Page 52 of 83

### Re: Soup search results

Posted: October 5th, 2016, 9:26 am
mniemiec wrote:There are now only two remaining 14-bit still-lifes costing 14 gliders: 14.698 and 14.191 (row 4).

One of these in 10 gliders:

`x = 103, y = 29, rule = B3/S2319bo\$20bo\$18b3o\$81bo\$82bo\$80b3o2\$83b2o\$57bobo23b2o\$57b2o\$58bo2\$bo3bo\$2bobo77b2o\$3ob3o34b2ob2o36bo4b2o\$41b2ob2o38bobobo\$83b3o11b2o\$54bo27bo13bobo\$55b2obo23b2o13bo2b3o\$54b2o2bobo39bo\$58b2o41bo\$25bo38bo\$24bo39bo\$24b3o37bo3\$24b2o\$24bobo\$24bo!`

### Re: Soup search results

Posted: October 6th, 2016, 7:50 pm
chris_c wrote:
mniemiec wrote:There are now only two remaining 14-bit still-lifes costing 14 gliders: 14.618 and 14.191 (row 4).

One of these in 10 gliders:

`x = 103, y = 29, rule = B3/S2319bo\$20bo\$18b3o\$81bo\$82bo\$80b3o2\$83b2o\$57bobo23b2o\$57b2o\$58bo2\$bo3bo\$2bobo77b2o\$3ob3o34b2ob2o36bo4b2o\$41b2ob2o38bobobo\$83b3o11b2o\$54bo27bo13bobo\$55b2obo23b2o13bo2b3o\$54b2o2bobo39bo\$58b2o41bo\$25bo38bo\$24bo39bo\$24b3o37bo3\$24b2o\$24bobo\$24bo!`

Promising reaction for the other:
`x = 19, y = 12, rule = B3/S2316bo\$15bobo\$14b2ob2o\$14b2o\$10bo5bo\$9b2o\$8b2o\$2bo5bo\$3b2o\$2ob2o\$bobo\$2bo!`

Another:
`x = 21, y = 8, rule = B3/S238b2o6b2o\$11b2o3bo\$6b2obo7bo2bo\$6b2o3bob2o3b3o\$3o3b2obo3b2o\$o2bo7bob2o\$4bo3b2o\$3b2o6b2o!`

### Re: Soup search results

Posted: October 6th, 2016, 8:12 pm
chris_c wrote:
mniemiec wrote:There are now only two remaining 14-bit still-lifes costing 14 gliders: 14.698 and 14.191 (row 4).

One of these in 10 gliders:

`x = 103, y = 29, rule = B3/S2319bo\$20bo\$18b3o\$81bo\$82bo\$80b3o2\$83b2o\$57bobo23b2o\$57b2o\$58bo2\$bo3bo\$2bobo77b2o\$3ob3o34b2ob2o36bo4b2o\$41b2ob2o38bobobo\$83b3o11b2o\$54bo27bo13bobo\$55b2obo23b2o13bo2b3o\$54b2o2bobo39bo\$58b2o41bo\$25bo38bo\$24bo39bo\$24b3o37bo3\$24b2o\$24bobo\$24bo!`

Last one in 13 gliders!

`x = 78, y = 71, rule = B3/S2359bo\$58bo\$8bo49b3o\$2bo3bobo\$obo4b2o\$b2o11\$46bo\$45bo\$45b3o\$43bo7bo\$44bo6bobo\$42b3o6b2o\$32bo\$32bobo3bo\$32b2o4bobo\$38b2o\$31bo\$32bo\$30b3o7\$50b2o\$49b2o\$51bo29\$4b2o\$3bobo\$5bo4bo64b3o\$10b2o63bo\$9bobo64bo!`

### Re: Soup search results

Posted: October 7th, 2016, 1:47 am
Goldtiger997 wrote:Last one in 13 gliders!

Wow -- this calls for some kind of cell-ebration... just not sure what exactly!

For a while now I've been wanting to make a LifeViewer animation with a wandering viewpoint in a field of gliders heading in all directions, such that a whole pile of syntheses occur one after another, just when the viewport pans across each construction location.

But I suppose a single pattern with syntheses for all 619 fourteen-bit still lifes might be a bit of a stretch.

Anyway, some kind of new article ought to show up on the conwaylife.com main page, fairly soon. Donations of appropriate showcase patterns to decorate the article would be much appreciated.

(Actually, please feel free to donate the whole article if you want. I'm happier as a copy editor than a writer, really.)

### Re: Soup search results

Posted: October 7th, 2016, 3:58 am
I wrote:There are now only two remaining 14-bit still-lifes costing 14 gliders: 14.618 and 14.191 (row 4).
chris_c wrote:One of these in 10 gliders: ...

Goldtiger997 wrote:Last one in 13 gliders! ...

Yay! Also, the last one can be reduced by one, as the underlying 12-bit two-bridged-snakes it's made from can have one glider shaved off:
`x = 47, y = 32, rule = B3/S2329bo\$29bobo\$29boo6\$9bo\$9bobo\$9boobb3o\$13bo\$14bo4\$12b3o\$12bo\$13bo3\$41boboo\$41boobo\$45boo\$46bo\$45bo\$45boo\$bo\$boo\$obo13b3o5boo\$16bo6boo\$17bo7bo!`

### Re: Soup search results

Posted: October 7th, 2016, 10:18 pm
Neat:
`x = 27, y = 24, rule = B3/S2326bo\$24b2o\$25b2o2\$2o\$obo\$obo\$b2o4\$2b2o\$2b2o4\$b2o\$obo\$obo\$2o2\$25b2o\$24b2o\$26bo!`

### Re: Soup search results

Posted: October 8th, 2016, 6:43 am
Twin queen-bee-shuttle on pentadecathlon (two copies, in fact) in D4_+4, found by thunk:

`x = 32, y = 32, rule = B3/S23oooooooboboboobooboobobobooooooo\$bbbbooooboobbbobbobbbooboooobbbb\$oboboboboboooobbbboooobobobobobo\$bbbbbobbbobobobbbbobobobbbobbbbb\$ooobobbbbooobboooobbooobbbbobooo\$ooobooobbobbbbboobbbbbobbooobooo\$oobboobboobobobbbboboboobboobboo\$oooboboobbboobbbbbboobbboobobooo\$ooboooobbobbboooooobbbobbooooboo\$oobbbobbbbbbbbobbobbbbbbbbobbboo\$obobbooobbbbobboobbobbbbooobbobo\$boooobobboobbobbbbobboobboboooob\$boooboooobooobooooboooboooobooob\$obobobbbbboooboooobooobbbbbobobo\$obooooobboboooooooooobobbooooobo\$bobbbobbboooooooooooooobbbobbbob\$bobbbobbboooooooooooooobbbobbbob\$obooooobboboooooooooobobbooooobo\$obobobbbbboooboooobooobbbbbobobo\$boooboooobooobooooboooboooobooob\$boooobobboobbobbbbobboobboboooob\$obobbooobbbbobboobbobbbbooobbobo\$oobbbobbbbbbbbobbobbbbbbbbobbboo\$ooboooobbobbboooooobbbobbooooboo\$oooboboobbboobbbbbboobbboobobooo\$oobboobboobobobbbboboboobboobboo\$ooobooobbobbbbboobbbbbobbooobooo\$ooobobbbbooobboooobbooobbbbobooo\$bbbbbobbbobobobbbbobobobbbobbbbb\$oboboboboboooobbbboooobobobobobo\$bbbbooooboobbbobbobbbooboooobbbb\$oooooooboboboobooboobobobooooooo!`

### Re: Soup search results

Posted: October 8th, 2016, 9:46 am
Apple Bottom wrote:Twin queen-bee-shuttle on pentadecathlon (two copies, in fact) in D4_+4, found by thunk:

`soup`

Here you are:
`x = 50, y = 30, rule = B3/S234bo40bo\$4bo40bo\$4bo9b2o18b2o9bo\$12bo2bo18bo2bo\$12b3o20b3o\$2o11bo22bo11b2o\$2o46b2o10\$17bo14bo\$16bobo12bobo\$16bo2bo10bo2bo\$17b2o12b2o8\$18bo2b2o4b2o2bo\$17bo3b3o2b3o3bo\$18bo2b2o4b2o2bo!`

That's a really edgy QB if you ask me.

### Re: Soup search results

Posted: October 8th, 2016, 3:49 pm
Produces an oscillator I haven't seen before (and apparently isn't in jslife):
`x = 31, y = 31, rule = B3/S23b4ob2o3bo3b5o2b2ob4o\$b2o2b2o5b3obobo6b2o2b2o\$o3b3ob2ob7ob7o3b2o\$o5bob4o3b2o3bo3bobo3bo\$2ob2ob4o2bo2bob3o2bob3obobo\$3obo3bob3ob2ob4o2bo4b2o\$2b3o2b7ob2ob2o2b2o2b5o\$obo2b4ob4ob2obo4b2obo3bo\$obobobob4o2bob2o2b9o\$2bo5bo2b2o2bo3b2obobob3o\$2b2obo2b2obo2bo2bobo2b4obo\$obob3o2b3ob3o2b8ob2obo\$2o2b4o3bo9bob4ob2o\$obob2o2bobo3b2o3bo3b2o3b2o\$4o2b3o6bobob2obo2bo2b2o\$ob6obobob5obobob6obo\$b2o2bo2bob2obobo6b3o2b4o\$b2o3b2o3bo3b2o3bobo2b2obobo\$b2ob4obo9bo3b4o2b2o\$ob2ob8o2b3ob3o2b3obobo\$3bob4o2bobo2bo2bob2o2bob2o\$2b3obobob2o3bo2b2o2bo5bo\$2b9o2b2obo2b4obobobobo\$o3bob2o4bob2ob4ob4o2bobo\$5o2b2o2b2ob2ob7o2b3o\$b2o4bo2b4ob2ob3obo3bob3o\$obob3obo2b3obo2bo2b4ob2ob2o\$o3bobo3bo3b2o3b4obo5bo\$2o3b7ob7ob2ob3o3bo\$2o2b2o6bobob3o5b2o2b2o\$2b4ob2o2b5o3bo3b2ob4o!`

### Re: Soup search results

Posted: October 8th, 2016, 4:24 pm
Extrementhusiast wrote:Produces an oscillator I haven't seen before (and apparently isn't in jslife):

Cool! (BTW, here it is on Catagolue.)

### Re: Soup search results

Posted: October 8th, 2016, 9:42 pm
A p4 quadrant can be isolated:

`x = 13, y = 13, rule = B3/S235b2o\$3bo2bo\$3b2obob2o\$6b2obo\$5bo\$3b2ob3o\$4b2o3bo\$3bobo3bo\$b3obo3bob2o\$o5b3o2bo\$2o9bo\$8b3o\$8bo!`

EDIT: Smaller, via lightbulb instead of scrubber:

`x = 11, y = 11, rule = B3/S234b2o\$3bo2bo\$3b2obo\$6b3o\$5bo3bo\$3b2ob2o2bo\$4b2o2b2o\$3bobo\$b3obo2b2o\$o5b2o2bo\$2o7b2o!`

### Re: Soup search results

Posted: October 8th, 2016, 10:55 pm
Kazyan wrote:EDIT: Smaller, via lightbulb instead of scrubber:

`x = 11, y = 11, rule = B3/S234b2o\$3bo2bo\$3b2obo\$6b3o\$5bo3bo\$3b2ob2o2bo\$4b2o2b2o\$3bobo\$b3obo2b2o\$o5b2o2bo\$2o7b2o!`

Wow! This is very surprising if it hasn't been found before.

### Re: Soup search results

Posted: October 9th, 2016, 2:11 am
gmc_nxtman wrote:
Kazyan wrote:EDIT: Smaller, via lightbulb instead of scrubber:

`x = 11, y = 11, rule = B3/S234b2o\$3bo2bo\$3b2obo\$6b3o\$5bo3bo\$3b2ob2o2bo\$4b2o2b2o\$3bobo\$b3obo2b2o\$o5b2o2bo\$2o7b2o!`

Wow! This is very surprising if it hasn't been found before.

Much smaller:
`x = 10, y = 12, rule = B3/S234b2o\$3bo2bo\$3b2obo\$6b3o\$5bo3bo\$3b2ob2obo\$4b2o2bo\$3bobo\$b3obo2bo\$o4bob2o\$2o3bo\$4b2o!`

### Re: Soup search results

Posted: October 9th, 2016, 2:40 am
I'm planning on attempting to find syntheses for all still lifes 15 bits and under, with less than one glider per bit. We have already done up to 14 bits.

