Page 31 of 36

### Re: Synthesising Oscillators

Posted: February 14th, 2018, 6:52 am
Extrementhusiast wrote:The last 16-bit P2 in about the least likely way imaginable (in two slight variants): ...
The corresponding 17-bit P2 can be made the same way far more cheaply: ...

Very nice! The second converter improves one 16-bit P2 from 24 to 21 gliders.
It solves 3 previously unknown 17s from 17, 27, and 31 gliders respectively.
(It also solves 2 18s, 9 19s, 7 20s, and 15 21s.)
`x = 188, y = 31, rule = B3/S2314bo99bo49bo\$3bo10bobo86bo10bobo36bo10bobo\$4bo9boo88bo9boo38bo9boo\$bb3o44boo51b3o47b3o\$50boo\$16bo32bo3bobo60bo49bo\$16bobo34boo61bobo47bobo\$16boo36bo61boo48boo4\$16bo99bo32boo15bo12boo\$oo3boo7boo14boo3bo30bo12boo5bo18boo7boo19bo13bobo3boo7boo13bobo3bo\$o5bo8boo13bo4bo30bo12bo6bo19bo8boo18bo20bo8boo18bo\$bobobo25bobobbo23b3obobbo12bobobobbo11b3obobo23b3obobbo14bobobo25bobobbo\$\$3ob3o23b3obobo24bobobobo12bobbobobo12bobob3o23bobobobo13b3ob3o23b3obobo\$37bo12boo8bo5boo13bo4boo11bo29bo7bo49bo\$36boo13boo7boo19bo17boo28boo5boo48boo\$50bo4\$12bo36boo61bo49bo\$12boo34bobo61boo48boo\$11bobo3bo32bo60bobo3bo43bobo3bo\$15boo98boo48boo\$16boo44b3o51boo48boo\$51boo9bo\$50bobo10bo\$52bo!`

The first converter can make one unknown 17-bit P2 into two others, similar for 18s, and solves one 18.

### Re: Synthesising Oscillators

Posted: February 15th, 2018, 5:04 am
Extrementhusiast wrote:The last 16-bit P2 in about the least likely way imaginable (in two slight variants): ...

Great work Extrementhusiast!

chris_c wrote:
Goldtiger997 wrote:I think If the final 16-bit oscillator is completed I will add the 16-bit oscillators into the collection as well.

I will try to put them into my glider synthesis database if that happens.

As I said I would before, I will create a collection of the cheapest 16-bit oscillator synthesis (separate to the rest because there is a lot). Most of these I can easily find from mniemiec's website (though some are outdated which I will attend to later), but I may need some help finding all the ones that are marked as unsolved.

### Re: Synthesising Oscillators

Posted: February 16th, 2018, 1:38 pm
Burloaferimeter from 23 gliders:
`x = 221, y = 28, rule = B3/S23160bo\$160bobo26bo\$160b2o26bo\$158bo29b3o\$36bo119bobo\$36bobo118b2o24bo\$32bo3b2o146bo4bo\$33b2o29b2o28b2o5bobo55bo22b3o3bo\$32b2o29bobo23bo3bobo5b2o54b2o29b3o\$obo60bo26bo2bo8bo27bobo25b2o\$b2o59b2o24b3ob2o36b2o54b2o4bo4bo17b2o\$bo129bo53bobo4bobo2bobo15b2o\$7bobo115bo29bo29bo6b2o3b2o\$7b2o51bo62b3o6b2o19b3o3b2o22b3o3b2o22b4o\$8bo52b2o29bo29bo9bobo17bo7bo21bo7bo21bo4bob2o\$37b2o21b2o5b2o22bobo3b2o22bobo3b2o3bo18bobo3b3o21bobo3b3o21bobo3bob2o\$37bo29bo24bo4bo24bo4bo24bo4bo24bo4bo5b2o17bo2bobo\$5bo28b2obo26b2obo25b3obo25b3obo25b3obo25b3obo5bobo17b3obo\$4bo29bobo23bo3bobo29bo29bo29bo29bo6bo22bo\$4b3o28bo24b2o3bo29bo29bo29bo29bo29bo\$59bobo33b2o28b2o28b2o28b2o28b2o\$2b3o62bobo\$4bo62b2o\$3bo64bo2\$69b2o\$68bobo\$70bo!`

### Re: Synthesising Oscillators

Posted: February 17th, 2018, 3:48 am
Is there any way of synthesizing this?
`x = 27, y = 27, rule = LifeHistory21.2A\$21.2A2.2A\$19.2A.A2.2A\$19.3A3\$20.2A\$20.2A2\$12.E\$10.2E\$8.E.E7.E\$6.3E7.3E\$6.E7.E.E\$13.2E\$12.E4\$2.2A\$2.2A2.2A\$2A.A2.2A\$3A3\$.2A\$.2A!`

### Re: Synthesising Oscillators

Posted: February 17th, 2018, 5:14 am
mattiward wrote:Is there any way of synthesizing this? ...

This seems like the most likely phase for synthesis. None of the bakery predecessors I know are suitable, but it's possible that someone else might have one.
`x = 27, y = 27, rule = B3/S23boo\$boo\$\$bo\$obo\$obbobboo\$4boboo\$bboo\$11b3o\$10bobboboo\$9bo3bo\$9bobbo\$10boo4\$13boo\$12bobbo\$11bo3bo\$8boobobbo5boo\$11b3o6boo\$\$20bo\$19bobo\$19bobbobboo\$23boboo\$21boo!`

### Re: Synthesising Oscillators

Posted: February 17th, 2018, 11:52 am
mniemiec wrote:
mattiward wrote:Is there any way of synthesizing this? ...

