## (27,1)c/72 caterpillar challenge

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

### (27,1)c/72 caterpillar challenge

Here is a promising Herschel pair climber (sorry, Life Lexicon).

`x = 115, y = 125, rule = B3/S2362bobo\$62b2o\$49bobo11bo35bobo\$49b2o48b2o\$50bo49bo2\$113bo\$112bo\$112b3o37\$43bobo\$43b2o\$30bobo11bo35bobo\$30b2o48b2o\$31bo49bo2\$94bo\$93bo\$93b3o37\$24bobo\$24b2o\$11bobo11bo35bobo\$11b2o48b2o\$12bo49bo2\$75bo\$74bo\$74b3o14\$15bo\$14b3o\$13b5o\$13b2ob3o\$14b2ob2o\$3o13bo33b3o12b3o\$bo49bo16bo\$b3o47b3o11bo2bo\$66b2o\$66b2o\$65bo2bo\$65bo\$67b2o!`

I believe that there is a helix with period factor 3 and about 15 spaceships per coil. It's already too late today, but I'll look into it tomorrow.
Ivan Fomichev

codeholic
Moderator

Posts: 1141
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

### Re: (27,1)c/72 caterpillar challenge

codeholic wrote:Here is a promising Herschel pair climber (sorry, Life Lexicon).

`x = 115, y = 125, rule = B3/S2362bobo\$62b2o\$49bobo11bo35bobo\$49b2o48b2o\$50bo49bo2\$113bo\$112bo\$112b3o37\$43bobo\$43b2o\$30bobo11bo35bobo\$30b2o48b2o\$31bo49bo2\$94bo\$93bo\$93b3o37\$24bobo\$24b2o\$11bobo11bo35bobo\$11b2o48b2o\$12bo49bo2\$75bo\$74bo\$74b3o14\$15bo\$14b3o\$13b5o\$13b2ob3o\$14b2ob2o\$3o13bo33b3o12b3o\$bo49bo16bo\$b3o47b3o11bo2bo\$66b2o\$66b2o\$65bo2bo\$65bo\$67b2o!`

I believe that there is a helix with period factor 3 and about 15 spaceships per coil. It's already too late today, but I'll look into it tomorrow.

The only outputs are in the same direction as the inputs; where would the helix be built and what would burn it?
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Posts: 1875
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

### Re: (27,1)c/72 caterpillar challenge

A forwards rake, but given the track it runs on (3 close-together glider streams), it's probably not very useful.

`x = 148, y = 233, rule = B3/S235\$105bobo\$105b2o\$106bo25bo\$131bo\$119bo11b3o\$118bo\$118b3o39\$86bobo\$86b2o\$87bo25bo\$112bo\$100bo11b3o\$99bo\$99b3o39\$67bobo\$67b2o\$68bo25bo\$93bo\$81bo11b3o\$80bo\$80b3o39\$48bobo\$48b2o\$49bo25bo\$74bo\$62bo11b3o\$61bo\$61b3o39\$29bobo\$29b2o\$30bo25bo\$55bo\$43bo11b3o\$42bo\$42b3o15\$48bo\$46b6o\$46b2o2b2o2\$18b3o12b3o14bo\$19bo16bo9b2o2bo\$19b3o11bo2bo9b2o3bo\$34b2o14bo\$34b2o12bobo\$33bo2bo12bo\$33bo\$35b2o!`
Nico Brown

glider_rider

Posts: 88
Joined: February 20th, 2013, 5:41 pm
Location: CA

### Re: (27,1)c/72 caterpillar challenge

codeholic wrote:Here is a promising Herschel pair climber (sorry, Life Lexicon).

This is a pretty cool idea--salvaging failed Herschel climbers by placing them so as to cancel out one another's debris. There are almost certainly more options like this!
Tanner Jacobi

Kazyan

Posts: 818
Joined: February 6th, 2014, 11:02 pm

### Re: (27,1)c/72 caterpillar challenge

BlinkerSpawn wrote:where would the helix be built and what would burn it?

The general geometry is gonna be the same as in the waterbear.
glider_rider wrote:A forwards rake, but given the track it runs on (3 close-together glider streams), it's probably not very useful.

Yes, I think we should find interactions between two pairs of Herschel climbers, yielding gliders, in a manner how the original caterpillar did it but with pi tracks.
Kazyan wrote:This is a pretty cool idea--salvaging failed Herschel climbers by placing them so as to cancel out one another's debris. There are almost certainly more options like this!

