.A.A10.A.A.A11.A14.A.A12.3A11.A2.2A14.2A36.D3.D5.D$.3D3.3D2.5D6.A
2.A12.A2.A10.A2.A13.A14.A.A14.A12.A2.A12.A2.A36.3D3.3D2.5D$24.2A14.2A
12.2A13.2A15.A14.2A13.2A14.2A3$23.3D12.D14.3D12.3D14.D11.5D11.3D11.5D
11.3D12.3D$22.D3.D10.2D13.D3.D10.D3.D12.2D11.D14.D18.D10.D3.D10.D3.D$
22.D2.2D11.D17.D14.D11.D.D11.D14.D17.D11.D3.D10.D3.D$22.D.D.D11.D16.D
13.2D11.D2.D12.3D11.4D13.D13.3D12.4D$22.2D2.D11.D15.D16.D10.5D14.D10.
D3.D11.D13.D3.D14.D$22.D3.D11.D14.D13.D3.D13.D11.D3.D10.D3.D10.D14.D
3.D14.D$23.3D11.3D12.5D11.3D14.D12.3D12.3D11.D15.3D12.3D!

-- and then edit that first post every now and then and progressively blank out completed still lifes as people report them. References can be to the objects' actual numbers (#100 through #397). That would make it much easier to jump in in the middle and grab an unsolved 17-bitter to work on -- if no one has mentioned a particular number since the last edit, it's probably pretty safe to claim it.

EDIT: Hoping it's not too late, I've adjusted the above to start the numbering at 100. That way there aren't any leading zeroes, and the G1, G2, G3 numbers y'all have been using match the first digit of the new index number. If anyone was already using the original index pattern, let me know and I'll change it back...!
dvgrn
Moderator
 
Posts: 3540
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Synthesising Oscillators

Postby Sokwe » January 6th, 2014, 12:39 am

Using Dave's numbering:

261, 262, and 275:
x = 94, y = 92, rule = B3/S23
6bo$4bobo$5b2o4$4bo$5b2o10b2o$4b2o10bo2bo$16bo2bo$bo4bo10b2o$b2o2bo$ob
o2b3o4b2o$13bo2bo$13bobobo$12b2obo2bo$15bob2o10b2o$15bo13bobo$14b2o13b
o12$6bo$4bobo$5b2o4$4bo$5b2o10b2o$4b2o10bo2bo$16bo2bo$bo4bo10b2o$b2o2b
o$obo2b3o4b2o$13bo2bo$13bobobo$12b2obobo$15bob2o10b2o$15bo13bobo$14b2o
13bo15$20bo61bo$19bo14bo48bo$19b3o11bo47b3o$33b3o32bo16bo$69bo15bobo$
13bo3b2o3bo7bobo34b3o4bobo8b2o$11bobo2bo2bo2bobo6b2o42b2o$12b2o2bo2bo
2b2o7bo43bo$8b2o7b2o$7bobo45b2o28b2o$9bo25bo18bobo27bobo$15b2ob2o14bob
ob2o14bobob2o24bobob2o$15b2obo16b2obo16b2obo26b2obo$19bo19bo19bo29bo$
13b6o14b6o14b6o11b3o10b6o$13bo2bo16bo2bo16bo2bo15bo9bo3bo$71bo10b2o3$
53b2o$52bobo$54bo2b2o$57bobo$57bo20bo$78b2o$52b2o23bobo$53b2o36b2o$52b
o38bobo$91bo!


(Incomplete) 255 from 233:
x = 72, y = 19, rule = B3/S23
59bobo$4b2o28b2o24b2o2b2o$4bo2b2o21bo3bo2b2o21bo3bo2b2o$5b3obo21bo3b3o
bo25b3obo$10bo18b3o8bo29bo$7b2obo26b2obo18bobo3b4obo$7b2ob2o15b2o7bobo
b2o18b2o3bo2bob2o$26bobo7b2o22bo7bo$4bo23bo38b2o$5bo3b2o47b2o$3b3o2bo
2bo45bobo$8bo2bo2b3o42bo$3o6b2o3bo17b2o$2bo12bo15bobo$bo31bo$12b2o21b
3o$12bobo11b2o7bo$12bo14b2o7bo$26bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1067
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby dvgrn » January 6th, 2014, 10:11 am

Sokwe wrote:Using Dave's numbering:
261, 262, and 275:...
(Incomplete) 255 from 233:...

Okay, here's my almost-final update for the index pattern. Looks like 43 objects have been removed so far -- EDIT 10am: not 29, I added wrong... I'll post an improved version in a day or so with any corrections that get sent in, but after that I'll be leaving it for someone else to take over if they want to:

17-bit still life index pattern, last edited 1/6/2014 10am:
x = 187, y = 337, rule = LifeHistory
23.3D12.D14.3D12.3D14.D11.5D11.3D11.5D11.3D12.3D$22.D3.D10.2D13.D3.D
10.D3.D12.2D11.D14.D18.D10.D3.D10.D3.D$22.D2.2D11.D17.D14.D11.D.D11.D
14.D17.D11.D3.D10.D3.D$22.D.D.D11.D16.D13.2D11.D2.D12.3D11.4D13.D13.
3D12.4D$22.2D2.D11.D15.D16.D10.5D14.D10.D3.D11.D13.D3.D14.D$22.D3.D
11.D14.D13.D3.D13.D11.D3.D10.D3.D10.D14.D3.D14.D$23.3D11.3D12.5D11.3D
14.D12.3D12.3D11.D15.3D12.3D4$2.D4.3D14.2A9.A.2A11.2A2.2A9.2A.A41.2A.
A.A9.2A.A.2A8.2A.2A10.2A.2A12.D4.3D$.2D3.D3.D9.2A.A2.A.2A.A3.2A.3A9.
2A2.A.A8.2A.3A40.A.2A.A8.A.2A.A10.A.A.A9.A.2A.A10.2D3.D3.D$2.D3.D2.2D
9.A.2A2.A.A.2A9.A14.A14.A38.A5.A13.A9.A5.A14.A10.D3.D2.2D$2.D3.D.D.D
16.A7.2A.3A9.6A9.2A.3A39.A.2A.A10.2A.A10.A.3A.A9.4A.A10.D3.D.D.D$2.D
3.2D2.D24.A.2A11.A2.A11.A.2A42.A.2A11.2A.2A10.A.A.A10.A2.2A11.D3.2D2.
D$2.D3.D3.D161.D3.D3.D$.3D3.3D2.5D154.3D3.3D2.5D4$2.D5.D11.2A.2A25.A.
2A11.2A2.2A9.2A.A2.2A7.2A.A.2A.A6.2A.2A13.A28.2A13.D5.D$.2D4.2D11.A.
2A.A24.2A.A2.A8.A2.A2.A8.A.2A3.A7.A.2A.A.2A7.A.A.A.2A7.5A25.A2.A.2A.A
6.2D4.2D$2.D5.D17.A26.A.A.A8.A.A.A.A11.3A12.A11.A3.2A.A6.A5.A.2A20.A.
A.A.A.2A7.D5.D$2.D5.D11.A.4A24.2A.A2.A8.2A.A2.A9.2A.A11.3A13.3A11.3A
2.2A.A21.A2.A12.D5.D$2.D5.D11.2A.A26.A.2A15.2A10.A.A12.A17.A13.A30.2A
11.D5.D$2.D5.D163.D5.D$.3D3.3D2.5D154.3D3.3D2.5D4$2.D4.3D12.2A13.2A
12.2A12.A.2A2.A8.A.2A2.A8.A.2A2.2A7.2A13.2A.2A42.D4.3D$.2D3.D3.D10.A.
A2.2A.A6.A.3A9.A2.A11.2A.A2.3A6.2A.A2.3A6.2A.A2.A.A6.A5.A9.A.2A41.2D
3.D3.D$2.D7.D9.A5.A.2A5.A5.A.2A5.A.A.A.2A.A9.2A3.A9.2A3.A9.2A3.A6.3A.
A.A.2A5.A45.D7.D$2.D6.D11.5A10.3A2.2A.A6.2A.A.A.2A11.A.A12.3A12.3A9.A
.A.2A.A6.2A.A41.D6.D$2.D5.D14.A14.A16.A15.2A13.A14.A12.A10.A.A.2A41.D
5.D$2.D4.D117.2A45.D4.D$.3D2.5D.5D154.3D2.5D.5D4$2.D4.3D12.2A13.2A12.
A2.A11.A2.A11.A.2A26.2A13.2A13.2A13.2A14.D4.3D$.2D3.D3.D9.A2.3A9.A2.
3A10.4A11.4A11.2A.A25.A2.A11.A2.A11.A2.A2.A8.A2.A.2A9.2D3.D3.D$2.D7.D
9.2A4.A8.2A4.A13.2A13.2A13.2A24.A.3A9.2A.3A9.2A.4A8.A.2A.A11.D7.D$2.D
5.2D12.3A.A9.A.2A.A8.A.2A2.A8.A.2A.A9.A.2A.A24.2A4.A9.A4.A9.A14.A4.A
10.D5.2D$2.D7.D11.A2.A10.A.A.A9.2A.A.A9.2A.A.A9.2A.A.A24.A2.3A10.A.3A
10.A.2A13.3A11.D7.D$2.D3.D3.D12.2A12.A16.A14.A14.A27.2A13.2A13.A.A12.
2A13.D3.D3.D$.3D3.3D2.5D154.3D3.3D2.5D4$2.D6.D11.2A13.2A.A11.2A.A11.
2A.2A9.A2.A26.A2.A26.A2.2A10.A2.2A12.D6.D$.2D5.2D10.A2.A.2A8.A2.2A10.
A2.2A10.A.A.A.A8.4A26.6A24.4A2.A8.4A.A10.2D5.2D$2.D4.D.D10.2A.2A.A8.
2A13.2A3.2A8.A2.A2.A12.2A30.A28.2A14.A10.D4.D.D$2.D3.D2.D12.A13.A.4A
10.2A.A10.A.A.A9.2A.A2.A23.2A2.2A26.3A12.3A.A10.D3.D2.D$2.D3.5D11.A.
2A10.A.A2.A10.A2.A11.A.A10.2A.A.A24.A2.A27.A2.A12.A2.A11.D3.5D$2.D6.D
13.A.A11.A15.2A13.A15.A27.2A27.2A15.2A12.D6.D$.3D5.D2.5D154.3D5.D2.5D
4$2.D3.5D9.A.A12.2A13.2A13.2A13.2A13.2A13.2A13.2A13.2A13.2A3.A11.D3.
5D$.2D3.D13.2A.A2.A8.A2.A11.A2.A11.A2.A11.A2.2A10.A2.2A10.A.A.2A9.A.A
.2A9.2A2.2A9.A.A.A.A9.2D3.D$2.D3.D16.4A10.4A11.4A10.A.3A11.2A.A11.2A.
A11.A.A.A10.2A2.A12.A.A10.A.A.A10.D3.D$2.D4.3D10.2A19.A14.A8.2A4.A14.
A14.A9.A.A2.A9.A3.2A8.4A2.A9.A.A.A11.D4.3D$2.D7.D9.A.3A10.4A.A9.6A9.A
2.3A10.A.2A.A8.6A10.A2.2A10.A.2A10.A2.A.A10.A2.A12.D7.D$2.D3.D3.D13.A
10.A2.2A10.A2.A13.2A12.2A.2A9.A2.A11.2A15.A.A14.A12.2A13.D3.D3.D$.3D
3.3D2.5D154.3D3.3D2.5D4$2.D4.3D10.2A3.2A8.2A2.A10.2A2.A10.2A2.A10.2A
2.A.A8.2A2.2A9.2A2.2A9.2A2.2A9.2A2.2A9.2A2.2A11.D4.3D$.2D3.D13.A2.A2.
A8.A2.A.A9.A2.A.A9.A2.A.A9.A2.A.2A8.A2.A2.A8.A2.A2.A8.A2.A2.A8.A2.A2.
A8.A2.A2.A9.2D3.D$2.D3.D14.2A.2A11.2A2.A10.2A.A10.2A.A.A10.2A13.2A.2A
10.2A.2A9.2A.A.A9.2A.2A10.2A.2A11.D3.D$2.D3.4D12.A.A15.2A13.2A10.A.A.
A11.A.2A11.A.A12.A.A11.A.2A11.A.A12.A.A12.D3.4D$2.D3.D3.D10.A2.A11.A.
2A11.A.2A12.A2.A12.A2.A11.A2.A10.A2.A11.A14.A2.A10.A2.A12.D3.D3.D$2.D
3.D3.D11.2A12.2A.A11.2A.A13.2A14.2A13.2A12.2A11.2A15.2A12.2A13.D3.D3.
D$.3D3.3D2.5D154.3D3.3D2.5D4$2.D3.5D9.2A2.2A9.2A.A11.2A.A11.2A.A11.2A
.A11.2A.A11.2A.2A57.D3.5D$.2D7.D9.A.A2.A9.A.2A11.A.2A11.A.2A2.A8.A.4A
9.A.4A10.A.A57.2D7.D$2.D6.D12.2A15.2A13.2A13.3A14.A14.A8.A3.A57.D6.D$
2.D5.D11.A2.A.A10.3A2.A9.3A2.A9.3A15.2A10.2A2.2A8.A.2A.A56.D5.D$2.D4.
D12.2A2.A.A9.A2.A.A8.A4.2A9.A2.A10.2A.A12.A2.A11.A.A2.A55.D4.D$2.D3.D
18.A13.2A9.2A16.2A10.A.2A14.2A15.2A55.D3.D$.3D2.D5.5D154.3D2.D5.5D4$
2.D4.3D10.2A.2A10.2A.2A10.2A.2A10.2A.2A42.2A13.2A13.2A13.2A13.D4.3D$.
2D3.D3.D10.A.A2.A8.A3.A10.A.2A11.2A.A42.A2.A11.A2.A11.A2.A11.A2.A.2A
8.2D3.D3.D$2.D3.D3.D9.A2.A.2A9.2A.A.A13.A12.A41.A.A.3A8.A.2A2.2A7.A.
2A.A.A7.A2.2A.A10.D3.D3.D$2.D4.3D10.2A.A13.A2.2A9.4A.A11.2A41.A.A3.A
8.A5.A8.A2.A.2A8.2A3.A10.D4.3D$2.D3.D3.D12.A11.A.A13.A2.A.A9.A.A2.A
41.A2.2A9.5A10.A.A13.A.A11.D3.D3.D$2.D3.D3.D12.2A10.2A18.A10.2A2.2A
41.2A14.A13.2A13.2A12.D3.D3.D$.3D3.3D2.5D154.3D3.3D2.5D4$2.D4.3D12.2A
13.2A13.2A12.A14.A14.A3.A10.A2.2A10.A.A12.2A29.D4.3D$.2D3.D3.D10.A2.A
.2A8.A2.A.2A7.A2.A2.A8.A.A3.2A7.A.A.A10.A.A.A.A8.A.A2.A10.2A.A10.A2.A
27.2D3.D3.D$2.D3.D3.D9.A2.2A.A8.A.A.A.A8.2A.A.A.A7.A.3A2.A7.A.A.3A9.
2A.A.A9.2A.A14.A11.A.A28.D3.D3.D$2.D4.4D10.2A3.A9.A.A2.A10.A2.2A9.A3.
2A9.A.A3.A10.A2.2A10.A.3A7.A.2A.2A8.2A2.2A.A24.D4.4D$2.D7.D12.3A12.A.
A11.A.A12.A.A13.A2.2A10.A.A12.A3.A7.2A.A.A.A9.A.A.2A24.D7.D$2.D7.D12.
A14.2A13.2A13.2A13.2A14.2A11.2A17.A10.2A28.D7.D$.3D3.3D2.5D154.3D3.3D
2.5D4$23.3D12.D14.3D12.3D14.D11.5D11.3D11.5D11.3D12.3D$22.D3.D10.2D
13.D3.D10.D3.D12.2D11.D14.D18.D10.D3.D10.D3.D$22.D2.2D11.D17.D14.D11.
D.D11.D14.D17.D11.D3.D10.D3.D$22.D.D.D11.D16.D13.2D11.D2.D12.3D11.4D
13.D13.3D12.4D$22.2D2.D11.D15.D16.D10.5D14.D10.D3.D11.D13.D3.D14.D$
22.D3.D11.D14.D13.D3.D13.D11.D3.D10.D3.D10.D14.D3.D14.D$23.3D11.3D12.
5D11.3D14.D12.3D12.3D11.D15.3D12.3D4$.3D3.3D26.2A13.2A13.2A3.A23.A3.
2A24.A.2A.2A23.2A14.3D3.3D$D3.D.D3.D24.A2.A2.2A7.A2.A2.2A7.A2.A.A.A
22.3A2.A24.2A.A.A24.A2.A2.2A7.D3.D.D3.D$4.D.D2.2D25.2A.A2.A8.2A.A2.A
7.2A.A.2A26.2A30.A25.2A.A2.A11.D.D2.2D$3.D2.D.D.D26.A.A.A10.A.A.A10.A
.A27.A2.3A26.A.2A24.A.A.A11.D2.D.D.D$2.D3.2D2.D26.A2.A11.A2.A11.A.A
26.A.A3.A26.A2.A24.A2.A11.D3.2D2.D$.D4.D3.D27.2A11.2A15.A28.A32.2A26.
2A11.D4.D3.D$5D2.3D2.5D153.5D2.3D2.5D4$.3D4.D11.2A13.2A13.2A13.2A13.
2A13.2A4.2A7.2A2.A10.2A2.A10.2A2.A10.2A2.A11.3D4.D$D3.D2.2D11.A2.A2.
2A7.A2.A.2A8.A2.2A10.A2.2A10.A2.2A.2A7.A2.2A2.A7.A3.3A8.A2.A.A9.A2.A.
A9.A2.A.A9.D3.D2.2D$4.D3.D12.2A.A2.A8.A.2A2.A8.2A2.A.A8.2A.A11.2A.A.
2A8.2A2.2A9.3A3.A8.A.A2.A9.A.A.A10.A.A.A13.D3.D$3.D4.D13.A.A.A10.A3.
2A9.A.A.2A9.A.A.2A9.A.A12.A.A13.A.A.A9.A.2A.A9.A2.2A10.A.A.2A10.D4.D$
2.D5.D13.A2.A12.3A11.A.A12.A2.A.A9.A.A12.A.A14.A.A11.A2.A11.2A2.A11.A
2.A9.D5.D$.D6.D12.2A17.A12.2A13.2A13.A14.A16.A13.2A15.2A11.2A10.D6.D$
5D2.3D2.5D153.5D2.3D2.5D4$.3D3.3D40.2A2.A10.2A2.A2.A52.2A2.2A9.2A2.2A
9.2A.A.2A9.3D3.3D$D3.D.D3.D39.A2.A.A.A7.A3.4A52.A2.A2.A8.A2.A2.A8.A.
3A2.A7.D3.D.D3.D$4.D5.D40.2A.A.2A8.3A57.A.2A2.A8.2A.2A.A13.2A11.D5.D$
3.D5.D42.A.A13.A.A56.A2.2A11.A2.A12.2A12.D5.D$2.D5.D43.A.A14.A.A57.A
13.A.A12.A.A11.D5.D$.D5.D45.A16.A57.2A14.A14.A11.D5.D$5D.5D.5D153.5D.
5D.5D4$.3D3.3D10.2A.2A10.2A.2A10.2A.2A10.2A.2A28.2A12.A14.A14.2A13.2A
12.3D3.3D$D3.D.D3.D10.A.A12.A.A2.A9.A.A2.2A8.A.2A27.A2.A.2A7.A.A12.A.
A.2A.A9.A11.A2.A11.D3.D.D3.D$4.D5.D10.A2.3A9.A2.2A.A8.A2.A.A9.A28.A2.
A.2A.A7.A.A11.A2.A.A.2A9.A.2A.A6.2A.A.2A.A10.D5.D$3.D4.2D12.2A3.A9.2A
2.A10.A.A.A10.A.3A23.2A.A11.2A.A.2A.A7.3A11.2A.A.A.2A8.A2.A.2A9.D4.2D
$2.D7.D13.3A12.A13.A.A12.2A2.A25.A14.A.A.2A10.A10.A.A.A12.A.A12.D7.D$
.D4.D3.D13.A14.2A13.A16.2A25.2A13.2A13.2A13.A14.A12.D4.D3.D$5D2.3D2.
5D153.5D2.3D2.5D4$.3D5.D11.A14.2A12.A.2A3.A7.2A13.2A13.2A13.2A13.2A
13.2A13.2A3.2A.A7.3D5.D$D3.D3.2D10.A.A.2A.2A8.A2.2A.A6.2A.A2.A.A6.A2.
2A10.A2.2A10.A2.2A10.A.A2.2A8.A.A2.2A.A6.A.A2.2A.A7.A3.A.2A6.D3.D3.2D
$4.D2.D.D11.A3.A.A8.A3.A.2A10.3A.A7.2A2.A.2A7.2A2.A.2A7.2A2.A.2A8.A2.
A11.A2.A.2A8.A2.A.2A7.A.2A14.D2.D.D$3.D2.D2.D12.2A3.A7.A.3A17.A10.A.
2A.A8.A2.2A.A8.A2.2A.A8.2A.A11.2A.A10.A.2A12.A15.D2.D2.D$2.D3.5D13.3A
8.A.A18.A11.A12.A13.A19.A.2A11.A10.A13.A.A14.D3.5D$.D7.D14.A11.A19.2A
9.2A12.2A12.2A18.2A.A11.2A8.2A13.2A14.D7.D$5D4.D2.5D153.5D4.D2.5D4$.
3D2.5D13.2A11.A14.2A11.A.2A13.A14.2A13.2A13.2A28.2A12.3D2.5D$D3.D.D
14.A2.A11.A.A12.A2.A10.2A.A2.2A8.A.A13.A.A12.A.A12.A.A26.A2.A10.D3.D.
D$4.D.D13.A.A.A10.A2.A2.2A.A5.A.A.A14.3A.A7.A.3A14.A9.A.A2.A9.2A2.A
26.A.A2.A12.D.D$3.D3.3D11.A2.A.2A.A6.2A3.A.2A6.A2.A.2A.A14.A5.2A4.A8.