This seems like the most likely phase for synthesis. None of the bakery predecessors I know are suitable, but it's possible that someone else might have one.
`x = 27, y = 27, rule = B3/S23boo\$boo\$\$bo\$obo\$obbobboo\$4boboo\$bboo\$11b3o\$10bobboboo\$9bo3bo\$9bobbo\$10boo4\$13boo\$12bobbo\$11bo3bo\$8boobobbo5boo\$11b3o6boo\$\$20bo\$19bobo\$19bobbobboo\$23boboo\$21boo!`

What about something like this?
`x = 71, y = 28, rule = Life66bo2bo\$21b2o43bo\$21b2o2b2o38bo4bo\$19b2obo2b2o37bobo2b2o\$19b3o40b2obo2\$10bo41bo\$9bobo8b2o31bob2o5bo2bo\$9bobo8b2o29bobobobo6b2o\$8b2obob2o38bobob2o\$12bo2bo36bo3bo2bo\$13b2o42b2o\$34bo\$35bo\$32b5o\$10b2o23bo18b2o\$9bo2bo21bo18bo2bo3bo\$10b2obob2o37b2obobo\$13bobo39bobobobo\$13bobo31bo2bo5b2obo\$2b2o10bo32bo12bo\$2b2o2b2o38bo4bo\$2obo2b2o37bobo2b2o\$3o40b2obo3\$b2o40bo2bo\$b2o42b2o!`

### Re: Synthesising Oscillators

Posted: February 17th, 2018, 12:06 pm
Final step:
`x = 35, y = 41, rule = B3/S2331bo\$30bo\$30b3o3\$13bo14bo\$6b2o3bobo14bobo\$5bo2bo3b2o14b2o\$5bo\$5bo\$5bobo3bo\$6bobo3bo\$7bo4bo\$8b4o18bo\$29bo\$20b2o7b3o\$20bo3bo\$14bo6b4o7b2o\$13bobo16bobo\$13bobo5b4o7bo\$10bo3bo5bo3bo\$2bo7b4o5bobo\$obo16bobo\$b2o7b4o6bo\$10bo3bo\$3b3o7b2o10b2o\$5bo18bo2bo\$4bo19bo\$24bo\$24bobo3bo\$25bobo3bo\$26bo4bo\$27b4o\$5b2o14b2o\$4bobo14bobo\$6bo14bo3\$2b3o\$4bo\$3bo!`

### Re: Synthesising Oscillators

Posted: February 17th, 2018, 7:45 pm
44P12.2 from 79 gliders:
`x = 515, y = 249, rule = B3/S23339bobo\$339b2o\$179bo160bo\$180bo\$178b3o10bobo\$192b2o\$192bo\$343bo\$342bo\$175bo152bo13b3o\$176bo150bo\$174b3o150b3o2\$334bo13bo\$334bobo11bobo\$334b2o12b2o\$357bo\$355b2o\$356b2o3\$174bo\$175b2o\$174b2o7\$204bo\$205b2o102bo\$204b2o103bobo\$309b2o2\$306bo\$194bo111bobo\$192bobo111b2o\$193b2o2\$190bo\$191b2o134bo\$190b2o134bo\$326b3o4\$328bobo\$328b2o\$329bo\$314bo\$312b2o\$313b2o10\$291bobo\$291b2o\$292bo\$251bo\$249bobo25bobo25bo\$250b2o25b2o26bobo\$278bo26b2o2\$270bobo\$249bo20b2o30bo\$250b2o19bo24bo4bo\$249b2o44bo5b3o\$292bo2b3o\$280bo9b2o\$278b2o11b2o\$279b2o2\$236bo4bobo30bo\$237bo4b2o25bo3bo\$235b3o4bo24b2o4b3o\$253bo5bo8b2o\$251bobo3b2o28bo\$252b2o4b2o25b2o\$286b2o\$258bo\$258b2o\$257bobo6\$277b2o\$270bo5b2o\$269b2o7bo\$261b2o6bobo\$260bobo\$262bo\$240b2o\$241b2o\$240bo\$250b2o\$249bobo\$251bo\$265bo\$236b2o26b2o15b2o\$237b2o7bo17bobo14bobo\$236bo9b2o33bo7bo\$245bobo40b2o\$277b3o8bobo\$277bo\$278bo2\$254bo\$254b2o\$253bobo\$280b2o\$279b2o\$245bo35bo\$232b2o11b2o50b3o\$233b2o9bobo50bo\$232bo65bo2\$243b2o\$242bobo69b3o\$244bo46b2o21bo\$291bobo21bo\$291bo\$312b2o\$242b2o67b2o\$241bobo69bo\$243bo4\$236b3o\$198bo39bo\$198b2o37bo\$197bobo\$301bo9b2o\$221bo78b2o9bobo\$221b2o77bobo8bo\$199b3o18bobo73b2o\$201bo94bobo37b2o\$200bo95bo38b2o\$337bo2\$333b2o\$220b2o111bobo\$219bobo111bo\$221bo2\$217b2o\$216bobo103b2o\$218bo102b2o\$323bo7\$352b2o\$351b2o\$353bo3\$170b2o\$171b2o\$170bo\$178b2o12b2o\$177bobo11bobo\$179bo13bo2\$198b3o150b3o\$200bo150bo\$183b3o13bo152bo\$185bo\$184bo\$335bo\$334b2o\$334bobo10b3o\$347bo\$187bo160bo\$187b2o\$186bobo18\$466bo\$98bo315bo50bo\$99bo9bo302b2o51b3o\$97b3o7b2o304b2o35bo\$108b2o341b2o11bo\$419bobo28b2o13bo\$102bo316b2o42b3o\$100b2o318bo\$18bo77bobo2b2o261bo105bo\$16b2o79b2o266bo3bo38b2o11b2o45b2o\$2bo5bo8b2o78bo265b3ob2o38bo2bo10bobo22bo10b2o10b2o\$obo3b2o360b2o37bo2bo10bo25b2o8bo\$b2o4b2o100bobo81bo214b2o36b2o10bo\$58bo50b2o48bo33bobo223bo39bo\$7bo48b2o52bo30b2o15bo27b2o5b2o36b2o38b2o13bobo25b2o10b2o43b2o38b2o5b2o40bo13bobo\$7b2o48b2o30bo51bo3b2o11b3o25bo3b2o39bo39bo14b2o25bobo3bo6bo44bo39bo6bobo40bo12b2o31b2o\$6bobo51b2o22bo5b2o50bo2b2o40bo2b2o40bo39bo14bo27bob2o8bo44bo39bo49bo12bo29b2o2bo\$52bo7bobo19bobo4b2o11b2o37b2o43b2o43b2o38b2o45b2o6b2o43b2o38b2o48b2o19bo22b5o\$51bobo6bo22b2o16bo2bo35bo44bo44bo39bo17b2o35bo37b2o5bo32b2o5bo42b2o5bo21bobo24bo\$51b2o35bo12b4o34bob4o39bob4o39bob4o34bob4o13bobo25bo7bob4o33bobo3bob4o28bobo3bob4o38bobo3bob4o13b2o2b2o18b2o2b4o\$49b2o37b2o9b2o34b2obobo4bo34b2obobo4bo34b2obobo4bo29b2obobo4bo12bo27b2o2b2obobo4bo35bobobo4bo30bobobo4bo40bobobo4bo12bobo21b2obo4b4o\$48bobob3o32bobo8bobob3o30bob2obob2obo34bob2obob2obo34bob2obob2obo29bob2obob2obo39bobo2bob2obob2obo36b2obob2obo31b2obob2obo41b2obob2obo12bo22bobobob2obobobo\$49bo2bo2bo42bobobo2bo34bob2obob2o5bo30bob2obob2o9bobo24bob2obob2o31bob2obob2o7bo38bob2obob2obo2bobo29bob2obob2o31bob2obob2o28bo12bob2obob2o32bobobob2obobobo\$19bo32bo2bo43b2obo2bo34bo4bobobo3bo31bo4bobo4bobo3b2o25bo4bobobo30bo4bobobo5b2o38bo4bobob2o2b2o30bo4bobobo30bo4bobobo25bobo12bo4bobobo32b4o4bob2o\$18b2o33b2o48b2o31b2o3b4o3bo4b3o25b2o3b4o2bo4b2o5bo26b4o2bobo31b4o2bobo5bobo38b4obo7bo31b4obo3bobo28b4obo3bobo19b2o2b2o13b4obo3bobo33b4o2b2o\$10b2o6bobo24bo90b2o43b2o9b2o4bo38b2o38b2o51bo44bo5b2o32bo5b2o18bobo21bo5b2o33bo\$9bobo33b2o37bo58b2o11b2o30b4o8bo32b4o36b4o51b2o6b2o35b2o38b2o28bo19b2o41b5o\$11bo32bobo37b2o25b3o29bobo10bobo19b3o7bo2bo7b2o32bo2bo4bo31bo2bo3bo47bo8b2obo32bo39bo36bo12bo42bo2b2o\$83bobo7b2o16bo32bo11bo23bo18bobo32b2o4bo33b2o3bobo47bo6bo3bobo31bo30bobo6bo35b2o12bo42b2o\$47b3o44b2o16bo66bo60b3o35bo2bo46b2o10b2o31b2o31b2o5b2o34bobo13bo\$47bo45bo14b2o169b2o125bo59bo\$48bo59bobo78b2o48b2o175b2o49bo10b2o\$108bo35b2o44b2o46bobo135b2o26bo10bo2bo49bo8b2o\$143bobo43bo3b2o45bo136b2ob3o19bobo10bo2bo36b2o10b2o10bo\$145bo46b2o80b2o8b3o89bo3bo22b2o11b2o38b2o\$147b3o44bo70b2o6b2o9bo96bo73bo\$147bo118b2o7bo9bo119bo\$135b2o11bo39b2o75bo3b3o133b2o53b3o\$134bobo52b2o78bo134bobo53bo13b2o\$136bo51bo81bo190bo11b2o\$411b2o62bo\$412b2o44b3o\$411bo48bo\$459bo!`

