Not as far as I know.
#A21C version -1.0
#Probably a CGOL one-liner:
f(&a){a=(ind(a),((-1:2)**2))`@int(x,y){return a[x],y``@int(z,w){\
return z+a[(x,w)`(+)]\:0}}`@bool(x,y){return y==3||(x&&y==4)}}
x = 31, y = 31, rule = B3/S23
oobboobbbobbobbbbbobbobbboobboo$
oobobbobbbobooobooobobbbobboboo$
bbooooboobbbooooooobbbooboooobb$
booobbbboooooobbboooooobbbbooob$
obobobboooobbobobobboooobbobobo$
obobbbobbooboboooboboobbobbbobo$
bobbbobboobooobbboooboobbobbbob$
bbobobbbooobobobobobooobbbobobb$
bboooboooooobobbboboooooobooobb$
obboooooobbbbbbbbbbbbboooooobbo$
boboooboobbbobbbbbobbboobooobob$
bbbobbobobbobbooobbobbobobbobbb$
oooobooobbobobobobobobboooboooo$
boooobobobbbbbooobbbbboboboooob$
boobbobobbbooooooooobbbobobboob$
bboboobbbbbobooooobobbbbboobobb$
boobbobobbbooooooooobbbobobboob$
boooobobobbbbbooobbbbboboboooob$
oooobooobbobobobobobobboooboooo$
bbbobbobobbobbooobbobbobobbobbb$
boboooboobbbobbbbbobbboobooobob$
obboooooobbbbbbbbbbbbboooooobbo$
bboooboooooobobbboboooooobooobb$
bbobobbbooobobobobobooobbbobobb$
bobbbobboobooobbboooboobbobbbob$
obobbbobbooboboooboboobbobbbobo$
obobobboooobbobobobboooobbobobo$
booobbbboooooobbboooooobbbbooob$
bbooooboobbbooooooobbbooboooobb$
oobobbobbbobooobooobobbbobboboo$
oobboobbbobbobbbbbobbobbboobboo!
x = 18, y = 27, rule = B3/S23
17bo$15b2o$6bo9b2o$7b2o$6b2o$10bo$10bobo$10b2o4$bo$2bo$3o7$2b2o$3b2o8b
2o$2bo10bobo$13bo$9b3o$11bo$10bo!
Goldtiger997 wrote:7 glider synthesis of 22P2 from this soup: ... I believe this beats the previous best of 10 gliders (correct me if I'm wrong).
x = 31, y = 19, rule = B3/S23
bbo$obo$boo$14bo$12boo$13boo3$24boobo$23bobob3o$bo21bo6bo$bboo20b5obo$
boo26bo$26bo$26boo$boo$bboo5boo$bo6boo$10bo!
Apple Bottom wrote:BTW, Calcyman found a fourth natural Coe ship a few days ago.
Furthermore, the C1 census now has more than 100,000 distinct objects.
x = 6, y = 5, rule = B3/S23
4bo$3b3o$3b3o$2o2bo$2o!
x = 45, y = 31, rule = B3/S23
13bo6bo$11bobo4b2o$12b2o5b2o$22b3o$22bo$23bo3$b2o$obo6b2o$2bo7b2o5b3o$
9bo7bo$18bo$14b3o$16bo$15bo13$43bo$42b2o$42bobo!
Goldtiger997 wrote:Here is an 8 glider synthesis of why not ...
I've checked the wiki, mniemiec's database, and the forums, and the best I could find was 24 gliders.
If I am right, then this is a very large improvement.
(but correct me if I'm wrong.)
x = 68, y = 46, rule = B3/S23
60bo$59bo$59b3o5$65bo$65bobo$65b2o2$bo$2bo$3o5$20bobo$21b2o25bo$21bo
26bobo$48b2o5$61bo$61bobo$61b2o3$26bo$24bobo$25b2o3$28bo4bo$29bob2o$
27b3o2b2o5$11b2o$12b2o$11bo!
Goldtiger997 wrote:What is the best synthesis for odd keys? I have found an 10 glider synthesis. ... The cleanup is not very efficient so it can probably be reduced to 8 gliders
mniemiec wrote:I tried to find a 2-glider cleanup, but was unable to find one. Some more methodical searching might do so.
