BobShemyakin wrote:2 symmetric Cavity
The cleanup on the second can be reduced by 1:
x = 28, y = 29, rule = B3/S23
bo$2bo$3o8$24bo$18bo4bo$16bobo4b3o$17b2o2$25b2o$25bobo$11bo13bo$12bo$
10b3o6b2o$18bo2bo$18bobo$19bo2$10b2o$9bobo$11bo2b3o$14bo$15bo!
BobShemyakin wrote:2 symmetric Cavity
x = 28, y = 29, rule = B3/S23
bo$2bo$3o8$24bo$18bo4bo$16bobo4b3o$17b2o2$25b2o$25bobo$11bo13bo$12bo$
10b3o6b2o$18bo2bo$18bobo$19bo2$10b2o$9bobo$11bo2b3o$14bo$15bo!
x = 113, y = 81, rule = B3/S23
85bo$83bobo$84b2o4$96bo$94b2o$95b2o2$85bo$86b2o20bo$85b2o21bobo$106bo
4bo$88b2o16b6o$87bo2bo$88b2o16b6o$106bo4bo$85b2o21bobo$86b2o20bo$85bo
2$95b2o$94b2o$96bo4$84b2o$83bobo$85bo10$84bo$82bobo$83b2o2$25b3o17b3o
17bo19bo$6bo57bobo17bobo$4bobo16bo5bo13bo5bo14bo2bo16bo2bo$b2o2b2o16bo
5bo13bo5bo15b2o18b2o$obo20bo5bo13bo5bo$2bo$25b3o17b3o$68bo19bo$67bobo
17bobo$53b2o12bobo17bobo$53bobo12bo19bo$53bo$69bo19bo19bo$51b2o16bobo
17bobo17bobo$50bobo14bo4bo14bo4bo14bo4bo$52bo14b6o14b6o14b6o2$67b6o14b
6o14b6o$67bo4bo14bo4bo14bo4bo$68bobo17bobo17bobo$70bo19bo19bo2$46b3o
22bo19bo$48bo21bobo17bobo$47bo22bobo17bobo$50bo20bo19bo$49b2o$49bobo2$
53b3o17b2o18b2o$53bo18bo2bo16bo2bo$54bo18bobo17bobo$74bo19bo$51b3o$53b
o41b2o$52bo42bobo$95bo!
BobShemyakin wrote:Bi-griddles with a different symmetry: ...
x = 27, y = 37, rule = B3/S23
2bo$obo$b2o2$13bobo10bo$14b2o8b2o$4bo9bo10b2o$5bo$3b3o$7bo$6bobo6bobo$
6bobo6b2o$7bo8bo2$11bo$10bobo$10bobo$11bo$6b3o$11bo$10bobo$10bobo$11bo
2$7bo8bo$6bobo6b2o$6bobo6bobo$7bo$3b3o$5bo$4bo9bo10b2o$14b2o8b2o$13bob
o10bo2$b2o$obo$2bo!
Goldtiger997 wrote:Here's a incomplete synthesis for an oscillator that, according to mniemiec's website, previously had no synthesis: ... It can probably be brought down to 16 gliders
x = 233, y = 78, rule = B3/S23
6bo$5bo$5b3o$bo$bbo$3o$142bo33bo$143bo31bo$3o40bo51bo45b3o31b3o$bbo40b
obo47bobo53bo19bo$bo41boo49boo51bobo19bobo$41bo55bo50boo19boo$29bo9bob
o7bo11boo6bo11boo6bo7bobo11boo6bo6boo23boo6bo6boo18boo3boo13boo3boo13b
oo3boo$29bo10boo7bo10bobbo5bo10bobbo5bo7boo11bobbo5bo5bobbo21bobbo5bo
5bobbo17bo5bo13bo5bo13bo5bo$29bo19bo11boo6bo11boo6bo21boo6bo6boo23boo
6bo6boo19bobobo15bobobo15bobobo$$26boo18boo18boo18boo28boo3boo33boo3b
oo23b3ob3o13b3ob3o13b3ob3o$25bobbo16bobbo16bobbo16bobbo3boo21bobbobobb
o31bobbobobbo$26boo18boo18boo18boo4bobo21boo3boo33boo3boo$92bo52bo27bo
$89boo55boo23boo$88bobo54boo4boo13boo4boo12bo5bo13bo5bo$90bo61boo11boo
18bobo3bobo11bobo3bobo$151bo15bo17bobo3bobo11bobo3bobo$186bo5bo13bo5bo
$209boo$208bobo$210bo3$146bo25bo$146boo23boo$145bobo23bobo15$192bo$
191bo$191b3o$$181bo$182bo$180b3o$$194bo$193bo$193b3o3$207bobo$207boo$
181bobo24bo17boo3boo$181boo22bo20bo5bo$182bo20boo22bobobo$177bobo24boo
$178boo46b3ob3o$178bo19boo$198bobo$184bo13bo$159boo21bobo4boo12bo$159b
o23boo4bo12boo$139boo16bobo27bobo12bobo$138boo17boo12boo14boo$135boo3b
o29bobo27bo$134bobo35bo17bo8boo$136bo52boo8bobo$189bobo!
x = 63, y = 43, rule = B3/S23
38bo$39b2o$38b2o4$62bo$60b2o$61b2o$2bo$obo$b2o43bo8bo$45bobo6bo$4b2o
39bobo6b3o$3bobo40bo$5bo3$58b3o$58bo$59bo2$41bo$42bo$40b3o3$15bo$15bob
o36bo$15b2o27b3o6bobo$46bo6bobo$18b2o25bo8bo$18bobo$18bo$38b2o$39b2o$
38bo4$61b2o$60b2o$62bo!
yootaa wrote:Synthesis of 20p3-1 (12G): ...
x = 27, y = 37, rule = B3/S23
26bo$24b2o$25b2o15$7bo$8bo$6b3o$15bobo$15b2o5bo$8bo7bo4bo$9b2o10b3o$8b
2o3bo$11b2o$12b2o$7bo$obo5bo15bo$b2o3b3o15bobo$bo12b2o8b2o$13bobo4b2o$
13b2o5bobo$20bo$3b2o$4b2o4b2ob2ob2o$3bo6b2ob2ob2o!