I have done the first ten listed with syntheses greater than or equal to one glider per bit that appear on mniemiec's website.

`x = 54, y = 68, rule = B3/S23obo\$b2o\$bo14\$25bo25bo\$24bo26bobo\$24b3o24b2o\$17bo\$18b2o\$17b2o3\$23bo\$22bo\$22b3o\$16bo\$17bo\$15b3o9bo\$26bo\$26b3o\$24bo\$25bo\$18bo4b3o\$18b2o\$17bobo8bo\$28bobo\$20b2o6b2o\$20bobo8b2o\$20bo10bobo\$31bo24\$25b3o\$25bo\$26bo!`

`x = 126, y = 116, rule = B3/S23124bo\$123bo\$123b3o18\$114bo\$113bo\$113b3o12\$81bo\$81bobo\$81b2o2\$77bo\$76bo\$76b3o\$73bo\$74b2o\$73b2o9b2o\$84bobo\$84bo3\$69bo\$69bobo\$57bo11b2o\$55bobo14b2o\$56b2o14bobo\$53b2o17bo\$52bobo6bo\$54bo5bo\$60b3o2\$60bo\$60b2o\$59bobo37\$33b3o\$35bo\$34bo14\$3o\$2bo\$bo!`

`x = 44, y = 39, rule = B3/S2341bo\$31bo9bobo\$30bo10b2o\$30b3o2\$14bo\$15bo\$13b3o25bo\$41bobo\$41b2o2\$5bo\$3bobo\$4b2o5\$27bo\$18bo8bobo\$16bobo2b3o3b2o\$17b2o2bo\$22bo\$17bo12b2o\$17b2o11bobo\$16bobo11bo5\$16b2o\$16bobo\$16bo4\$b2o\$obo\$2bo!`

`x = 96, y = 107, rule = B3/S2394bo\$93bo\$93b3o40\$52bo\$46bobob2o\$47b2o2b2o\$47bo4\$45bo\$46bo\$44b3o2\$41b3o\$43bo16bo\$42bo15b2o\$59b2o2\$60bo\$59b2o\$59bobo5\$49bobo\$50b2o\$50bo3\$47b3o\$47bo\$48bo\$44b3o7b3o\$46bo7bo\$45bo9bo\$51b3o\$53bo\$52bo11\$93b3o\$93bo\$94bo13\$3o\$2bo\$bo!`

`x = 86, y = 70, rule = B3/S23obo\$b2o12bo\$bo11b2o\$14b2o\$8bo\$6bobo14bo\$7b2o14bobo\$11b3o9b2o\$13bo13b2o\$12bo13b2o\$28bo\$2o\$b2o18b3o\$o20bo8b3o\$22bo7bo\$16b3o12bo\$18bo8b3o\$17bo11bo\$28bo36\$69b3o\$69bo\$70bo8\$77b3o\$77bo\$78bo\$83b3o\$83bo\$84bo!`

`x = 36, y = 46, rule = B3/S23bo\$2bo\$3o11\$20bo\$21bo\$19b3o\$25bo\$24bo\$24b3o3\$21bo\$22b2o\$21b2o\$13bo\$11bobo7bo\$12b2o7b2o\$20bobo3\$31bo\$29b2o\$30b2o\$34b2o\$33b2o\$35bo5\$23b3o\$23bo\$24bo\$20b3o\$22bo\$21bo!`

`x = 102, y = 107, rule = B3/S2369bo\$68bo\$68b3o5\$obo\$b2o\$bo26\$37bo\$36bo\$36b3o2\$18bo\$19bo7bobo4bo\$17b3o7b2o4bo\$28bo4b3o\$37b3o\$37bo\$38bo3\$14bo\$14b2o\$13bobo12bo\$23bo3bo\$22b2o3b3o\$22bobo2\$30bobo\$30b2o\$31bo4\$32b3o\$32bo\$33bo41\$99b3o\$99bo\$100bo!`

`x = 92, y = 78, rule = B3/S23bo\$2bo\$3o6\$20bo\$21b2o\$20b2o67bobo\$89b2o\$90bo27\$38bo\$39bo18bobo\$37b3o18b2o\$41bobo15bo\$41b2o\$42bo4\$62bo\$61b2o\$61bobo3\$22b3o\$24bo\$23bo2\$41bo\$41b2o\$40bobo\$50bo\$49b2o\$49bobo8\$15bo\$15b2o\$14bobo2\$10bo\$10b2o71bo\$9bobo70b2o\$82bobo!`

`x = 72, y = 67, rule = B3/S2370bo\$69bo\$69b3o3\$37bobo\$38b2o\$38bo3\$40bo4bo\$35bo5b2o2bobo\$36b2o2b2o3b2o\$35b2o2\$35bo16bo\$35b2o13b2o\$34bobo14b2o2\$52bo\$51b2o\$51bobo\$44bobo\$44b2o\$45bo2\$45b2o\$45bobo\$45bo\$33b3o\$35bo\$34bo\$36b3o\$36bo\$37bo30\$2o\$b2o\$o!`

`x = 143, y = 145, rule = B3/S23141bo\$140bo\$140b3o14\$o\$b2o117bo\$2o116b2o\$119b2o20\$67bobo\$68b2o\$68bo14\$77bo\$75b2o\$76b2o2\$72bo\$73bo\$56bo14b3o\$57bo\$55b3o10b3o\$70bo\$69bo3\$77bo\$75b2o\$76b2o5\$55b2o\$54bobo\$56bo5\$73b3o\$73bo\$74bo49\$140b3o\$140bo\$141bo7\$13b3o\$15bo\$14bo!`

Anybody want to help...

### Re: Soup search results

Posted: October 9th, 2016, 9:29 am
Goldtiger997 wrote:I'm planning on attempting to find syntheses for all still lifes 15 bits and under, with less than one glider per bit. We have already done up to 14 bits.

I have done the first ten listed with syntheses greater than or equal to one glider per bit that appear on mniemiec's website. ... Anybody want to help...