### Re: Synthesising Oscillators

Posted: February 17th, 2018, 11:46 pm
A for awesome wrote:Final step:
`x = 35, y = 41, rule = B3/S2331bo\$30bo\$30b3o3\$13bo14bo\$6b2o3bobo14bobo\$5bo2bo3b2o14b2o\$5bo\$5bo\$5bobo3bo\$6bobo3bo\$7bo4bo\$8b4o18bo\$29bo\$20b2o7b3o\$20bo3bo\$14bo6b4o7b2o\$13bobo16bobo\$13bobo5b4o7bo\$10bo3bo5bo3bo\$2bo7b4o5bobo\$obo16bobo\$b2o7b4o6bo\$10bo3bo\$3b3o7b2o10b2o\$5bo18bo2bo\$4bo19bo\$24bo\$24bobo3bo\$25bobo3bo\$26bo4bo\$27b4o\$5b2o14b2o\$4bobo14bobo\$6bo14bo3\$2b3o\$4bo\$3bo!`

I would like to have the full synthesis for the oscillator, not just the final step.

### Re: Synthesising Oscillators

Posted: February 18th, 2018, 12:26 am
mattiward wrote:I would like to have the full synthesis for the oscillator, not just the final step.

I will attempt to put one together later tonight when I get home, time permitting. Is there some reason you urgently need this particular synthesis?