x = 174, y = 40, rule = B3/S23
obo$b2o$bo5bo$6bo$6b3o$4bo102bo$2bobo59bo41bo$3b2o6bo51bo42b3o$11bobo
49b3o$11b2o$34bobo$34b2o2b3o19b2o$4b2o21b2ob2o3bo2bo17b2obobo31b2ob2o
35b2ob2o30b2ob2o$3bobo20bobob2o7bo15bobob2o31bobob2o34bobobobo6bo21bob
obobo$2bo22bo8b2o18bo13bo22bo6b2o31bo6bo4b2o21bo6bo$bo22bo9bobo16bo14b
obo19bo7b2o30bo6bo6b2o19bo6bo$bobobo18bobobo5bo18bobobo6b2o2b2o20bobob
o35bobobo2b2o26bobobobo$2b2ob3o17b2ob3o23b2ob3o3b2o6b2o18b2ob3o34b2ob
3o29b2ob2o$8bo22bo28bo4bo5bobo23bo39b2o$7bobo20bobo26bobo9bo24bobo37bo
2bo$8b2o21b2o27b2o35b2o38bobo6b2o$138bo7bobo$108b3o35bo$108bo$91b2o16b
o30b2o$90bobo48b2o$92bo47bo3b2o$94b3o47bobo$94bo49bo$95bo8$125b2o$126b
2o$125bo!
x = 27, y = 26, rule = B3/S23
25bo$24bo$24b3o$9bo$10bo$8b3o$12bo$12bobo$12b2o$9bo6bo$10bo4bo$8b3o4b
3o2$19b3o$2b2o2b2o11bo$2bo3bo2b2o9bo$3bo3b2obo5b2o$3o12b2o$o4bo11bo$4b
obo$4bobo6b2o$5bo8b2o$13bo$4bo$4b2o$3bobo!
x = 18, y = 23, rule = B3/S23
9bo$10bo$8b3o$12bo$12bobo$12b2o$9bo6bo$10bo4bo$8b3o4b3o3$2b2o2b2o$2bo
3bo2b2o$3bo3b2obo$3o$o$11bo$10b2o$10bobo2$7b2o$6bobo$8bo!
x = 53, y = 54, rule = B3/S23
36bo$36bobo$36b2o$43bo$41b2o5bo$42b2o3bo$47b3o9$23b2o$22bobo$22bo$21b
2o3b2o$16b2o8b2o$15bo2bo$15bo2bo10b2o$16b2o11bobo$30bobo$28bobobo$26b
3ob2o$25bo$24bobo$24bo2bo16bo$22b2o2b2o15b2o$22bo20bobo$20bobo$20b2o$
11b3o$13bo36b3o$5b2o5bo37bo$6b2o43bo$5bo40bo$45b2o$45bobo$4b3o34b2o$6b
o34bobo$5bo35bo2$7b3o3bo$9bo3b2o3b3o$8bo3bobo5bo$19bo$3o$2bo$bo$41b2o$
40b2o$42bo!
x = 29, y = 25, rule = B3/S23
12bo$11bo$11b3o2$17bobo$9b2o6b2o4bo$8bobo7bo4bobo$8bo14b2o$7b2o3b2o5b
2o$2b2o8b2o4b2o$bo2bo15bo$bo2bo10b2o$2b2o4b2o5bobo$7bobo6bobo7b2o$2bo
6bo4bobobo7bobo$2b2o8b3ob2o8bo$bobo7bo$10bobo8b2o$10b2o8b2o$16b2o4bo$
16bobo$3o8b3o2bo$2bo3b2o$bo5b2o3b2o$6bo!
Kazyan wrote:Final step for the last 14-bit oscillator:Code: Select allx = 53, y = 54, rule = B3/S23
36bo$36bobo$36b2o$43bo$41b2o5bo$42b2o3bo$47b3o9$23b2o$22bobo$22bo$21b
2o3b2o$16b2o8b2o$15bo2bo$15bo2bo10b2o$16b2o11bobo$30bobo$28bobobo$26b
3ob2o$25bo$24bobo$24bo2bo16bo$22b2o2b2o15b2o$22bo20bobo$20bobo$20b2o$
11b3o$13bo36b3o$5b2o5bo37bo$6b2o43bo$5bo40bo$45b2o$45bobo$4b3o34b2o$6b
o34bobo$5bo35bo2$7b3o3bo$9bo3b2o3b3o$8bo3bobo5bo$19bo$3o$2bo$bo$41b2o$
40b2o$42bo!
IIRC, there is a component to add an R-bee-siamese-tub, so the large still life should be easy.