4A.A9.2A.A.A10.A.A.2A23.2A.A.2A11.D3.3D$2.D7.D13.A.A.2A8.3A13.A.A.2A
11.3A7.A.3A9.A2.A.2A11.A.2A9.A.A2.A25.A.A12.D7.D$.D4.D3.D14.A12.A16.A
15.A9.A.A14.A14.A13.A.A27.A.A11.D4.D3.D$5D2.3D2.5D65.A14.2A13.2A14.A
29.A11.5D2.3D2.5D4$.3D3.3D12.2A43.2A13.2A13.2A13.2A28.2A13.2A12.3D3.
3D$D3.D.D14.A2.A41.A2.A11.A2.A11.A2.A11.A2.A26.A.A12.A.A11.D3.D.D$4.D
.D14.A.A2.A38.A2.A.A9.A.A2.A9.A.A.A10.A.2A.A25.A.A.2A9.A.A.2A12.D.D$
3.D2.4D10.2A.A.2A38.A.2A2.A9.A.2A.A8.A2.A.2A9.A2.A.A23.2A2.A.A8.2A.A.
A12.D2.4D$2.D3.D3.D10.A.A42.A2.2A12.A2.A9.A.A2.A10.A.A.A24.A15.A2.A
11.D3.D3.D$.D4.D3.D10.A.A44.A13.A2.A11.A.A13.A.A25.A.A13.A.A11.D4.D3.
D$5D2.3D2.5D5.A44.2A14.2A13.A15.A27.2A14.A11.5D2.3D2.5D4$.3D2.5D11.2A
13.2A13.2A13.2A13.2A28.2A28.2A13.2A12.3D2.5D$D3.D5.D10.A.A12.A.A12.A.
A12.A.A12.A.A27.A.A27.A.A12.A.3A9.D3.D5.D$4.D4.D10.A14.A5.A8.A5.A8.A
3.2A9.A3.2A24.A2.A.2A23.A2.A.2A8.A5.A12.D4.D$3.D4.D11.A.4A9.A.5A8.A.
5A9.3A2.A8.A.2A2.A23.2A.A.A24.3A.A.A9.2A.2A12.D4.D$2.D4.D13.A4.A9.A
14.A16.A.2A9.A2.2A26.A2.A27.A13.A.A12.D4.D$.D4.D16.3A11.A.A12.3A13.A
14.A28.A.A27.A14.A.A11.D4.D$5D.D5.5D5.2A14.2A14.A12.2A13.2A29.A28.2A
14.A11.5D.D5.5D4$.3D3.3D11.A14.A.2A11.2A13.2A13.2A28.2A28.2A13.2A13.
3D3.3D$D3.D.D3.D10.3A12.2A2.A11.A14.A14.A27.A2.A26.A2.A11.A2.A11.D3.D
.D3.D$4.D.D3.D13.A.A12.A.A8.A2.2A10.A2.2A10.A2.2A.A24.A.A27.2A3.A9.2A
2.A13.D.D3.D$3.D3.3D10.A.2A.2A9.3A.A9.3A2.A9.3A2.A9.2A.A.2A23.2A2.2A
27.4A11.2A.A11.D3.3D$2.D3.D3.D9.2A.A11.A2.A14.A.A12.2A.A9.A.A28.2A2.A
24.2A13.2A2.A11.D3.D3.D$.D4.D3.D12.A12.A.A13.A2.2A10.A2.A10.A.A28.A2.
A25.A2.A11.A2.A11.D4.D3.D$5D2.3D2.5D6.2A12.A14.2A14.2A12.A30.2A28.2A
12.2A11.5D2.3D2.5D4$.3D3.3D26.2A13.2A13.2A13.2A13.2A13.2A.A11.2A.2A9.
2A13.2A14.3D3.3D$D3.D.D3.D24.A2.A11.A2.A.2A8.A2.A.2A8.A2.A.2A8.A.A12.
A2.2A12.A.A11.A14.A13.D3.D.D3.D$4.D.D3.D24.A.A.A10.A.A3.A8.A.A3.A8.A.
A3.A8.A2.2A11.A13.A5.A9.A.2A11.A.2A.A12.D.D3.D$3.D3.4D25.A.A.A10.A.2A
11.A.3A10.A.3A10.2A2.A11.5A8.2A3.2A8.2A2.A10.2A.A.2A11.D3.4D$2.D7.D
27.A.A12.A14.A14.A13.A.A.A11.A2.A10.A.A12.A.A.A9.A.A13.D7.D$.D8.D26.A
2.2A11.A.A11.A13.A15.A2.A10.A15.A.A12.A2.2A9.A.A12.D8.D$5D2.3D2.5D20.
2A15.2A11.2A12.2A13.2A13.2A15.A12.2A14.A12.5D2.3D2.5D4$23.3D12.D14.3D
12.3D14.D11.5D11.3D11.5D11.3D12.3D$22.D3.D10.2D13.D3.D10.D3.D12.2D11.
D14.D18.D10.D3.D10.D3.D$22.D2.2D11.D17.D14.D11.D.D11.D14.D17.D11.D3.D
10.D3.D$22.D.D.D11.D16.D13.2D11.D2.D12.3D11.4D13.D13.3D12.4D$22.2D2.D
11.D15.D16.D10.5D14.D10.D3.D11.D13.D3.D14.D$22.D3.D11.D14.D13.D3.D13.
D11.D3.D10.D3.D10.D14.D3.D14.D$23.3D11.3D12.5D11.3D14.D12.3D12.3D11.D
15.3D12.3D4$.3D3.3D10.2A13.2A13.2A13.2A13.2A28.2A13.2A3.A9.2A3.2A8.2A
3.2A9.3D3.3D$D3.D.D3.D10.A2.2A9.A2.2A10.A.A12.A.A12.A.A27.A.A2.2A9.A
2.A.A9.A3.A9.A5.A8.D3.D.D3.D$4.D.D2.2D10.A.A2.A10.2A13.A14.3A12.3A28.
A2.A9.A.A2.A8.A5.A10.A.A14.D.D2.2D$2.2D2.D.D.D9.2A2.2A14.A11.2A.2A9.A
3.A10.A3.A25.2A.2A11.A.2A9.2A3.2A9.2A.2A11.2D2.D.D.D$4.D.2D2.D11.A.A
11.A.2A.A14.A9.A.2A.A9.A.2A.A24.A2.A13.A13.A.A12.A.A14.D.2D2.D$D3.D.D
3.D11.A.A11.2A.A.A9.A.2A12.A2.A11.A.A.A25.A.A11.A.A13.A.A12.A.A10.D3.
D.D3.D$.3D3.3D2.5D6.A16.A10.2A.2A12.2A15.A27.A12.2A15.A14.A12.3D3.3D
2.5D4$.3D4.D11.2A3.2A8.2A3.2A8.2A3.2A23.2A2.A10.2A2.A10.2A2.A10.2A2.A
10.2A2.A10.2A2.A11.3D4.D$D3.D2.2D11.A5.A8.A4.A9.A.A3.A23.A2.A.A9.A2.A
.A9.A2.A.A9.A2.A.A9.A2.A.A9.A2.A.A9.D3.D2.2D$4.D3.D13.A.A12.A3.A10.A
2.A25.A.A2.A9.A.A2.A9.A.A2.A9.A.A2.A9.3A2.A9.3A2.A12.D3.D$2.2D4.D12.
2A.2A10.2A2.2A9.2A.A27.A.2A11.A.2A11.A.2A11.A.3A13.2A12.2A11.2D4.D$4.
D3.D12.A2.A12.A.A13.A30.A13.A14.A14.A14.2A13.A15.D3.D$D3.D3.D13.A.A
12.A.A13.A.A26.A.A14.A.A9.A.A15.A12.A.A14.A.A8.D3.D3.D$.3D3.3D2.5D6.A
14.A15.2A26.2A16.2A9.2A15.2A13.A16.2A9.3D3.3D2.5D4$.3D3.3D10.2A2.A10.
2A2.2A9.2A2.2A24.2A2.2A9.2A.A2.A8.2A.2A25.2A.2A10.2A.2A11.3D3.3D$D3.D
.D3.D9.A2.A.A10.A2.A10.A3.A25.A2.A2.A8.A.5A9.A.A27.A.A.A10.A.A.A9.D3.
D.D3.D$4.D5.D10.3A.A9.A5.A10.A.A.A24.2A2.A25.A2.3A24.A4.A9.A4.A12.D5.
D$2.2D5.D15.2A8.2A3.2A9.2A2.2A26.2A14.A12.2A2.A25.3A.A10.4A11.2D5.D$
4.D3.D14.2A12.A.A12.A30.A13.3A13.A31.A28.D3.D$D3.D2.D14.A.A12.A.A11.A
29.A.A12.A15.A31.A14.2A9.D3.D2.D$.3D2.5D.5D6.A14.A12.2A28.2A13.2A14.
2A30.2A13.2A10.3D2.5D.5D4$.3D3.3D10.2A.2A10.2A.2A25.2A.2A10.2A.2A.A
25.A14.A14.A14.A13.3D3.3D$D3.D.D3.D10.A.A.A10.A.A.A24.2A.A12.A.A.2A
24.A.A12.A.A12.A.A12.A.A2.2A7.D3.D.D3.D$4.D5.D10.A4.A9.A4.A26.A.A9.A
30.A.A2.A8.A.A.A10.A.A.A.2A7.A.A.A2.A11.D5.D$2.2D4.2D12.4A11.4A27.2A.
A9.2A27.2A.A.A.A7.A3.A10.A3.A.2A7.A3.2A11.2D4.2D$4.D5.D13.A13.A32.A
10.A28.A.A2.A9.A2.A.2A8.A2.A11.A2.A14.D5.D$D3.D.D3.D15.A9.A31.3A11.A.
A26.A.A13.A.A.2A9.A.A12.A.A10.D3.D.D3.D$.3D3.3D2.5D8.2A9.2A30.A14.2A
27.A15.A14.A14.A12.3D3.3D2.5D4$.3D5.D12.2A13.2A13.2A.A10.A14.A14.A29.
2A13.2A13.2A13.3D5.D$D3.D3.2D11.A2.A11.A2.A11.A2.2A10.3A11.A.A.A10.A.
A.A27.A14.A13.A13.D3.D3.2D$4.D2.D.D10.A2.A2.A8.A.A.3A8.A.A3.2A11.A.2A
8.2A.3A8.A.A.3A25.A.2A.A8.A15.A3.A12.D2.D.D$2.2D2.D2.D11.2A.2A.A8.A.A
3.A8.A4.A9.2A.2A.A10.A3.A8.A.A3.A23.2A.A.2A7.A.3A.2A10.A.A.A9.2D2.D2.
D$4.D.5D12.A2.A11.A2.A12.A.A8.A2.A14.A.A.A10.A2.A23.A15.A2.A.A8.3A3.A
12.D.5D$D3.D4.D13.A.A12.A.A12.A.A10.A.A15.A.A11.A.A25.3A14.A2.A8.A2.
3A9.D3.D4.D$.3D5.D2.5D7.A14.A14.A12.A17.A13.A28.A15.2A12.A12.3D5.D2.
5D4$.3D2.5D10.2A13.2A13.2A12.A14.A14.A5.A8.2A13.2A13.2A13.2A14.3D2.5D
$D3.D.D14.A2.2A.A7.A2.A11.A2.A2.2A7.3A12.3A3.A8.3A2.A.A8.A4.2A8.A2.A
11.A2.2A9.A14.D3.D.D$4.D.D15.A.A.2A8.2A.A11.A.A3.A10.A2.A11.A.A.A10.A
2.A9.A.2A2.A8.A.A.A10.A.A2.A10.A.2A.A11.D.D$2.2D3.3D11.2A14.A.A12.A.
3A10.A2.A.A9.A3.A10.A.2A11.A.3A10.A.A.A10.A.A2.A8.2A.A.2A9.2D3.3D$4.D
5.D9.A2.A13.A.A.2A11.A12.A.2A.A8.A.3A10.A.A30.A.A12.3A10.A.A14.D5.D$D
3.D.D3.D10.A.A14.A.A.A9.A15.A2.A9.A.A12.A.A14.2A13.A2.2A10.A13.A.A10.
D3.D.D3.D$.3D3.3D2.5D5.A16.A12.2A15.2A11.A14.A15.2A13.2A13.2A13.A12.
3D3.3D2.5D4$.3D3.3D10.2A13.2A13.2A13.2A13.2A13.2A13.2A13.2A13.2A29.3D
3.3D$D3.D.D13.A14.A14.A5.2A7.A4.2A8.A2.A11.A2.2A10.A2.2A10.A.A12.A.A
27.D3.D.D$4.D.D15.A.2A.A8.3A2.2A9.A2.A.A8.3A2.A9.3A12.A.A.A10.2A2.A
12.A14.A30.D.D$2.2D2.4D11.2A.A.2A10.A3.A8.2A2.A12.A.A26.A3.A11.A.A10.
2A.A.2A8.2A.A.2A24.2D2.4D$4.D.D3.D9.A18.3A10.A.2A14.2A11.3A.A10.3A.A
10.A.2A9.A2.A.A9.A2.2A.A26.D.D3.D$D3.D.D3.D10.3A13.A.A12.A16.A2.A8.A
2.A.2A12.A.A11.A2.A10.A2.A11.A26.D3.D.D3.D$.3D3.3D2.5D6.A13.2A12.2A
17.2A9.2A18.A13.2A12.2A11.2A27.3D3.3D2.5D4$.3D2.5D9.2A13.2A13.2A13.2A
13.2A13.2A3.A9.2A2.A10.2A2.2A9.2A.A2.A8.2A.A.2A9.3D2.5D$D3.D5.D9.A.A
12.A.A12.A.A4.A7.A.A3.2A7.A.A.A10.A3.A.A8.A2.A.A9.A2.A.A9.A.5A8.A.3A
2.A7.D3.D5.D$4.D4.D12.A14.A2.A11.A2.3A9.A2.A.A9.2A.A10.A2.A2.A9.2A2.A
9.A.A32.A12.D4.D$2.2D4.D12.2A.2A.A8.2A.A.A9.2A.A11.2A.A11.A3.A11.A.3A
11.A3.A9.A2.A13.A14.2A11.2D4.D$4.D2.D16.A.2A10.A.A.A10.A.A12.A12.2A.A
13.A14.A.A.A10.2A.A12.3A12.A14.D2.D$D3.D.D14.3A14.A2.A11.A.A12.A.A14.
3A11.A14.A.A14.A15.A12.A9.D3.D.D$.3D2.D5.5D4.A17.2A13.A14.2A16.A10.2A
15.A15.2A13.2A11.2A10.3D2.D5.5D4$.3D3.3D10.A.2A11.2A13.2A13.2A13.2A
13.2A16.2A11.A28.2A14.3D3.3D$D3.D.D3.D9.2A.A3.2A6.A14.A14.A.A12.A.A
12.A.A14.A.A10.A.A2.2A24.A13.D3.D.D3.D$4.D.D3.D13.2A2.A7.3A3.2A7.3A.A
2.A8.A14.3A12.A13.A14.A2.A2.A23.A.2A14.D.D3.D$2.2D3.3D16.2A10.A2.A.A
9.A.4A8.2A12.A3.A11.2A11.A5.2A9.2A2.A25.A2.A11.2D3.3D$4.D.D3.D15.A12.
3A12.A15.2A.A7.2A2.3A11.A2.2A.A5.3A3.A11.2A28.A.A12.D.D3.D$D3.D.D3.D
16.A14.A13.A10.2A.A.2A14.A10.A2.A.2A7.A2.A12.A28.2A2.A7.D3.D.D3.D$.3D
3.3D2.5D9.2A13.2A12.2A10.A.A17.2A11.2A11.A.A14.A29.A.A8.3D3.3D2.5D$
114.A14.2A29.2A3$.3D3.3D10.2A13.2A13.2A13.2A13.2A13.2A.A11.A14.2A44.
3D3.3D$D3.D.D3.D10.A14.A14.A13.A.A3.A8.A.A2.2A8.A.2A11.3A12.A44.D3.D.
D3.D$4.D.D3.D10.A.2A11.A.2A11.A.2A12.A2.A.A9.A2.A27.A12.3A45.D.D3.D$
2.2D3.4D11.A.A12.A.A12.A.A12.2A2.A10.2A.A10.3A13.A2.A12.A2.A40.2D3.4D
$4.D5.D14.2A12.A.A12.A.A12.2A13.A11.A2.A12.A.2A13.3A42.D5.D$D3.D5.D
12.2A2.A10.A.A.A10.A.A.A11.A14.A.A12.3A11.A2.2A14.2A36.D3.D5.D$.3D3.
3D2.5D6.A2.A12.A2.A10.A2.A13.A14.A.A14.A12.A2.A12.A2.A36.3D3.3D2.5D$
24.2A14.2A12.2A13.2A15.A14.2A13.2A14.2A3$23.3D12.D14.3D12.3D14.D11.5D
11.3D11.5D11.3D12.3D$22.D3.D10.2D13.D3.D10.D3.D12.2D11.D14.D18.D10.D
3.D10.D3.D$22.D2.2D11.D17.D14.D11.D.D11.D14.D17.D11.D3.D10.D3.D$22.D.
D.D11.D16.D13.2D11.D2.D12.3D11.4D13.D13.3D12.4D$22.2D2.D11.D15.D16.D
10.5D14.D10.D3.D11.D13.D3.D14.D$22.D3.D11.D14.D13.D3.D13.D11.D3.D10.D
3.D10.D14.D3.D14.D$23.3D11.3D12.5D11.3D14.D12.3D12.3D11.D15.3D12.3D!