EDIT: 52p84 in 55 gliders:
`x = 174, y = 180, rule = B3/S2371bo\$66bo4bobo\$64bobo4boo\$65boobbo\$68boo\$68bobo25bo29bo6bo22bo\$95bobo27bobo6bo20bobo\$38boo25boo28bobo27bobo4b3obbo17bobo5boo\$35bo3bo22bo3bo25bo3bo25bo3bo9bo15bo3bo5bobo\$35b4o23b4o26b4o26b4o10b3o13b4o5bobo\$8bo152boo\$3bobboo27b4o23b4o26b4o26b4o6bo7boo10b4o\$4bobboo3b3o20bo3bo22bo3bo25bo3bo25bo3bo5boo6bobo9bo3bo\$bb3o7bo25boo25boo28boo28boo4bobo6bo14boo\$13bo3\$bo\$boo\$obo5\$73bo\$74bo\$72b3o\$\$75bobo\$75boo64bobo\$76bo4bo59boo\$72bo6boo61bo\$70bobo7boo\$71boo\$16bobo27bo29bo26bo29bo29boo\$6bo9boo18bo8bobo18bo8bobo18bo6b3o20bo6b3o20bo6boo\$5bobo9bo17bobo8bo18bobo8bo18bobo8bo18bobo8bo4bobo11bobo\$5bobo5boo20bobo5b3o19bobo5b3o19bobo5b3o19bobo5b3o5boo12bobo5b4o\$bbo3bo5bobobboo13bo3bo5bo19bo3bo5bo19bo3bo5bo19bo3bo5bo9bo9bo3bo5bo3bo\$bb4o5bobobboo14b4o5bobo18b4o5bobo18b4o5bobo18b4o5bobo18b4o5bobo\$11boo5bo22bobo27bobo27bobo27bobo10bo16bobo\$bb4o26b4o6bo19b4o6bo19b4o6bo19b4o6bo11bobo5b4o6bo\$bbo3bo25bo3bo25bo3bo25bo3bo25bo3bo17boo6bo3bo\$5boo28boo28boo28boo28boo28boo\$143bo\$142boo\$142bobo6\$132bo\$133boo\$132boo\$13bo\$13bobo121bo\$13boo122bobo\$81bo52bobboo\$12bo66bobo50bobo\$13boobobo61boo51boo\$12boobboo\$17bo60boo\$44bo29bo3bobo81boo\$13boo28bobo27bobobbo24bobbo26bobbo25bo3bo\$6bo6boo21bo6boo21bo6boo21bo6b4o19bo6b4o19bo6b4o\$5bobo27bobo27bobo27bobo27bobo27bobo\$5bobo5b4o18bobo5b4o18bobo5b4o18bobo5b4o18bobo5b4o18bobo5b4o\$bbo3bo5bo3bo15bo3bo5bo3bo15bo3bo5bo3bo15bo3bo5bo3bo15bo3bo5bo3bo15bo3bo5bo3bo\$bb4o5bobo18b4o5bobo18b4o5bobo18b4o5bobo18b4o5bobo18b4o5bobo\$11bobo27bobo27bobo27bobo27bobo27bobo\$bb4o6bo19b4o6bo19b4o6bo19b4o6bo19b4o6bo19b4o6bo\$bbo3bo25bo3bo25bo3bo25bo3bo25bo3bo25bo3bo\$5boo28boo28boo28boo28boo28boo16\$111bo\$110bo\$110b3o\$108bo\$109bo\$36bo70b3o38boo\$35bo112boo\$35b3o\$33bo\$34bo113boo\$32b3o38boo32bobo3boo32bobbobboo\$73boo33boo3boo32bobbobboo\$108bo39boo\$\$42boo38boo23boo13boo38boo\$42bo3bo35bo3bo19bobo13bo3bo35bo3bo\$36bo6b4o29bo6b4o21bo7bo6b4o29bo6b4o\$35bobo37bobo37bobo37bobo\$35bobo5b4o28bobo5b4o28bobo5b4o28bobo5b4o\$32bo3bo5bo3bo25bo3bo5bo3bo25bo3bo5bo3bo25bo3bo5bo3bo\$32b4o5bobo28b4o5bobo28b4o5bobo28b4o5bobo\$41bobo37bobo37bobo37bobo\$32b4o6bo29b4o6bo29b4o6bo29b4o6bo\$32bo3bo35bo3bo35bo3bo35bo3bo\$35boo38boo10boo26boo10boo26boo10boo\$87boo38boo38boo\$136bo\$136bobo\$44b3o89boo29boo\$44bo82boo4boo31bobbobboo\$45bo76b3oboo5bobo30bobbobboo\$41b3o80bo3bo4bo33boo\$43bo79bo\$42bo15\$134bo\$133bo\$133b3o3\$114bo16bo\$112bobo16bobo\$28boo38boo38boo3boo16boo15boo\$28boo36bobbo36bobbo36bobbo3\$28boo36boobo36boobo36boobo\$27bobbobboo33bobobboo33bobobboo33bobobboo\$21bo5bobbobboo34bo4bo34bo4bo18bo15bo4bo\$22bo5boo40bo39bo21bo17bo7bo\$20b3o47bobbo36bobbo18b3o15bobbo4bo\$42boo38boo38boo35bo\$42bo3bo35bo3bo35bo3bo33bo\$36bo6b4o29bo6b4o29bo6b4o28bo4bo\$35bobo37bobo37bobo17boo\$22boo11bobo5b4o28bobo5b4o28bobo5b4o8bobo18bo3boo\$21bobo8bo3bo5bo3bo25bo3bo5bo3bo16bo8bo3bo5bo3bo8bo20bo5bo\$23bo8b4o5bobo28b4o5bobo17bobo8b4o5bobo33boo3bo\$41bobo37bobo18boo17bobo\$32b4o6bo29b4o6bo29b4o6bo35bo4bo\$32bo3bo35bo3bo35bo3bo41bo\$35boo10boo26boo10boo26boo10boo30bo7boo\$47boo36bobbo15b3o18bobbo31bo4bobbo\$106bo53bo\$105bo\$47boo36boobo36boobo36boobo\$46bobbobboo33bobobboo33bobobboo33bobobboo\$46bobbobboo34bo4bo34bo4bo34bo4bo\$47boo40bo39bo39bo\$89bobbo36bobbo36bobbo\$106boo16boo\$105bobo16bobo\$38b3o66bo16bo\$40bo4boo\$39bo5bobo\$45bo57b3o\$105bo\$104bo!`

### Re: Synthesising Oscillators

Posted: February 24th, 2018, 4:33 am
mniemiec wrote:
mattiward wrote:I would like to have the full synthesis for the oscillator, not just the final step.

I will attempt to put one together later tonight when I get home, time permitting. Is there some reason you urgently need this particular synthesis?