x = 765, y = 36, rule = B3/S23
599bo$600b2o$599b2o128bo$729bobo$375bo159bo193b2o$376bo115bo40bobo200b
o$132b2o180bo59b3o114bo42b2o198b2o5bo$128b2o2bobo58bo118bobo63b2o111b
3o142b2o21bo6b2o28b2o28b2o7b2o3bo$127bobo2bo55bobo2bobo117b2o63bobo49b
obo56bo45bo29b2o28b2o38bobo19bobo5bobo27bobo27bobo12b3o$129bo59b2o2b2o
61bo59bo61bo47bo3b2o58bo44b2o27bo2bo26bo2bo37bo22b2o5bo29bo29bo$189bo
66bobo57bobo108b2o2bo56b3o28b2o13bobo12b2o13bo2bo11b2o13bo2bo11b2o23b
2o3b2o23b2o3b2o23b2o3b2o23b2o3b2o6bo21bo$193bo62b2o58b2o108b2o91b2o28b
2o14b2o12b2o9b3o2b2o12b2o28b2o18bo9b2o18b2o8b2o18b2o8b2o5b2o21bo$194bo
29bo29bo337bo66b2o27bo2bo26bo2bo14bobo18bo2bo$65bobo124b3o28bobo27bobo
87b2o28b2o28bo29bo28b2o28b2o28b2o28b2o28b2o7bo20b2o28b2o14bobo11b2o14b
o2bo10b2o14bo2bo10b2o28bo$13bo52b2o5bobo147bobo27bobo27b2o28b2o28bo29b
o4b2o22bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo14b2o
11bobo14b2o11bobo22b2o3bobo$11b2o53bo6b2o149bo29bo29bo29bo29bo29bo3bob
o22bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo18b
3o6bobo27bo$12b2o60bo86bo29bo4bobo22b3o27b3o27b3o27b3o6b2o19b3o27b3o4b
o22bobobo25bobobo25bobobo25bobobo25bobobo25bobobo25bobobo25bobobo25bob
obo25bobobo25bobobo20bo4bobobo7b3o13bobobo$39b2o28b2o88b3o27b3o4b2o21b
3o27b3o27b3o27b3o7b2o18b3o27b3o27b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob
2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o13b2o5bo3b3ob2o8bo
17bo$40bo29bo27bo29bo29bo29bo8bo20bo29bo29bo29bo12bo16bo29bo17b2o10bo
29bo29bo29bo29bo29bo29bo29bo29bo29bo29bo20b2o7bo15bo$9b3o25b3o27b3o27b
obo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo16bobo8bobo
27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo18bo8bobo
9bo$9bo27bo29bo29bo2bo26bo2bo26bo2bo26bo2bo26bo2bo26bo2bo26bo2bo26bo2b
o26bo2bo26bo2bo15bo10bo2bo26bo2bo26bo2bo26bo2bo26bo2bo26bo2bo26bo2bo
26bo2bo26bo2bo26bo2bo26bo2bo26bo2bo7b2o$10bo24b2o28b2o28b2o2b2o24b2o2b
2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o
2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b
2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o24b2o2b2o7bobo$35bo29bo4b2o23bo29bo
29bo29bo11b3o15bo29bo29bo29bo29bo29bo29bo29bo29bo29bo29bo29bo29bo29bo
29bo29bo29bo21b3o5bo8b2o$5b2o26bobo27bobo5b2o2bo17bobo27bobo27bobo27bo
bo11bo15bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bo
bo27bobo27bobo27bobo27bobo27bobo27bobo23bo3bobo8bobo$5bobo25b2o28b2o5b
o3b2o17b2o28b2o28b2o28b2o13bo14b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o
28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o23bo4b2o9bo$bo3bo68bobo
67b3o$b2o141bo575b3o3bo$obo142bo576bo3b2o3b3o$721bo3bobo5bo$732bo$713b
3o$715bo$714bo$734b2o$733b2o$735bo!
BlinkerSpawn wrote:
This should work:Code: Select allx = 29, y = 25, rule = B3/S23
12bo$11bo$11b3o2$17bobo$9b2o6b2o4bo$8bobo7bo4bobo$8bo14b2o$7b2o3b2o5b
2o$2b2o8b2o4b2o$bo2bo15bo$bo2bo10b2o$2b2o4b2o5bobo$7bobo6bobo7b2o$2bo
6bo4bobobo7bobo$2b2o8b3ob2o8bo$bobo7bo$10bobo8b2o$10b2o8b2o$16b2o4bo$
16bobo$3o8b3o2bo$2bo3b2o$bo5b2o3b2o$6bo!
x = 651, y = 54, rule = B3/S23
617bo$616bo$616b3o2$622bobo$622b2o4bo$623bo4bobo$628b2o3$475bo$476b2o$
475b2o2$251bo159bo$252bo115bo40bobo$190bo59b3o114bo42b2o$69bo118bobo
63b2o111b3o142b2o21bo6b2o28b2o28b2o$64bobo2bobo117b2o63bobo49bobo56bo
45bo29b2o28b2o38bobo19bobo5bobo27bobo27bobo$65b2o2b2o61bo59bo61bo47bo
3b2o58bo44b2o27bo2bo26bo2bo37bo22b2o5bo29bo29bo$65bo66bobo57bobo108b2o
2bo56b3o28b2o13bobo12b2o13bo2bo11b2o13bo2bo11b2o23b2o3b2o23b2o3b2o23b
2o3b2o23b2o3b2o38bo$69bo62b2o58b2o108b2o91b2o28b2o14b2o12b2o9b3o2b2o
12b2o28b2o18bo9b2o18b2o8b2o18b2o8b2o38bo$70bo29bo29bo337bo66b2o27bo2bo
26bo2bo45bo2bo$9bo58b3o28bobo27bobo87b2o28b2o28bo29bo28b2o28b2o28b2o
28b2o28b2o7bo20b2o28b2o14bobo11b2o14bo2bo10b2o14bo2bo10b2o38bo$8bo90bo
bo27bobo27b2o28b2o28bo29bo4b2o22bobo27bobo27bobo27bobo27bobo27bobo27bo
bo27bobo27bobo27bobo14b2o11bobo14b2o11bobo32b2o3bobo$8b3o89bo29bo29bo
29bo29bo29bo3bobo22bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bob
o27bobo27bobo27bobo37bo$37bo29bo4bobo22b3o27b3o27b3o27b3o6b2o19b3o27b
3o4bo22bobobo25bobobo25bobobo25bobobo25bobobo25bobobo25bobobo25bobobo
25bobobo25bobobo25bobobo25bobobo33bobobo$7bo27b3o27b3o4b2o21b3o27b3o
27b3o27b3o7b2o18b3o27b3o27b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob
2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o36bo$6b2o26bo29bo8bo
20bo29bo29bo29bo12bo16bo29bo17b2o10bo29bo29bo29bo29bo29bo29bo29bo29bo
29bo29bo29bo$6bobo24bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo16bo
bo8bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27b
obo$2o31b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o17bo10b2o28b2o28b2o28b2o
28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o$b2o$o72b3o548b2o$73bo549b2o$
4b3o67bo550bo$6bo$5bo583b2o$588bobo40b2o$583bo6bo40bobo$583b2o46bo$
582bobo$626b2o$595bo29b2o$596bo24b2o4bo$594b3o24bobo$581b3o37bo$583bo
3b2o$582bo5b2o11bo$587bo14b2o$601b2o2$599b2o$598bobo$600bo!