I've already tried this method with a variety of climbers, this one is the first where it worked.
Ivan Fomichev

codeholic
Moderator

Posts: 1141
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

### Re: (27,1)c/72 caterpillar challenge

Could there be something that deflects the gliders back around to the front again?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik

Posts: 3301
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

### Re: (27,1)c/72 caterpillar challenge

No. 27/72 is greater than 1/4.

In fact, if built, this spaceship will be the fastest oblique spaceship, superseding the waterbear.

EDIT: 5 different climber pairs:
`x = 452, y = 125, rule = B3/S2362bobo\$62b2o\$49bobo11bo85bobo97bobo97bobo97bobo\$49b2o98b2o77bo20b2o98b2o98b2o\$50bo99bo76bo22bo99bo99bo\$227b3o\$163bo\$162bo162bo\$162b3o159bo\$324b3o\$426bo\$424b2o\$425b2o33\$43bobo\$43b2o\$30bobo11bo85bobo97bobo97bobo97bobo\$30b2o98b2o77bo20b2o98b2o98b2o\$31bo99bo76bo22bo99bo99bo\$208b3o\$144bo\$143bo162bo\$143b3o159bo\$305b3o\$407bo\$405b2o\$406b2o33\$24bobo\$24b2o\$11bobo11bo85bobo97bobo97bobo97bobo\$11b2o98b2o77bo20b2o98b2o98b2o\$12bo99bo76bo22bo99bo99bo\$189b3o\$125bo\$124bo162bo\$124b3o159bo\$286b3o\$388bo\$386b2o\$387b2o4\$389bo\$387b2ob2o\$287bo99b2o\$286b3o97bobo3bo\$285bo2b2o\$186bo98bob2o102bo\$15bo170b2o99b2ob2o96b3o\$14b3o171bo95bo5bo97b2o\$13b5o168b2o97bo4bo102b2o\$13b2ob3o166bobo98bo2bo\$14b2ob2o167bo101bo103bobo\$3o13bo83b3o12b3o66bobo13b3o80bo16b3o89b2o6b3o\$bo99bo16bo63bo18bo80bo18bo99bo\$b3o97b3o11bo2bo63bobo16b3o78b3o16b3o97b3o\$116b2o266bo\$116b2o264b2o\$115bo2bo264b2o\$115bo\$117b2o!`
Ivan Fomichev

codeholic
Moderator

Posts: 1141
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

### Re: (27,1)c/72 caterpillar challenge

codeholic wrote:I believe that there is a helix with period factor 3 and about 15 spaceships per coil. It's already too late today, but I'll look into it tomorrow.