EDIT: 52p84 in 55 gliders:
`x = 174, y = 180, rule = B3/S2371bo\$66bo4bobo\$64bobo4boo\$65boobbo\$68boo\$68bobo25bo29bo6bo22bo\$95bobo27bobo6bo20bobo\$38boo25boo28bobo27bobo4b3obbo17bobo5boo\$35bo3bo22bo3bo25bo3bo25bo3bo9bo15bo3bo5bobo\$35b4o23b4o26b4o26b4o10b3o13b4o5bobo\$8bo152boo\$3bobboo27b4o23b4o26b4o26b4o6bo7boo10b4o\$4bobboo3b3o20bo3bo22bo3bo25bo3bo25bo3bo5boo6bobo9bo3bo\$bb3o7bo25boo25boo28boo28boo4bobo6bo14boo\$13bo3\$bo\$boo\$obo5\$73bo\$74bo\$72b3o\$\$75bobo\$75boo64bobo\$76bo4bo59boo\$72bo6boo61bo\$70bobo7boo\$71boo\$16bobo27bo29bo26bo29bo29boo\$6bo9boo18bo8bobo18bo8bobo18bo6b3o20bo6b3o20bo6boo\$5bobo9bo17bobo8bo18bobo8bo18bobo8bo18bobo8bo4bobo11bobo\$5bobo5boo20bobo5b3o19bobo5b3o19bobo5b3o19bobo5b3o5boo12bobo5b4o\$bbo3bo5bobobboo13bo3bo5bo19bo3bo5bo19bo3bo5bo19bo3bo5bo9bo9bo3bo5bo3bo\$bb4o5bobobboo14b4o5bobo18b4o5bobo18b4o5bobo18b4o5bobo18b4o5bobo\$11boo5bo22bobo27bobo27bobo27bobo10bo16bobo\$bb4o26b4o6bo19b4o6bo19b4o6bo19b4o6bo11bobo5b4o6bo\$bbo3bo25bo3bo25bo3bo25bo3bo25bo3bo17boo6bo3bo\$5boo28boo28boo28boo28boo28boo\$143bo\$142boo\$142bobo6\$132bo\$133boo\$132boo\$13bo\$13bobo121bo\$13boo122bobo\$81bo52bobboo\$12bo66bobo50bobo\$13boobobo61boo51boo\$12boobboo\$17bo60boo\$44bo29bo3bobo81boo\$13boo28bobo27bobobbo24bobbo26bobbo25bo3bo\$6bo6boo21bo6boo21bo6boo21bo6b4o19bo6b4o19bo6b4o\$5bobo27bobo27bobo27bobo27bobo27bobo\$5bobo5b4o18bobo5b4o18bobo5b4o18bobo5b4o18bobo5b4o18bobo5b4o\$bbo3bo5bo3bo15bo3bo5bo3bo15bo3bo5bo3bo15bo3bo5bo3bo15bo3bo5bo3bo15bo3bo5bo3bo\$bb4o5bobo18b4o5bobo18b4o5bobo18b4o5bobo18b4o5bobo18b4o5bobo\$11bobo27bobo27bobo27bobo27bobo27bobo\$bb4o6bo19b4o6bo19b4o6bo19b4o6bo19b4o6bo19b4o6bo\$bbo3bo25bo3bo25bo3bo25bo3bo25bo3bo25bo3bo\$5boo28boo28boo28boo28boo28boo16\$111bo\$110bo\$110b3o\$108bo\$109bo\$36bo70b3o38boo\$35bo112boo\$35b3o\$33bo\$34bo113boo\$32b3o38boo32bobo3boo32bobbobboo\$73boo33boo3boo32bobbobboo\$108bo39boo\$\$42boo38boo23boo13boo38boo\$42bo3bo35bo3bo19bobo13bo3bo35bo3bo\$36bo6b4o29bo6b4o21bo7bo6b4o29bo6b4o\$35bobo37bobo37bobo37bobo\$35bobo5b4o28bobo5b4o28bobo5b4o28bobo5b4o\$32bo3bo5bo3bo25bo3bo5bo3bo25bo3bo5bo3bo25bo3bo5bo3bo\$32b4o5bobo28b4o5bobo28b4o5bobo28b4o5bobo\$41bobo37bobo37bobo37bobo\$32b4o6bo29b4o6bo29b4o6bo29b4o6bo\$32bo3bo35bo3bo35bo3bo35bo3bo\$35boo38boo10boo26boo10boo26boo10boo\$87boo38boo38boo\$136bo\$136bobo\$44b3o89boo29boo\$44bo82boo4boo31bobbobboo\$45bo76b3oboo5bobo30bobbobboo\$41b3o80bo3bo4bo33boo\$43bo79bo\$42bo15\$134bo\$133bo\$133b3o3\$114bo16bo\$112bobo16bobo\$28boo38boo38boo3boo16boo15boo\$28boo36bobbo36bobbo36bobbo3\$28boo36boobo36boobo36boobo\$27bobbobboo33bobobboo33bobobboo33bobobboo\$21bo5bobbobboo34bo4bo34bo4bo18bo15bo4bo\$22bo5boo40bo39bo21bo17bo7bo\$20b3o47bobbo36bobbo18b3o15bobbo4bo\$42boo38boo38boo35bo\$42bo3bo35bo3bo35bo3bo33bo\$36bo6b4o29bo6b4o29bo6b4o28bo4bo\$35bobo37bobo37bobo17boo\$22boo11bobo5b4o28bobo5b4o28bobo5b4o8bobo18bo3boo\$21bobo8bo3bo5bo3bo25bo3bo5bo3bo16bo8bo3bo5bo3bo8bo20bo5bo\$23bo8b4o5bobo28b4o5bobo17bobo8b4o5bobo33boo3bo\$41bobo37bobo18boo17bobo\$32b4o6bo29b4o6bo29b4o6bo35bo4bo\$32bo3bo35bo3bo35bo3bo41bo\$35boo10boo26boo10boo26boo10boo30bo7boo\$47boo36bobbo15b3o18bobbo31bo4bobbo\$106bo53bo\$105bo\$47boo36boobo36boobo36boobo\$46bobbobboo33bobobboo33bobobboo33bobobboo\$46bobbobboo34bo4bo34bo4bo34bo4bo\$47boo40bo39bo39bo\$89bobbo36bobbo36bobbo\$106boo16boo\$105bobo16bobo\$38b3o66bo16bo\$40bo4boo\$39bo5bobo\$45bo57b3o\$105bo\$104bo!`

