## Syntheses of Unusual Still Lifes

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

### Re: Syntheses of Unusual Still Lifes

BobShemyakin wrote:
mniemiec wrote:
BobShemyakin wrote:You can continue with 17.1425, 17.1450, 17.1429, 17.1446, 18.4405, 18.440: ... It also affects tables 14 and 15-bit still lifes.

I specifically listed the 2 15-bit ones, because I already had syntheses for those, and I'm specifically tracking all the 15-bit ones. I only included the larger ones because those were trivial to make with 2 extra gliders. I know a 2-glider tub-to-bun converter, but the 2-glider tub-to-mango and 3-glider tub-to-bookend converters are new to me. Thanks!

[four RLEs]

(For shortening purposes, the converter in the ith group, jth row, and kth column will be referred to here as i/j/k.)

4/2/1 and 4/2/2 (both entries are the same converter) can be reduced by one:
`x = 10, y = 14, rule = B3/S23bobo\$2b2o4bo\$2bo4bo\$7b3o\$bo\$2bo\$3o4\$6b2o\$7bo\$6bo\$6b2o!`

4/3/1 can also be reduced:
`x = 13, y = 12, rule = B3/S238bo\$6b2o\$7b2o\$10b2o\$2o8bobo\$obobo5bo\$3b2o3\$7b3o\$7bo\$8bo!`

2/1/1 doesn't need the right-hand glider:
`x = 4, y = 7, rule = B3/S23o\$obo\$2o2\$2bo\$bobo\$b2o!`

2/4/3 nicely complements one of mine:
`x = 27, y = 50, rule = B3/S232bo\$3bo\$b3o3\$5bo\$6bo\$4b3o\$24b2o\$2bo20bo2bo\$2b2o19b3o\$bobo\$7b2o14b3o\$6bo2bo13bo2bo\$7b2o15b2o12\$2bo\$obo\$b2o8\$6bobo\$7b2o\$7bo\$3b3o\$5bo\$4bo2\$23b2o\$22bo2bo\$23b3o2\$7b2o14b3o\$6bo2bo13bo2bo\$7b2o15b2o!`

1/1/1 has one that's one cheaper, but this variant is more one-sided:
`x = 23, y = 28, rule = B3/S23o\$obo\$2o2b2o\$3b2o\$5bo15bo\$bo18bobo\$obo17bobo\$bo19bo11\$2bo\$3b2o\$2b2o2b2o\$6b2o3\$21bo\$bo18bobo\$obo17bobo\$bo19bo!`

4/4/1 has a variant that's one cheaper, but this one works on the other side:
`x = 9, y = 15, rule = B3/S238bo\$6bobo\$2bo4b2o\$3bo\$b3o3bo\$6b2o\$6bobo4\$3b2o\$obobo\$2o2bob2o\$4bo2bo\$5b2o!`

2/2/1 has been known for a while.
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1752
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Syntheses of Unusual Still Lifes

8-glider synth of a pseudo still-life:

`x = 63, y = 64, rule = B3/S2349bo\$49bobo\$49b2o25\$obo\$b2o\$bo12\$30bobo\$26bo3b2o\$27b2o2bo\$26b2o3\$31bo\$30b2o\$30bobo9\$10b3o\$12bo\$11bo\$39b3o18b2o\$39bo20bobo\$40bo19bo!`

gmc_nxtman

Posts: 1147
Joined: May 26th, 2015, 7:20 pm

### Re: Syntheses of Unusual Still Lifes

This has probably been found before: A symmetric collision of 4 gliders make 2 tubs with tail:
`x = 17, y = 12, rule = B3/S237bo\$obo2bobo\$b2o3b2o\$bo5\$15bo\$9b2o3b2o\$9bobo2bobo\$9bo!`
Dean Hickerson

Posts: 87
Joined: December 19th, 2015, 1:15 pm

### Re: Syntheses of Unusual Still Lifes

`x = 58, y = 43, rule = B3/S23bo54bo\$2bo52bo\$3o52b3o6\$11bo34bo\$12bo32bo\$10b3o32b3o\$21bobo10bobo\$22b2o10b2o\$22bo12bo5\$25bobo2bobo\$26b2o2b2o\$26bo4bo2\$26bo4bo\$26b2o2b2o\$25bobo2bobo5\$22bo12bo\$22b2o10b2o\$21bobo10bobo\$10b3o32b3o\$12bo32bo\$11bo34bo6\$3o52b3o\$2bo52bo\$bo54bo!`

Bob Shemyakin
BobShemyakin

Posts: 214
Joined: June 15th, 2014, 6:24 am

### Re: Syntheses of Unusual Still Lifes

BobShemyakin wrote:
`x = 58, y = 43, rule = B3/S23bo54bo\$2bo52bo\$3o52b3o6\$11bo34bo\$12bo32bo\$10b3o32b3o\$21bobo10bobo\$22b2o10b2o\$22bo12bo5\$25bobo2bobo\$26b2o2b2o\$26bo4bo2\$26bo4bo\$26b2o2b2o\$25bobo2bobo5\$22bo12bo\$22b2o10b2o\$21bobo10bobo\$10b3o32b3o\$12bo32bo\$11bo34bo6\$3o52b3o\$2bo52bo\$bo54bo!`

Nice!

Adding 4 more gliders converts the boats to blocks:
`x = 58, y = 51, rule = B3/S232bobo48bobo\$3b2o48b2o\$3bo50bo2\$bo54bo\$2bo52bo\$3o52b3o6\$11bo34bo\$12bo32bo\$10b3o32b3o\$21bobo10bobo\$22b2o10b2o\$22bo12bo5\$25bobo2bobo\$26b2o2b2o\$26bo4bo2\$26bo4bo\$26b2o2b2o\$25bobo2bobo5\$22bo12bo\$22b2o10b2o\$21bobo10bobo\$10b3o32b3o\$12bo32bo\$11bo34bo6\$3o52b3o\$2bo52bo\$bo54bo2\$3bo50bo\$3b2o48b2o\$2bobo48bobo!`

Can larger arrays of blocks be synthesized?
Dean Hickerson

Posts: 87
Joined: December 19th, 2015, 1:15 pm

### Re: Syntheses of Unusual Still Lifes

Dean Hickerson wrote:Can larger arrays of blocks be synthesized?