#C 9-glider recipe for odd keys
x = 91, y = 90, rule = B3/S23
bo$2bo$3o5$20bobo$21b2o25bo$21bo26bobo$48b2o10$26bo$24bobo$25b2o3$28bo
4bo$29bob2o$27b3o2b2o5$11b2o$12b2o$11bo27$55b3o$55bo$56bo24$88b3o$88bo
$89bo!
x = 39, y = 14, rule = B3/S23
13bo$12bobo$12bobo$13bo$34boo$15b3o15bobo$14bo18bo$5booboo4b3o13boobo
bbo$5booboo20boobobobo$7bo24boobobbo$12boo19bobboo$boo9boo17bobo$obo
28boo$bbo!
mniemiec wrote:The following soup: http://catagolue.appspot.com/hashsoup/C1/m_VCuivF4kQMhB54709/b3s23 leads to the following partial cuphook synthesis.
x = 34, y = 30, rule = B3/S23
10bobo$11b2o$11bo$24bobo$24b2o$9bo15bo$10b2o$9b2o2$17bo$18bo$16b3o$29b
o3bo$27bobob2o$28b2o2b2o3$18bo$17b2o$17bobo5$12b2o$b2o10b2o$obo9bo$2bo
23b2o$25b2o$27bo!
Kazyan wrote:That p16 is sparkier than the 4th of July fireworks a few hours ago. Congrats to Rich Holmes! Certainly, that can be put to use.
EDIT: And, as its first application, a reduction of the p48 gun:Code: Select allx = 47, y = 43, rule = B3/S23
17b2o11b2o14bo$16bo2bo9bo2bo$16bobo3b2ob2o3bobo$14b2o2bobo7bobo2b2o$
15bobobo4bo4bobobo$14bo2b2o2b7o2b2o2bo$14b2o5bobobobo5b2o$23bobo$5bo2b
2o9b3o5b3o$4bobo2bo2bo5bobobo3bobobo$4bob2obobobo4b2o2b5o2b2o$3b2obo2b
obo2bo$3bo2bob2o2bo$4b3obobo3b3o$6b2obo5b2o$2bobo2bobo3bo2bo6bo$2b2o2b
2obob2o2b3o4bobo15b2o$8b2obo3b2o4bo3bo13bo2bo$2b5o4bo10bobo17b2o$bo4bo
b3o12bo4b2o6bo5b3o$bob2obobo6b2o11bobo4bobo3bo2bo$2obo2bo6b4o13bo5b2o
3b3o$bobobobo5b2o2bo8bo3b2o$bobob2obo2bo7b3o5bo8b2o3b3o$2ob2o2b2o3b4o
9b3o7bobo3bo2bo$3bo2b3o2bo2b2o3bobo14bo5b3o$3bobob2o5bo5bo21b2o$2b2obo
2b2obo2bo24bo2bo$4bo3b2o2bo2bo16bo7b2o$4bobo7bo18bo$3b2ob2o10b3o10b3o$
16b7o$9b2o2bo2b2obob2o2bo2b2o$9bo4b4o3b4o4bo$10b4o11b4o$14b2o7b2o$10b
5obo2bo2bob5o$9bo6b7o6bo$10b3obo9bob3o$12b2obob2ob2obob2o$14b2obo3bob
2o19bo$14bo2bo3bo2bo20bo$15b2o5b2o19b3o!