Kayzan wrote:Final step for the last 14-bit oscillator: ...
BlinkerSpawn wrote:This should work: ...
Goldtiger997 wrote:Here is the full synthesis in 49 gliders: ...
Goldtiger997 wrote:I couldn't find the component to add an R-bee-siamese-tub, so I made my own inefficient (15 gliders) one.
Goldtiger997 wrote:This yields a cheaper synthesis of 41 gliders: ...
x = 137, y = 54, rule = B3/S23
73bo$74boo$73boo$$100bo7bobo$71bo27bo8boo4bo$69bobo27b3o7bo4bobo$70boo
42boo5$14bobo$bo13boo$bbo12bo$3o25bo$12bo5bo7boo5bo$13bo4bobo6boo3bo$
11b3o4boo12b3o$$21boo6bo21bo39boo38bo$21boo5boo21bo39boo38bo$12boo14bo
bo18bobbo29boo45bobbo$11bobo10boo28bo26bobo10boo38bo$11boo11bobo22boo
3bobo24boo11bobo32boo3bobo$16b3o6bobo27bo39bobo37bo$18bo4bobobo7b3o13b
obobo37bobobo33bobobo$10boo5bo3b3oboo8bo17bo37b3oboo36bo$11boo7bo15bo
53bo$10bo8bobo9bo57bobo$19bobbo7boo57boo$17boobboo7bobo$9b3o5bo8boo82b
oo$11bo3bobo8bobo80boo$10bo4boo9bo84bo$$12b3o3bo56boo$14bo3boo3b3o48bo
bo40boo$13bo3bobo5bo43bo6bo40bobo$24bo44boo46bo$68bobo$112boo$81bo29b
oo$26boo54bo24boo4bo$25boo53b3o24bobo$27bo39b3o37bo$69bo3boo$68bo5boo
11bo$73bo14boo$87boo$$85boo$84bobo$86bo!
Goldtiger997 wrote:I couldn't find the component to add an R-bee-siamese-tub
x = 99, y = 14, rule = B3/S23
66bo$62bo2bo$2bobo58bob3o$3b2o56b3o$3bo$9bo24b2o28b2o$8bo25bobo27bobo
28b2o$8b3o24bobo27bobo27bobo$12b3o21bobo27bobo27bobo$4bo7bo21bobobo25b
obobo25bobobo$2b3o8bo18b3ob2o24b3ob2o24b3ob2o$bo29bo29bo29bo$obo27bobo
27bobo27bobo$2o28b2o28b2o28b2o!
Sokwe wrote:Goldtiger997 wrote:I couldn't find the component to add an R-bee-siamese-tub
I suspect he was referring to this reaction by Bob Shemyakin:Code: Select allx = 99, y = 14, rule = B3/S23
66bo$62bo2bo$2bobo58bob3o$3b2o56b3o$3bo$9bo24b2o28b2o$8bo25bobo27bobo
28b2o$8b3o24bobo27bobo27bobo$12b3o21bobo27bobo27bobo$4bo7bo21bobobo25b
obobo25bobobo$2b3o8bo18b3ob2o24b3ob2o24b3ob2o$bo29bo29bo29bo$obo27bobo
27bobo27bobo$2o28b2o28b2o28b2o!
x = 381, y = 54, rule = B3/S23
317bo$318b2o$317b2o2$344bo7bobo$315bo27bo8b2o4bo$313bobo27b3o7bo4bobo$
314b2o42b2o8$158bo$157bo$99bo57b3o45bo$95bo2bo56bo47bobo57bo$35bobo58b
ob3o55bo47b2o55bobo$36b2o56b3o57b3o28b2o28b2o28b2o15b2o11b2o28b2o28b2o
38bo$36bo148b2o18bo9b2o18b2o8b2o18b2o8b2o28b2o28b2o38bo$42bo24b2o28b2o
106b2o27bo2bo26bo2bo28b2o28b2o45bo2bo$9bo31bo25bobo27bobo28b2o28b2o28b
2o14bobo11b2o14bo2bo10b2o14bo2bo10b2o15bobo10b2o15bobo10b2o38bo$8bo32b
3o24bobo27bobo27bobo27bobo27bobo27bobo14b2o11bobo14b2o11bobo14b2o11bob
o14b2o11bobo32b2o3bobo$8b3o34b3o21bobo27bobo27bobo27bobo27bobo27bobo
27bobo27bobo27bobo27bobo37bo$37bo7bo21bobobo25bobobo25bobobo25bobobo
25bobobo25bobobo25bobobo25bobobo25bobobo25bobobo33bobobo$7bo27b3o8bo
18b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob2o24b3ob
2o24b3ob2o36bo$6b2o26bo29bo29bo29bo29bo29bo29bo29bo29bo29bo29bo$6bobo
24bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo27bobo$2o
31b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o28b2o$b2o$o353b2o$
353b2o$4b3o348bo$6bo$5bo313b2o$318bobo40b2o$313bo6bo40bobo$313b2o46bo$
312bobo$356b2o$325bo29b2o$326bo24b2o4bo$324b3o24bobo$311b3o37bo$313bo
3b2o$312bo5b2o11bo$317bo14b2o$331b2o2$329b2o$328bobo$330bo!