3*n arrays can be synthesized, but not yet any longer widths. (See this post of mine for details.)
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1752
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Syntheses of Unusual Still Lifes

Extrementhusiast wrote:
Dean Hickerson wrote:Can larger arrays of blocks be synthesized?

3*n arrays can be synthesized, but not yet any longer widths. (See this post of mine for details.)

Speaking of which, "Four tables on 5 blocks" should no longer be marked as [x+34] in Niemiec's database.
EDIT: I realize this has been brought up in the reply to the post that Extrementhusiast refers to.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Posts: 1869
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

### Re: Syntheses of Unusual Still Lifes

BobShemyakin wrote: ...

Very nice! While syntheses of 2xN arrays of blocks and similar objects are fairly common, anything larger is still pushing the envelope.
Dean Hickerson wrote:Nice!

Adding 4 more gliders converts the boats to blocks: ...

Nice. This is definitely cheaper than converting the boats to blocks after the fact.

BlinkerSpawn wrote:Speaking of which, "Four tables on 5 blocks" should no longer be marked as [x+34] in Niemiec's database.
EDIT: I realize this has been brought up in the reply to the post that Extrementhusiast refers to.

After Extrementhusiast posted his construction, I was able to improve this to 203, based on a (then newly possible) 3x3 block array from 168 gliders. This new mechanism drastically reduces these to 21 and 40:
`x = 211, y = 134, rule = B3/S2341bobo42bobo\$42boo42boo\$42bo44bo\$\$40bo48bo\$41bo46bo\$39b3o46b3o6\$50bo28bo\$51bo26bo\$49b3o26b3o\$60bobo4bobo\$61boo4boo\$61bo6bo32boobooboo12boobooboo12boobooboo\$101boobooboo12boobooboo12boobooboo\$3bobbo15boobboo34boobboo\$bobobbobo13bo4bo34bo4bo33boobooboo12boobooboo12boobooboo\$bboobboo15b4o36b4o34boobooboo12boobooboo12boobooboo\$\$bboobboo15b4o36b4o34boobooboo12boobooboo12boobooboo\$bobobbobo13bo4bo34bo4bo33boobooboo12boobooboo12boobooboo\$3bobbo15boobboo34boobboo\$101boobooboo12boobooboo\$61bo6bo31boboboobobo10boboboobobo\$61boo4boo32bo6bo12bo6bo\$60bobo4bobo\$49b3o26b3o38boo8boo\$51bo26bo39bobo8bobo\$50bo28bo40bo3boo3bo\$124bobo\$124bo4\$39b3o46b3o\$41bo46bo\$40bo48bo14\$40bo48bo\$41bo46bo\$39b3o46b3o6\$50bo28bo\$51bo26bo\$49b3o26b3o\$60bobo4bobo\$61boo4boo32bo6bo12bo6bo12bo6bo\$61bo6bo31boboboobobo10boboboobobo10boboboobobo\$101boobooboo12boobooboo12boobooboo\$3bobbo15boobboo34boobboo\$bobobbobo13bo4bo34bo4bo33boobooboo12boobooboo12boobooboo\$bboobboo15b4o36b4o34boobooboo12boobooboo12boobooboo\$\$bboobboo15b4o36b4o34boobooboo12boobooboo12boobooboo\$bobobbobo13bo4bo34bo4bo33boobooboo12boobooboo12boobooboo\$3bobbo15boobboo34boobboo\$101boobooboo12boobooboo\$61bo6bo31boboboobobo10boboboobobo\$61boo4boo32bo6bo12bo6bo\$60bobo4bobo\$49b3o26b3o38boo8boo\$51bo26bo39bobo8bobo\$50bo28bo40bo3boo3bo\$124bobo\$124bo4\$39b3o46b3o\$41bo46bo\$40bo48bo10\$175b3o\$155bo21bobbo\$153bobo20bobbo\$154boo23b3o\$\$152boo47boo\$bo6bo12bo6bo12bo6bo12bo6bo22bo6bo22bo6bo12bo6bo3bobo6bo19bo20bo\$oboboobobo10boboboobobo10boboboobobo10boboboobobo20boboboobobo20boboboobobo10boboboobobobbo7boboboobobbo9boboboobobbo11boboobobbo\$boobooboo12boobooboo12boobooboo12boobooboo22boobooboo22boobooboo12boobooboo12booboob4o10booboob4o10booboob4o\$\$boobooboo12boobooboo12boobooboo12boobooboo22boobooboo22boobooboo12boobooboo12boobooboo12boobooboo12boobooboo\$boobooboo12boobooboo12boobooboo12boobooboo22boobooboo22boobooboo12boobooboo12boobooboo12boobooboo12boobooboo\$\$boobooboo12boobooboo12boobooboo12boobooboo14bo7boobooboo22boobooboo12boobooboo10b4obooboo10b4obooboo10b4obooboo\$boobooboo12boobooboo12boobooboo12boobooboo15bo6boobooboo21boboboobobo7bobboboboobobo9bobboboobobo9bobboboobobo9bobboboobo\$13bo68b3o19bo16bo6bo6bobo3bo6bo19bo19bo18bo\$12bo91bobo29boo69boo\$12b3o13bo19bo14boo3bo24boo3bo5boo\$27bobo12boo3bobo12bobbobobo22bobbobobo34boo52b3o\$6boobboo16bo12bobo4bo14boo3bo24boo3bo35bobo53bobbo\$7boobobo30bo42bo47bo54bobbo\$6bo3bo34boo39boo104b3o\$45bobo37bobo\$45bo49bo10bo\$94boo4b3obboo\$94bobo3bo4bobo\$101bo\$\$92b3o\$94bo\$93bo\$95b3o\$95bo\$96bo!`

EDIT:
gmc_nxtman wrote:8-glider synth of a pseudo still-life: ...