And here it is.
`x = 239, y = 399, rule = B3/S23200bo\$170b3o13bo12b3o\$170bo2bo11b3o4b3o4bob2o\$170bo7b3o4bob2o3bo2bo4b3o2b3o\$170bo3bo3bo2bo4b3o3bo7b2o3bo\$170bo3bo3bo7b2o4bo3bo9bo\$170bo7bo3bo9bo3bo\$171bobo4bo3bo9bo\$178bo14bobo\$179bobo4\$170bo\$169b3o15bo\$169bob2o13b3o12bo\$170b3o7bo4b2obo4b3o4b3o\$170b3o6b3o3b3o4bo2bo3b2obo4b3o7b3o\$170b3o5b2obo4b2o7bo3b3o4bo2bo7bo2bo\$162b3o5b2o6b3o10bo3bo4b2o7bo7bo\$162bo2bo12b3o10bo3bo9bo3bo7bo3bo\$162bo16b2o14bo9bo3bo7bo3bo\$162bo3bo25bobo14bo7bo\$162bo3bo39bobo9bobo\$162bo\$163bobo2\$203bo\$173b3o13bo12b3o7bo11bo\$173bo2bo11b3o4b3o4bob2o5b3o9b3o\$173bo7b3o4bob2o3bo2bo4b3o4b2obo9bob2o\$173bo3bo3bo2bo4b3o3bo7b2o5b3o11b3o\$173bo3bo3bo7b2o4bo3bo10b3o11b2o\$173bo7bo3bo9bo3bo10b3o\$174bobo4bo3bo9bo15b2o\$181bo14bobo\$182bobo4\$173bo\$172b3o15bo\$172bob2o13b3o12bo\$173b3o7bo4b2obo4b3o4b3o\$173b3o6b3o3b3o4bo2bo3b2obo4b3o7b3o\$173b3o5b2obo4b2o7bo3b3o4bo2bo7bo2bo\$165b3o5b2o6b3o10bo3bo4b2o7bo7bo\$165bo2bo12b3o10bo3bo9bo3bo7bo3bo\$165bo16b2o14bo9bo3bo7bo3bo\$165bo3bo25bobo14bo7bo\$165bo3bo39bobo9bobo\$165bo\$166bobo2\$206bo\$176b3o13bo12b3o7bo11bo\$144bobo29bo2bo11b3o4b3o4bob2o5b3o9b3o\$144b2o30bo7b3o4bob2o3bo2bo4b3o4b2obo9bob2o\$145bo30bo3bo3bo2bo4b3o3bo7b2o5b3o11b3o\$176bo3bo3bo7b2o4bo3bo10b3o11b2o\$176bo7bo3bo9bo3bo10b3o\$177bobo4bo3bo9bo15b2o\$184bo14bobo\$185bobo4\$176bo\$175b3o15bo\$175bob2o13b3o12bo\$176b3o7bo4b2obo4b3o4b3o\$176b3o6b3o3b3o4bo2bo3b2obo4b3o7b3o\$176b3o5b2obo4b2o7bo3b3o4bo2bo7bo2bo\$168b3o5b2o6b3o10bo3bo4b2o7bo7bo\$168bo2bo12b3o10bo3bo9bo3bo7bo3bo\$168bo16b2o14bo9bo3bo7bo3bo\$168bo3bo25bobo14bo7bo\$168bo3bo39bobo9bobo\$168bo\$169bobo2\$209bo\$179b3o13bo12b3o7bo11bo\$179bo2bo11b3o4b3o4bob2o5b3o9b3o\$179bo7b3o4bob2o3bo2bo4b3o4b2obo9bob2o\$179bo3bo3bo2bo4b3o3bo7b2o5b3o11b3o\$179bo3bo3bo7b2o4bo3bo10b3o11b2o\$179bo7bo3bo9bo3bo10b3o\$180bobo4bo3bo9bo15b2o\$187bo14bobo\$188bobo4\$179bo\$178b3o15bo\$178bob2o13b3o12bo\$179b3o7bo4b2obo4b3o4b3o\$179b3o6b3o3b3o4bo2bo3b2obo4b3o7b3o\$179b3o5b2obo4b2o7bo3b3o4bo2bo7bo2bo\$171b3o5b2o6b3o10bo3bo4b2o7bo7bo\$125bobo43bo2bo12b3o10bo3bo9bo3bo7bo3bo\$125b2o44bo16b2o14bo9bo3bo7bo3bo\$126bo44bo3bo25bobo14bo7bo\$171bo3bo39bobo9bobo\$171bo\$172bobo2\$212bo\$182b3o13bo12b3o7bo11bo\$182bo2bo11b3o4b3o4bob2o5b3o9b3o\$182bo7b3o4bob2o3bo2bo4b3o4b2obo9bob2o\$182bo3bo3bo2bo4b3o3bo7b2o5b3o11b3o\$182bo3bo3bo7b2o4bo3bo10b3o11b2o\$182bo7bo3bo9bo3bo10b3o\$183bobo4bo3bo9bo15b2o\$190bo14bobo\$191bobo4\$182bo\$181b3o15bo\$181bob2o13b3o12bo\$182b3o7bo4b2obo4b3o4b3o\$182b3o6b3o3b3o4bo2bo3b2obo4b3o7b3o\$182b3o5b2obo4b2o7bo3b3o4bo2bo7bo2bo\$174b3o5b2o6b3o10bo3bo4b2o7bo7bo\$174bo2bo12b3o10bo3bo9bo3bo7bo3bo\$174bo16b2o14bo9bo3bo7bo3bo\$174bo3bo25bobo14bo7bo\$174bo3bo39bobo9bobo\$174bo\$175bobo2\$215bo\$185b3o13bo12b3o7bo11bo\$185bo2bo11b3o4b3o4bob2o5b3o9b3o\$185bo7b3o4bob2o3bo2bo4b3o4b2obo9bob2o\$185bo3bo3bo2bo4b3o3bo7b2o5b3o11b3o\$185bo3bo3bo7b2o4bo3bo10b3o11b2o\$185bo7bo3bo9bo3bo10b3o\$186bobo4bo3bo9bo15b2o\$193bo14bobo\$194bobo2\$106bobo\$106b2o\$107bo77bo\$184b3o15bo\$184bob2o13b3o12bo\$185b3o7bo4b2obo4b3o4b3o\$185b3o6b3o3b3o4bo2bo3b2obo4b3o7b3o\$185b3o5b2obo4b2o7bo3b3o4bo2bo7bo2bo\$177b3o5b2o6b3o10bo3bo4b2o7bo7bo\$177bo2bo12b3o10bo3bo9bo3bo7bo3bo\$177bo16b2o14bo9bo3bo7bo3bo\$177bo3bo25bobo14bo7bo\$177bo3bo39bobo9bobo\$177bo\$178bobo31\$87bobo\$87b2o\$88bo43\$68bobo\$68b2o\$69bo43\$49bobo\$49b2o\$50bo43\$30bobo\$30b2o\$31bo43\$11bobo\$11b2o\$12bo23\$3o\$bo\$b3o!`