x = 421, y = 54, rule = B3/S23
357bo$358b2o$357b2o2$384bo7bobo$355bo27bo8b2o4bo$353bobo27b3o7bo4bobo$
354b2o42b2o8$188bo$187bo$129bo57b3o$125bo2bo56bo49bo$65bobo58bob3o55bo
46bobo56bo$66b2o56b3o57b3o28b2o17b2o57bo81b2o38bo$66bo148b2o28b2o28b2o
14b3o11b2o28b2o38b2o38bo$72bo24b2o28b2o106bo9b2o18b2o8b2o18b2o8b2o28b
2o29b2o45bo2bo$9bo61bo25bobo27bobo28b2o28b2o28b2o15b2o27bo2bo26bo2bo
28b2o37bobo10b2o38bo$8bo62b3o24bobo27bobo27bobo27bobo27bobo13bobo11b2o
14bo2bo10b2o14bo2bo10b2o15bobo10b2o25b2o11bobo32b2o3bobo$8b3o64b3o21bo
bo27bobo27bobo27bobo27bobo26bobo14b2o11bobo14b2o11bobo14b2o11bobo38bob
o37bo$37bo29bo7bo21bobobo25bobobo25bobobo25bobobo25bobobo27bobo27bobo
27bobo27bobo35bobobo33bobobo$7bo27b3o27b3o8bo18b3ob2o24b3ob2o24b3ob2o
24b3ob2o24b3ob2o26bobobo25bobobo25bobobo25bobobo33b3ob2o36bo$6b2o26bo
29bo29bo29bo29bo29bo29bo30b3ob2o24b3ob2o24b3ob2o24b3ob2o33bo$6bobo24bo
bo27bobo27bobo27bobo27bobo27bobo27bobo28bo29bo29bo29bo38bobo$2o31b2o
28b2o28b2o28b2o28b2o28b2o28b2o28bobo27bobo27bobo27bobo37b2o$b2o240b2o
28b2o28b2o28b2o$o393b2o$393b2o$4b3o388bo$6bo$5bo353b2o$358bobo40b2o$
353bo6bo40bobo$353b2o46bo$352bobo$396b2o$365bo29b2o$366bo24b2o4bo$364b
3o24bobo$351b3o37bo$353bo3b2o$352bo5b2o11bo$357bo14b2o$371b2o2$369b2o$
368bobo$370bo!
Extrementhusiast wrote:Much cheaper way to add a triple block: ...
Extrementhusiast wrote:Finished that one two-CS combination: ...
Extrementhusiast wrote:This solves two related P3s: ...
x = 162, y = 130, rule = B3/S23
7bobo$8boo$8bo3$32boo18boo18boo18boo18boo18boo18boo$33bo19bo19bo19bo
19bo19bo19bo$14bo18boboo16boboo16boboo16boboo16boboo16boboo16boboo$13b
o20bobo17bobo17bobo17bobo17bobo17bobo17bobo$13b3o63boo18boo18boo18boo
18boo$60boo16bobbo16bobbo16bobbo16bobbo16bobbo$15bo44bobo16boo18boo13b
oo3boo13boo3boo13boo3boo$14boo44bo53bobo17bobo17bobo$14bobo40boo33boo
21bo19bo9bo10bo$8boo46bobo32bobo50bo10bo$9boo47bo34bo43boo5b3o8boo$8bo
87boo40boo$97boo38bo3b3o$96bo3boo39bo$100bobo39bo$100bo15$12boo13bo14b
oo18boo18boo$13bo13bobo13bo19bo19bo$13boboo10boo14boboo16boboo16boboo$
14bobo27bobo17bobo17bobo$19boo$obo3bobo9bobbo22bobo17bobo17bobo$boo4b
oo5boo3boo23bo19bo19bo$bo5bo6bobo26bobboo15bobboo15bobboo$16bo26bo19bo
19bo$15bo8bo20bo19bo19bo$15boo6bo19bobo17bobo17bobo$23b3o17boo18boo18b
oo4$3boo35boo18boo$4boo34boo18boo$3bo$7bo50boo$7boo10b3o35bobo$6bobo
10bo39bo$20bo$17bo$16boo$16bobo11$7bobo$8boo$8bo3$32boo18boo18boo18boo
7bobo18boo$33bo19bo19bo19bo8boo19bo$14bo18boboo16boboo16boboo16boboo5b
o20boboo$13bo20bobo17bobo17bobo17bobo27bobo$13b3o54boo18boo9b3o16boo$
49boo18bobbo16bobbo10bo15bobbo$15bo32bobo19boo18boo10bo17boo3boo$14boo
34bo73bobo$14bobo35boo70bo$8boo42bobo70bo$9boo41bo71boo$8bo$95boo$94bo
bo$96bo4$102boo$101boo$103bo10$3bo8boo28boo18boo18boo$bobo9bo29bo19bo
19bo$bboo9boboo26boboo16boboo16boboo$14bobo27bobo17bobo17bobo$10boo$9b
obbo9bobo3bobo13bobo17bobo17bobo$10boo3boo5boo4boo16bo19bo19bo$14bobo
6bo5bo13boobbo15boobbo15boobbo$14bo32bo19bo19bo$6bo8bo29bo19bo19bo$7bo
6boo29bobo17bobo17bobo$5b3o38boo18boo18boo4$26boo21boo18boo$25boo22boo
18boo$27bo$23bo47boo$9b3o10boo47bobo$11bo10bobo46bo$10bo$13bo$13boo$
12bobo!