This is considerably cheaper than any previous method, that I am aware of.
mniemiec

Posts: 1021
Joined: June 1st, 2013, 12:00 am

### Re: Syntheses of Unusual Still Lifes

Here's another arrays:
`x = 91, y = 59, rule = B3/S2376bo\$61bo13bo\$3bo58bo12b3o9b2o\$bobo9bo46b3o23bo2bo\$2b2o8bo55bo18b2o\$12b3o53bobo\$5bo19b2o41b2o17b2o\$3b2o20b2o59bo2bo\$4b2o81b2o\$25b2o41b3o\$25b2o60b2o\$86bo2bo\$25b2o41b2o17b2o\$25b2o41bobo\$4b2o62bo18b2o\$3b2o20b2o33b3o23bo2bo\$5bo19b2o35bo12b3o9b2o\$12b3o46bo13bo\$2b2o8bo63bo\$bobo9bo\$3bo17\$65bo\$64bo\$61bo2b3o\$obo56bobo26b2o\$b2o57b2o8bo16bo2bo\$bo67bo17bo2bo\$10bo58b3o16b2o\$3bobo3bo56bo\$3b2o4b3o53bobo20b2o\$4bo60bobo19bo2bo\$20b2ob2ob2o38bo20bo2bo\$20b2ob2ob2o41b3o16b2o\$69bo\$20b2ob2ob2o32b2o8bo17b2o\$20b2ob2ob2o31bobo25bo2bo\$4bo56bo2b3o20bo2bo\$3b2o4b3o52bo23b2o\$3bobo3bo55bo\$10bo\$bo\$b2o\$obo!`

Bob Shemyakin
BobShemyakin

Posts: 214
Joined: June 15th, 2014, 6:24 am

### Re: Syntheses of Unusual Still Lifes

BobShemyakin wrote:Here's another arrays: ...

4*1 blocks can be made from 5 gliders. In general, n*1 blocks can be made at a cost of around 6n/5 gliders, since a stack can be grown 5 blocks at a time - 2 gliders make 2 nearby blocks, and 4 gliders insert 3 blocks.

4*1 beehives can be made from 6 gliders (two pairs from 3 each). However, the two mechanisms can be used together to make 6*1 beehives.

n*1 ponds can be made from 2n gliders. Since adjacent ponds are 5 cells apart, and gliders can be as close as 5 cells apart without interfering, any number of adjacecent ponds can be created together without requiring any special mechanism.

The 3*2 array of blocks is an improvement (This used to take 8 - 7 to make 4*2 blocks, and 1 to remove one of the rows). This uses a mechanism similar to that used by the 4*2 block array, and the two can be combined together to make 6*2 blocks from 11 gliders.
`x = 186, y = 68, rule = B3/S23127bo\$118bo6boo\$81bobo35boo5boo\$82boobbobo29boo39bo\$3boo18boo18boo18boo17bo3boo15boo38boo15bo3bo18boo\$3boo18boo18boo18boo22bo14bobbo36bobbo12b3oboo18bobbo\$82b3o18boo38boo18boo17bobbo\$3boo18boo38boo17bo39boo59boo\$3boo18boo15bobobbobo15boo18bo19boo16bobo19boo14bo\$41boobboo55bobbo17bo18bobbo14bo3bo18boo\$23boo16bo4bo16boo38boo27bo10boo13b3oboo18bobbo\$23boo38boo52bo13bo31boo17bobbo\$6boo31b3o4b3o54boo13bo12b3o9boo38boo\$oo3bobobbo12boo16bo4bo16boo37bobbo10b3o23bobbo\$boo4bobbobo10boo15bo6bo15boo19bo18boo19bo18boo38boo\$o9boo73bo38bobo36boo17bobbo\$43boo18boo18b3o17boo19boo17boo13b3oboo18bobbo\$43boo18boo15bo21bobbo36bobbo14bo3bo18boo\$80boo3bo17boo38boo14bo\$43boo18boo14bobobboo38b3o\$43boo18boo19bobo56boo\$142bobbo\$124boo17boo\$124bobo\$124bo18boo\$116b3o23bobbo\$118bo12b3o9boo\$117bo13bo\$132bo3\$85bo19bo\$86bo17bo\$84b3o17b3o3\$11bo27bo41bo27bo\$12bo25bo43bo25bo\$10b3o25b3o39b3o25b3o3\$22bo69bo30booboo\$23boo68boo28booboo\$22boo68boo\$63booboo55booboo\$22bo40booboo24bo30booboo\$22boo68boo\$21bobo39booboo23bobo29booboo\$63booboo55booboo\$\$24b3o36booboo26b3o26booboo\$26bo36booboo28bo26booboo\$25bo69bo\$63booboo55booboo\$63booboo55booboo\$\$123booboo\$123booboo3\$10b3o25b3o39b3o25b3o\$12bo25bo43bo25bo\$11bo27bo41bo27bo3\$84b3o17b3o\$86bo17bo\$85bo19bo!`
mniemiec

Posts: 1021
Joined: June 1st, 2013, 12:00 am

### Re: Syntheses of Unusual Still Lifes

mniemiec wrote:
BobShemyakin wrote:You can continue with 17.1425, 17.1450, 17.1429, 17.1446, 18.4405, 18.440: ... It also affects tables 14 and 15-bit still lifes.

I specifically listed the 2 15-bit ones, because I already had syntheses for those, and I'm specifically tracking all the 15-bit ones. I only included the larger ones because those were trivial to make with 2 extra gliders. I know a 2-glider tub-to-bun converter, but the 2-glider tub-to-mango and 3-glider tub-to-bookend converters are new to me. Thanks!

About a month ago gmc_nxtman posted G7 synthesis of SL 15.394:
`x = 70, y = 48, rule = B3/S232\$30bobo\$31b2o\$31bo19\$21bo29bo\$21bo14bo14bo\$bobo17bo12bobo14bo\$b2o32b2o\$2bo3bo10b3o3b3o21b3o3b3o\$5b2o\$5bobo13bo29bo\$21bo29bo\$21bo29bo3\$33b3o28b2o\$35bo28bo\$34bo8b2o17bobo\$42bobo16bobob2o\$44bo16bobobobo\$62bo3bo\$45b2o\$45bobo\$45bo!`