Any ideas for fanout mechanisms?
Ivan Fomichev

codeholic
Moderator

Posts: 1141
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

### Re: (27,1)c/72 caterpillar challenge

Here's a rake that runs on a pair of tracks.

`x = 450, y = 956, rule = B3/S23413bobo\$413b2o\$414bo3\$389bo\$388bo\$388b3o5\$447bobo\$426bo20b2o\$425bo22bo\$425b3o30\$394bobo\$394b2o\$395bo3\$370bo\$369bo\$369b3o5\$428bobo\$407bo20b2o\$406bo22bo\$406b3o30\$375bobo\$375b2o\$376bo3\$351bo\$350bo\$350b3o5\$409bobo\$388bo20b2o\$387bo22bo\$387b3o30\$356bobo\$356b2o\$357bo3\$332bo\$331bo\$331b3o5\$390bobo\$369bo20b2o\$368bo22bo\$368b3o30\$337bobo\$337b2o\$338bo3\$313bo\$312bo\$312b3o5\$371bobo\$350bo20b2o\$349bo22bo\$349b3o30\$318bobo\$318b2o\$319bo3\$294bo\$293bo\$293b3o5\$352bobo\$331bo20b2o\$330bo22bo\$330b3o30\$299bobo\$299b2o\$300bo3\$275bo\$274bo\$274b3o5\$333bobo\$312bo20b2o\$311bo22bo\$311b3o30\$280bobo\$280b2o\$281bo3\$256bo\$255bo\$255b3o5\$314bobo\$293bo20b2o\$292bo22bo\$292b3o30\$261bobo\$261b2o\$262bo3\$237bo\$236bo\$236b3o5\$295bobo\$274bo20b2o\$273bo22bo\$273b3o30\$242bobo\$242b2o\$243bo3\$218bo\$217bo\$217b3o5\$276bobo\$255bo20b2o\$254bo22bo\$254b3o30\$223bobo\$223b2o\$224bo3\$199bo\$198bo\$198b3o5\$257bobo\$236bo20b2o\$235bo22bo\$235b3o30\$204bobo\$204b2o\$205bo3\$180bo\$179bo\$179b3o5\$238bobo\$217bo20b2o\$216bo22bo\$216b3o30\$185bobo\$185b2o\$186bo3\$161bo\$160bo\$160b3o5\$219bobo\$198bo20b2o\$197bo22bo\$197b3o30\$166bobo\$166b2o\$167bo3\$142bo\$141bo\$141b3o5\$200bobo\$179bo20b2o\$178bo22bo\$178b3o30\$147bobo\$147b2o\$148bo3\$123bo\$122bo\$122b3o5\$181bobo\$160bo20b2o\$159bo22bo\$159b3o30\$128bobo\$128b2o\$129bo3\$104bo\$103bo\$103b3o5\$162bobo\$141bo20b2o\$140bo22bo\$140b3o30\$109bobo\$109b2o\$110bo3\$85bo\$84bo\$84b3o5\$143bobo\$122bo20b2o\$121bo22bo\$121b3o\$85bo\$84b3o\$83bo2b2o\$83bob2o\$85b2ob2o\$82bo5bo\$83bo4bo\$84bo2bo\$86bo35bo\$81bo16b3o20b3o\$80bo18bo20bo2b2o\$80b3o16b3o18bob2o\$122b2ob2o\$119bo5bo\$120bo4bo10bobo\$121bo2bo9bo4bo\$123bo10bo4bo\$118bo19b2o\$117bo\$117b3o14b2o2b2o\$134b2o2b2o\$92bobo3b2o35bob3o\$92bobo3b2o38bo\$92bo2bob2o6bo31bo\$92b3o2bo6bobo\$92b2o4bo5bobo\$79bo13b2o2b3o5bo\$72b3o2bobo2b3o9b2obo12bo\$73b3o7b2o9bob2o6bo4bobo\$75bo19bobo5bob2o2bobo\$77bobo17bo4b2ob2o3bo\$77b2o18b2o6bo\$106bobo\$105bo2bo7b2o28bo\$106b2o7bo2bo10b2o14b3o\$112b2o4b4o7b2o7b2o5b4o\$112bobo2bo2b2o10b3o4b3o6b2o\$112bobobo16bo5b3o7b2o\$113bo20bo10b5o\$139b3ob6o\$139bob4ob2o\$142bo8\$86bobo\$86b2o\$87bo3\$62bo\$61bo\$61b3o5\$120bobo\$99bo20b2o\$98bo22bo\$98b3o7bo\$107bobo\$107bobo\$108bo9\$134bo\$132bobo\$133b2o13\$107bo\$106bobo\$106bobo\$67bobo37bo\$67b2o\$68bo3\$43bo\$42bo\$42b3o5\$101bobo\$80bo20b2o\$79bo22bo\$79b3o9\$106bo\$105bobo\$105bobo\$106bo44bo\$149bobo\$150b2o7\$70bo\$69bobo\$68bo3bo\$69bo2bo\$69bo2bo\$70bobo3\$88bo\$48bobo36b3o\$48b2o36b2o2bo\$49bo36b2ob2o\$89b3o\$87bob2o\$24bo44b2o15bo2bo\$23bo45b2o18bo15bo\$23bo52bo9bobo15bobo\$24bo3bo46bob2o8bo16bobo\$28bo43b3o19bo10bo\$24b2o3bo41b5o17b3o\$24bo3b2o40bo2bo2b3o2bo10bobobo\$24bo3bo41bobo4bo2bobo9bo3bo\$25bo2bo42bo3b2o3bobo7b2o5b2o\$26b3o47bo4bo7bo4bo4bo\$27bobo43b3o12b3o2bobo2b3o\$28b2o43b2o14bo4bo4bo\$90b3o4b2o\$41bobo50b2o\$39bo4bo47bo5bo\$30b2o7bo4bo48b2o\$30b2o11b2o49bo2bo\$94b2o\$39b2o2b2o\$39b2o2b2o\$20bo19bob3o\$19bo23bo\$19b3o20bo125bo\$166bobo\$167b2o3\$37b2o39bobo\$35bob2o18bo20b2o\$37b2o17bo22bo\$34b2obo18b3o\$35b4obo8bo\$40b2o6bobo\$40b2o6bo2bo\$41b3o5b3o\$16b2o24b3o6b3o\$37b2o13b2o\$37b2o8bo\$15bobo27bobo\$16bo28bobo21\$25bobo\$25b2o\$26bo3\$bo\$o\$3o182bo\$183bobo\$184b2o3\$59bobo\$38bo20b2o\$37bo22bo\$37b3o!`
Nico Brown