x = 117, y = 110, rule = B3/S23
14b2o28b2o28b2o28b2o$13bo2bo26bo2bo25b2obo26b2obo$12b2o28b2o27bo2bo26b
o2bo$11b3o5bo21b3o5bo21bo2bo4bo21bo2bo4bo$11bo2bo3bobo20bo2bo3bobo20bo
2bo3bobo20bo2bo3bobo$12b3o3b2o22b3o3b2o22b3o3b2o22b3o3b2o2$12b3o3b2o
22b3o3b2o22b3o3b2o22b3o3b2o$11bo2bo3bobo20bo2bo3bobo20bo2bo3bobo20bo2b
o3bobo$11b3o5bo21b3o5bo21bo2bo4bo21bo2bo4bo$12b2o28b2o27bo2bo26bo2bo$
13bo2bo26bo2bo25b2obo26b2obo$14b2o28b2o28b2o28b2o2$38b2o$10b2o25bo2bo
56b2o$9bo2bo27b2o27b2o25bo2bo$12b2o20bo5b3o25bo2bo27b2o$6bo5b3o18bobo
3bo2bo28b2o20bo5b3o$5bobo3bo2bo19b2o3b3o23bo5b3o18bobo3bo2bo$6b2o3b3o
50bobo3bo2bo19b2o3b3o$34b2o3b3o23b2o3b3o$6b2o3b3o19bobo3bo2bo50b2o3b3o
$5bobo3bo2bo19bo5b3o22b2o3b3o19bobo3bo2bo$6bo5b3o25b2o22bobo3bo2bo19bo
5b3o$12b2o23bo2bo24bo5b3o25b2o$9bo2bo25b2o31b2o23bo2bo$10b2o56bo2bo25b
2o$69b2o14$11b3o28b3o$10b2obo27b2obo29bo35bo$9bo2b2o26bo2b2o27b2obo32b
2obo$8b6o3bo21b6o3bo23bo3bo31bo3bo$9bo2b2o2bobo21bo2b2o2bobo20bo5bo29b
o5bo$10b3o3b2o23b3o3b2o21bo5bo2bo26bo5bo2bo$70bo7bobo25bo7bobo$10b3o3b
2o23b3o3b2o23b4o2b2o28b4o2b2o$9bo2b2o2bobo21bo2b2o2bobo$8b6o3bo21b6o3b
o23b4o2b2o28b4o2b2o$9bo2b2o26bo2b2o25bo7bobo25bo7bobo$10b2obo27b2obo
25bo5bo2bo26bo5bo2bo$11b3o28b3o25bo5bo29bo5bo$72bo3bo31bo3bo$36b2o34b
2obo32b2obo$6b2o27bo2bo35bo27b2o6bo$5bo2bo29b2o27b2o32bo2bo$8b2o22bo5b
3o25bo2bo34b2o$2bo5b3o20bobo3bo2bo28b2o27bo5b3o$bobo3bo2bo21b2o3b3o23b
o5b3o25bobo3bo2bo$2b2o3b3o52bobo3bo2bo26b2o3b3o$32b2o3b3o23b2o3b3o$2b
2o3b3o21bobo3bo2bo57b2o3b3o$bobo3bo2bo21bo5b3o22b2o3b3o26bobo3bo2bo$2b
o5b3o27b2o22bobo3bo2bo26bo5b3o$8b2o25bo2bo24bo5b3o32b2o$5bo2bo27b2o31b
2o30bo2bo$6b2o58bo2bo32b2o$67b2o14$13bo3bo18bo3bo$12bobobobo16bobobobo
$13b2ob2o18b2ob2o2$10bo9bo12bo9bo$9bo11bo10bo11bo$9bo3b2ob2o3bo10bo3b
2ob2o3bo$10b3obobob3o12b3obobob3o$11b2obobob2o14b2obobob2o$12b2o3b2o
16b2o3b2o3$5b2o$4bo2bo29b2o$7b2o27bo2bo$bo5b3o27bo2bo$obo3bo2bo23bo6bo
$b2o3b3o23bobo3bo2bo$33b2o3b3o$b2o3b3o$obo3bo2bo23b2o3b3o$bo5b3o22bobo
3bo2bo$7b2o24bo6bo$4bo2bo29bo2bo$5b2o29bo2bo$37b2o!