Here are the notes I made while I was removing those 43 objects, showing who found which object when, and what the index numbers were. If everyone includes the "#" before the index number in posts, by the way, it may make it easier to do text searches for particular objects, when the inevitable confusions come up.

1/3 9:07pm Extrementhusiast:
  #104, #105, technique for #106   *** left #106 in index pattern for now ***

1/3 9:43pm Extrementhusiast:
  #267, pond analog of #315 but that doesn't solve it.
EDIT 5th: #221
EDIT 2: not in list -- 3b2o$3bo$o4bo$6o2$2obo$ob2o!
seventh: not in list -- o2b2o$4o2bo$5b2o$2b3o$bo2bo$2b2o!
eighth: #145

1/4 3:16 am Sokwe:
six obvious ones: #199, #206, #258, #388 flipped and rotated, #185, #135
two found a while ago:  4b2o$4b2o2$2b4o$bo3bo$2b3o$obo$2o! not in list (similar to #214), #234
#147, #200, and #290, all flipped and rotated, can be fished out of old soup (Lewis' soup results)

1/4 4:00am Sokwe:
four more based on previous syntheses: #287 and #332 rotated, #327 flipped and rotated, #184 flipped

1/4 2:27pm: Extrementhusiast:
#179

1/4 5:51 pm Sokwe:
Group 2: ob2ob2o$2obobobo$5bobo$4bobo$4bo$3b2o! not found in list, #208, #224, #226, #225
Group 3: #323, #305, #313
possible starting points:
#119 *** left in index pattern, don't know if 4bo$2obobob2obo$ob2obobob2o$5bo$5b2o! is constructible yet ***
#285 flipped -- constructible from #238, so removed   

1/4 10:41pm Extrementhusiast:
#128 and #129
  *** also a 16-bit G2 predecessor that I don't understand, b2o$obo$o2b2o$b2o2bo$2bob2o$2bo$b2o! (similar to #273? ***
EDIT: #204

1/5 5:42am Sokwe:
G1 #177, G2 #220 and G3 #335

1/5 2:27pm Extrementhusiast:
#118
EDIT: #111
EDIT 2: griddle with cross snake, #221
EDIT 3: #178
EDIT 4: 18-bit version of #284 I think, #346, #369
EDIT 5: 18-bit variant of #349   *** left these in index pattern for now ***
EDIT 6: #277

1/6 12:39am Sokwe:
#261, #262, #275, incomplete #255

Speaking of inevitable confusions, there were quite a few posted syntheses for 17-bit objects that weren't in the list. Maybe everybody could check the "not in list" and ***asterisk*** marked items that belong to them in the above notes? I'm betting some of them are due to misunderstanding on my part -- a final trivial transformation or something like that, except that I'm too much of a glider-construction newbie to know it's trivial. I was especially unsure about #284 and #349.

I suggested someone should post the index to a new thread and keep an up-to-date copy in the first post. The details don't matter to me, of course -- just that if it's set up that way, the first post should be done by someone who will be paying close attention anyway from here on out, as far as which objects have been knocked off the list.

Which is to say, not me! This has been an interesting side trip into a part of the Life universe that I'm still not very familiar with. But I think I'm going to go back and hide in my own familiar self-constructing circuitry corner now.

Here's a silly little Python script I wrote to look for the first instance of a given selected object in a larger pattern:

find-object.py:
# Search for another copy of the object in the current selection.
# If one is found, move the selection to the new location.
# If the selected orientation is not found, try other orientations.
# TODO:  update to find other phases (borrow code from glider-rewinder.py?)
# TODO:  include test for empty space inside bounding box (or bounding box plus one-cell boundary)
#        -- current code will match any pattern with an all-ON block!
         
import golly as g

r=g.getselrect()
if len(r)==0: g.exit("No selection.  Need a selected object to search with.")
searchobj=g.getcells(r)

objlist = [searchobj,g.transform(searchobj,0,0,0,1,-1,0),
           g.transform(searchobj,0,0,-1,0,0,-1),g.transform(searchobj,0,0,0,-1,1,0),
           g.transform(searchobj,0,0,0,1,1,0),g.transform(searchobj,0,0,1,0,0,-1),
           g.transform(searchobj,0,0,0,-1,-1,0),g.transform(searchobj,0,0,-1,0,0,1)]
normlist = []
for obj in objlist:
  sorted=g.evolve(obj,0)
  normlist+=[g.transform(sorted, -sorted[0], -sorted[1])]

# offset=1000
# for obj in normlist:
#   g.putcells(obj, offset, 0)
#   offset+=100

g.putcells(searchobj,0,0,1,0,0,1,"xor")
all=g.getcells(g.getrect())
g.putcells(searchobj,0,0,1,0,0,1,"xor")

allcells=[]
step=len(all)%2+2
for i in range(0,len(all)-1,step):
  allcells+=[all[i:i+step]] # simplified version of two-state/multistate test

count=0
for obj in normlist:
  g.show("Object orientation "+str(count))
  count+=1
  for cell in allcells: # go through each cell in the pattern, check if there's a perfect match
    offsetobj=[]

    # separate search for two-state and multistate rules
    if len(obj)%2:
      # list has odd parity -- must be a multistate list, so break into groups of three
      for i in range(0,len(obj)-1,3):
        offsetobj+=[[obj[i]+cell[0],obj[i+1]+cell[1],obj[2]]]
    else:
      # list has even parity -- must be a two-state list, so break into groups of two
      for i in range(0,len(obj),2):
        offsetobj+=[[obj[i]+cell[0],obj[i+1]+cell[1]]]

    match=1
    for c in offsetobj:
      if c not in allcells:
        match=0
        break

    if match==1:
      # found a brain-dead match anyway...
      xmin,xmax,ymin,ymax=999999,-999999,999999,-999999
      for c in offsetobj:
        if c[0]<xmin: xmin=c[0]
        if c[0]>xmax: xmax=c[0]
        if c[1]<ymin: ymin=c[1]
        if c[1]>ymax: ymax=c[1]
      rect = [xmin,ymin,xmax-xmin+1,ymax-ymin+1]
      g.select(rect)
      g.fitsel()
      g.exit("Found something.")

This is completely unoptimized and very slow, especially when the original orientation isn't present and the script has to check all seven other possibilities. It will also happily find anything at all in a large solid block of ON cells... I have other code lying around somewhere that does a better job of subdividing a pattern into cell groups and recognizing each group separately -- much faster and harder to fool, but also more complicated and subtly dependent on the rule.

[For example, if two subpatterns are separated by one cell diagonally, are they separate patterns? How about one cell horizontally? Are two tubs separate, but two blocks are really one biblock? These are all solvable problems, and have been solved many times in various ways... but that was a bit beyond the scope of half an hour's worth of helper script.]

Anyway, this code worked for my particular purpose, which was mostly just confirming that when I couldn't find some object in the list, that it really wasn't there -- I spent an embarrassing amount of time looking through the index pattern, before giving up and writing the find-object script. No warranty express or implied, etc., etc.
dvgrn
Moderator
 
Posts: 3540
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Synthesising Oscillators

Postby dvgrn » January 6th, 2014, 12:56 pm

-- Hey! If everything up to 16 bits is done already, at least some of these things are pretty easy.

Here's #325 in 16 gliders, by substitution from a 14-bit predecessor (14.558 / tub on table siamese snake).

EDIT: Oops, posted too quickly. I've updated the pattern to fix the collision problem that Sokwe points out below.

The version shown below is actually 17 gliders, including an extra one at the top right that suppresses an extra output glider. At least it doesn't drop below one glider per bit... but very likely there's a cheaper eater recipe that can improve on this:

x = 50, y = 42, rule = B3/S23
29bo$28bo$28b3o7$bo27bo$2bo25bo$3o2bo22b3o$6b2o5bo$5b2o4bobo$12b2o9$
19bo$13b2obobobo22b2obo2bo$13bob2ob2o23bob5o2$47bo$bo43b3o$b2o23bo17bo
$obo14b2o7bobo15b2o$18b2o6b2o$17bo2$18b2o$18bobo$18bo2$6bo$6b2o25b2o$
5bobo25bobo$33bo!

EDIT 2:Inverting the lower half of the recipe gives #378, also -- but here the troublesome glider just misses the boat, so no kickback is needed. 16 gliders, or 15 if the output glider doesn't have to be stopped:

x = 48, y = 35, rule = B3/S23
22bobo$22b2o$23bo7$obo19bobo$b2o3bo15b2o$bo5bo4bo10bo$5b3o5b2o$12b2o6$
16bo$10b2obobobo22b2obo2bo$b2o7bob2ob2o23bob5o$obo$2bo41bo$44b3o$47bo$
46b2o2$7bo$8b2o$7b2o3bo$10b2o9b2o$2o9b2o8bobo$b2o18bo$o!
dvgrn
Moderator
 
Posts: 3540
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Synthesising Oscillators

Postby Sokwe » January 6th, 2014, 4:11 pm

dvgrn wrote:Here's #325 in 15 gliders

That synthesis does not work in its current form since one of the gliders needs to pass through the snake, but I'm sure it could be made to work using kickbacks at the cost of one or two more gliders.
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1067
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby Extrementhusiast » January 6th, 2014, 5:10 pm

There were a few errors in the table, but I fixed them:
x = 187, y = 337, rule = B3/S23
23b3o12bo14b3o12b3o14bo11b5o11b3o11b5o11b3o12b3o$22bo3bo10b2o13bo3bo
10bo3bo12b2o11bo14bo18bo10bo3bo10bo3bo$22bo2b2o11bo17bo14bo11bobo11bo
14bo17bo11bo3bo10bo3bo$22bobobo11bo16bo13b2o11bo2bo12b3o11b4o13bo13b3o
12b4o$22b2o2bo11bo15bo16bo10b5o14bo10bo3bo11bo13bo3bo14bo$22bo3bo11bo
14bo13bo3bo13bo11bo3bo10bo3bo10bo14bo3bo14bo$23b3o11b3o12b5o11b3o14bo
12b3o12b3o11bo15b3o12b3o4$2bo4b3o14b2o9bob2o11b2o2b2o9b2obo41b2obobo9b
2obob2o8b2ob2o10b2ob2o12bo4b3o$b2o3bo3bo9b2obo2bob2obo3b2ob3o9b2o2bobo
8b2ob3o40bob2obo8bob2obo10bobobo9bob2obo10b2o3bo3bo$2bo3bo2b2o9bob2o2b
obob2o9bo14bo14bo38bo5bo13bo9bo5bo14bo10bo3bo2b2o$2bo3bobobo16bo7b2ob
3o9b6o9b2ob3o39bob2obo10b2obo10bob3obo9b4obo10bo3bobobo$2bo3b2o2bo24bo
b2o11bo2bo11bob2o42bob2o11b2ob2o10bobobo10bo2b2o11bo3b2o2bo$2bo3bo3bo
161bo3bo3bo$b3o3b3o2b5o154b3o3b3o2b5o4$2bo5bo11b2ob2o25bob2o11b2o2b2o
9b2obo2b2o7b2obob2obo6b2ob2o13bo28b2o13bo5bo$b2o4b2o11bob2obo24b2obo2b
o8bo2bo2bo8bob2o3bo7bob2obob2o7bobobob2o7b5o25bo2bob2obo6b2o4b2o$2bo5b
o17bo26bobobo8bobobobo11b3o12bo11bo3b2obo6bo5bob2o20bobobobob2o7bo5bo$
2bo5bo11bob4o24b2obo2bo8b2obo2bo9b2obo11b3o13b3o11b3o2b2obo21bo2bo12bo
5bo$2bo5bo11b2obo26bob2o15b2o10bobo12bo17bo13bo30b2o11bo5bo$2bo5bo163b
o5bo$b3o3b3o2b5o154b3o3b3o2b5o4$2bo4b3o12b2o13b2o12b2o12bob2o2bo8bob2o
2bo8bob2o2b2o7b2o13b2ob2o42bo4b3o$b2o3bo3bo10bobo2b2obo6bob3o9bo2bo11b
2obo2b3o6b2obo2b3o6b2obo2bobo6bo5bo9bob2o41b2o3bo3bo$2bo7bo9bo5bob2o5b
o5bob2o5bobobob2obo9b2o3bo9b2o3bo9b2o3bo6b3obobob2o5bo45bo7bo$2bo6bo
11b5o10b3o2b2obo6b2obobob2o11bobo12b3o12b3o9bobob2obo6b2obo41bo6bo$2bo
5bo14bo14bo16bo15b2o13bo14bo12bo10bobob2o41bo5bo$2bo4bo117b2o45bo4bo$b
3o2b5ob5o154b3o2b5ob5o4$2bo4b3o12b2o13b2o12bo2bo11bo2bo11bob2o26b2o13b
2o13b2o13b2o14bo4b3o$b2o3bo3bo9bo2b3o9bo2b3o10b4o11b4o11b2obo25bo2bo
11bo2bo11bo2bo2bo8bo2bob2o9b2o3bo3bo$2bo7bo9b2o4bo8b2o4bo13b2o13b2o13b
2o24bob3o9b2ob3o9b2ob4o8bob2obo11bo7bo$2bo5b2o12b3obo9bob2obo8bob2o2bo
8bob2obo9bob2obo24b2o4bo9bo4bo9bo14bo4bo10bo5b2o$2bo7bo11bo2bo10bobobo
9b2obobo9b2obobo9b2obobo24bo2b3o10bob3o10bob2o13b3o11bo7bo$2bo3bo3bo
12b2o12bo16bo14bo14bo27b2o13b2o13bobo12b2o13bo3bo3bo$b3o3b3o2b5o154b3o
3b3o2b5o4$2bo6bo11b2o13b2obo11b2obo11b2ob2o9bo2bo26bo2bo11bo2b2o25bo2b
2o12bo6bo$b2o5b2o10bo2bob2o8bo2b2o10bo2b2o10bobobobo8b4o26b6o9b4o2bo
23b4obo10b2o5b2o$2bo4bobo10b2ob2obo8b2o13b2o3b2o8bo2bo2bo12b2o30bo13b
2o29bo10bo4bobo$2bo3bo2bo12bo13bob4o10b2obo10bobobo9b2obo2bo23b2o2b2o
11b2obo26b3obo10bo3bo2bo$2bo3b5o11bob2o10bobo2bo10bo2bo11bobo10b2obobo
24bo2bo13bo2bo26bo2bo11bo3b5o$2bo6bo13bobo11bo15b2o13bo15bo27b2o14b2o
28b2o12bo6bo$b3o5bo2b5o154b3o5bo2b5o4$2bo3b5o9bobo12b2o13b2o13b2o13b2o
13b2o13b2o13b2o13b2o13b2o3bo11bo3b5o$b2o3bo13b2obo2bo8bo2bo11bo2bo11bo
2bo11bo2b2o10bo2b2o10bobob2o9bobob2o9b2o2b2o9bobobobo9b2o3bo$2bo3bo16b
4o10b4o11b4o10bob3o11b2obo11b2obo11bobobo10b2o2bo12bobo10bobobo10bo3bo
$2bo4b3o10b2o19bo14bo8b2o4bo14bo14bo9bobo2bo9bo3b2o8b4o2bo9bobobo11bo
4b3o$2bo7bo9bob3o10b4obo9b6o9bo2b3o10bob2obo8b6o10bo2b2o10bob2o10bo2bo
bo10bo2bo12bo7bo$2bo3bo3bo13bo10bo2b2o10bo2bo13b2o12b2ob2o9bo2bo11b2o
15bobo14bo12b2o13bo3bo3bo$b3o3b3o2b5o154b3o3b3o2b5o4$2bo4b3o10b2o3b2o
8b2o2bo10b2o2bo10b2o2bo10b2o2bobo8b2o2b2o9b2o2b2o9b2o2b2o9b2o2b2o9b2o
2b2o11bo4b3o$b2o3bo13bo2bo2bo8bo2bobo9bo2bobo9bo2bobo9bo2bob2o8bo2bo2b
o8bo2bo2bo8bo2bo2bo8bo2bo2bo8bo2bo2bo9b2o3bo$2bo3bo14b2ob2o11b2o2bo10b
2obo10b2obobo10b2o13b2ob2o10b2ob2o9b2obobo9b2ob2o10b2ob2o11bo3bo$2bo3b
4o12bobo15b2o13b2o10bobobo11bob2o11bobo12bobo11bob2o11bobo12bobo12bo3b
4o$2bo3bo3bo10bo2bo11bob2o11bob2o12bo2bo12bo2bo11bo2bo10bo2bo11bo14bo
2bo10bo2bo12bo3bo3bo$2bo3bo3bo11b2o12b2obo11b2obo13b2o14b2o13b2o12b2o
11b2o15b2o12b2o13bo3bo3bo$b3o3b3o2b5o154b3o3b3o2b5o4$2bo3b5o9b2o2b2o9b
2obo11b2obo11b2obo11b2obo11b2obo11b2ob2o57bo3b5o$b2o7bo9bobo2bo9bob2o
11bob2o11bob2o2bo8bob4o9bob4o10bobo57b2o7bo$2bo6bo12b2o15b2o13b2o13b3o
14bo14bo8bo3bo57bo6bo$2bo5bo11bo2bobo10b3o2bo9b3o2bo9b3o15b2o10b2o2b2o
8bob2obo56bo5bo$2bo4bo12b2o2bobo9bo2bobo8bo4b2o9bo2bo10b2obo12bo2bo11b
obo2bo55bo4bo$2bo3bo18bo13b2o9b2o16b2o10bob2o14b2o15b2o55bo3bo$b3o2bo
5b5o154b3o2bo5b5o4$2bo4b3o25b2ob2o10b2ob2o10b2ob2o42b2o13b2o13b2o13b2o
13bo4b3o$b2o3bo3bo24bo3bo10bob2o11b2obo42bo2bo11bo2bo11bo2bo11bo2bob2o
8b2o3bo3bo$2bo3bo3bo25b2obobo13bo12bo41bobob3o8bob2o2b2o7bob2obobo7bo
2b2obo10bo3bo3bo$2bo4b3o27bo2b2o9b4obo11b2o41bobo3bo8bo5bo8bo2bob2o8b
2o3bo10bo4b3o$2bo3bo3bo24bobo13bo2bobo9bobo2bo41bo2b2o9b5o10bobo13bobo
11bo3bo3bo$2bo3bo3bo24b2o18bo10b2o2b2o41b2o14bo13b2o13b2o12bo3bo3bo$b
3o3b3o2b5o154b3o3b3o2b5o4$2bo4b3o12b2o13b2o13b2o12bo14bo14bo3bo10bo2b
2o10bobo12b2o29bo4b3o$b2o3bo3bo10bo2bob2o8bo2bob2o7bo2bo2bo8bobo3b2o7b
obobo10bobobobo8bobo2bo10b2obo10bo2bo27b2o3bo3bo$2bo3bo3bo9bo2b2obo8bo
bobobo8b2obobobo7bob3o2bo7bobob3o9b2obobo9b2obo14bo11bobo28bo3bo3bo$2b
o4b4o10b2o3bo9bobo2bo10bo2b2o9bo3b2o9bobo3bo10bo2b2o10bob3o7bob2ob2o8b
2o2b2obo24bo4b4o$2bo7bo12b3o12bobo11bobo12bobo13bo2b2o10bobo12bo3bo7b
2obobobo9bobob2o24bo7bo$2bo7bo12bo14b2o13b2o13b2o13b2o14b2o11b2o17bo
10b2o28bo7bo$b3o3b3o2b5o154b3o3b3o2b5o4$23b3o12bo14b3o12b3o14bo11b5o
11b3o11b5o11b3o12b3o$22bo3bo10b2o13bo3bo10bo3bo12b2o11bo14bo18bo10bo3b
o10bo3bo$22bo2b2o11bo17bo14bo11bobo11bo14bo17bo11bo3bo10bo3bo$22bobobo
11bo16bo13b2o11bo2bo12b3o11b4o13bo13b3o12b4o$22b2o2bo11bo15bo16bo10b5o
14bo10bo3bo11bo13bo3bo14bo$22bo3bo11bo14bo13bo3bo13bo11bo3bo10bo3bo10b
o14bo3bo14bo$23b3o11b3o12b5o11b3o14bo12b3o12b3o11bo15b3o12b3o4$b3o3b3o
26b2o13b2o13b2o3bo23bo3b2o24bob2ob2o23b2o14b3o3b3o$o3bobo3bo24bo2bo2b
2o7bo2bo2b2o7bo2bobobo22b3o2bo24b2obobo24bo2bo2b2o7bo3bobo3bo$4bobo2b
2o25b2obo2bo8b2obo2bo7b2obob2o26b2o30bo25b2obo2bo11bobo2b2o$3bo2bobobo
26bobobo10bobobo10bobo27bo2b3o26bob2o24bobobo11bo2bobobo$2bo3b2o2bo26b
o2bo11bo2bo11bobo26bobo3bo26bo2bo24bo2bo11bo3b2o2bo$bo4bo3bo27b2o11b2o
15bo28bo32b2o26b2o11bo4bo3bo$5o2b3o2b5o153b5o2b3o2b5o4$b3o4bo11b2o13b
2o13b2o13b2o13b2o13b2o4b2o7b2o2bo10b2o2bo10b2o2bo10b2o2bo11b3o4bo$o3bo
2b2o11bo2bo2b2o7bo2bob2o8bo2b2o10bo2b2o10bo2b2ob2o7bo2b2o2bo7bo3b3o8bo
2bobo9bo2bobo9bo2bobo9bo3bo2b2o$4bo3bo12b2obo2bo8bob2o2bo8b2o2bobo8b2o
bo11b2obob2o8b2o2b2o9b3o3bo8bobo2bo9bobobo10bobobo13bo3bo$3bo4bo13bobo
bo10bo3b2o9bobob2o9bobob2o9bobo12bobo13bobobo9bob2obo9bo2b2o10bobob2o
10bo4bo$2bo5bo13bo2bo12b3o11bobo12bo2bobo9bobo12bobo14bobo11bo2bo11b2o
2bo11bo2bo9bo5bo$bo6bo12b2o17bo12b2o13b2o13bo14bo16bo13b2o15b2o11b2o
10bo6bo$5o2b3o2b5o153b5o2b3o2b5o4$b3o3b3o40b2o2bo10b2o2bo2bo52b2o2b2o
9b2o2b2o9b2obob2o9b3o3b3o$o3bobo3bo39bo2bobobo7bo3b4o52bo2bo2bo8bo2bo
2bo8bob3o2bo7bo3bobo3bo$4bo5bo40b2obob2o8b3o57bob2o2bo8b2ob2obo13b2o
11bo5bo$3bo5bo42bobo13bobo56bo2b2o11bo2bo12b2o12bo5bo$2bo5bo43bobo14bo
bo57bo13bobo12bobo11bo5bo$bo5bo45bo16bo57b2o14bo14bo11bo5bo$5ob5ob5o
153b5ob5ob5o4$b3o3b3o10b2ob2o10b2ob2o10b2ob2o10b2ob2o28b2o12bo14bo14b
2o13b2o12b3o3b3o$o3bobo3bo10bobo12bobo2bo9bobo2b2o8bob2o27bo2bob2o7bob
o12bobob2obo9bo11bo2bo11bo3bobo3bo$4bo5bo10bo2b3o9bo2b2obo8bo2bobo9bo
28bo2bob2obo7bobo11bo2bobob2o9bob2obo6b2obob2obo10bo5bo$3bo4b2o12b2o3b
o9b2o2bo10bobobo10bob3o23b2obo11b2obob2obo7b3o11b2obobob2o8bo2bob2o9bo
4b2o$2bo7bo13b3o12bo13bobo12b2o2bo25bo14bobob2o10bo10bobobo12bobo12bo
7bo$bo4bo3bo13bo14b2o13bo16b2o25b2o13b2o13b2o13bo14bo12bo4bo3bo$5o2b3o
2b5o153b5o2b3o2b5o4$b3o5bo11bo14b2o12bob2o3bo7b2o13b2o13b2o13b2o13b2o
13b2o13b2o3b2obo7b3o5bo$o3bo3b2o10bobob2ob2o8bo2b2obo6b2obo2bobo6bo2b
2o10bo2b2o10bo2b2o10bobo2b2o8bobo2b2obo6bobo2b2obo7bo3bob2o6bo3bo3b2o$
4bo2bobo11bo3bobo8bo3bob2o10b3obo7b2o2bob2o7b2o2bob2o7b2o2bob2o8bo2bo
11bo2bob2o8bo2bob2o7bob2o14bo2bobo$3bo2bo2bo12b2o3bo7bob3o17bo10bob2ob