Unfortunately, he lost among other syntheses cited ibid. It reduced the cost of synthesis of the Niemec’s database at 25 gliders!
And not only him, but also 15.380 and 16.689:
`x = 151, y = 48, rule = B3/S2360bo\$59bo\$59b3o19\$bo\$2bo\$3o16b3o17b3o13bobo\$55b2o\$17bo5bo13bo5bo12bo\$b2o14bo5bo13bo5bo\$2o15bo5bo13bo5bo\$2bo\$19b3o17b3o4\$57b2o7b2o18b2o18b2o18b2o18b2o\$56b2o9bo19bo19bo19bo19bo\$48bo9bo8bobo17bobo17bobo17bobo17bob2o\$47b2o16b2obobo14b2obobo14b2obobo14b2obobo14b2obobo\$47bobo14bobobobo13bobobobo15bobobo15bobobo3bo11bobo\$65bo3bo15bo3bo16bo2bo16bo2bo3bo12bobo\$45bo59b2o18b2o6b3o11bo\$45b2o84bo\$44bobo36b3o44b2o\$80bo2bo41b2o3bobo\$81bo2bo39b2o\$79b3o44bo\$121b2o\$122b2o\$121bo!`

I began shelling still life and that's what got:
`x = 160, y = 111, rule = B3/S23133bo\$134b2o\$133b2o6\$134bo\$78bo56b2o\$76bobo55b2o9bo\$77b2o65bo13bo\$141bo2b3o10bobo\$8bo75bo55b2o16bo\$7bo74b2o56bobo12b3o\$7b3o73b2o15bo31bo3bo15bo2bo\$12bo3bo14b2o3bo38bo3bo15bo3bobo29bobobobo13bobobo\$5bo5bobobobo12bo2bobobo36bobobobo5bo7bobobo2bo29bobob2o14bobob2o\$6b2o3bobob2o13bo2bob2o37bobob2o5b2o7bobobobo31bobo17bobo\$5b2o5bobo16b2obo40bobo7bobo7bobobo34bo19bo\$14bo19bo42bo19bo36b2o18b2o\$14b2o18b2o41b2o18b2o14\$118bo\$119b2o\$118b2o\$6bobo119bo\$7b2o120b2o\$7bo7bobo64bo45b2o3bo\$15b2o64bo51bobo\$16bo60bo3b3o49b2o\$6b3o66bobo\$8bo67b2o48b3o23b2ob2o\$7bo25b2o49b2o11b2o29bo3bo3bo16bobobo\$12bo3bo15bo2bo47b2o11bobo28bo3bobobobo15bobobo\$11bobobobo15bobo37bo3bo7bo7bo2bo34bobob2o14bobob2o\$11bobob2o14bobob2o35bobobobo13bobobo35bobo16b2obo\$12bobo16b2obo37bobob2o14bobob2o36bo19bo\$14bo19bo38bobo17bobo38b2o18b2o\$14b2o18b2o39bo19bo\$75b2o18b2o10\$137bo\$137bobo\$137b2o3\$16bo\$bo12b2o66bo\$2bo12b2o63b2o\$3o7bobo64bo3b2o\$11b2o62bobo48bobo\$11bo64b2o49b2o\$127bo6bo\$85b3o46bobo\$31b2o52bo11b2o35b2o\$11bo3bo16bo2bo38bo3bo7bo7bo2bobo\$10bobobobo15bobobo36bobobobo13bobobobo\$10bobob2o14bobobobo36bobob2o14bobob2o54bo\$11bobo16b2obobo38bobo17bobo55bobo\$13bo19bo42bo19bo26bo8bo3bo15bo2bo\$13b2o18b2o41b2o18b2o25b2o6bobobobo15bobo\$122bobo6bobob2o14bobob2o\$132bobo16b2obo\$134bo19bo\$134b2o18b2o9\$62bo77bo\$63b2o74bo\$62b2o75b3o\$72bo\$73b2o61bo\$72b2o3bo57bo\$77bobo51bo3b3o\$77b2o50bobo\$130b2o21b2o\$70b3o23b2ob2o36bo13bo2bo\$72bo3bo3bo16bobobo34b2o12bob2o\$71bo3bobobobo15bobobo25bo3bo4bobo8bo2bo\$75bobob2o14bobob2o25bobobobo13bobobo\$76bobo16b2obo27bobob2o14bobob2o\$78bo19bo28bobo17bobo\$78b2o18b2o29bo19bo\$129b2o18b2o!`

Bob Shemyakin
BobShemyakin

Posts: 214
Joined: June 15th, 2014, 6:24 am

### Re: Syntheses of Unusual Still Lifes

20-bit SL:
`x = 71, y = 67, rule = B3/S2311bobo\$12b2o13bo\$12bo15b2o\$27b2o\$35bo\$34bo22b2o4b2o\$34b3o20bo6bo\$59bo2bo\$58b6o\$27bo\$25bobo32b2o\$26b2o31bo2bo\$60b2o\$28b3o\$28bo6b2o\$29bo4b2o\$36bo14\$66bo\$38bo26bobo\$24bo11b2o26bo2bo\$25bo11b2o25b3ob2o\$23b3o41bo2bo\$64b2obobo\$64b2ob2o2\$38bo\$38bobo\$27b2o9b2o\$26bobo\$28bo6b3o\$37bo\$36bo6\$b2o\$obo\$2bo12\$48b3o\$48bo\$49bo!`

Bob Shemyakin
BobShemyakin

Posts: 214
Joined: June 15th, 2014, 6:24 am

### Re: Syntheses of Unusual Still Lifes

BobShemyakin wrote:20-bit SL:
`x = 71, y = 67, rule = B3/S2311bobo\$12b2o13bo\$12bo15b2o\$27b2o\$35bo\$34bo22b2o4b2o\$34b3o20bo6bo\$59bo2bo\$58b6o\$27bo\$25bobo32b2o\$26b2o31bo2bo\$60b2o\$28b3o\$28bo6b2o\$29bo4b2o\$36bo14\$66bo\$38bo26bobo\$24bo11b2o26bo2bo\$25bo11b2o25b3ob2o\$23b3o41bo2bo\$64b2obobo\$64b2ob2o2\$38bo\$38bobo\$27b2o9b2o\$26bobo\$28bo6b3o\$37bo\$36bo6\$b2o\$obo\$2bo12\$48b3o\$48bo\$49bo!`

Bob Shemyakin

I thought this could reduce it by a glider but the 2G teardrop predecessor gets in the way of the crucial glider.
`x = 12, y = 12, rule = B3/S236bo\$5bobo\$7bo\$7bo\$5b2ob3o\$bo5bo3bo\$2bo4bo2bo\$3o\$4b3o\$3bo2bo\$3bo2bo\$4b2o!`

