Various "edgy" low-period oscillators:

`x = 12, y = 12, rule = B3/S23`

7b2o$8bo$3bo2bobob2o$2obo2bobo2bo$3o3bob2o$3b2obo$3bob2o$bobo$b2o2b2o

$6bo$5bo$5b2o!

`x = 31, y = 9, rule = B3/S23`

4bo3bo2b2o5b2o2bo2b2o$3bob2obo4bo6bobo2bobo$3b2o5bo4bobo6b2obo$2obo7b

2o2bo2b2o5b3ob2o$obo3bo17bo3bobo$3b4o17b4o2$5b2o17b2o$5b2o17b2o!

`x = 16, y = 9, rule = B3/S23`

5b2o4bo$4bobo3bobo$2bo2bo3bo2bo$bo3bo2bo4b2o$ob2ob8o2bo$o3bo9b2o$b2o3b

2ob2o$3b3obob2o$3bo!

`x = 15, y = 9, rule = B3/S23`

5bobo$2o3bob2obo2b2o$o2bo5bo4bo$b4ob8o$7bo$3b3o3b3o$3bo2b3o2bo$5bo2bo

$6b2o!

`x = 15, y = 8, rule = B3/S23`

6b2o5b2o$2o3b3obo2bobo$o9bo$b5ob3o2bo$7bo2b2o$3b3o4bo$2bo2b2o4bo$2b2o

6b2o!

`x = 15, y = 8, rule = B3/S23`

2o4b2o5b2o$obo2b3obo2bobo$4bo5bo$2bo2b5o2bo$3b2o2bo2b2o$4bo5bo$3bo7bo

$3b2o5b2o!

`x = 22, y = 9, rule = B3/S23`

4bo2b2o5bobo$2o2bo4bo3bob2o3b2o$2o2bo5bo2bo7bo$5b2o2b2o2bob6o$7bo3b3o

bo$7bob2o3bo3bo$8bo2b3o3bobo$9bobo6bo$10bo!

`x = 19, y = 10, rule = B3/S23`

16b2o$4bo2b2o5bo2bo$2o2bo4bo3bob2o$2o2bo5bo2bo$5b2o2b2o2bob4o$7bo3b3o

bo2bo$7bob2o3bo$8bo2b3o$9bobo$10bo!

`x = 19, y = 9, rule = B3/S23`

14b2o$5bobo7bo$5bobobo3bobob2o$6bo3bo2bob2obo$2obobob2o4bo$ob2ob2o2b3o

bo$4bo3bo3bo$4bob2obobo$5bobob2o!

`x = 19, y = 17, rule = B3/S23`

13bobo$12bo$12bo$12bo2bo$12b3o4$2bo13bo$2bo4bo3bo4bo$o2bobob5obobo2bo

$b2ob2o7b2ob2o$2bobob7obobo$2bobobo5bobobo$3bobo3bo3bobo$4bo3bobo3bo$

9bo!

Most of this probably isn't interesting — there's a smaller turning toads stabilization and a possibly reduced dimerization of a known weak-ish sparker/LWSS-to-G (I haven't checked the known version), but that's it for now.

EDIT: Reducible:

`x = 33, y = 10, rule = B3/S23`

3b2o$3bobo10b2o6b2o4b2o$7bo3b2o6bo2bo4bobo2bo$4bo2bo3b3o2bo2b4obo2bob

ob2o$2obo5bo4bobo4bo5bo$ob2ob10ob6ob5ob4o$4bo10bo6b2o4bo3bo$4bob2o2b2o

2bo2b4o4bo2bobo$5bobo2b2o3b2obo2b4obobob2o$21bo2bob2o!

Feel like I've seen this before:

`x = 22, y = 9, rule = B3/S23`

17b2o$2b2o8b2o4bo$b2o2bo4b2o4bobob2o$2bobobo3bo5bobo2bo$o3bobo4bo4bob

2o$4o3b4o2b3o$11b2o$2b2o5bo3bo$2b2o5b2ob2o!

Accidental billiard table:

`x = 19, y = 13, rule = B3/S23`

12bo$6b2obo2b3o$5bobob3o3bo$5bobo5bobo$ob2obo3b4obob2o$2obo2bo2bo4bob

obo$4b2o5bo2bo2bo$6b6o2bo$6bo5b2o$9b2o$9bo$10bo$9b2o!

EDIT 2: Slightly sparky, although thoroughly inferior to Unix:

`x = 30, y = 9, rule = B3/S23`

10bo2bo$4b2o7bo2b2o6b2o$4bo3bo4bo2bob3o4bo$5bo2bobo3bo3b3o3bo$2obobob

o10bo5bobob2o$ob2obobob2o8b2obobob2obo$6b2obo10bob2o$9bo10bo$9b2o8b2o

!

Small:

`x = 15, y = 9, rule = B3/S23`

3b2o6bo$2bo7bobo$o2bo2bob2obo2bo$2obo2bo2bobob2o$3bobo3bobo$3bo2b2obo

bo$2b2o4bo2b2o$8bobo$9b2o!

Two cells different, weak-ish spark:

`x = 15, y = 9, rule = B3/S23`

3b2o6bo$b3o6bobo$o2bo2bob2obo2bo$2obo2bo2bobob2o$3bobo3bobo$3bo2b2obo

bo$2b2o4bo2b2o$8bobo$9b2o!

`x = 15, y = 9, rule = B3/S23`

3b2o$b3o6b2o$o2bo2bob2obo2bo$2obo2bo2bobob2o$3bobo3bobo$3bo2b2obobo$2b

2o4bo2b2o$8bobo$9b2o!

`x = 36, y = 13, rule = B3/S23`

4b2o$4bo$6bob2o13b2o6b2o$5b2obobob2o3b2obobo2bo7bo$5bo2bobobo3bo3bo3b

ob2obo2bo2bo$b2o3b3o3bo2b2o5bobobo2bo2bob2o$bo2bobo4b2o5b5obobo3bobo$

3b2o2b3o2bobob2o5bo2bob2o2bo$4bo5b2o2b2o3b2obo3b2o4b2o$3bo5bo2b2o3b2o

bob2o5b3o2bo$3b2o5bo3b3o9b2obo3b2o$11b3o2bo9bobo$13bo!

`x = 16, y = 9, rule = B3/S23`

5b2o4b2ob2o$4bobo5bobo$bo2bo5bobo2bo$obobobo3b6o$bo2bobo$4bo2bob2ob2o

$5bobobo3bo$6b2o2bobo$9b2ob2o!

`x = 34, y = 10, rule = B3/S23`

27b2o$6b2o7bobo2b4o2bo2bo$5bo2bo5b2obobo3bo2b2o2bo$2o3bo2bo3b2o4bobo7b

obo$o2bo4b2o2b2ob4ob6obobob2o$b6obobo4bo3bo7bobobobo$7bo2b4o4bo2b2ob2o

2bo3bo$3b2o2bobo3b2o4b2obobo$3b2o3bobo13bo$9bo14b2o!