x = 170, y = 68, rule = B3/S23
19bo$17bobo$18boo3$21bo$19bobobbo$20boobbobo$24boo4$19bo22boo18boo18b
oo18boo18boo18boo18boo$20bo21bobo17bobo17bobo17bobo17bobo17bobo17bobo$
18b3o22bo19bo19bo19bo19bo19bo19bo$44b3oboo14b3oboo14b3oboo14b3oboo14b
3oboo14b3oboo14b3oboo$46boobo16boobo16boobo16boobo16boobo10bo5boobo16b
oobo$138bobo$139boo$33b3o50boboo16boboo13booboboo5bo7booboboo13boobob
oo$23boo8bo36b3o13boobo16boobo13booboobo6bobbo3booboobo12boboboobo$24b
oo8bo31boobbo63b3obboo21boo$23bo37b3o3boobbo66bobo$35bo27bobbo32boo$
34boo26bo9bo25bobo$34bobo34boo27bo4bo$71bobo29bobo$104boo$113boo$106b
3o3boo$108bo5bo$107bo12$64bo$65boo29bo45bo$64boo28bobo45bobo$68bobo24b
oo3bo41boo$68boo28boo19boo18boo$50bo18bo29boo18bobo17bobo$51boo67bo19b
o$50boo42bo$82bo9bobo7bo$12boo18boo28boo17bobo9boo6bobo$bbo9bobo17bobo
27bobo16bobbo16bobbo$obo5bo4bo19bo29bo18boo18boo$boo6boo3b3oboo14b3ob
oo24b3oboo14b3oboo14b3oboo15booboo15booboo15booboo$4boobboo6boobo16boo
bo26boobo12boobboobo12boobboobo14boboobo14boboobo14boboobo$3bobo25boo
28boo20bo11boo6bo19bo19bo19bo$5bo25bo29bo20bo13boo4bo19bo19bo19bo$13b
ooboboo14boboboo24boboboo12boboboboo5bo6boboboboo12boboboboo12bobobob
oo12boboboboo$12boboboobo13booboobo23booboobo13booboobo13booboobo13boo
boobo13booboobo13booboobo$12boo3$8b3o$10bo41boo$9bo43boo$52bo!
x = 152, y = 101, rule = B3/S23
76bo$74bobo$75boo8$135bo$135bobo$135boo4$91bo$90bo$90b3o39bo$122bo8boo
$91bo30boo3bo3bobo$3bo86boo29boboboo$bobo86bobo33boo22boo$bboo146bo$9b
o100boo18boo19bo$9bobo98boo18boo8b3o7boo$9boo129bo$25boo3boo13boo3boo
13boo3boo13boo3boo13boo3boo13boo3boo9bo3boo3boo$10bo15bobbobo14bobbobo
14bobbobo14bobbobo14bobbobo14bobbobo14bobbobo$oo8boo3bo10bobobo15bobob
o15bobo17bobo17bobo17bobo17bobo$boo6bobo3bobo9bobo17bobo17bo19bo19bo
19bo19bo$o14boo11bo19bobboo$51bobo$47boobbo$46bobo$48bo5$46bo$46bobo$
46boo$$42bo$40bobo$41boo3bo$44boo77bobo$45boo72bo3boo$38bobo79boobbo$
39boo3bo74boo$39bo5bo$43b3o4boo14bo3boo14bo3boo14bo3boo14bo3boo13boo3b
oo$50bo14bobobbo14bobobbo14bobobbo14bobobbo14bobobbo$51bo9bo4boo3bo9bo
4boo3bo14boo3bo14boo3bo14boo3bo$50boo8bobo7boo8bobo7boo18boo18boo18boo
$40boo18bobo17bobo$39bobo3boo3boo9bo3boo3boo9bo3boo3boo13boo3boo13boo
3boo13boo3boo$41bo4bobbobo14bobbobo5boo7bobbobo14bobbobo14bobbobo14bo
bbobo$46bobo17bobo7bobo7bobo17bobo17bobo17bobo$47bo13boo4bo10bobboo4bo
19bo19bo19bo$41bo19boo18boo$40b3o$40boboo$41b3o$41boo11$88bo$86boo28bo
$87boo25bobo$80bo34boo16bo$78boo40bobo8boo$76bobboo40boo9boo$32bo41bob
o44bo$33bo41boo61bobo$31b3o84bo19boo$24bo13bo80bo19bo$25bo11bo74bo4b3o
$23b3o11b3o57boo14boo12boo11boo$30bobo63bobbo12boo12bobbo10bobo$26b3o
bboo63bobbo26bobbo10bo$28bobbo65boo28boo$27bo110bo9bo$35boo3boo12boo4b
oo12boo4boo12boo4boo22boo4boo5boo8bobo$35bobobbo13bobbobbo13bobbobbo
13bobbobbo23bobbobbo6bobo7bobbo$28boo6boo3bo14boo3bo14boo3bo14boo3bo
24boo3bo14boo3bo$27bobo10boo18boo18boo18boo28boo18boo$29bo$35boo3boo
13boo3boo13boo3boo13boo3boo14bo8boo3boo13boo3boo$36bobbobo14bobbobo14b
obbobo14bobbobo14boo8bobbobo14bobbobo$36bobo17bobo17bobo17bobo16bobo8b
obo17bobo$37bo19bo19bo19bo29bo19bo!
x = 171, y = 54, rule = B3/S23
143bo$142bo$142b3o$108bo$105bobbobo30bo$103bobobboo32bo$24bo79boo34b3o
$25bo39bo33b3o$23b3o35bo3bobo33bo36bo23boo$62bobboo33bo22boo13boo3boo
17bobo$60b3o60bo13bobo3bo19bo$48boo18boo15booboo15booboo14b3oboo14b3ob
oo14b3oboo$48bobo12boo3bobo13bobobobo13bobobobo15bobobo15bobobo15bobob
o$50bo11bobo5bo14bo4bo8bo5bo4bo19bo19bo19bo$49bo14bo4bo19bo9boo8bo19bo
19bo19bo$48bo19bo19bo9bobo7bo19bo19bo19bo$47bo19bo19bo19bo19bo19bo19bo
$20b3o24boo18boo18boo18boo18boo18boo18boo$22bo7bo$21bo7bo$29b3o$$30bo$
29boo$29bobo5$64bo$65boo29bo45bo$64boo28bobo45bobo$68bobo24boo3bo41boo
$68boo28boo19boo18boo$50bo18bo29boo18bobo17bobo$51boo67bo19bo$50boo42b
o$82bo9bobo7bo$12boo18boo28boo17bobo9boo6bobo$12bobo17bobo27bobo16bobb
o16bobbo$13bo19bo29bo18boo18boo$14b3oboo14b3oboo24b3oboo14b3oboo14b3ob
oo15booboo15booboo15booboo$16bobobo15bobobo25bobobo11boobbobobo11boobb
obobo13bobobobo13bobobobo13bobobobo$8bobo9bo10boo7bo20boo7bo12bo6bo4b
oo6bo6bo12bo6bo12bo6bo12bo6bo$o8boo8bo11bo7bo21bo7bo12bo6bo6boo4bo6bo
12bo6bo12bo6bo12bo6bo$boo6bo8bo15bo3bo25bo3bo13bobo3bo6bo6bobo3bo13bob
o3bo13bobo3bo13bobo3bo$oo15bo15boobbo25boobbo15boobbo15boobbo15boobbo
15boobbo15boobbo$4boo11boo18boo28boo18boo18boo18boo18boo18boo$5boo$4bo
$$52boo$53boo$52bo!