glider_rider

Posts: 88
Joined: February 20th, 2013, 5:41 pm
Location: CA

### Re: (27,1)c/72 caterpillar challenge

You beat me to one. I have this which isn't all the way clean.
`x = 173, y = 323, rule = B3/S23158bo\$157bo\$157b3o3\$122bo49bo\$122bobo45b2o\$122b2o47b2o3\$135bobo\$135b2o\$136bo33\$139bo\$138bo\$138b3o3\$103bo49bo\$103bobo45b2o\$103b2o47b2o3\$116bobo\$116b2o\$117bo33\$120bo\$119bo\$119b3o3\$84bo49bo\$84bobo45b2o\$84b2o47b2o3\$97bobo\$97b2o\$98bo33\$101bo\$100bo\$100b3o3\$65bo49bo\$65bobo45b2o\$65b2o47b2o3\$78bobo\$78b2o\$79bo11\$91bo\$90bobo12bobo\$89bo3bo11bo2bo\$90bo2bo10bo3b2o\$90bo2bo10bo\$91bobo\$104bo2b3o\$104b2o\$54bo51b3o\$53b3o13bo36b3o\$53b3o12b3o\$67b5o\$53b4o10b2ob3o\$52b5o11b2ob2o\$52b2obo14bo19b2o\$90b2o\$97bo\$96bob2o5b2o\$93b3o11bo\$92b5o8b2o\$53b2o36bo2bo2b3o2bo3b2o\$53b2o36bobo4bo2bobo2bo9bo\$60bo31bo3b2o3bobobo9b3o\$59bobo6b2o27bo4b2obob2o5b5o\$59bobo6b2o24b3o12bo4b3ob2o\$60bo14b2o17b2o9bob4o4bo2bo\$57b3o5bo6b5o32bobo3b3o\$55b2obo5bobo3bo4bo34bo2bo\$55b3obo4bobo3bo3b3o34b2o\$59b2o4bo3bo4b4o2bo\$58bo3bo6bobo2bo2b3obo\$58b2ob2o7bo3b3o2bobo\$60b3o12bo4bo\$72bobo\$72bobo8\$78bo\$77bo\$77b3o3\$42bo49bo\$42bobo38b2o5b2o\$42b2o39bobo5b2o\$84bo2\$55bobo\$55b2o\$56bo21\$82b2o\$82bobo\$83bo10\$59bo\$58bo\$58b3o3\$23bo49bo\$23bobo45b2o\$23b2o47b2o3\$36bobo\$36b2o\$37bo3\$81b2o\$81bobo\$82bo\$55bo\$55b2o\$57bo12b3o\$55b2o12bo2bo\$54bobo12b2o2bo\$55bo16b2o\$53bobo\$51bo17bo\$51bobo13b2o\$68b2o4\$12bo\$11b3o13bo\$11b3o12b3o\$25b5o21b2o\$11b4o10b2ob3o20b3o\$10b5o11b2ob2o23bo\$10b2obo14bo24bo7b2o2\$47b3o11b2o\$47b2ob2o9b2o\$47b2obo3b2o5b2o3bob3o5bobo\$49bo4b2o9bobo3bo5b2o\$11b2o55bo2bo5bo\$11b2o53bo2b2obo\$18bo47bobo3bo\$17bobo6b2o38bo\$17bobo6b2o44bo\$18bo14b2o\$15b3o5bo6b5o32b2ob2o\$13b2obo5bobo3bo4bo34b3o\$13b3obo4bobo3bo3b3o34bobo\$17b2o4bo3bo4b4o2bo31b2o\$16bo3bo6bobo2bo2b3obo\$16b2ob2o7bo3b3o2bobo\$18b3o12bo4bo\$30bobo\$30bobo8\$36bo\$35bo\$35b3o3\$o49bo\$obo45b2o\$2o47b2o3\$13bobo\$13b2o\$14bo!`
Physics: sophistication from simplicity.

biggiemac

Posts: 504
Joined: September 17th, 2014, 12:21 am
Location: California, USA

### Re: (27,1)c/72 caterpillar challenge

The two main clusters of the waterbear both had the property that they could shoot a glider, leave a still life, or do nothing, each with the same number of climbers burning on each track. The forward cluster also was able to shoot closely packed forward glider streams for helix syntheses. Then there was the challenge of making the LWSS to meet the syntheses, and making everything at x2 (which just occurred naturally). x3 can happen naturally, and we already have examples of the building blocks. I think once a good enough option is apparent I might try to throw together a proof-of-concept front end.

My guess is this will be about 5 times bigger than the waterbear in the end, and similarly constructed.
Physics: sophistication from simplicity.

biggiemac

Posts: 504
Joined: September 17th, 2014, 12:21 am
Location: California, USA

### Re: (27,1)c/72 caterpillar challenge

biggiemac wrote:You beat me to one. I have this which isn't all the way clean.

Natural MWSS!

Also, how likely is it that a spaceship would result from this reaction, does it look viable?
Kiran Linsuain

Kiran

Posts: 284
Joined: March 4th, 2015, 6:48 pm

### Re: (27,1)c/72 caterpillar challenge

8 glider streams can support frontrakes, backrakes, and delays.