Alternate 7G via similar method to yours:
`x = 27, y = 35, rule = B3/S23o\$b2o\$2o3\$7bo7bobo\$8bo6b2o\$6b3o7bo2\$14b2o\$13b2o\$15bo13\$24b3o\$6b2o16bo\$7b2o16bo\$6bo5\$5b2o\$6b2o\$5bo!`

EDIT: 'Ey!
`x = 27, y = 26, rule = B3/S232bo\$obo\$b2o3\$8bo7bobo\$9bo6b2o\$7b3o7bo2\$15b2o\$14b2o\$7bo8bo\$8bo\$6b3o10\$24b2o\$24bobo\$24bo!`
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Posts: 1869
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

### Re: Syntheses of Unusual Still Lifes

Is a synthesis for this marsh eater spiral possible? Its compactness yet wide structure makes it quite complicated to design a route.
`x = 19, y = 19, rule = B3/S238bo\$8b3o\$11bo\$10b2o\$9bo\$9bo\$7b2ob2o\$2b2o2bo2bo2bo\$bobo2bo2bo2bo4b2o\$bo2b2ob2ob2ob2o2bo\$2o4bo2bo2bo2bobo\$6bo2bo2bo2b2o\$7b2ob2o\$9bo\$9bo\$7b2o\$7bo\$8b3o\$10bo!`
SoL : FreeElectronics : DeadlyEnemies : 6a-ite : Rule X3VI
what is “sesame oil”?

Rhombic

Posts: 1056
Joined: June 1st, 2013, 5:41 pm

### Re: Syntheses of Unusual Still Lifes

If such a synthesis existed, it might well stem from one of these:
`x = 36, y = 14, rule = B3/S233b2o\$3bobo22bo\$5bo21bobo\$4b2ob2o2b2o13bo2bo\$3bo2bo2bo2bo12bob2ob2o\$3bo2bo2b3o12bobo2bo2bo\$4b2ob2o14bo2bo2bo2bo\$b3o2bo2bo14b2ob2ob2ob2o\$o2bo2bo2bo16bo2bo2bo2bo\$2o2b2ob2o17bo2bo2bobo\$7bo19b2ob2obo\$7bobo19bo2bo\$8b2o19bobo\$30bo!`
neither of which I've seen syntheses for.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Posts: 1869
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

### Re: Syntheses of Unusual Still Lifes

Rhombic wrote:Is a synthesis for this marsh eater spiral possible? Its compactness yet wide structure makes it quite complicated to design a route. ...

It might be possible, but it certainly wouldn't be easy, given the current state of the art. It's fairly easy to create a chain of corner-connected dominoes, but not two-dimensional lattices. As far as I'm aware, we don't even currently have a converter that will do something as simple as converting a pond into a bipond by gluing a pond onto the corner, which would certainly be much easier than this still-life.
mniemiec

Posts: 1021
Joined: June 1st, 2013, 12:00 am

### Re: Syntheses of Unusual Still Lifes

So this is my first and currently only "first" discovery on Catagolue.

`x = 16, y = 16, rule = B3/S23obobooobboobbbob\$ooooobbbbbbboboo\$oooboboobboboobb\$bbobooooboobbbbb\$bbobbbooboooobob\$obobobbboooobooo\$obobbbboobboooob\$bbbbobbboooobooo\$obbbbbooobobbobo\$booobobobooooobb\$boooboobbobboobo\$oooboobbboobobbb\$obbbobboobooobbb\$ooobbbobbbbbbobb\$bobbbbobbboboooo\$oobbbbbobbooboob!`

`x = 14, y = 7, rule = B3/S236b2o\$5bo2bo\$b2o2bo2bo2b2o\$o2bob2obobo2bo\$obo2bo2bobobo\$bo3bo2bob2o\$6b2o!`

Since the loaf is there from the start, synthesising it there in situ should be a simple-ish task. Putting that other thing there seems like a nightmare.
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik

Posts: 3301
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

### Re: Syntheses of Unusual Still Lifes

muzik wrote:So this is my first and currently only "first" discovery on Catagolue.

`soup`

`x = 14, y = 7, rule = B3/S236b2o\$5bo2bo\$b2o2bo2bo2b2o\$o2bob2obobo2bo\$obo2bo2bobobo\$bo3bo2bob2o\$6b2o!`

Since the loaf is there from the start, synthesising it there in situ should be a simple-ish task. Putting that other thing there seems like a nightmare.

Yikes.
`x = 12, y = 10, rule = B3/S238bo\$7bob2o2\$bo4b2o\$obo3b2o\$bo7b2o\$10b2o\$7b2o\$3b2o4bo\$3b2o!`
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Posts: 1869
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

### Re: Syntheses of Unusual Still Lifes

5G:
`x = 157, y = 31, rule = B3/S237\$14bobo\$14b2o65bo50bo\$15bo64bo49b2o\$80b3o48b2o\$65bo60bo\$63bobo27bo2b2o29bo\$2bo61b2o26bobo2bo27b3o23b2o\$obo89bobobo53bo2bo\$b2o90bo2b2o51bobobo\$27bo45bo22bo2bo28bo5b3o11bo2b2o\$26bobo43bo8b2o15b2o26b2o6bo14b2o\$7bo18bobo43b3o5b2o45b2o6bo14bo\$6bo20b2ob2o50bo65bo\$6b3o21bobo40bo52bo21b2o\$30bo2bo38b2o51b2o\$7bo23b2o39bobo50bobo\$6b2o\$6bobo\$11b3o\$11bo\$12bo!`