x = 111, y = 10, rule = B3/s23
boo37boo19boo37boo$bbo16boo19bo21bo16boo19bo$bboboo13bobboboo16boboo
16boboo13bobboboo16boboo$boobobo14boobobo14boobobo14boobobo14boobobo
14boobobo$7bo19bo19bo19bo19bo19bo$5b3o17b3o17b3o17b3o17b3o17b3o$oo6boo
10boo6boo10boo6boo10boo6boo10boo6boo10boo6boo$obboboobo11bobboboobo11b
obboboobo11bobbob3obbo9bobbob3obbo9bobbob3obbo$bboobobbo13boobobbo13b
oobobbo13boobo3boo11boobo3boo11boobo3boo$6boo18boo18boo!
x = 31, y = 37, rule = B3/S23
8bo$6bobo$7b2o4$15bo$15bo3b2o$15bo4bo$20bob2o$19b2obobo$16b2o5bobo$16b
o7b2o$8b2o7b3o6b2o$9b2o8bo2b4o2bo$8bo14bo3b2o$12b2o7bo$12b2o3bo3b2o$
16bobo$16bobo$17bo3$3o25b2o$2bo25bobo$bo13bo12bo$7b2o6b2o$8b2o4bobo$7b
o$18bo$17b2o$17bobo3$b2o23b2o$obo23bobo$2bo23bo!
x = 31, y = 31, rule = B3/S23
$19b2o$20bo$20bob2o$19b2obobo$23bobo$24b2o$16bob2o6b2o$9bo6b2obo2b4o2b
o$9b2o12bo3b2o$8bobo10bo$17bo3b2o$16bobo$16bobo$7b2o8bo$8b2o$7bo$28b2o
$28bobo$15bo12bo$7b2o6b2o$8b2o4bobo$7bo$18bo$17b2o$17bobo3$b2o23b2o$ob
o23bobo$2bo23bo!
Kazyan wrote:I'm not sure that eater placement is trivial, so here's another way:Code: Select allx = 31, y = 31, rule = B3/S23
$19b2o$20bo$20bob2o$19b2obobo$23bobo$24b2o$16bob2o6b2o$9bo6b2obo2b4o2b
o$9b2o12bo3b2o$8bobo10bo$17bo3b2o$16bobo$16bobo$7b2o8bo$8b2o$7bo$28b2o
$28bobo$15bo12bo$7b2o6b2o$8b2o4bobo$7bo$18bo$17b2o$17bobo3$b2o23b2o$ob
o23bobo$2bo23bo!
x = 24, y = 28, rule = B3/S23
12b2o$13bo$13bob2o$12b2obobo$16bobo$17b2o$9bob2o6b2o$2bo6b2obo2b4o2bo$
2b2o12bo3b2o$bobo10bo$10bo3b2o$9bobo$9bobo$2o8bo$b2o$o$21b2o$21bobo$8b
o12bo$2o6b2o$b2o4bobo$o$11bo$10b2o$10bobo$b2o$obo$2bo!
Kazyan wrote:I'm not sure that eater placement is trivial, so here's another way: ...
BlinkerSpawn wrote:Minor reduction: ...
x = 187, y = 157, rule = B3/S23
17bo$18boo$17boo$59bo$58bo$58b3o10$114bo$113bo41bo10bo$113b3o37bobo11b
o$103bobo48boo9b3o$89boo13boo4bobo6boo18boo18boo$33bo56bo13bo6boo7bo
19bo19bo18bo$34boo53bo21bo7bo19bo19bo4b3o11bobo$33boo54boo28boo18boo
10boo6boo3bo14boo$91bo15bo13bo19bo10boo7bo3bo15boo$85bob4o16boo6bob4o
16b4o10bo5b4o16b4obboboo$85boobo17bobo6boobo16bobbo16bobbo16bobbo3boob
oo$135boo18boo9bo8boo$39bo125boo$39bobo123bobo$39boo73boo$36bo71boo3b
oo$37boo68bobo5bo$36boo71bo7$148bobo$148boo12bobo$149bo12boo$163bo$
150boo$151boo$150bo4$177boo$119bo19bo19bo17bobo$108bo9bobo7bo9bobo17bo
bo17bobo$109bo9boo7bobo8boo18boo18boo$107b3o11boo5boo11boo18boo18boo$
63b3o51b4obboboo10b4obbo13b4obbo13b4obbo$63bo51bobbo3booboo11bo3boo14b
o3boo14bo3boo$64bo50boo19bo19bo19bo$136boo18boo18boo5$115boo$108b3o5b
oo6boo$110bo4bo7boo$109bo9b3o3bo$121bo$120bo11$161bo$160bo$160b3o$156b
o$108bo48bo$108bobo44b3o3bo15bo$108boo49boo15bobo$160boo15bobo$107bo
70bo$105bobo$57bo48boo$58boo7boo18boo28boo18boo18boo18boo$57boo8bobo
17bobo27bobo17bobo17bobo17bobo$68bobo17bobo27bobo17bobo17bobo17bobo$
55bo13boo11bo6boo21bo6boo18boo18boo18boo$55boo14boo9bo8boo19bo8boo8bob
oo6boo8boboo6boo8boboo6boo$54bobo10b4obbo8bo4b4obbo18bo4b4obbo7boobobb
4obbo7boobobb4obbo7boobobb4obbo$68bo3boo14bo3boo6boo16bo3boo14bo3boo
14bo3boo14bo3boo$66bo19bo14boo13bo19bo19bo19bo$66boo18boo12bo15boo18b
oo18boo18boo10$28bo$28bobo$28boo$bbo$obo$boo3$obo$boo$bo4$29bo$29bobo
26b3o$17bo11boo29bobbo$16bobo7boo31bobbo$17bobo5boo4boo29b3o$18bo8bo3b
obo$31bo52boo18boo18boo28boo18boo$44bo19bo20bo19bo19bo29bo19bo$17boo
24boboboo14boboboo16boboo16boboo16boboo26boboo16boboo$17bobo24boobobo
14boobobo14boobobo14boobobo14boobobo24boobobo14boobobo$18bobo27bobo17b
obo17bobo17bobo17bobo27bobo19bo$19boo28boo18boo18boo18boo18boo28boo17b
3o$11boboo6boo18boboo6boo8boboo6boo8boboo6boo8boboo6boo8boboo6boo18bob
oo6boo10boo6boo$11boobobb4obbo17boobobb4obbo7boobobb4obbo7boobobb4obbo
7boobobb4obbo7boobobb4obbo17boobobb4obbo9bobbob3obbo$18bo3boo24bo3boo
14bo3boo14bo3boo4bo9bo3boo14bo3boo24bo3boo11boobo3boo$16bo29bo19bo19bo
12bo6bo19bo15boo12bo$16boo28boo18boo18boo9b3o6boo14bo3boo13bobo8bo3boo
$121bobo19bo7bobo$100b3o18bobo27bobo$102bo19bo29bo$101bo$140b3o$142bo$
141bo$165boo$164boo$148boo16bo$140b3o4bobo$142bo6bo$141bo$154boo$154bo
bo$154bo$141boo$142boo$141bo!