This is probably the next best step, as far as the still-lifes are concerned. As of yesterday, I had 19 remaining 15-bit still-lifes at 1 glider per bit, and 94 at greater than 1 glider per bit. This does not yet include Bob Shemyakin's work at completing the synthesis of the remaining 15-bit still-lifes. (I still need to assimilate those, and see if any alternate synthesis paths might be more optimal, especially in light of some of the new converters that have been discovered in the past year).

All but one of the above syntheses (#4) improve the state of the art. Congratulations! 6 of them can be slightly improved, by tightening up initial still-life synthesis and/or final cleanup:
#1 (15.5): Reduced from 13 to 12 (row 1 left).
#3 (15.38): Reduced from 12 to 11 (row 2 left).
#4 (15.45): Reduced from 14 to 11 (row 3 left). However, this is obsolete; you had previously built this from 12 gliders on 2016-10-14; BlinkerSpawn had reduced it to 11, and I had reduced it to 10. (row 4 left).
#6 (15.79): Reduced from 10 to 9 (row 1 right).
#7 (15.80): Reduced from 13 to 12 (row 2 right).
#8 (15.92): Reduced from 13 to 12 (row 3 right).
`x = 339, y = 208, rule = B3/S23109bo\$108bo\$108b3o18\$171bo\$172bo\$170b3o\$174bo\$173bo\$173b3o17boo18boo\$193boo18boo\$103bo141boo18boo18boo\$103bobo138bobbo16bobbo16bobbo\$30boo18boo18boo31boo5boo132bobo17bobo17bobo\$10b3o17boo18boo18boo38boo112bo18booboo15booboo15booboo\$10bo89bobo120bo20bobo17bobo17bobo\$11bo55boo32boo4boo114b3o18bobo17bobo17bobo\$8boo19boo18boo16boo32bo5boo110b3o23bo19bo19bo\$7bobo19boo14bo3boo96booboo67bo\$9bo36boo99bobooboboobo62bo\$45boo106booboo19bo\$175boo15bo19bo\$98b3o75boo14bo19bo\$100bo91bo9boo8bo\$99bo103boo\$105b3o94bo\$105bo\$106bo\$\$193boo18boo23b3o17b3o\$100boo91boo18boo39b3o\$101boo153bo\$100bo154bo\$107b3o24boo\$107bo26bobo35bo\$108bo25bo38bo\$171b3o3\$173bo\$172boo\$172bobo8\$84bo\$84boo\$83bobo13\$103bo101bobo\$103bobo100boo\$103boo101bo\$214bobo\$53bo160boo\$54bo160bo\$52b3o\$56bo150bo\$55bo149bobo\$55b3o17boo18boo109boo\$75boo18boo9bo\$105bo65bo\$16bo15boo18boo18boo18boo11b3o64bo\$14bobo15bobo17bobo17bobo17bobo6b3o66b3o\$15boo16boo18boo18boo18boo6bo11boo75boo28boo\$35boo18boo18boo18boo5bo11bobboobboo49bo17bobo27bobo16boo28boo18boo18boo\$35bobo17bobo17bobo17bobo16bobobbobbo48boo18bo29bo16bobbo3bo22bobbo3bo12bobbo3bo12bobbo3bo19bo\$5bo5boobb3o18boo18boo18boo18boo17boobboo50bobo32boo30bobo3bobo21bobo3bobo11bobo3bobo11bobo3bobo17bobo\$6bo5boobo56boo18boo113boo30bo3bobbo22bo3bobbo12bo3bobbo12bo3bobbo16bobbo\$4b3o4bo4bo34b3o18boo18boo112bo36booboo25booboo15booboo8boo5booboo15booboo\$53bo190bobbo26bobbo16bobbo7bobo6bobbo16bobbo\$52bo190bobbo26bobbo16bobbo10bo5bobbo16bobbo\$54b3o187boo28boo18boo18boo18boo\$54bo152boo\$55bo150bobo\$208bo58bobo\$202boo64boo\$201bobo5boo57bo\$203bo5bobo\$209bo30boo7boo19boo7boo\$239bobo7boo18bobo7boo\$239boo28boo\$295bo19bo\$294bobo17bobo\$242boo28boo20bobo17bobo\$242boo28boo21bo19bo\$72boo243boo\$43boo27boo243bobo\$43boo201boo28boo39bo\$15boo48boo4bo174boo28boo\$5bo9bobo18boo27boo4boo\$6bo8bo20boo32bobo\$4b3obboo\$8bobo102bo14bo4bo\$10bo101bobo14boobobo\$112boo14boobboo98bo29bo\$232bo29bo\$112boo18boo98bo29bo\$112boo18boo\$76b3o\$18bobo26b3o\$18boo\$19bo\$\$18boo\$bo15boo\$bbo16bo44bo50boo18boo18boo\$3o32bo27bobo50bo19bo19bo\$34bobo26bobo49bo19bo19bo\$3b3o28bobo27bo50boo18boo18boo\$5bo29bo80bo19bo19bo102bo\$4bo110bo19bo19bo101boo\$114bo19bo19bo103boo\$114bobo17bobo17bobo\$70bo44bobo17bobo17bobo\$6bo34bo28bo45boo18boo18boo\$6boobboo29bo28bo\$5boboboo30bo\$11bo228bo\$240bobo\$240boo7\$319bo\$295bobo21bobo\$296boo21boo\$296bo\$287boo28boo\$267boo18boo8boo18boo\$228bo38boo28boo\$226bobo\$179bo47boo\$180bo87boo28boo\$178b3o48boo37boo8boo18boo8boo\$182bo47boo46boo28boo\$181bo47bo54boo28boo18boo\$181b3o17boo38boo41bobo19boo6bobo17bobo\$201boo38boo44bo17bobo9bo19bo\$285boobo18bo7boobo16boobo\$102boo180bobobo25bobobo15bobobo\$102bobo179bobbo26bobbo16bobbo\$102bo182boo28boo18boo5\$106bobo82boo38boo\$10bo95boo82bobbo36bobbo\$9bo97bo83boo38boo\$9b3o159bobo\$172boo\$6bo165bo24bo39bo\$4bobo108boo18boo18boo39bobo37bobo\$5boo21boo18boo18boo18boo26bo19bo19bo16b3o20bobo37bobo\$27bobbo16bobbo16bobbo16bobbo24bo19bo19bo19bo21bo39bo\$21b3o3bobo11b3o3bobo11b3o3bobo11b3o3bobo25boo18boo18boo17bo\$6b3o19bo19bo3bo15bo19bo27bo19bo19bo\$6bo44bo63bo19bo19bo\$7bo43b3o14bo19bo25bo19bo19bo\$67bobo17bobo24bobo17bobo17bobo\$48b3o16bobo17bobo6boo17bobo17bobo17bobo\$48bo19bo19bo7bobo17bo19bo19boo\$49bo46bo\$142boo\$94boo42bobboo\$93bobo42boo3bo\$95bo41bobo5\$208bo\$208boo\$207bobo!`