6G:
`x = 311, y = 67, rule = B3/S234\$261bobo\$81bo180b2o\$82bo51bo127bo\$80b3o52bo71bo\$10bo122b3o70bo\$11b2o6bo179bo6b3o\$10b2o6bo26bo154b2o\$18b3o23bobo93bo58b2o23b2o43bo\$45bo39bobo10bo39b2o19bo49bo13bobo42bo\$42b3o40b2o10bobo39b2o16b3o48b2o13bo44b3o\$13bo27bo44bo3b2o6bo44b2o11bo51bobo9b2obo61b2o3b2o\$12bo27bobo28bo17b2o8b3o32bo7b2o13b3o34bobo24bob2o60bobobobo\$12b3o8b2o16bobo28b2o17bo9b3o31b2o7bo14b3o33b2o24bo42bo6b2o14bobo\$23bobo16bo28b2o3bo27bo29b2o26bo32bo23bobo43b2o3b2o14b2ob2o\$14bo8bo52b2o25bobo32b2o19b3o42b2o13b2o43b2o6bo14bobo\$13b2o60bobo26bo34b2o18bo43b2o80bobobobo\$13bobo122bo57b3o6bo79b2o3b2o\$198bo67b3o\$197bo70bo\$143b3o121bo\$80b3o60bo\$80bo63bo\$25b2o54bo\$25bobo\$25bo248bo\$273b2o\$273bobo11\$138bo56bo\$73bo62bobo57bo\$74b2o61b2o55b3o\$73b2o188bo\$10bobo82b2o64b2o53bo2b2o40bobo\$11b2o82b2o64b2o34bobo15bobo2bo41b2o\$11bo66bobo116b2o17bob2o51bo10bo\$78b2o3b2o10b4o62b4o33bo18bo51b2o10bobo\$79bo2b2o11bo3bo37bo22bo3bo36b2o15b2o42bo7b2o9bo2bob2o\$84bo11b3o38bobo7bo12b2o32bo5b2o17bo43bo18bobob2o\$14bo117bobo2b2o7b2o13bo33b2o5bo14bo43b3o19b2o\$14bobo53bo25b3o34b2o7b2o2bobo10bo34b2o21b2o48b3o16b2o\$14b2o17bo37b2o2bo19bo3bo33bo7bobo15b2o37bo20bo47bo15b2obobo\$18b2o11b5ob2o31b2o3b2o19b4o43bo12bo3bo37b2o17b2obo38b2o7bo14b2obo2bo\$11bo5b2o11bo5b2obo34bobo79b4o37bobo16bo2bobo38b2o25bobo\$12b2o5bo11bob2o5bo57b2o116b2o2bo38bo28bo\$11b2o19b2ob5o58b2o58b2o107b2o\$15b2o20bo42b2o76b2o40b3o64bobo\$14bobo62b2o119bo66bo\$16bo64bo60b2o57bo\$142bobo\$142bo2\$19bo\$18b2o\$18bobo!`

7G:
`x = 51, y = 41, rule = B3/S235\$28bo\$28bobo\$28b2o\$22bo\$21bo\$21b3o3\$8bo\$9bo\$7b3o2\$39b2ob2o\$15bo5b3o14bobobobo\$14bo6bo16bo2bo2bo\$14b3o5bo16bobobo\$40b2ob2o\$16bo\$15b2o\$15bobo8\$25b3o\$25bo\$26bo!`

8G:
`x = 303, y = 87, rule = B3/S233\$17bo\$16bo\$16b3o231bobo\$251b2o\$251bo5\$8bo\$6bobo184bobo\$7b2o184b2o\$194bo2\$134bobo53bobo68bobo3b2o\$78bo4bo50b2o55b2o7b3o13bo45b2o3bobo\$76bobo2b2o52bo7b2o46bo8bo14bobo44bo4bo29bo\$13bo63b2o3b2o59bobo51bo3bo12bo2bo78bobo\$12bo6b3o78b2o31bo9bo52bobo15bobob2o42bo32bo2bo\$12b3o4bo12b2o3b2o51b3o7bobo31b2o20b2o38bobo16b2obobo40bo34b2o\$20bo11bobobobo30bo8b2ob2o7bo6b2obobo30b2o3bo18bo2b2o31bo3bo19bo2bo40b3o29b3o\$8bo21bobobobo33bo7b2ob2o8bo6bobob2o33bobo17bobobo32bo8bo13bobo72bo2bo\$9bo4b3o13b2o3b2o31b3o27bobo36bobo15bobobo32b3o7b2o14bo72bo2bo\$7b3o6bo82b2o37bo3b2o11b2o2bo42bobo58b3o25b3o\$15bo61b2o3b2o57b2o16b2o104bo23b2o\$78b2o2bobo48bo9bo56bo63bo23bo2bo\$77bo4bo48bobo66b2o86bobo\$132b2o7bo57bobo57bo4bo24bo\$141b2o114bobo3b2o\$140bobo115b2o3bobo\$20b2o\$20bobo\$20bo7\$10b3o262bo\$12bo261b2o\$11bo262bobo17\$70bo\$68bobo\$69b2o62bo\$25bo108bo\$23b2o107b3o\$24b2o46bo82b2o\$17bobo50b2o83b2o\$18b2o51b2o\$18bo18b2o3b2o31bo13b2o56bobo5b4o\$28bo8bobobobo30b2o11b3obo42bobo10b2o6bo3bo\$20bo6b2o9b2obo28bo3bobo9bo4bo43b2o11bo8b2obo\$19bobo5bobo11b2o26bobo14bobobob2o41bo3bo18bobo\$11bobo5bobo16b2o29bobo15b2obobobo44bo18bob2o\$12b2o6bo18bob2o21bobo3bo18bo4bo44bo3bo15bo3bo\$12bo24bobobobo21b2o22bob3o36bo11b2o16b4o\$22bo14b2o3b2o21bo24b2o38b2o10bobo\$21b2o45b2o59bobo30b2o\$21bobo45b2o91b2o\$15b2o51bo\$16b2o\$15bo128b3o\$70b2o72bo\$70bobo72bo\$70bo!`

9G:
`x = 224, y = 37, rule = B3/S236\$7bo11bo47bo\$8bo10bobo46b2o\$6b3o10b2o46b2o65bobo\$134b2o\$135bo\$77bo52bo64bo\$75b2o54bo22b2o40b2o\$76b2o51b3o21bo2bo38b2o20b2o\$153bob2o59bo2bo\$139b2o9b2obo52bo8bob3o\$11bobo23bo3bo47b2o40b2o5b2o10b2obo50b2o9b2o\$12b2o3b2o17bobobobo21bobo21bo2bo38bo2bo6bo12b2o37bo12b2o11b2o\$12bo3bo2bo12b2o2bobobo2bo21b2o20bo2bobo31bo6bo2bo15b2o41bo3bo17b2obo\$15bo2bo3bo8bo2bobobo2b2o22bo3bo17b4obo32b2o5b2o17bob2o36b3o2bobo2b3o12bobo\$16b2o3b2o9bobobobo29bobo14b2o5b2o30b2o25bob2o42bo3bo14bob2o\$21bobo9bo3bo31bo3bo12bob4o56b2obo36b2o12bo12b2o\$72b2o12bobo2bo41b3o12bo2bo37b2o27b2o\$72bobo12bo2bo42bo15b2o37bo26b3obo\$88b2o44bo80bo2bo\$129bo68b2o16b2o\$129b2o66b2o\$61b2o65bobo68bo\$62b2o\$14b2o10b3o32bo\$13bobo10bo\$15bo11bo\$70b2o\$69b2o\$71bo!`