o8bo2b2obo8bo2b2obo8b2obo11b2obo10bob2o12bo15bo2bo2bo$2bo3b5o13b3o8bob
o18bo11bo12bo13bo19bob2o11bo10bo13bobo14bo3b5o$bo7bo14bo11bo19b2o9b2o
12b2o12b2o18b2obo11b2o8b2o13b2o14bo7bo$5o4bo2b5o153b5o4bo2b5o4$b3o2b5o
13b2o11bo14b2o11bob2o28b2o13b2o13b2o28b2o12b3o2b5o$o3bobo14bo2bo11bobo
12bo2bo10b2obo2b2o24bobo12bobo12bobo26bo2bo10bo3bobo$4bobo13bobobo10bo
2bo2b2obo5bobobo14b3obo26bo9bobo2bo9b2o2bo26bobo2bo12bobo$3bo3b3o11bo
2bob2obo6b2o3bob2o6bo2bob2obo14bo20b4obo9b2obobo10bobob2o23b2obob2o11b
o3b3o$2bo7bo13bobob2o8b3o13bobob2o11b3o21bo2bob2o11bob2o9bobo2bo25bobo
12bo7bo$bo4bo3bo14bo12bo16bo15bo26bo14bo13bobo27bobo11bo4bo3bo$5o2b3o
2b5o80b2o13b2o14bo29bo11b5o2b3o2b5o4$b3o3b3o12b2o43b2o13b2o13b2o13b2o
28b2o13b2o12b3o3b3o$o3bobo14bo2bo41bo2bo11bo2bo11bo2bo11bo2bo26bobo12b
obo11bo3bobo$4bobo14bobo2bo38bo2bobo9bobo2bo9bobobo10bob2obo25bobob2o
9bobob2o12bobo$3bo2b4o10b2obob2o38bob2o2bo9bob2obo8bo2bob2o9bo2bobo23b
2o2bobo8b2obobo12bo2b4o$2bo3bo3bo10bobo42bo2b2o12bo2bo9bobo2bo10bobobo
24bo15bo2bo11bo3bo3bo$bo4bo3bo10bobo44bo13bo2bo11bobo13bobo25bobo13bob
o11bo4bo3bo$5o2b3o2b5o5bo44b2o14b2o13bo15bo27b2o14bo11b5o2b3o2b5o4$b3o
2b5o11b2o13b2o13b2o13b2o13b2o28b2o28b2o13b2o12b3o2b5o$o3bo5bo10bobo12b
obo12bobo12bobo12bobo27bobo27bobo12bob3o9bo3bo5bo$4bo4bo10bo14bo5bo8bo
5bo8bo3b2o9bo3b2o24bo2bob2o23bo2bob2o8bo5bo12bo4bo$3bo4bo11bob4o9bob5o
8bob5o9b3o2bo8bob2o2bo23b2obobo24b3obobo9b2ob2o12bo4bo$2bo4bo13bo4bo9b
o14bo16bob2o9bo2b2o26bo2bo27bo13bobo12bo4bo$bo4bo16b3o11bobo12b3o13bo
14bo28bobo27bo14bobo11bo4bo$5obo5b5o5b2o14b2o14bo12b2o13b2o29bo28b2o
14bo11b5obo5b5o4$b3o3b3o11bo14bob2o11b2o13b2o28b2o13b2o28b2o13b2o13b3o
3b3o$o3bobo3bo10b3o12b2o2bo11bo14bo29bo12bo2bo26bo2bo11bo2bo11bo3bobo
3bo$4bobo3bo13bobo12bobo8bo2b2o10bo2b2o25bobob2o10bobo27b2o3bo9b2o2bo
13bobo3bo$3bo3b3o10bob2ob2o9b3obo9b3o2bo9b3o2bo24b2obo2bo8b2o2b2o27b4o
11b2obo11bo3b3o$2bo3bo3bo9b2obo11bo2bo14bobo12b2obo26bob2o10b2o2bo24b
2o13b2o2bo11bo3bo3bo$bo4bo3bo12bo12bobo13bo2b2o10bo2bo27bo13bo2bo25bo
2bo11bo2bo11bo4bo3bo$5o2b3o2b5o6b2o12bo14b2o14b2o27b2o14b2o28b2o12b2o
11b5o2b3o2b5o4$b3o3b3o26b2o13b2o13b2o13b2o13b2o13b2obo11b2ob2o9b2o13b
2o14b3o3b3o$o3bobo3bo24bo2bo11bo2bob2o8bo2bob2o8bo2bob2o8bobo12bo2b2o
12bobo11bo14bo13bo3bobo3bo$4bobo3bo24bobobo10bobo3bo8bobo3bo8bobo3bo8b
o2b2o11bo13bo5bo9bob2o11bob2obo12bobo3bo$3bo3b4o25bobobo10bob2o11bob3o
10bob3o10b2o2bo11b5o8b2o3b2o8b2o2bo10b2obob2o11bo3b4o$2bo7bo27bobo12bo
14bo14bo13bobobo11bo2bo10bobo12bobobo9bobo13bo7bo$bo8bo26bo2b2o11bobo
11bo13bo15bo2bo10bo15bobo12bo2b2o9bobo12bo8bo$5o2b3o2b5o20b2o15b2o11b
2o12b2o13b2o13b2o15bo12b2o14bo12b5o2b3o2b5o4$23b3o12bo14b3o12b3o14bo
11b5o11b3o11b5o11b3o12b3o$22bo3bo10b2o13bo3bo10bo3bo12b2o11bo14bo18bo
10bo3bo10bo3bo$22bo2b2o11bo17bo14bo11bobo11bo14bo17bo11bo3bo10bo3bo$
22bobobo11bo16bo13b2o11bo2bo12b3o11b4o13bo13b3o12b4o$22b2o2bo11bo15bo
16bo10b5o14bo10bo3bo11bo13bo3bo14bo$22bo3bo11bo14bo13bo3bo13bo11bo3bo
10bo3bo10bo14bo3bo14bo$23b3o11b3o12b5o11b3o14bo12b3o12b3o11bo15b3o12b
3o4$b3o3b3o10b2o13b2o13b2o13b2o13b2o28b2o13b2o3bo9b2o3b2o8b2o3b2o9b3o
3b3o$o3bobo3bo10bo2b2o9bo2b2o10bobo12bobo12bobo27bobo2b2o9bo2bobo9bo3b
o9bo5bo8bo3bobo3bo$4bobo2b2o10bobo2bo10b2o13bo14b3o12b3o28bo2bo9bobo2b
o8bo5bo10bobo14bobo2b2o$2b2o2bobobo9b2o2b2o14bo11b2ob2o9bo3bo10bo3bo
25b2ob2o11bob2o9b2o3b2o9b2ob2o11b2o2bobobo$4bob2o2bo11bobo11bob2obo14b
o9bob2obo9bob2obo24bo2bo13bo13bobo12bobo14bob2o2bo$o3bobo3bo11bobo11b
2obobo9bob2o12bo2bo11bobobo25bobo11bobo13bobo12bobo10bo3bobo3bo$b3o3b
3o2b5o6bo16bo10b2ob2o12b2o15bo27bo12b2o15bo14bo12b3o3b3o2b5o4$b3o4bo
11b2o3b2o8b2o3b2o8b2o3b2o23b2o2bo10b2o2bo10b2o2bo10b2o2bo10b2o2bo10b2o
2bo11b3o4bo$o3bo2b2o11bo5bo8bo4bo9bobo3bo23bo2bobo9bo2bobo9bo2bobo9bo
2bobo9bo2bobo9bo2bobo9bo3bo2b2o$4bo3bo13bobo12bo3bo10bo2bo25bobo2bo9bo
bo2bo9bobo2bo9bobo2bo9b3o2bo9b3o2bo12bo3bo$2b2o4bo12b2ob2o10b2o2b2o9b
2obo27bob2o11bob2o11bob2o11bob3o13b2o12b2o11b2o4bo$4bo3bo12bo2bo12bobo
13bo30bo13bo14bo14bo14b2o13bo15bo3bo$o3bo3bo13bobo12bobo13bobo26bobo
14bobo9bobo15bo12bobo14bobo8bo3bo3bo$b3o3b3o2b5o6bo14bo15b2o26b2o16b2o
9b2o15b2o13bo16b2o9b3o3b3o2b5o4$b3o3b3o10b2o2bo10b2o2b2o9b2o2b2o24b2o
2b2o24b2ob2o25b2ob2o10b2ob2o11b3o3b3o$o3bobo3bo9bo2bobo10bo2bo10bo3bo
25bo2bo2bo24bobo27bobobo10bobobo9bo3bobo3bo$4bo5bo10b3obo9bo5bo10bobob
o24b2o2bo25bo2b3o24bo4bo9bo4bo12bo5bo$2b2o5bo15b2o8b2o3b2o9b2o2b2o26b
2o27b2o2bo25b3obo10b4o11b2o5bo$4bo3bo14b2o12bobo12bo30bo29bo31bo28bo3b
o$o3bo2bo14bobo12bobo11bo29bobo28bo31bo14b2o9bo3bo2bo$b3o2b5ob5o6bo14b
o12b2o28b2o29b2o30b2o13b2o10b3o2b5ob5o4$b3o3b3o10b2ob2o10b2ob2o25b2ob
2o10b2ob2obo25bo14bo14bo14bo13b3o3b3o$o3bobo3bo10bobobo10bobobo24b2obo
12bobob2o24bobo12bobo12bobo12bobo2b2o7bo3bobo3bo$4bo5bo10bo4bo9bo4bo
26bobo9bo30bobo2bo8bobobo10bobobob2o7bobobo2bo11bo5bo$2b2o4b2o12b4o11b
4o27b2obo9b2o27b2obobobo7bo3bo10bo3bob2o7bo3b2o11b2o4b2o$4bo5bo13bo13b
o32bo10bo28bobo2bo9bo2bob2o8bo2bo11bo2bo14bo5bo$o3bobo3bo15bo9bo31b3o
11bobo26bobo13bobob2o9bobo12bobo10bo3bobo3bo$b3o3b3o2b5o8b2o9b2o30bo
14b2o27bo15bo14bo14bo12b3o3b3o2b5o4$b3o5bo12b2o13b2o13b2obo10bo14bo14b
o29b2o13b2o28b3o5bo$o3bo3b2o11bo2bo11bo2bo11bo2b2o10b3o11bobobo10bobob
o27bo14bo27bo3bo3b2o$4bo2bobo10bo2bo2bo8bobob3o8bobo3b2o11bob2o8b2ob3o
8bobob3o25bob2obo8bo32bo2bobo$2b2o2bo2bo11b2ob2obo8bobo3bo8bo4bo9b2ob
2obo10bo3bo8bobo3bo23b2obob2o7bob3ob2o24b2o2bo2bo$4bob5o12bo2bo11bo2bo
12bobo8bo2bo14bobobo10bo2bo23bo15bo2bobo27bob5o$o3bo4bo13bobo12bobo12b
obo10bobo15bobo11bobo25b3o14bo2bo23bo3bo4bo$b3o5bo2b5o7bo14bo14bo12bo
17bo13bo28bo15b2o25b3o5bo2b5o4$b3o2b5o10b2o13b2o13b2o12bo14bo14bo5bo8b
2o13b2o13b2o13b2o14b3o2b5o$o3bobo14bo2b2obo7bo2bo11bo2bo2b2o7b3o12b3o
3bo8b3o2bobo8bo4b2o8bo2bo11bo2b2o9bo14bo3bobo$4bobo15bobob2o8b2obo11bo
bo3bo10bo2bo11bobobo10bo2bo9bob2o2bo8bobobo10bobo2bo10bob2obo11bobo$2b
2o3b3o11b2o14bobo12bob3o10bo2bobo9bo3bo10bob2o11bob3o10bobobo10bobo2bo
8b2obob2o9b2o3b3o$4bo5bo9bo2bo13bobob2o11bo12bob2obo8bob3o10bobo30bobo
12b3o10bobo14bo5bo$o3bobo3bo10bobo14bobobo9bo15bo2bo9bobo12bobo14b2o
13bo2b2o10bo13bobo10bo3bobo3bo$b3o3b3o2b5o5bo16bo12b2o15b2o11bo14bo15b
2o13b2o13b2o13bo12b3o3b3o2b5o4$b3o3b3o10b2o13b2o13b2o13b2o13b2o13b2o
13b2o13b2o28b2o14b3o3b3o$o3bobo13bo14bo14bo5b2o7bo4b2o8bo2bo11bo2b2o
10bo2b2o10bobo27bobo12bo3bobo$4bobo15bob2obo8b3o2b2o9bo2bobo8b3o2bo9b
3o12bobobo10b2o2bo12bo29bo2b2o11bobo$2b2o2b4o11b2obob2o10bo3bo8b2o2bo
12bobo26bo3bo11bobo10b2obob2o23b2obo2bo9b2o2b4o$4bobo3bo9bo18b3o10bob
2o14b2o11b3obo10b3obo10bob2o9bo2bobo24bo2bobo12bobo3bo$o3bobo3bo10b3o
13bobo12bo16bo2bo8bo2bob2o12bobo11bo2bo10bo2bo26bobo9bo3bobo3bo$b3o3b
3o2b5o6bo13b2o12b2o17b2o9b2o18bo13b2o12b2o28bo11b3o3b3o2b5o4$b3o2b5o9b
2o13b2o13b2o13b2o13b2o13b2o3bo9b2o2bo10b2o2b2o9b2obo2bo8b2obob2o9b3o2b
5o$o3bo5bo9bobo12bobo12bobo4bo7bobo3b2o7bobobo10bo3bobo8bo2bobo9bo2bob
o9bob5o8bob3o2bo7bo3bo5bo$4bo4bo12bo14bo2bo11bo2b3o9bo2bobo9b2obo10bo
2bo2bo9b2o2bo9bobo32bo12bo4bo$2b2o4bo12b2ob2obo8b2obobo9b2obo11b2obo
11bo3bo11bob3o11bo3bo9bo2bo13bo14b2o11b2o4bo$4bo2bo16bob2o10bobobo10bo
bo12bo12b2obo13bo14bobobo10b2obo12b3o12bo14bo2bo$o3bobo14b3o14bo2bo11b
obo12bobo14b3o11bo14bobo14bo15bo12bo9bo3bobo$b3o2bo5b5o4bo17b2o13bo14b
2o16bo10b2o15bo15b2o13b2o11b2o10b3o2bo5b5o4$b3o3b3o10bob2o11b2o13b2o
13b2o13b2o13b2o16b2o11bo28b2o14b3o3b3o$o3bobo3bo9b2obo3b2o6bo14bo14bob
o12bobo12bobo14bobo10bobo2b2o24bo13bo3bobo3bo$4bobo3bo13b2o2bo7b3o3b2o
7b3obo2bo8bo14b3o12bo13bo14bo2bo2bo23bob2o14bobo3bo$2b2o3b3o16b2o10bo
2bobo9bob4o8b2o12bo3bo11b2o11bo5b2o9b2o2bo25bo2bo11b2o3b3o$4bobo3bo15b
o12b3o12bo15b2obo7b2o2b3o11bo2b2obo5b3o3bo11b2o28bobo12bobo3bo$o3bobo
3bo16bo14bo13bo10b2obob2o14bo10bo2bob2o7bo2bo12bo28b2o2bo7bo3bobo3bo$b
3o3b3o2b5o9b2o13b2o12b2o10bobo17b2o11b2o11bobo14bo29bobo8b3o3b3o2b5o$
114bo14b2o29b2o3$b3o3b3o10b2o13b2o13b2o13b2o13b2o13b2obo11bo14b2o44b3o
3b3o$o3bobo3bo10bo14bo14bo13bobo3bo8bobo2b2o8bob2o11b3o12bo44bo3bobo3b
o$4bobo3bo10bob2o11bob2o11bob2o12bo2bobo9bo2bo27bo12b3o45bobo3bo$2b2o
3b4o11bobo12bobo12bobo12b2o2bo10b2obo10b3o13bo2bo12bo2bo40b2o3b4o$4bo
5bo14b2o12bobo12bobo12b2o13bo11bo2bo12bob2o13b3o42bo5bo$o3bo5bo12b2o2b
o10bobobo10bobobo11bo14bobo12b3o11bo2b2o14b2o36bo3bo5bo$b3o3b3o2b5o6bo
2bo12bo2bo10bo2bo13bo14bobo14bo12bo2bo12bo2bo36b3o3b3o2b5o$24b2o14b2o
12b2o13b2o15bo14b2o13b2o14b2o3$23b3o12bo14b3o12b3o14bo11b5o11b3o11b5o
11b3o12b3o$22bo3bo10b2o13bo3bo10bo3bo12b2o11bo14bo18bo10bo3bo10bo3bo$
22bo2b2o11bo17bo14bo11bobo11bo14bo17bo11bo3bo10bo3bo$22bobobo11bo16bo
13b2o11bo2bo12b3o11b4o13bo13b3o12b4o$22b2o2bo11bo15bo16bo10b5o14bo10bo
3bo11bo13bo3bo14bo$22bo3bo11bo14bo13bo3bo13bo11bo3bo10bo3bo10bo14bo3bo
14bo$23b3o11b3o12b5o11b3o14bo12b3o12b3o11bo15b3o12b3o!