51 gliders:
`x = 575, y = 241, rule = B3/S23379bobo\$379b2o\$380bo3\$217bo160bo\$215bobo160bobo\$216b2o160b2o6\$380bo\$379bo\$379b3o4\$238bobo\$239b2o\$206bo32bo\$204bobo154bo\$205b2o153bo\$240bo119b3o\$241bo\$239b3o3\$251bo\$252b2o\$251b2o3\$344bo\$344bobo\$344b2o2\$251bo\$252b2o93bobo\$251b2o94b2o\$259bo88bo\$260b2o\$259b2o86bo\$339bo6bo\$338bo7b3o\$338b3o21bo\$343bo17bo\$228bobo26bobo83bobo15b3o\$229b2o27b2o83b2o\$229bo28bo81bo6bo\$339bo6bo\$339b3o4b3o3\$349bobo\$349b2o\$350bo3\$303bobo\$303b2o\$304bo\$257bobo\$253bo4b2o\$251bobo4bo\$252b2o3\$276bo\$277b2o\$276b2o46bo\$322b2o\$308bo14b2o\$279bo28bobo\$277bobo28b2o\$278b2o10\$282bobo\$283b2o\$283bo3\$295bo\$284b3o7bo\$286bo2b2o3b3o\$285bo2b2o\$290bo5\$306bo\$305b2o\$305bobo14\$250bo\$250b2o75bo\$249bobo23b3o48b2o\$277bo48bobo\$276bo2\$304bo\$303b2o\$303bobo\$244bo\$244b2o\$243bobo4\$340b2o\$340bobo\$340bo7\$347b3o\$347bo9b2o\$348bo7b2o\$358bo20\$382b2o\$358b3o21bobo\$358bo23bo\$359bo2\$356b2o\$356bobo\$235bo120bo\$207b3o25b2o\$209bo24bobo\$208bo3\$226bo\$226b2o\$225bobo\$209b2o160b2o\$208bobo160bobo\$210bo160bo3\$208bo\$208b2o\$207bobo11\$431bo\$430bo\$430b3o4\$422bo\$421bo\$421b3o\$417bobo\$418b2o\$374bo43bo47bo18bo\$375bo39bo11b3o37b2o14b2o\$373b3o38bobo10bo38b2o16b2o42bo\$414bobo11bo98bo\$370b3o42bo46b2o48b2o13b3o22b2o\$12bobo357bo85b2o2b2o44b2o2b2o34b2o2b2o\$12b2o213bo143bo86b2o2bob2o42b2o2bob2o9b2o21b2o2bob2o\$13bo213bobo233b3o47b3o9b2o26b3o\$227b2o18bobo\$217bo30b2o235bobo\$bo213bobo30bo214b2o20b2o26b2o6b2o30b2o6b2o\$2bo7b3o22b2o24bo6bobo4b2o43b2o43b2o38b2o9b2o47b2o38b2o38b2o38b2o38b2o36b2o10b2o9bo26b2o7bo30b2o7bo\$3o3b2o2bo24bo3bo19bobo6b2o5bo3bo40bo3bo40bo3bo35bo3bo36b2o17bo3bo35bo3bo35bo3bo35bo3bo35bo3bo45bo3bo42b2o38b2o\$7b2o2bo24b4o20b2o7bo6b4o41b4o34bo6b4o29bo6b4o35bobo11bo6b4o29bo6b4o29bo6b4o29bo6b4o29bo6b4o39bo6b4o\$6bo101bo5b2o42bobo37bobo46bo10bobo37bobo37bobo37bobo37bobo47bobo17b2o33b2o38b2o\$36b4o23b3o10b4o29b2o2bobo5b4o33bobo5b4o28bobo5b4o11bo36bobo5b4o28bobo5b4o28bobo5b4o28bobo5b4o28bobo5b4o38bobo5b4o7b2o35bo39bo\$35bo3bo25bo9bo3bo28b2o2bobo5bo3bo34bo5bo3bo29bo5bo3bo11bobo25bo9bo5bo3bo25bo3bo5bo3bo25bo3bo5bo3bo25bo3bo5bo3bo25bo3bo5bo3bo25bo9bo3bo5bo3bo9bo29bo5bo33bo5bo\$35b2o27bo2b3o4bobo35b2o5bobo34b3o5bobo29b3o5bobo14b2o26b2o5b3o5bobo28b4o5bobo28b4o5bobo28b4o5bobo28b4o5bobo29b2o7b4o5bobo43bo39bo\$67bo6bobo32bo9bobo33bo8bobo28bo8bobo41bobo4bo8bobo37bobo37bobo37bobo37bobo28b2o17bobo43b2o38b2o\$31bobo34bo6bo33b2o9bo33bobo8bo30b3o6bo13b2o35b3o6bo31b2o6bo31b2o6bo29b4o6bo29b4o6bo39b4o6bo\$32b2o74bobo44bo42bo19b2o38bo38b2o34bo2bobo36bo2bo36bo2bo46bo3bo51b2o38b2o\$32bo2b2o122b2o59bo110bobo3bo120bo9b2o52bo39bo\$29b2o4bobo92b2o18b2o7bobo13b2o38b2o77bo37b2o124b2o62b2o38b2o\$28bobo4bo50b2o41bo2bo18b2o6bo14bo2bo36bo2bo31bo21b2o21b2o2b2o11b2o38b2o38b2o38b2o24bobo21b2o48b2o38b2o\$30bo55bobo41b2o18bo4bo19b2o38b2o32b2o16b2o2b2o20bobob2o8b2o2b2o17b2o15b2o2b2o34b2o2b2o24b2o8b2o2b2o44b2o2b2o44b2o2b2o34b2o2b2o\$86bo68b2o91bobo16b2o2bob2o24bo7b2o2bob2o15bobo14b2o2bob2o32b2o2bob2o21b2o9b2o2bob2o42b2o2bob2o33b2o7b2o2bob2o32b2o2bob2o\$83b2o69bobo115b3o37b3o15bo21b3o37b3o18b2o3bo13b3o47b3o33b2o12b3o37b3o\$82bobo212b2o115b2o\$84bo72b3o136bobo114bo101b3o\$157bo114b2o24bo13b2o38b2o38b2o38b2o48b2o33bo14b2o38b2o\$158bo113b2o38b2o38b2o38b2o23b3o12b2o25b2o16b2o3b2o32bo15b2o38b2o\$417bo42b2o14b2o\$418bo40bo18bo!`