x = 118, y = 64, rule = B3/S23
4bo3bo25bo3bo25bo3bo25bo3bo$3bobobobo23bobobobo23bobobobo23bobobobo$4b
2ob2o25b2ob2o25b2ob2o25b2ob2o2$bo9bo19bo9bo19bo9bo19bo9bo$obo7bobo17bo
bo7bobo17bobo7bobo17bobo7bobo$o3b2ob2o3bo6bo3bo6bo3b2ob2o3bo6bo3bo6bo
3b2ob2o3bo6bo3bo6bo3b2ob2o3bo6bo3bo$bo3bobo3bo5b2obobob2o5bo3bobo3bo5b
2obobob2o5bo3bobo3bo5b2obobob2o5bo3bobo3bo5b2obobob2o$2b2obobob2o5bo3b
obo3bo5b2obobob2o5bo3bobo3bo5b2obobob2o5bo3bobo3bo5b2obobob2o5bo3bobo
3bo$4bo3bo6bo3b2ob2o3bo6bo3bo6bo3b2ob2o3bo6bo3bo6bo3b2ob2o3bo6bo3bo6bo
3b2ob2o3bo$15bobo7bobo17bobo7bobo17bobo7bobo17bobo7bobo$16bo9bo19bo9bo
19bo9bo19bo9bo2$19b2ob2o25b2ob2o25b2ob2o25b2ob2o$18bobobobo23bobobobo
23bobobobo23bobobobo$19bo3bo25bo3bo25bo3bo25bo3bo15$14bo3bo$13bobobobo
$14b2ob2o2$11bo9bo$10bo11bo$10bo3b2ob2o3bo$11b3obobob3o$12b2obobob2o$
13b2o3b2o8b2o$27bo2bo$26b2o$6b2o17b3o5bo$5bo2bo16bo2bo3bobo$8b2o16b3o
3b2o$2bo5b3o$bobo3bo2bo15b3o3b2o$2b2o3b3o15bo2bo3bobo$25b3o5bo$2b2o3b
3o16b2o$bobo3bo2bo16bo2bo$2bo5b3o17b2o$8b2o$5bo2bo$6b2o8b2o3b2o$15b2ob
obob2o$14b3obobob3o$13bo3b2ob2o3bo$13bo11bo$14bo9bo2$17b2ob2o$16bobobo
bo$17bo3bo!
Apple Bottom wrote:(Remember when bwbigmac had 80+% of the pie chart?)
muzik wrote:andyetwestilldonthaveanaturalloaferortinyc18ship
x = 15, y = 27, rule = B3/S23
8bo$2bo5bobo$obo5b2o$b2o$7bo$5bobo$6b2o5$12b3o$3b3o2$9b3o$3o5$7b2o$7bo
bo$7bo$12b2o$5b2o5bobo$4bobo5bo$6bo!
x = 73, y = 48, rule = B3/S23
2bo$obo$b2o16$66bobo$66b2o$67bo$70b2o$70bobo$70bo12$50bo$50bobo$50b2o$
53b2o$53bobo$53bo$39bobo$39b2o$40bo$42b2o$37bo4bobo$37b2o3bo$36bobo!
x = 37, y = 34, rule = B3/S23
10bo$9bo$9b3o$6bo$7b2o$6b2o7bo3bo$13bobob2o$14b2o2b2o2$11b3o$3bo9bo$2b
o9bo$2b3o$18bo$b2o15bobo$obo15b2o$2bo3$6b3o$8bo$7bo8b2o$9b3o3b2o$9bo7b
o$10bo$35bo$34bo$34b3o4$35b2o$34bobo$36bo!
Goldtiger997 wrote:Here is a 14 glider synthesis of monogram ...
x = 118, y = 45, rule = B3/S23
31bobo$32boo31bo$32bo31bo$64b3o$53bo$54bo$52b3o7$49bo21boo3boo13boo3b
oo13boo3boo$44bobbobo4bo17bobobo15bobobo8bo6bobobo$42bobo3boo4bobo15b
ooboo15booboo7bo7booboo$43boo9boo16bobobo15bobobo7b3o5bobobo$71boo3boo
3boo8boo3boo3boo8boo3boo$81boo18boo$57boo$40boo15bobo$5bo33bobo15bo$3b
obo19boo14bo3boo$4boo19boo18boo$boo$obo$bbo16$66boo$65boo$67bo!