10G:
`x = 174, y = 49, rule = B3/S236\$147bobo\$147b2o\$148bo7\$22bo\$21bo118bo\$5bo15b3o114bobo\$6bo132b2o2bobo\$4b3o136b2o\$144bo\$16bo\$17bo60bo85b2o\$15b3o58bobo56bo24b2obo2bo\$45b2o30b2o57bo23b2obob2o\$9b2o35bo37bobo12b2o33b3o5b2ob2o16bobo\$10b2o5b2ob2o7bo16bob2obo32b2o12bobo41b2ob2o5b3o8bobo\$9bo7b2ob2o5b2o18bob2obo32bo12bo53bo9b2obob2o\$28b2o22bo22bo5b2o16bo53bo8bo2bob2o\$52b2o19bobo5bo7b2o9bob2o59b2o\$21b3o50b2o7bo5bobo9b2obo\$21bo60b2o5bo15bo38bo\$22bo56bo26bo37b2o\$79b2o23bobo36bobo2b2o\$32b3o43bobo23b2o42bobo\$32bo53b2o60bo\$15b3o15bo52bobo\$17bo68bo\$16bo5\$140bo\$140b2o\$139bobo!`

11G:
`x = 118, y = 47, rule = B3/S236\$15bobo\$3bobo10b2o\$4b2o10bo76bo\$4bo87bo\$92b3o\$24bo\$22b2o\$23b2o3\$57b2o23bo\$56bo2bo20bobo\$20bobo33bobo22b2o5bo\$21b2o3b2o27b2ob2o27bo\$21bo3bo2bo27bo30b3o\$24bo2bo3bo24bo45b2o\$25b2o3b2o21b2ob2o44bo2bo\$30bobo21bobo24bo5b2o14b5obo\$53bo2bo22bobo4bo2bo3b2o13b2o\$54b2o24b2o3bo2bo4bobo9b2o\$86b2o5bo11bob5o\$109bo2bo\$28b2o81b2o\$29b2o54b3o\$28bo58bo\$86bo5b2o\$48bo43bobo\$36bo10b2o43bo\$35b2o10bobo\$35bobo4\$80b3o\$82bo\$81bo!`

12G:
`x = 70, y = 52, rule = B3/S234\$14bo\$12bobo\$13b2o7\$6bo19bo\$7bo16bobo\$5b3o17b2o8\$23bo31bo3bo\$24b2o7bo20bobobobo\$23b2o6b2o22bo3bo\$32b2o22b3o\$26b3o\$21b2o33b3o\$22b2o6b2o23bo3bo\$21bo7b2o23bobobobo\$31bo23bo3bo8\$28b2o17b3o\$28bobo16bo\$28bo19bo7\$40b2o\$40bobo\$40bo!`

Bob Shemyakin
BobShemyakin

Posts: 214
Joined: June 15th, 2014, 6:24 am

### Re: Syntheses of Unusual Still Lifes

Reductions to two of those:
`x = 31, y = 50, rule = B3/S232bobo\$2b2o\$3bo2\$bo\$2b2o20b2o\$b2o3bo18bo2b2o\$5bobo17bobobo\$5bobo15bobobo\$6bo3b2o11b2o2bo\$9b2o16b2o\$11bo2\$9bo\$9b2o\$8bobo8\$o\$b2o3bo\$2o3bo\$5b3o3bo\$10bo\$10b3o4\$26b2o\$25bo2bo\$24bo2bobo\$24b4obo\$2bo3b2o14b2o5b2o\$3b2obobo14bob4o\$2b2o2bo16bobo2bo\$24bo2bo\$25b2o4\$3o\$2bo\$bo3b3o\$7bo3b2o\$6bo3b2o\$12bo!`

EDIT: Extra long integral in ten gliders, tying with the old method:
`x = 28, y = 25, rule = B3/S2314bo\$13bo\$13b3o2\$6bo\$7bo\$5b3o2\$2bo9bobo\$3b2o7b2o\$2b2o9bo\$24bobo\$24b2o\$13bo11bo\$13b2o\$12bobo2\$3o2b2o\$2bo3b2o\$bo3bo2\$26bo\$10b3o12b2o\$12bo12bobo\$11bo!`

A 19-bit SL in eleven gliders:
`x = 39, y = 40, rule = B3/S2316bobo\$17b2o\$7bobo7bo\$8b2o19bo6bobo\$8bo20bobo4b2o\$17bo11b2o6bo\$18bo\$16b3o\$24bo\$24bobo\$24b2o2\$29b2o\$7b3o19bobo\$9bo19bo\$8bo3\$28b3o\$28bo\$29bo2\$22b2o\$23b2o\$22bo13\$b2o\$obo\$2bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1752
Joined: June 16th, 2009, 11:24 pm
Location: USA