mniemiec wrote:Kazyan wrote:I'm not sure that eater placement is trivial, so here's another way: ...BlinkerSpawn wrote:Minor reduction: ...
Thanks, guys! (The eater-based solution would be more expensive; the snake takes 5 gliders, and the eater takes only 2, but it takes 2 more each for blinker and block.) Here's the 51-glider full synthesis:Code: Select allRLE
x = 142, y = 45, rule = B3/S23
26bo$27b2o$26b2o4$28bo$29bo$27b3o6$20bobo$21b2o$21bo$64b3o$45bo4bo15bo
2bo$46b2obo15bo2bo$45b2o2b3o16b3o2$107b2o23b2o$70bo37bo24bo$33b2o34bob
ob2o33bob2o21bob2o$33bobo34b2obobo31b2obobo19b2obobo$34bobo37bobo34bob
o24bo$35b2o38b2o35b2o22b3o$obobo22bob2o6b2o28bob2o6b2o25bob2o6b2o15b2o
6b2o$27b2obo2b4o2bo27b2obo2b4o2bo24b2obo2b4o2bo14bo2bob3o2bo$34bo3b2o
34bo3b2o31bo3b2o16b2obo3b2o$32bo39bo36bo$32b2o38b2o20b2o9bo3b2o$95b2o
7bobo$94bo10bo3$64b2o27bo$65b2o2b2o22b2o$29b2o33bo3bo2bo20bobo6b2o$30b
2ob3o32bo2bo28bobo$29bo3bo35b2o31bo15b3o$34bo69b3o11bo$104bo14bo$105bo
!
x = 7, y = 7, rule = B3/S23
2o$obob2o$5bo$bo2bo$2bo$2bobobo$5b2o!
Goldtiger997 wrote:Is there any reason why chris_c's glider_synth script could not be extended to oscillators as well. We have syntheses for all oscillators up to 14-bits now. Here is what I think are the cheapest for all oscillators up to 14 bits:
There are probably heaps of mistakes.
x = 33, y = 14, rule = B3/S23
6bo$6bobo$6boo$28bo$16bo11bobo$11bo3bo10bo$5boo5boob3o13boo$3oboo5boo
12boo$bbo3bo24bo$bo25bobo$29bo$10boo$9bobo$11bo!
Goldtiger997 wrote:P.S. Has anyone made any progress on synthesising the last 15-bit oscillator, muttering moat 1: ...
mniemiec wrote:Goldtiger997 wrote:P.S. Has anyone made any progress on synthesising the last 15-bit oscillator, muttering moat 1: ...
Sadly, not that I am aware of. (Once solved, this will also solve the last two unsolved 19-bit P2 pseudo-oscillators).
x = 44, y = 31, rule = B3/S23
5bo$6bo$5bo$5bo$7bo$5b2ob2o$6bobo$7bo$20b2o$19bo2bo$20b2o4$2o7bo$2o6bo
bo$9bo6b3o2$34bo$33bobo$33bobo$32bo$17b2o13b3o5b3o$17b2o11b2o3bo2b2o3b
o$29bo5bo6bo$33bob3ob3o$31b2obo2b4o$27bo3bo$28bo3bo$29b2obo$31bo!
mniemiec wrote:Goldtiger997 wrote:P.S. Has anyone made any progress on synthesising the last 15-bit oscillator, muttering moat 1: ...
Sadly, not that I am aware of. (Once solved, this will also solve the last two unsolved 19-bit P2 pseudo-oscillators).
x = 57, y = 44, rule = B3/S23
36bobo$36b2o$37bo6$12bo$10bobo$11b2o2$6bobo11bo$7b2o10bo5bobo$7bo11b3o
3b2o$26bo$15bo$13b2o$14b2o17bobo$33b2o$34bo$23bobo$23b2o$24bo$13b2o35b
2o$11bo2bo35bo3b2o$11b3o11bo25bobobo$24b2o$b2o8b5o8bobo24b2o2bo$obo7bo
2bo2bo36bo2bo$2bo7b2o3b2o38b2o3$25b3o$25bo$26bo$b2o$obo6bo$2bo6b2o$8bo
bo9bo$19b2o$5bo13bobo$5b2o$4bobo!
Users browsing this forum: No registered users and 11 guests