### Re: Soup search results

Posted: October 9th, 2016, 12:04 pm
Goldtiger997 wrote:
chris_c wrote:
mniemiec wrote:There are now only two remaining 14-bit still-lifes costing 14 gliders: 14.698 and 14.191 (row 4).

One of these in 10 gliders:

`x = 103, y = 29, rule = B3/S2319bo\$20bo\$18b3o\$81bo\$82bo\$80b3o2\$83b2o\$57bobo23b2o\$57b2o\$58bo2\$bo3bo\$2bobo77b2o\$3ob3o34b2ob2o36bo4b2o\$41b2ob2o38bobobo\$83b3o11b2o\$54bo27bo13bobo\$55b2obo23b2o13bo2b3o\$54b2o2bobo39bo\$58b2o41bo\$25bo38bo\$24bo39bo\$24b3o37bo3\$24b2o\$24bobo\$24bo!`

Last one in 13 gliders!

`x = 78, y = 71, rule = B3/S2359bo\$58bo\$8bo49b3o\$2bo3bobo\$obo4b2o\$b2o11\$46bo\$45bo\$45b3o\$43bo7bo\$44bo6bobo\$42b3o6b2o\$32bo\$32bobo3bo\$32b2o4bobo\$38b2o\$31bo\$32bo\$30b3o7\$50b2o\$49b2o\$51bo29\$4b2o\$3bobo\$5bo4bo64b3o\$10b2o63bo\$9bobo64bo!`

In Mark Niemiec's database SL 14.492 marked as 9G and are 2 synthesis. The first synthesis contains 8 gliders and does not work. The second synthesis contains 14 gliders. I managed to reduce it to 12 gliders:
`x = 121, y = 29, rule = B3/S234\$97bo\$98bo\$88bobo5b3o\$89b2o\$89bo2\$87b2o7b2o\$88b2o5b2o\$87bo9bo15b2o\$17bo14b2o18b2o18b2o18b2o18bobo\$12bobo2bobo12bo19bo19bo19bo19bo\$13b2o2b2o14bo19bo19bo19bo19bo\$13bo16b3o17b3o6bo10b3obo15b3obo15b3obo\$30bo19bo7b2o10bo3bo15bo3bo15bo3bo\$58bobo13b2o18b2o18b2o2\$5b2o12b3o31b2o\$4bobo12bo32bobo6bo\$6bo13bo33bo5b2o\$60bobo2\$57b3o\$59bo\$58bo!`

Now for all the still lifes of no more than 14 bits are cost less than 1glider/bit.
On this occasion, I publish my database for still lifes to 15 bits and summary table.

Bob Shemyakin

### Re: Soup search results

Posted: October 9th, 2016, 3:31 pm
mniemiec wrote:
Goldtiger997 wrote:I'm planning on attempting to find syntheses for all still lifes 15 bits and under, with less than one glider per bit. We have already done up to 14 bits.

I have done the first ten listed with syntheses greater than or equal to one glider per bit that appear on mniemiec's website. ... Anybody want to help...

This is probably the next best step, as far as the still-lifes are concerned. As of yesterday, I had 19 remaining 15-bit still-lifes at 1 glider per bit, and 94 at greater than 1 glider per bit. This does not yet include Bob Shemyakin's work at completing the synthesis of the remaining 15-bit still-lifes. (I still need to assimilate those, and see if any alternate synthesis paths might be more optimal, especially in light of some of the new converters that have been discovered in the past year).