### Re: Synthesising Oscillators

Posted: February 24th, 2018, 5:01 am
Any leads on possible synthesis for this oscillator?
`x = 53, y = 53, rule = B3/S2319b2o\$19bobo\$22bo2b2o\$20b2obo2bo\$19bobob2o\$20bo3\$21b3o\$20bo3bo\$19bo5bo\$19bo5bo\$19bo5bo\$16b2o2bo3bo\$15bobo3b3o12bo\$15bo20b3o\$14b2o23bo\$38b2o\$31b3o\$18bo12bo8b3o5bo2b2o\$18bobo11bo6bo3bo3bobo2bo\$18b2o18bo5bo3b2obo\$38bo5bo5bo\$38bo5bo3b2o\$39bo3bo4bo\$40b3o7bo\$2b2o45b2o\$2bo7b3o\$4bo4bo3bo\$3b2o3bo5bo\$2bo5bo5bo\$bob2o3bo5bo18b2o\$o2bobo3bo3bo6bo11bobo\$2o2bo5b3o8bo12bo\$19b3o\$13b2o\$13bo23b2o\$14b3o20bo\$16bo12b3o3bobo\$28bo3bo2b2o\$27bo5bo\$27bo5bo\$27bo5bo\$28bo3bo\$29b3o3\$32bo\$28b2obobo\$26bo2bob2o\$26b2o2bo\$31bobo\$32b2o!`

### Re: Synthesising Oscillators

Posted: February 24th, 2018, 5:19 am
mattiward wrote:Any leads on possible synthesis for this oscillator?
`RLE`

Have you seen Kazyan's post about this oscillator in the still life synthesis thread?

### Re: Synthesising Oscillators

Posted: February 25th, 2018, 7:10 pm
A 32-bit P4 http://catagolue.appspot.com/object/xp4_7o0uzx3v0szy0107u0ozy33w7/b3s23 came up on
Catagolue on Feb. 5. There are two soups listed. The first doesn't actually generate the oscillator.
The second leads to a 14-glider synthesis:
`x = 168, y = 31, rule = B3/S235bo\$4bo\$4b3o\$bbo\$3bo\$b3o28boo28boo68bo\$32boo28boo68bobo\$132boo\$\$91bo8boo19bo8boo19bo\$90bobbo6boo18bobbo6boo18bobbo\$53bobo35bobo27bobo27bobo\$13bo40boo35bobbo26bobbo26bobbo\$11bobo28boo10bo3bo13boo18bobobbobo22bobobbobo22bobobbobo\$bo10boob3o16bo6bobbo13boo4bo6bobbo17bobobbobo22bobobbobo22bobobbobo\$bbo12bo17bobo6bobo12bobo3bobo6bobo3bobo16bobbo26bobbo26bobbo\$3oboo10bo16bobbo6bo19bobbo6bo4boo18bobobbobo22bobobbobo22bobobbobo\$4bobo27boo28boo13bo3bo14bobobbobo22bobobbobo22bobobbobo\$4bo77boo19bobbo26bobbo26bobbo\$82bobo19bobo27bobo27bobo\$96boo6bobbo18boo6bobbo26bobbo\$96boo8bo19boo8bo29bo\$\$124boo\$44boo28boo47bobo\$14b3o27boo28boo49bo\$14bo\$15bo\$11b3o\$13bo\$12bo!`

### Re: Synthesising Oscillators

Posted: February 25th, 2018, 9:20 pm
mniemiec wrote:A 32-bit P4 http://catagolue.appspot.com/object/xp4_7o0uzx3v0szy0107u0ozy33w7/b3s23 came up on
Catagolue on Feb. 5. There are two soups listed. The first doesn't actually generate the oscillator.
The second leads to a 14-glider synthesis:

It does as soon as you realise why apgluxe has been consistently misclassifying objects in symmetric soups:

`x = 82, y = 32, rule = B3/S23bo4bobo5b2o35bo4bobo5b2o\$4b2ob2o3b4o38b2ob2o3b4o\$o2bo2b2o7bo34bo2bo2b2o7bo\$2b2o3b2ob6o36b2o3b2ob6o\$2bo2b2ob2ob2ob2o36bo2b2ob2ob2ob2o\$2b2o4b2o2b4o36b2o4b2o2b4o\$bob2ob2obo2b4o35bob2ob2obo2b4o\$bob2ob4o2bo2bo35bob2ob4o2bo2bo\$o3bob2ob2o4bo34bo3bob2ob2o4bo\$o2b3o4b3o2bo34bo2b3o4b3o2bo\$2b3obobobo4bo36b3obobobo4bo\$2o2b3o2bo2bobo35b2o2b3o2bo2bobo\$4ob2o2bo2b3o35b4ob2o2bo2b3o\$4o3b3o3bo36b4o3b3o3bo\$ob2ob2obobobo37bob2ob2obobobo\$2b3ob3ob4obo36b3ob3ob4ob2ob4ob3ob3o\$15bob4ob3ob3o40bobobob2ob2obo\$18bobobob2ob2obo37bo3b3o3b4o\$17bo3b3o3b4o36b3o2bo2b2ob4o\$16b3o2bo2b2ob4o36bobo2bo2b3o2b2o\$16bobo2bo2b3o2b2o35bo4bobobob3o\$15bo4bobobob3o37bo2b3o4b3o2bo\$15bo2b3o4b3o2bo35bo4b2ob2obo3bo\$15bo4b2ob2obo3bo35bo2bo2b4ob2obo\$15bo2bo2b4ob2obo36b4o2bob2ob2obo\$15b4o2bob2ob2obo36b4o2b2o4b2o\$15b4o2b2o4b2o37b2ob2ob2ob2o2bo\$15b2ob2ob2ob2o2bo37b6ob2o3b2o\$15b6ob2o3b2o37bo7b2o2bo2bo\$15bo7b2o2bo2bo35b4o3b2ob2o\$15b4o3b2ob2o39b2o5bobo4bo\$15b2o5bobo4bo!`

The question is: how do we resolve this?