I think I'm going to go ahead and make the new thread.

EDIT: A completely different way to make 13.205:
x = 20, y = 30, rule = B3/S23
obo$2o12bobo$bo12b2o$15bo$2b2o$3b2o$2bo5$11bo$10bobo$11bo7$2o$b2o$o2$
3b2o$4b2o12b2o$3bo13b2o$7b3o9bo$9bo$8bo!


EDIT 2: What could be done with this predecessor?
x = 16, y = 12, rule = B3/S23
9bobo$9bobo$6b2o2b3o$ob2obobo2b3o$2obobo5b2o$3bobo$3b2o7bo$7b3o2b2o$6b
o2bo4bo$9bo5bo$9bo$6bobo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1617
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby dvgrn » January 6th, 2014, 10:50 pm

Extrementhusiast wrote:There were a few errors in the table, but I fixed them...

Let's see... looks like #147, #285, and #369 have been added back in.

To solve #147 it's just necessary to construct the following, or hopefully some later version of it -- there's a loaf/pond+mess bottleneck around T=90 -- from Lewis's soup search results:

x = 26, y = 33, rule = B3/S23
22bobo$21bo3bo$23bo$22bobo$22bobo$6bo13bo2bo$5bobo$5bobo$6bo2$b2o7b2o$
o2bo5bo2bo$b2o7b2o2$6bo$5bobo$5bobo$6bo3$14bo$14bo$14bo2$10b3o3b3o2$
14bo$14bo$14bo$18bo$17bobo$16bobo$16b2o!

So I shouldn't have deleted #147 quite yet. #285 has been shown to be constructible from #238, so it's technically unnecessary to keep #285 in the list; Mark deleted a number of similarly equivalent objects before building the initial table, didn't he? And for #369 it just looks like I guessed wrong about one of Sokwe's constructions.

Then several more still lifes were removed: #148, #180, #254, #284, #325, #349, and #368. I won't try to second-guess those -- I'm sure you know better than I do if they're solved! So along with #378 (but not counting #285 for now, I guess) that makes 48 seventeen-bitters done, and a nice even 250 to go.

-- Thanks for taking over the index pattern, anyway! Please go ahead and discard it if it turns out to be just an annoyance, but I hope the experiment was at least vaguely useful. It certainly was to me -- there was no way I could figure out which objects were already taken care of, without hours of picking through stamp collections looking for matches.

It seemed like that was a fairly high barrier, which would tend to keep very many people from joining this particular party... Maybe that's exactly what is needed, though, to keep a flood of sub-optimal solutions (like mine!) out of the thread.
dvgrn
Moderator
 
Posts: 3540
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: Synthesising Oscillators

Postby Extrementhusiast » January 7th, 2014, 6:12 pm

A completely different way to synthesize 15.836:
x = 40, y = 40, rule = B3/S23
25bo$25bobo$7bo17b2o$8bo28bo$6b3o28bobo$37b2o6$34bo$35bo$33b3o3$32b3o$
15bo18bo$14bobo16bo$14b2obob2o$17bobobo$17bobobo$18bobo$19bo$3o$2bo$bo
11$35bo$34b2o$34bobo!


EDIT: A completely different way to synthesize the other bun on snake (the one that wasn't on page eight):
x = 12, y = 19, rule = B3/S23
obo$b2o$bo4b2ob2o$7bobobo$7bobobo$8bobo$9bo5$7b3o$9bo$8bo2$9b2o$b2o5b
2o$obo7bo$2bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1617
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby mniemiec » January 7th, 2014, 7:02 pm