### Re: Syntheses of Unusual Still Lifes

Two symmetric SLs
`x = 57, y = 43, rule = B3/S232bobo\$3b2o9bo\$3bo10bobo\$14b2o3\$37bo\$37bobo\$37b2o\$32bo\$3bobo24bobo\$4b2o7bo17b2o\$4bo8bobo20bo\$13b2o19bobo8bo\$35b2o6b2o\$44b2o\$30bo\$31bo\$13bo15b3o\$12bo\$12b3o40bo\$54bo\$54b3o\$11b2o13b3o\$10bobo15bo\$12bo14bo2\$51b3o\$51bo\$2b2o48bo\$bobo8bo24b2o\$3bo7b2o25b2o6b2o\$11bobo23bo8bobo\$46bo\$50b2o\$50bobo\$50bo\$44b2o\$43bobo\$b2o42bo\$obo10bo\$2bo9b2o\$12bobo!`

yootaa

Posts: 35
Joined: May 26th, 2016, 1:08 am
Location: Japan

### Re: Syntheses of Unusual Still Lifes

yootaa wrote:Two symmetric SLs
`x = 57, y = 43, rule = B3/S232bobo\$3b2o9bo\$3bo10bobo\$14b2o3\$37bo\$37bobo\$37b2o\$32bo\$3bobo24bobo\$4b2o7bo17b2o\$4bo8bobo20bo\$13b2o19bobo8bo\$35b2o6b2o\$44b2o\$30bo\$31bo\$13bo15b3o\$12bo\$12b3o40bo\$54bo\$54b3o\$11b2o13b3o\$10bobo15bo\$12bo14bo2\$51b3o\$51bo\$2b2o48bo\$bobo8bo24b2o\$3bo7b2o25b2o6b2o\$11bobo23bo8bobo\$46bo\$50b2o\$50bobo\$50bo\$44b2o\$43bobo\$b2o42bo\$obo10bo\$2bo9b2o\$12bobo!`

The second one in 8G:
`x = 35, y = 40, rule = B3/S2317bo\$17bobo\$17b2o5\$9bo\$10b2o10bo\$9b2o10bo\$21b3o4\$34bo\$32b2o\$33b2o7\$2o\$b2o\$o4\$11b3o\$13bo10b2o\$12bo10b2o\$25bo5\$16b2o\$15bobo\$17bo!`
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa

Posts: 467
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

### Re: Syntheses of Unusual Still Lifes

yootaa wrote:Two symmetric SLs...

Nice. The second one can be reduced by 2 gliders by making the pairs of blocks simultaneously (now also obsoleted by AbhpzTa's version). The first one can alter each side in several different ways: one less glider can make a plain house, while one more can make a house siamese two tables. The latter is the base for the synthesis of Jack, which reduces that synthesis from 34 to 22. (The core reaction is the two-pre-honeyfarm pulsar predecessor hitting tub-like objects; This might be able to be further reduced if those can be made separately, e.g. 4 gliders per side).
`x = 175, y = 120, rule = B3/S234bo\$4bobo\$4boo\$\$bo\$bbo5bo\$3o6boobbo\$8boobbo\$12b3o27bo3bo\$41bobobobo\$41bobobobo\$40booboboo\$3o36bo3bo\$bbo20bo16boobo\$bo20bo18boboo\$22b3o16bo3bo\$38booboboo\$37bobobobo\$37bobobobo\$10b3o25bo3bo\$12bobboo\$11bobboo6b3o\$16bo5bo\$23bo\$\$19boo\$18bobo\$20bo11\$3bo38bo\$4boo34bobo9bo48bo39bo\$3boo36boo7bobo28bo19bo19bo19bo19bo\$51boo12bobo12bobobboo3boo9bo18bobobboo3boo9bo18bobobboo3boo\$bo26bo29bo6boo13bob4obobobo28bob4obobobo28bob4obobobo\$boo25bo21bo7bo7bo12boo6bobo7b3o3b3o13boo6bobo7b3o3b3o13boo6bobo\$obo25bo11bo9boo6bo21bob4obobobo28bob4obobobo28bob4obobobo\$40boo7bobo12boo14bobobboo3boo9bo18bobobboo3boo9bo5boo11bobobboo3boo\$39bobo22bobo14bo19bo19bo19bo4boo13bo\$64bo36bo39bo6bo20\$141bo\$102bo38bobo10bo\$103boo36boo9boo\$102boo49boo3\$129bobo\$129boo\$130bo\$\$129b3o\$129bo\$130bo\$47bo21bo\$45bobo21bobo\$46boo21boo4\$40bo\$41boo\$3bo36boo\$4boo46bo112bo5bo\$3boo45bobo112boo3boo\$51boo12bobo14bobboo3boobbo27bobboo3boobbo27bobboo3boobbo\$bo26bo29bo6boo15b4obobob4o27b4obobob4o27b3obbobobb3o\$boo25bo21bo7bo7bo20bobo37bobo37bobo\$obo25bo21boo6bo23b4obobob4o27b4obobob4o27b3obbobobb3o\$49bobo12boo16bobboo3boobbo27bobboo3boobbo27bobboo3boobbo\$64bobo98boo3boo\$64bo100bo5bo\$75boo\$74boo\$76bo4\$46boo21boo\$45bobo21bobo\$47bo21bo\$126bo\$127bo\$125b3o\$\$126bo\$126boo\$125bobo3\$102boo49boo\$103boo9boo36boo\$102bo10bobo38bo\$115bo!`
mniemiec

Posts: 1021
Joined: June 1st, 2013, 12:00 am

### Re: Syntheses of Unusual Still Lifes

Eaters aren't unusual, but I wanted to post this anyway...

`x = 10, y = 11, rule = B3/S232o6bo\$o6bo\$3bo3b3o\$2b2o4\$2b2o\$3bo3b3o\$o6bo\$2o6bo!`
Life is hard. Deal with it.
My favorite oscillator of all time:
`x = 7, y = 5, rule = B3/S2-i3-y4i4b3o\$6bo\$o3b3o\$2o\$bo!`

Hdjensofjfnen

Posts: 1079
Joined: March 15th, 2016, 6:41 pm
Location: r cis θ

### Re: Syntheses of Unusual Still Lifes

15.378 and a related 17-bitter in six gliders each:
`x = 41, y = 70, rule = B3/S239bo\$8bo\$8b3o3\$16bo\$3bo12bobo\$4bo11b2o\$2b3o2\$36b2o\$8bo27b2o\$9b2o29bo\$8b2o26b5o\$35bo\$10bo25bobo\$9bo27b2o\$9b3o6\$12b3o\$12bo\$13bo19\$bo\$2bo\$3o3\$16bo\$3bo12bobo\$4bo11b2o\$2b3o\$36b2o\$35bo2bo\$8bo27b2o\$9b2o29bo\$8b2o26b5o\$35bo\$10bo25bobo\$9bo27b2o\$9b3o6\$12b3o\$12bo\$13bo!`
I Like My Heisenburps! (and others)

Extrementhusiast

Posts: 1752
Joined: June 16th, 2009, 11:24 pm
Location: USA

PreviousNext