### Re: Synthesising Oscillators

Posted: February 25th, 2018, 9:36 pm
Ahh so THATs why the apgluxe phantom objects exist. They're slightly a meme now

### Re: Synthesising Oscillators

Posted: February 25th, 2018, 10:00 pm
calcyman wrote:
mniemiec wrote:The first doesn't actually generate the oscillator.

It does as soon as you realise why apgluxe has been consistently misclassifying objects in symmetric soups...
The question is: how do we resolve this?

That's easy.

1) Fix the shifted symmetric soup bug, and any other little hiccups that have showed up...
2) Back up the Catagolue database as it currently stands -- make it available at oldcatagolue.appspot.com...
3) Reset to a new empty database, with all new discoveries to be made...
4) Launch LifeCoin and see how many miners jump on board.
5) Profit (???)

We may think we've done a lot of searching in the last few years, but cryptocurrency mining is rumored to use as much electricity these days as Nigeria, and they don't even end up with much of anything to show for it (besides the bitcoins, etc.). A small fraction of that CPU time would pretty quickly get us far past today's Catagolue counts.

Anyway, I'd buy a LifeCoin or two myself,* and I'm sure I'm not the only HackerNews/Slashdot/Reddit/whatever reader that would say the same. It's not often that cryptocurrency mining does actual interesting research. Seems to me new Life patterns are even more interesting than, say, a dog on a coin.

* Yes, I know that part is actually the opposite of profit. Doesn't matter any more than it did to the early DogeCoin folks, who found they had something that was nice to swap around, tip people with and so forth. (I read a good longer article about Markus and Palmer and the early history of DogeCoin recently, can't find it offhand.)

### Re: Synthesising Oscillators

Posted: February 25th, 2018, 10:58 pm
I think it would be possible to have a script scan every symmetric soup stored as a sample for an object, run it, see if the object actually appears, and if not, shift the soup and save it. It would probably take some time, though, and may require locking the database for said time (though, up to a point I think that would actually be acceptable, considering the scale of this problem).

### Re: Synthesising Oscillators

Posted: February 25th, 2018, 11:39 pm
77topaz wrote:I think it would be possible to have a script scan every symmetric soup stored as a sample for an object, run it, see if the object actually appears, and if not, shift the soup and save it. It would probably take some time, though, and may require locking the database for said time (though, up to a point I think that would actually be acceptable, considering the scale of this problem).

Or, more practically, change Catagolue's hashsoup() to check whether the seed begins 'l_' and, if so, applies the apgluxe version of soup generation. I think that's the most feasible way to solve this problem. It also means that, if we decide to modify apgluxe's hashsoup to be backward-compatible with earlier versions, then we can just capitalise the L.

### Re: Synthesising Oscillators

Posted: February 26th, 2018, 6:24 am
calcyman wrote:Or, more practically, change Catagolue's hashsoup() to check whether the seed begins 'l_' and, if so, applies the apgluxe version of soup generation. I think that's the most feasible way to solve this problem. It also means that, if we decide to modify apgluxe's hashsoup to be backward-compatible with earlier versions, then we can just capitalise the L.

That sounds like the most sensible way forward. The census data's fine after all, no need to throw it out; just fix the soup generation code on Catagolue to handle l_ prefixes as apgluxe <= 4.24-ll1.23 does, and release a new version of apgluxe that corrects soup generation while also introducing a new prefix. These are both independent, and neither is pressing.

As far as bugs go, "easily fixed, no lasting adverse effects, no data loss, no coordination required, no time constraints" is pretty good.

### Re: Synthesising Oscillators

Posted: February 26th, 2018, 11:31 am
As for the specifics of lifecoin, I'm thinking automatically generated rare osc/spaceship/patterns in every rule with >100 million objects. Maybe the rare index increases with the number of objects search. This would encourage miners to search a diversity of other rules as well as life

### Re: Synthesising Oscillators

Posted: February 26th, 2018, 3:31 pm
Majestas32 wrote:As for the specifics of lifecoin, I'm thinking automatically generated rare osc/spaceship/patterns in every rule with >100 million objects. Maybe the rare index increases with the number of objects search. This would encourage miners to search a diversity of other rules as well as life

If one thinks of the rule search space as a 102-dimensional space, there are many rules that are extremely similar to other ones nearby (e.g. differ only in include neighborhoods like B8 and S8 that rarely occur, so they rarely make any difference). This means that when gems are found in one rule, it's likely that similar gems are found in some adjacent rules. This would make it fairly easy to game the system by cloning useful soups from one rule and submitting them under another. The thing that makes cryptocurrency mining feasible is that results are rare but fairly evenly distributed. Distributions of useful results in CA soups is not nearly as even.

### Re: Synthesising Oscillators

Posted: February 26th, 2018, 4:07 pm
Hmm then what do you suggest? (Limiting it to b3s23 is boring lol)

### Re: Synthesising Oscillators

Posted: February 26th, 2018, 5:21 pm
Majestas32 wrote:Hmm then what do you suggest? (Limiting it to b3s23 is boring lol)

Given how uneven CA results are, I think the very idea of LifeCoin is fundamentally flawed.

### Re: Synthesising Oscillators

Posted: February 26th, 2018, 5:53 pm
mniemiec wrote:
Majestas32 wrote:Hmm then what do you suggest? (Limiting it to b3s23 is boring lol)

Given how uneven CA results are, I think the very idea of LifeCoin is fundamentally flawed.

That's why Catagolue has, from the very start, SHA256'd the seed before writing it as a 16-by-16 square of cells and simulating it in B3/S23. The two stages of the proof-of-work accomplish orthogonal tasks:

• The SHA256 makes it implausible to reverse-engineer, and makes all strings equally likely to be successful;
• Running the pattern in GoL is much more computationally intensive than the original hash, and makes it less susceptible to efficient FPGA/ASIC implementation.

The other ingredient we need is to be able to measurably control the rarity of solutions, but that's possible because we already have comprehensive statistics from 10^13 soups saying exactly which oscillators/spaceships are common.

I think this is getting somewhat off-topic, so this discussion should be migrated to either the Catagolue discussion thread, or to the old pre-Catagolue CACoin thread, or to the comments section in https://mathoverflow.net/a/277668/39521