I don't recall ever seeing the griddle with cross-snake, but I reverse-engineered your still-life synthesis into one for 47 gliders. Was yours anything like this?
x = 157, y = 141, rule = B3/S23
5bo$6boo$5boo8$14bobo$15boo37boo18boo18boo18boo18boo$15bo36b3obo15b3ob
o15b3obo15b3obo15b3obo$51bo4bo14bo4bo14bo4bo14bo4bo14bo4bo$34bo17b4o
16b4o16b4o16b4o16b4o$33bo$33b3o12bo3boo14bo3boo18boo18boo18boo$31bo15b
obobboo13bobobboo18boo18boo18bobo$30boo15bobo17bobo63boo$30bobo15bo19b
o$65boo42b3obboo$64bobo44boboo$66bo43bo4bo$$113boo$112bobo$114bo3$6boo
$5bobo$7bo4$40boo$40bobo$40bo10$bbobo$3boo$3bo$$boo11boo18boo18boo18b
oo18boo18boo18boo18boo$obo9b3obo15b3obo15b3obo15b3obo15b3obo15b3obo15b
3obo15b3obo$bbo8bo4bo14bo4bo14bo4bo14bo4bo7bo6bo4bo3bo10bo4bo14bo4bo
14bo4bo$12b4o15b5o15b5o15b5o9bo5b5o3bo11b5o15b5o15b5o$4bo78b3o13b3o$4b
oo6boo17b3o17b3o17b3o17b3o15b7o13b7o13b3ob3o$3bobo6bobo16bobbo16bobbo
15bo3bo6boo7bo3bo7boo5bobbobbo13bobbobbo12bobbobobbo$13boo17boo18boo
16booboo5bobo7booboo7bobo43boo5boo$82bo19bo$51bo$51boo$50bobo$55bo$10b
3o41boo75boo$12bo41bobo73bobobboo$11bo9bo110bobbobo$20boo58boo21boo30b
o$20bobo58boo19boo$80bo23bo3$134b3o$134bo$135bo12$62bobo$62boo36bobo$
63bo37boo$61bo39bo$60boo$14boo18boo18boo4bobo21boo13boo13boo18boo$12b
3obo15b3obo15b3obo25b3o13bobo11b3o17b3o$11bo4bo14bo4bo14bo4bo8bo15bo4b
o13bo10bo4bo14bo4bo$11b5o15b5o15b5o8boo15b6o24b6o14b6o$64bobo35bo$9b3o
b3o13b3ob3o13b3ob3o23b4obo17boo5b4obo16boobo$8bobbobobbo11bobbobobbo
11bobbobobbo21bobboboo16bobo4bobboboo16boboo$8boo5boo11boobbobboo11boo
bbobboo21boo28boo3$10bo49b3o$10boo43boo3bo40bo$9bobo36boo5bobo3bo39boo
$47bobo5bo44bobo$49bo$11b3o$11bo$12bo$8b3o$10bo$9bo4$51bo$52bo$50b3o$
34boo18boo$33bobbo16bobbo$34boo18boo$$16bobo$16boo5bo$8bo8bo4bo$9bo12b
3o$7b3o3$6bo$5bo14boo$5b3o6boo3boo12bo19bo19bo$3bo8b3o6bo11bobo17bobo
17bobo$bobo7bo4bo14bo4bo14bo4bo14bo4bo$bboo7b6o14b6o14b6o14b6o$$11boob
o16boobo16boobo16boobo$11boboo16boboo16boboo16boboo$3bo$3boo$bbobo!


UPDATE: Yours is 1 glider smaller; you get from block to house one glider cheaper. I'll have to remember that method.

On looking back on page 7, I remember all the posts before that one, and the ones after, but not that specific one (nor any of the edits). I seem to have missed reading that one post.

I don't believe this one had been solved before (20-bit French kiss w/curl, from 25 gliders). I don't know of a way to add the curl after the fact, except when the thing against it is a pre-block (as in turning a table on candelfrobra to cover on candelfrobra). I figured that this one would need to have the cover added before or during activation. It just happened that removing a couple of gliders (and adding half of an attached snake) produced the result by just cutting and pasting, and almost no extra work:
x = 169, y = 57, rule = B3/S23
bbo$obo$boo$$101bobo$101boo41bo$102bo40bo$31boo18boo18boo18boo18boo18b
oo10b3o5boo$32bo19bo19bo19bo19bo4booboo10bo4booboo10bo4boo$bbo3bo25bob
oo16boboo16boboo10bo5boboo5bo10boboobboboo10boboobboboo10boboobbo$3boo
bobo24bobbo16bobbo16bobbo7bobo6bobbo3bo12bobboo15bobboo15bobboo$bboobb
oo26boo18boo18boo9boo7boo4b3o12bo19bo19bo$114boo18boo18boo$51bo$52bo
18boo18boo$21bo28b3o18boo18boo$20boo77b3o$20bobo27b3o18boo18boo8bo$52b
o18boo18boo7bo$51bo36boo$87bobo$89bo6$145bo$145bobo$145boo$150bo$148b
oo$149boo4$147bobo$11boo18boo18boo18boo18boo18boo18boo14boo12boo$12bo
4boo13bo4boo13bo4boo13bo4boo13bo4boo13bo4boo13bo4boo9bo13bo$12boboobbo
13boboobbo13boboobbo4bo8boboobbo13boboobbo13boboobbo13boboobbo23boboo$
13bobboo15bobboo15bobboo3boo10bobboo15bobboo15bobboo15bobboo25bobbo$
15bo19bo19bo6boo11bo19bo19bo19bo30bo$14boo18boo18boo18boo18boo18boo18b
oo28bo$59boo13bo19bo19bo19bo29bobbo$13bo20boo18boo3bobo13b3o17b3o17b3o
17b3o27boobo$13boo18bobo17bobo3bo17bo19bo19bo19bo30bo$12bobo19bo19bo
110b3o$115bo19bo29bo$53boo60bo8bobo8bo$52bobo60bo9boo8bo15b3o$54bo70bo
25bo$91boo59bo$90bobo34boo26b3o$92bo35boo25bo$94b3o30bo28bo$94bo$95bo!



Extrementhusiast wrote:What could be done with this predecessor?

That is exactly what I was looking for, for turning eater-tail into snake, if the sparks can be provided as shown. Adding the integral head beforehand is a trivial 3-glider step.
mniemiec
 
Posts: 725
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Extrementhusiast » January 9th, 2014, 7:13 pm

An esoteric synthesis of a 25-bit griddle variant:
x = 102, y = 30, rule = B3/S23
39bo$18bo21bo8bo32bo$16bobo19b3o7bo32bo$17b2o29b3o30b3o$13b2o31bo9b2o
40b2o$14bo8bo20bobo10bo41bo$13bo9bobo19b2o9bo41bo$13b2o8b2o4bo26b2o40b
2o$28bo30bo41bo$11b6o3bo7b3o23b6o36b6o$10bo2bo2bo3bobo30bo12bobo26bo$
10b2o8b2o31bob5o6b2o27bob5o$5b2o47bo4bo7bo28bo4bo$4bobo7b3o8bo2bo26b3o
40bobo$6bo7bo9bo32b2o39bo$11b2o2bo8bo3bo12b3o$b2o7bobo5b3o3b4o15bo$obo
9bo5bo23bo9b2o$2bo16bo32bobo$52bo$22b2o$12b3o6b2o$14bo8bo23b2o$13bo32b
obo20b2o$48bo20bobo$63b2o4bo$62b2o$33b3o28bo$35bo$34bo!
I Like My Heisenburps! (and others)
User avatar
Extrementhusiast
 
Posts: 1617
Joined: June 16th, 2009, 11:24 pm
Location: USA

Re: Synthesising Oscillators

Postby Sokwe » January 9th, 2014, 11:50 pm

mniemiec wrote:18-bit griddle w/feather and siamese beehive from 30

This can be converted into a beehive, allowing a 42-glider synthesis of the griddle with two beehives:
x = 324, y = 50, rule = B3/S23
75bo$74bo$74b3o2$80bobo$80b2o$81bo9$279bo$279bobo$279b2o2$278bo$276bob
o14bobo$277b2o14b2o5bo$283bo10bo4bo$284bo14b3o$238bo43b3o$192bo21bo24b
o39bo$193b2o19bobo20b3o38bobo$22bo169b2o20b2o62bobo$6bo16bo147bobo38bo
21b3o42bo$5bo15b3o147b2o26bo10bobo23bo5b2o38b2o$5b3o17b2o73b2o28b2o28b
2o10bo17b2o7bobo9b2o7b2o13bo5bo2bo5b2o25bo3bo2bo5b2o5b2o20bo$b2o21bo2b
o3bo6bo59b3o27b3o27b3o27b3o8b2o17b3o21b2o4b3o27bo3b2o4b3o5b2o21bobo$ob
o21bobo4b2o5bobo56bo4bo24bo4bo24bo4bo10b2o12bo4bo10bobo11bo4bo24bo4bo
23b3o8bo4bo5bo18bo4bo$2bo22bo4bobo5b2o58b4obo22bob4obo22bob4obo9bobo
10bob4obo9b2o11bob4obo22bob4obo32bob4obo22bob4obo$91bo4bobo2bo2bo21bob
o2bo2bo21bobo2bo2bo8bo12bobo2bo2bo9bo11bobo2bobo22bobo2bobo32bobo2bobo
22bobo2bobo$20bo12b2o54bobo4b2o4b2o23bo4b2o23bo4b2o23bo5b2o22bo4bo24bo
4bo14b2o18bo4bo24bo4bo$18bobo12bobo2b3o49b2o79bo96b2o$19b2o12bo4bo131b
2o95bo$22b2o15bo52b3o66b2o7bobo$21bobo70bo35b2o28bo2bo27bo7b2o74b2o$
23bo69bo35bobo29b2o28b2o5b2o76b2o$131bo58bobo7bo74bo8bo$133b2o18b2o
128b2o$133bobo18b2o127bobo$133bo19bo14b3o21b3o$168bo23bo$169bo23bo$
158bo30b3o$158b2o31bo$157bobo30bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1067
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby mniemiec » January 11th, 2014, 9:06 pm

dvgrn wrote:Maybe that's exactly what is needed, though, to keep a flood of sub-optimal solutions (like mine!) out of the thread.


There's nothing wrong with sub-optimal solutions, especially if they come before optimal ones. A grotestque and bloated synthesis is much better than no synthesis at all (and, in many cases, remains the best one for a long time).

Also, sometimes long Rube-Goldberg synthese may themselves be obsolete, but may yield sub-steps that can be re-used in other contexts. I have seen that happen many times, sometimes even on this thread.

Sokwe wrote:This can be converted into a beehive, allowing a 42-glider synthesis of the griddle with two beehives:

This provides a much-needed loaf-to-beehive converter, which can probably come in useful in many places!
mniemiec
 
Posts: 725
Joined: June 1st, 2013, 12:00 am

Re: Synthesising Oscillators

Postby Sokwe » January 11th, 2014, 11:59 pm

A minor two-glider reduction of an old synthesis (using a direct boat-to-wing converter):
x = 138, y = 67, rule = B3/S23
122bo$123b2o$122b2o7bo$129b2o$126bo3b2o$2bobo122b2o$3b2o121b2o$3bo$6bo
34bo$6bobo32bobo$6b2o26b2o5b2o21b2o4bo23b2o4bo23b2o4bo$34bo2bo26bo2bob
obo22bo2bobobo22bo2bobobo$35b3o27b3ob2o24b3ob2o24b3ob2o2$35b3o27b3ob2o
24b3ob4o22b3ob4o$34bo2bo26bo2bobobo2bo19bo2bobo2bo21bo2bobo2bo$6b2o26b
2o5b2o21b2o4bo3bobo17b2o28b2o2bo$6bobo32bobo30b2o$6bo34bo$3bo72b2o22bo
17b2o$3b2o70bobo21b2o16bobo$2bobo72bo21bobo17bo3b3o$125bo5b3o$124bo6bo
$97b3o32bo$99bo$98bo$100b3o$100bo$101bo4$18bo$18bobo$18b2o7$2bo2bobo$o
bo2b2o90bo2bobo23bo$b2o3bo65bo22bobo2b2o22bobo3bo$73bo22b2o3bo23b2o3bo
bo3bo$71b3o56b2o3bo$135b3o$75b3o23bo$40bo29bo4bo24bobo25bo2b2o$3b2o5bo
23bo2bobobo22bo2bobobo4bo17bo2bobo2bo21bo2bobo2bo$3bo3bobobo22b4ob2o
23b4ob2o23b4ob3o22b4ob3o$4b4ob2o$36bob5o23bob5o23bob2o26bob2o$6bob5o
23b2obo2bo23b2obo3bo22b2obo26b2obo$6b2obo2bo59b2o3$41b2o$41bobo29b2o$
37b2o2bo31bobo$36bobo34bo$38bo27b2o$67b2o$42b2o22bo$41b2o$43bo!
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1067
Joined: July 9th, 2009, 2:44 pm

Re: Synthesising Oscillators

Postby mniemiec » January 12th, 2014, 10:39 pm

Sokwe wrote:This can be converted into a beehive, allowing a 42-glider synthesis of the griddle with two beehives:

Much better! This can also be reduced 5 further to 37 by using my recent flat-side-compatible griddle activation step (that I posted on New Year's Eve):
x = 38, y = 26, rule = B3/S23
34boo$33bobbo$34boo$$16bobo$16boo5bo$8bo8bo4bo$9bo12b3o$7b3o3$6bo$5bo
14boo$5b3o6boo3boo12bo$3bo8b3o6bo11bobo$bobo7bo4bo14bo4bo$bboo6bob4obo
12bob4obo$10bobobbobo12bobobbobo$11bo4bo14bo4bo$$8boo$7boo$9bo$oo$boo$
o!
mniemiec
 
Posts: 725
Joined: June 1st, 2013, 12:00 am

PreviousNext

Return to Patterns

Who is online

Users browsing this forum: Google [Bot], kiho park and 3 guests