Goldtiger997 wrote:Also, here are 2 incomplete syntheses of 2 very large asymmetric still-lifes that I found on catalogue with only 1 or 2 occurrences.Code: Select allx = 73, y = 48, rule = B3/S23
2bo$obo$b2o16$66bobo$66b2o$67bo$70b2o$70bobo$70bo12$50bo$50bobo$50b2o$
53b2o$53bobo$53bo$39bobo$39b2o$40bo$42b2o$37bo4bobo$37b2o3bo$36bobo!Code: Select all<snip>
I didn't complete them as I couldn't find any decent efficient cleanups for them. But maybe someone else can...
x = 31, y = 17, rule = B3/S23
21bo$22b2o$21b2o$27b3o$27bo$28bo2$obo$b2o25b3o$bo26bo$16b2o11bo$16b2o
3$6bo$5bobo$6bo!
Goldtiger997 wrote:Also, here are 2 incomplete syntheses of 2 very large asymmetric still-lifes that I found on catalogue with only 1 or 2 occurrences.Code: Select allrle
Code: Select allrle
I didn't complete them as I couldn't find any decent efficient cleanups for them. But maybe someone else can...
x = 98, y = 81, rule = B3/S23
41bobo$41b2o$42bo14$67bo$66bo$66b3o$10bo52b2o$9bo53b2o$9b3o$6bo$7b2o$
6b2o7bo3bo$13bobob2o$14b2o2b2o$60b2o$11b3o45bobo$3bo9bo45bo$2bo9bo44b
3o$2b3o51bo5bo$18bo37bob5o$b2o15bobo36bo$obo15b2o38b2ob2o$2bo56bobo11b
o$59bobo10bo$56b2obobob2o7b3o$6b3o47bo2bobo2bo3b3o$8bo48b2o3b2o$7bo8b
2o$9b3o3b2o$9bo7bo$10bo$35bo60bo$34bo60bo$34b3o58b3o$92b2o$92b2o2$35b
2o$34bobo$36bo26$41b2o$40b2o$42bo!
mniemiec wrote:On 2015-01-18, Matthias Merzenich posted this 12-glider synthesis
BlinkerSpawn wrote:Goldtiger997 wrote:Also, here are 2 incomplete syntheses of 2 very large asymmetric still-lifes that I found on catalogue with only 1 or 2 occurrences.Code: Select allrle
Code: Select allrle
I didn't complete them as I couldn't find any decent efficient cleanups for them. But maybe someone else can...
(EDIT: Missed wildmyron's post)
And for the other, 5 glider's isn't too bad:Code: Select allx = 98, y = 81, rule = B3/S23
41bobo$41b2o$42bo14$67bo$66bo$66b3o$10bo52b2o$9bo53b2o$9b3o$6bo$7b2o$
6b2o7bo3bo$13bobob2o$14b2o2b2o$60b2o$11b3o45bobo$3bo9bo45bo$2bo9bo44b
3o$2b3o51bo5bo$18bo37bob5o$b2o15bobo36bo$obo15b2o38b2ob2o$2bo56bobo11b
o$59bobo10bo$56b2obobob2o7b3o$6b3o47bo2bobo2bo3b3o$8bo48b2o3b2o$7bo8b
2o$9b3o3b2o$9bo7bo$10bo$35bo60bo$34bo60bo$34b3o58b3o$92b2o$92b2o2$35b
2o$34bobo$36bo26$41b2o$40b2o$42bo!
x = 179, y = 42, rule = B3/S23
2bo$obo$b2o94bo$10bo86bobo$10bobo84b2o$10b2o$70b2o$69bo2bo$70b2o23b2o$
94b2o$96bo4$138bo$138bobo$138b2o$135b2o$135b2o16b2o$15bo3bo97b2o4b2o
28b2o12b2o4b2o$16b2obobo59bo34bobo3bo2bo40bobo3bo2bo$15b2o2b2o59bobo
33bo4bobobo30b2o8bo4bobobo$81bo2b2o31b5obob3o24b2o2bobo8b5obob3o$21b3o
60bobo36bo4bo23b2o2bo16bo4bo$21bo62bo32b5obo3b2o38b5obo3b2o$22bo54b2o
37bo4bob2o41bo4bob2o$76bobo37bobo47bobo$13b2o61b2o39b2o48b2o$14b2ob3o
122b2o$13bo3bo124b2o$18bo126b2o$145bobo$16b2o127bo$15bobo$17bo3$98b2o$
97b2o$52b2o45bo$51bobo$53bo!
Users browsing this forum: Yahoo [Bot] and 1 guest