`x = 2001, y = 1137, rule = B3/S2329\$671bobo\$671b2o660bobo\$658bobo11bo660b2o\$658b2o660bobo11bo\$659bo660b2o\$1321bo5\$519bo\$519bobo659bo\$519b2o113bobo544bobo\$634b2o545b2o113bobo\$621bobo11bo660b2o\$621b2o660bobo11bo\$494bobo125bo660b2o\$494b2o660bobo125bo\$495bo660b2o\$1157bo3\$553bo\$553bobo659bo\$531bobo19b2o660bobo\$531b2o660bobo19b2o\$532bo660b2o\$1194bo18\$652bobo\$652b2o660bobo\$639bobo11bo660b2o\$639b2o660bobo11bo\$640bo660b2o\$1302bo5\$500bo\$500bobo659bo\$500b2o113bobo544bobo\$615b2o545b2o113bobo\$602bobo11bo660b2o\$602b2o660bobo11bo\$475bobo125bo660b2o\$475b2o660bobo125bo\$476bo660b2o\$1138bo3\$534bo\$534bobo659bo\$512bobo19b2o660bobo\$512b2o660bobo19b2o\$513bo660b2o\$1175bo18\$633bobo\$633b2o660bobo\$620bobo11bo660b2o\$620b2o660bobo11bo\$621bo660b2o\$1283bo5\$481bo\$481bobo659bo\$481b2o113bobo544bobo\$596b2o545b2o113bobo\$583bobo11bo660b2o\$583b2o660bobo11bo\$456bobo125bo660b2o\$456b2o660bobo125bo\$457bo660b2o\$1119bo3\$515bo\$515bobo659bo\$493bobo19b2o660bobo\$493b2o660bobo19b2o\$494bo660b2o\$1156bo18\$614bobo\$614b2o660bobo\$601bobo11bo660b2o\$601b2o660bobo11bo\$602bo660b2o\$1264bo5\$462bo\$462bobo659bo\$462b2o113bobo544bobo\$577b2o545b2o113bobo\$564bobo11bo660b2o\$564b2o660bobo11bo\$437bobo125bo660b2o\$437b2o660bobo125bo\$438bo660b2o\$1100bo\$1855bobo\$1855b2o\$496bo1345bobo11bo\$496bobo659bo683b2o\$474bobo19b2o660bobo682bo\$474b2o660bobo19b2o\$475bo660b2o\$1137bo3\$1703bo\$1703bobo\$1703b2o113bobo\$1818b2o\$1805bobo11bo\$1805b2o\$1678bobo125bo\$1678b2o\$1679bo4\$1737bo\$1737bobo\$1715bobo19b2o\$595bobo1117b2o\$595b2o660bobo456bo\$582bobo11bo660b2o\$582b2o660bobo11bo\$583bo660b2o\$1245bo5\$443bo\$443bobo659bo\$443b2o113bobo544bobo\$558b2o545b2o113bobo\$545bobo11bo660b2o\$545b2o660bobo11bo\$418bobo125bo660b2o\$418b2o660bobo125bo\$419bo660b2o\$1081bo\$1836bobo\$1836b2o\$477bo1345bobo11bo\$477bobo659bo683b2o\$455bobo19b2o660bobo682bo\$455b2o660bobo19b2o\$456bo660b2o\$1118bo3\$1684bo\$1684bobo\$1684b2o113bobo\$1799b2o\$1786bobo11bo\$1786b2o\$1659bobo125bo\$1659b2o\$1660bo4\$1718bo\$1718bobo\$1696bobo19b2o\$576bobo1117b2o\$576b2o660bobo456bo\$563bobo11bo660b2o\$563b2o660bobo11bo\$564bo660b2o\$1226bo5\$424bo\$424bobo659bo\$424b2o113bobo544bobo\$539b2o545b2o113bobo\$526bobo11bo660b2o\$526b2o660bobo11bo\$399bobo125bo660b2o\$399b2o660bobo125bo\$400bo660b2o\$1062bo\$1817bobo\$1817b2o\$458bo1345bobo11bo\$458bobo659bo683b2o\$436bobo19b2o660bobo682bo\$436b2o660bobo19b2o\$437bo660b2o\$1099bo3\$1665bo\$1665bobo\$1665b2o113bobo\$1780b2o\$1767bobo11bo\$1767b2o\$1640bobo125bo\$1640b2o\$1641bo4\$1699bo\$1699bobo\$1677bobo19b2o\$557bobo1117b2o\$557b2o660bobo456bo\$544bobo11bo660