All but one of the above syntheses (#4) improve the state of the art. Congratulations! 6 of them can be slightly improved, by tightening up initial still-life synthesis and/or final cleanup:
#1 (15.5): Reduced from 13 to 12 (row 1 left).
#3 (15.38): Reduced from 12 to 11 (row 2 left).
#4 (15.45): Reduced from 14 to 11 (row 3 left). However, this is obsolete; you had previously built this from 12 gliders on 2016-10-14; BlinkerSpawn had reduced it to 11, and I had reduced it to 10. (row 4 left).
#6 (15.79): Reduced from 10 to 9 (row 1 right).
#7 (15.80): Reduced from 13 to 12 (row 2 right).
#8 (15.92): Reduced from 13 to 12 (row 3 right).
`x = 339, y = 208, rule = B3/S23109bo\$108bo\$108b3o18\$171bo\$172bo\$170b3o\$174bo\$173bo\$173b3o17boo18boo\$193boo18boo\$103bo141boo18boo18boo\$103bobo138bobbo16bobbo16bobbo\$30boo18boo18boo31boo5boo132bobo17bobo17bobo\$10b3o17boo18boo18boo38boo112bo18booboo15booboo15booboo\$10bo89bobo120bo20bobo17bobo17bobo\$11bo55boo32boo4boo114b3o18bobo17bobo17bobo\$8boo19boo18boo16boo32bo5boo110b3o23bo19bo19bo\$7bobo19boo14bo3boo96booboo67bo\$9bo36boo99bobooboboobo62bo\$45boo106booboo19bo\$175boo15bo19bo\$98b3o75boo14bo19bo\$100bo91bo9boo8bo\$99bo103boo\$105b3o94bo\$105bo\$106bo\$\$193boo18boo23b3o17b3o\$100boo91boo18boo39b3o\$101boo153bo\$100bo154bo\$107b3o24boo\$107bo26bobo35bo\$108bo25bo38bo\$171b3o3\$173bo\$172boo\$172bobo8\$84bo\$84boo\$83bobo13\$103bo101bobo\$103bobo100boo\$103boo101bo\$214bobo\$53bo160boo\$54bo160bo\$52b3o\$56bo150bo\$55bo149bobo\$55b3o17boo18boo109boo\$75boo18boo9bo\$105bo65bo\$16bo15boo18boo18boo18boo11b3o64bo\$14bobo15bobo17bobo17bobo17bobo6b3o66b3o\$15boo16boo18boo18boo18boo6bo11boo75boo28boo\$35boo18boo18boo18boo5bo11bobboobboo49bo17bobo27bobo16boo28boo18boo18boo\$35bobo17bobo17bobo17bobo16bobobbobbo48boo18bo29bo16bobbo3bo22bobbo3bo12bobbo3bo12bobbo3bo19bo\$5bo5boobb3o18boo18boo18boo18boo17boobboo50bobo32boo30bobo3bobo21bobo3bobo11bobo3bobo11bobo3bobo17bobo\$6bo5boobo56boo18boo113boo30bo3bobbo22bo3bobbo12bo3bobbo12bo3bobbo16bobbo\$4b3o4bo4bo34b3o18boo18boo112bo36booboo25booboo15booboo8boo5booboo15booboo\$53bo190bobbo26bobbo16bobbo7bobo6bobbo16bobbo\$52bo190bobbo26bobbo16bobbo10bo5bobbo16bobbo\$54b3o187boo28boo18boo18boo18boo\$54bo152boo\$55bo150bobo\$208bo58bobo\$202boo64boo\$201bobo5boo57bo\$203bo5bobo\$209bo30boo7boo19boo7boo\$239bobo7boo18bobo7boo\$239boo28boo\$295bo19bo\$294bobo17bobo\$242boo28boo20bobo17bobo\$242boo28boo21bo19bo\$72boo243boo\$43boo27boo243bobo\$43boo201boo28boo39bo\$15boo48boo4bo174boo28boo\$5bo9bobo18boo27boo4boo\$6bo8bo20boo32bobo\$4b3obboo\$8bobo102bo14bo4bo\$10bo101bobo14boobobo\$112boo14boobboo98bo29bo\$232bo29bo\$112boo18boo98bo29bo\$112boo18boo\$76b3o\$18bobo26b3o\$18boo\$19bo\$\$18boo\$bo15boo\$bbo16bo44bo50boo18boo18boo\$3o32bo27bobo50bo19bo19bo\$34bobo26bobo49bo19bo19bo\$3b3o28bobo27bo50boo18boo18boo\$5bo29bo80bo19bo19bo102bo\$4bo110bo19bo19bo101boo\$114bo19bo19bo103boo\$114bobo17bobo17bobo\$70bo44bobo17bobo17bobo\$6bo34bo28bo45boo18boo18boo\$6boobboo29bo28bo\$5boboboo30bo\$11bo228bo\$240bobo\$240boo7\$319bo\$295bobo21bobo\$296boo21boo\$296bo\$287boo28boo\$267boo18boo8boo18boo\$228bo38boo28boo\$226bobo\$179bo47boo\$180bo87boo28boo\$178b3o48boo37boo8boo18boo8boo\$182bo47boo46boo28boo\$181bo47bo54boo28boo18boo\$181b3o17boo38boo41bobo19boo6bobo17bobo\$201boo38boo44bo17bobo9bo19bo\$285boobo18bo7boobo16boobo\$102boo180bobobo25bobobo15bobobo\$102bobo179bobbo26bobbo16bobbo\$102bo182boo28boo18boo5\$106bobo82boo38boo\$10bo95boo82bobbo36bobbo\$9bo97bo83boo38boo\$9b3o159bobo\$172boo\$6bo165bo24bo39bo\$4bobo108boo18boo18boo39bobo37bobo\$5boo21boo18boo18boo18boo26bo19bo19bo16b3o20bobo37bobo\$27bobbo16bobbo16bobbo16bobbo24bo19bo19bo19bo21bo39bo\$21b3o3bobo11b3o3bobo11b3o3bobo11b3o3bobo25boo18boo18boo17bo\$6b3o19bo19bo3bo15bo19bo27bo19bo19bo\$6bo44bo63bo19bo19bo\$7bo43b3o14bo19bo25bo19bo19bo\$67bobo17bobo24bobo17bobo17bobo\$48b3o16bobo17bobo6boo17bobo17bobo17bobo\$48bo19bo19bo7bobo17bo19bo19boo\$49bo46bo\$142boo\$94boo42bobboo\$93bobo42boo3bo\$95bo41bobo5\$208bo\$208boo\$207bobo!`

#1(15.5): Reduced from 12 to 10 (top).
#2(15.17): Reduced from 14 to 10 (bottom).
`x = 145, y = 133, rule = B3/S2393bo\$92bo\$92b3o25\$83bo\$81bobo\$44b2o36b2o10b2o\$44b2o48b2o\$10bo73bobo\$8b2o31b2o41b2o5b2o\$5bo3b2o30b2o42bo5b2o\$6b2o123b2ob2o\$5b2o45b2o48b2o27bob2obob2obo\$52b2o48b2o33b2ob2o\$83b3o\$85bo\$84bo\$87bo\$87bo\$b2o84bo\$2o\$2bo30b2o\$32bobo\$34bo\$36b3o\$36bo\$37bo6\$70bo\$70b2o\$69bobo13\$139bo\$138bo\$138b3o24\$6bo\$b2ob2o48bo49bo\$obo2b2o46bobo47bobo\$2bo50b2o48b2o5\$107b2o\$53b2o2b3o47b2o\$54b2obo38b2o\$53bo4bo37b2o6\$91b3o\$42b3o46bo\$44bo47bo\$43bo92bob2ob2o\$85bo3b3o44b2obobo2bo\$85b2o4bo47bo3b2o\$84bobo3bo48b2o11\$57bo\$57b2o\$56bobo!`

### Re: Soup search results

Posted: October 9th, 2016, 6:32 pm
mniemiec wrote:All but one of the above syntheses (#4) improve the state of the art. Congratulations! 6 of them can be slightly improved, by tightening up initial still-life synthesis and/or final cleanup:

Thanks. I'm not currently trying to optimize the syntheses I make, just make them below 15 gliders. I stop improving them once they're below 15 gliders.

### Re: Soup search results

Posted: October 9th, 2016, 9:14 pm
BobShemyakin wrote:In Mark Niemiec's database SL 14.492 marked as 9G and are 2 synthesis. The first synthesis contains 8 gliders and does not work. The second synthesis contains 14 gliders. I managed to reduce it to 12 gliders: ...

Eek! Thanks for bringing this to my attention. I'm not sure what happened there. Not only does the synthesis not work, but it takes 8 gliders, not the 9 indicated. The 4-glider add-tail converter fails, but another 5-glider one works, making this still 9 gliders:
`x = 117, y = 20, rule = B3/S2392bo\$91bo\$91b3o\$80bo8bo\$81boo4bobo\$80boo6boo4\$111boo\$bbobo21bo19bo19bo29bo15bo3bo\$3boo19b3o17b3o17b3o27b3o15bob3o\$3bo19bo19bo19bo29bo19bo\$23boo18boo19bo18b3o8bo19bo\$3o59bobo9b3o8bo6bobo17bobo\$bbo59boo12bo7bo7boo18boo\$bo39boo32bo\$37bobboo\$37boo3bo\$36bobo!`

AbhpzTa wrote:#1(15.5): Reduced from 12 to 10 (top).
#2(15.17): Reduced from 14 to 10 (bottom). ...

Impressive! I actually tried the first half of the 15.17 reduction (I have 5 3-glider collisions that make those 2 blocks, all of which involve a glider into a B-heptomino, and including the same one you used), but for some reason, it didn't look like it would work. I have never built up a collection of 3-glider collisions that make constellations involving more than 2 objects, nor those with traffic lights; it seems like they can be useful after all!

EDIT:
Simple 44-bit P4 from 10 gliders, suggested by the soup here http://catagolue.appspot.com/object/xp4_178cwooy1oowc871zy1raaaaraaaarzgs26w33y133w62sg/b3s23:
`x = 163, y = 35, rule = B3/S23133bo\$133bobo\$133boo\$67bo\$68bo3bo28boo28boo\$66b3oboo28bobbo26bobbo\$71boo27bobbo26bobbo\$101boo28boo\$\$122bobo\$123boo\$123bo3\$obo25bo29bo29bo29bo29bo13bo\$oo26b3o27b3o27b3o27b3o7bo19b3o9b3o\$bo29bo29bo29bo29bo6bobo20bo7bo\$30boo28boo28boo28boo6boo20bo9bo\$bb3o145bo3bobo3bo\$bbo151bobo\$3bo147bobbobobbo\$151booboboboo\$154bobo\$154bobo\$123bo29booboo\$124bo\$122b3o3\$126boo\$125boo\$127bo\$122boo\$121bobo\$123bo!`

### Re: Soup search results

Posted: October 10th, 2016, 5:47 am
Second copy of 48P31 in D4_+2:

`x = 32, y = 31, rule = B3/S23oboobobbobobboobboobbobobboboobo\$bbobbbbobbooobboobbooobbobbbbobb\$obbbboobobooobboobboooboboobbbbo\$oboboobbbobbbbboobbbbbobbboobobo\$obobbbboobobboboobobboboobbbbobo\$bobobbboooboooboobooobooobbbobob\$oooobobobbbobobbbbobobbboboboooo\$bbboobbbobbboooooooobbbobbboobbb\$oobbobobbobboboooobobbobbobobboo\$bbobooboobboooboobooobbooboobobb\$bobbbbbbooooobobbobooooobbbbbbob\$bobobbooobboboooooobobbooobbobob\$obobobbooooobbbbbbbbooooobbobobo\$booobobooooobobbbbobooooobobooob\$bobbbobboobbooobbooobboobbobbbob\$oobboboobboooooooooooobboobobboo\$bobbbobboobbooobbooobboobbobbbob\$booobobooooobobbbbobooooobobooob\$obobobbooooobbbbbbbbooooobbobobo\$bobobbooobboboooooobobbooobbobob\$bobbbbbbooooobobbobooooobbbbbbob\$bbobooboobboooboobooobbooboobobb\$oobbobobbobboboooobobbobbobobboo\$bbboobbbobbboooooooobbbobbboobbb\$oooobobobbbobobbbbobobbboboboooo\$bobobbboooboooboobooobooobbbobob\$obobbbboobobboboobobboboobbbbobo\$oboboobbbobbbbboobbbbbobbboobobo\$obbbboobobooobboobboooboboobbbbo\$bbobbbbobbooobboobbooobbobbbbobb\$oboobobbobobboobboobbobobboboobo!`

### Re: Soup search results

Posted: October 10th, 2016, 9:11 am
Apple Bottom wrote:Second copy of 48P31 in D4_+2: ...

This leads to the following 27-glider synthesis, much cheaper than my previous 66-glider one:
`x = 275, y = 57, rule = B3/S23193bo38bo\$194boo34boo\$193boo36boo9\$206bo\$204bobo7bo\$205boo5bobo7bo\$213boo6bo\$221b3o3\$194bobo\$195boo\$195bo7b3o\$205bo\$154bo49bo53boobobboboo\$bo51bo100bobo26boo38boo26boo4bobbo4bobbo4boo\$bbo49bo101boo27boo38boo26boo5bobo4bobo5boo\$3o21boo18boo6b3o9boo18boo7bo15boo4boo22boo4boo10boo10boo4boo21bo10boo4boo42bo6bo\$24bobo17bobo17bobo17bobo5bo16bobobbobo22bobobbobo10bobo9bobobbobo21boo9bobobbobo\$25bo19bo9boo8bo19bo6b3o15bo4bo24bo4bo11bo12bo4bo21bobo10bo4bo\$55bobo10b3o17b3o\$5bo19bo19bo9bo9bo19bo6b3o15bo4bo12bo11bo4bo24bo4bo34bo4bo10bobo\$4bo19bobo17bobo17bobo17bobo5bo16bobobbobo9bobo10bobobbobo22bobobbobo32bobobbobo9boo\$4b3o17boo18boo18boo18boo7bo15boo4boo10boo10boo4boo22boo4boo32boo4boo10bo31bo6bo\$130boo29boo38boo48boo5bobo4bobo5boo\$3bo125bobo29boo38boo48boo4bobbo4bobbo4boo\$bboo127bo89bo36boobobboboo\$bbobo215bo\$220b3o7bo\$229boo\$229bobo3\$202b3o\$204bo6boo\$203bo7bobo5boo\$211bo7bobo\$219bo9\$193boo36boo\$194boo34boo\$193bo38bo!`

### Re: Soup search results

Posted: October 10th, 2016, 10:39 am
mniemiec wrote:
Apple Bottom wrote:Second copy of 48P31 in D4_+2: ...

This leads to the following 27-glider synthesis, much cheaper than my previous 66-glider one.

I posted a 24 glider synthesis here.

### Re: Soup search results

Posted: October 11th, 2016, 7:25 am
Here are 5 more 15-bit still-lifes in less than 15 gliders that previously had syntheses listed on mniemiec's database with at least 15 gliders

`x = 64, y = 57, rule = B3/S23o\$b2o\$2o6\$30bo\$31bo\$29b3o6\$41bo\$32bo7b2o\$32b2o6bobo\$31bobo\$38b2o\$37bobo\$39bo\$21b2o\$20bobo\$22bo4b2o\$26b2o\$28bo\$34bo\$33b2o\$33bobo24\$61b3o\$61bo\$62bo!`

`x = 72, y = 74, rule = B3/S23bo\$2bo18bo\$3o19bo\$20b3o3\$70bo\$68b2o\$69b2o\$10bo\$11b2o\$10b2o57bo\$69bobo\$69b2o\$17bo\$15bobo8bo\$16b2o9b2o\$26b2o4\$32bo\$30bobo\$31b2o8\$38bo\$39bo\$37b3o11\$42bobo3bo\$43b2ob2o\$43bo3b2o12\$28b2o\$29b2o\$28bo11\$13bo\$13b2o\$12bobo!`

`x = 66, y = 87, rule = B3/S232bo\$obo\$b2o23\$53bobo\$53b2o\$54bo3\$49bo\$48bo15bo\$48b3o11b2o\$63b2o\$52bo\$51b2o11bo\$51bobo9b2o\$63bobo5\$41bo\$42b2o\$41b2o2\$41bo\$41b2o\$40bobo3\$58b2o\$57bobo\$59bo\$53b2o\$52bobo5b2o\$54bo5bobo\$60bo27\$26b3o\$28bo\$27bo!`

`x = 42, y = 34, rule = B3/S2339bo\$38bo\$38b3o7\$40bo\$39bo\$39b3o4\$11bo\$9bobo12bo\$10b2o11bo\$23b3o\$21bo\$22bo\$20b3o\$5bo3b3o\$3bobo5bo4bo\$4b2o4bo3bobo\$15b2o4\$20bo\$21b2obo\$b2o17b2o2bobo\$obo21b2o\$2bo!`

`x = 47, y = 82, rule = B3/S2328bobo\$28b2o\$29bo3\$38bo\$37bo\$37b3o15\$16bo\$17bo\$15b3o4\$18bo\$17bo\$17b3o2\$21bobo\$21b2o\$22bo6\$26bo\$26bobo\$26b2o\$29b2o3b2o\$29bobo2bobo\$29bo4bo4\$bo\$b2o\$obo9b2o\$11bobo16bo\$13bo15b2o\$29bobo25\$45b2o\$44b2o\$46bo!`

EDIT:
Here's another

`x = 77, y = 80, rule = B3/S232bo\$obo\$b2o14\$34bo3bo\$35bo2bobo\$33b3o2b2o11\$34bobo3bo\$35b2ob2o\$35bo3b2o10\$32bo\$31bo\$31b3o\$27bobo\$28b2o\$28bo7\$36b2o\$35b2o\$37bo6\$74b3o\$74bo\$75bo14\$5b3o\$7bo\$6bo!`

### Re: Soup search results

Posted: October 11th, 2016, 2:32 pm
Goldtiger997 wrote:Here are 5 more 15-bit still-lifes in less than 15 gliders that previously had syntheses listed on mniemiec's database with at least 15 gliders ...

Nice. 15.102, 15.110, 15.115, 15.117 (reduced by 1 glider below), 15.130, 15.131.
`x = 120, y = 21, rule = B3/S2335bo\$33bobo\$34boo\$104bo\$104bobo\$104boo\$58boo\$54boobbobo21boo18boo\$55boobo23boo18boo\$42bo11bo\$42bobo32boo18boo18boo\$42boo28boo3bobo12boo3bobo12boo3bobo\$72bobboobbo12bobboobbo12bobboobbo\$41bo7boo22boobobo14boobobo14boobobo\$42bo5bobo26bo19bo19bo\$5bo34b3o7bo29boo18boo\$3bobo19boo28boo23boo18boo\$4boo19boo28boo\$boo99boo\$obo99bobo\$bbo99bo!`

### Re: Soup search results

Posted: October 12th, 2016, 8:48 pm
Five of the most expensive 15-bitters reduced:
`x = 606, y = 110, rule = B3/S23bobo\$2b2o\$2bo5\$559bo\$560b2o\$559b2o2\$364bo\$365b2o\$355bo8b2o\$356bo\$354b3o\$376bo\$376bobo107bo95bo\$376b2o109b2o93bobo\$486b2o94b2o2\$371bo117bo82bo\$371bobo116b2o78bobo\$363b3o5b2o116b2o80b2o\$365bo\$189b2o173bo123bo78bo\$188bo2bo296b2o76bobo\$189bobo295bobo8bo67bobo\$190bo307bo68bo\$164bo333bo\$28bo133bobo\$o26bo135b2o329b2o\$b2o4bo19b3o464b2o\$2o6b2o165bo197bo102b2o\$7b2o164bobo196bo102bobo115bobo\$174b2o10b2o184b3o102bo111b2o2b2o\$186b2o188b3o206bo3bobo2bo\$176b2o198bo207b2o3bo\$175bo2bo198bo206bobo\$176b2o4\$374b3o\$27bo346bo\$3b2o21b2o347bo\$4b2o15b2o3bobo133b3o206bo\$3bo9b2o5b2o142bo206b2o\$14b2o6bo140bo206bobo\$13bo3b2o\$17bobo\$17bo10\$603b3o\$603bo\$604bo18\$246b2o\$246bobo\$246bo5\$238b2o\$238bobo\$238bo11\$76b2o\$75b2o\$77bo4\$70b2o\$69b2o\$71bo!`