b2o\$544b2o660bobo11bo\$545bo660b2o\$1207bo5\$405bo\$405bobo659bo\$405b2o113bobo544bobo\$520b2o545b2o113bobo\$507bobo11bo660b2o\$507b2o660bobo11bo\$380bobo125bo660b2o\$380b2o660bobo125bo\$381bo660b2o\$1043bo\$1798bobo\$1798b2o\$439bo1345bobo11bo\$439bobo659bo683b2o\$417bobo19b2o660bobo682bo\$417b2o660bobo19b2o\$418bo660b2o\$1080bo3\$1646bo\$1646bobo\$1646b2o113bobo\$1761b2o\$1748bobo11bo\$1748b2o\$1621bobo125bo\$1621b2o\$1622bo4\$1680bo\$1680bobo\$1658bobo19b2o\$538bobo1117b2o\$538b2o660bobo456bo\$525bobo11bo660b2o\$525b2o660bobo11bo\$526bo660b2o\$1188bo5\$386bo\$386bobo659bo\$386b2o113bobo544bobo\$501b2o545b2o113bobo\$488bobo11bo660b2o\$488b2o660bobo11bo\$361bobo125bo660b2o\$361b2o660bobo125bo\$362bo660b2o\$1024bo\$1779bobo\$1779b2o\$420bo1345bobo11bo\$420bobo659bo683b2o\$398bobo19b2o660bobo682bo\$398b2o660bobo19b2o\$399bo660b2o\$1061bo3\$1627bo\$1627bobo\$1627b2o113bobo\$1742b2o\$1729bobo11bo\$1729b2o\$1602bobo125bo\$1602b2o\$1603bo4\$1661bo\$1661bobo\$1639bobo19b2o\$519bobo1117b2o\$519b2o660bobo456bo\$506bobo11bo660b2o\$506b2o660bobo11bo\$507bo660b2o\$1169bo5\$367bo\$367bobo659bo\$367b2o113bobo544bobo\$482b2o545b2o113bobo\$469bobo11bo660b2o\$469b2o660bobo11bo\$342bobo125bo660b2o\$342b2o660bobo125bo\$343bo660b2o\$1005bo\$1760bobo\$1760b2o\$401bo1345bobo11bo\$401bobo659bo683b2o\$379bobo19b2o660bobo682bo\$379b2o660bobo19b2o\$380bo660b2o\$1042bo3\$1608bo\$1608bobo\$1608b2o113bobo\$1723b2o\$1710bobo11bo\$1710b2o\$1583bobo125bo\$1583b2o\$1584bo4\$1642bo\$1642bobo\$1620bobo19b2o\$500bobo1117b2o\$500b2o660bobo456bo\$487bobo11bo660b2o\$487b2o660bobo11bo\$488bo660b2o\$1150bo5\$348bo\$348bobo659bo\$348b2o113bobo544bobo\$463b2o545b2o113bobo\$450bobo11bo660b2o\$450b2o660bobo11bo\$323bobo125bo660b2o\$323b2o660bobo125bo\$324bo660b2o\$986bo\$1741bobo\$1741b2o\$382bo1345bobo11bo\$382bobo659bo683b2o\$360bobo19b2o660bobo682bo\$360b2o660bobo19b2o\$361bo660b2o\$1023bo3\$1589bo\$1589bobo\$1589b2o113bobo\$1704b2o\$1691bobo11bo\$1691b2o\$1564bobo125bo\$1564b2o\$1565bo4\$1623bo\$1623bobo\$1601bobo19b2o\$481bobo1117b2o\$481b2o660bobo456bo\$468bobo11bo660b2o\$468b2o660bobo11bo\$469bo660b2o\$1131bo5\$329bo\$329bobo659bo\$329b2o113bobo544bobo\$444b2o545b2o113bobo\$431bobo11bo660b2o\$431b2o660bobo11bo\$304bobo125bo660b2o\$304b2o660bobo125bo\$305bo660b2o\$967bo\$1722bobo\$1722b2o\$363bo1345bobo11bo\$363bobo659bo683b2o\$341bobo19b2o660bobo682bo\$341b2o660bobo19b2o\$342bo660b2o\$1004bo3\$1570bo\$1570bobo\$1570b2o113bobo\$1685b2o\$1672bobo11bo\$1672b2o\$1545bobo125bo\$1545b2o\$1546bo4\$1604bo\$1604bobo\$1582bobo19b2o\$462bobo1117b2o\$462b2o660bobo456bo\$449bobo11bo660b2o\$449b2o660bobo11bo\$450bo660b2o\$1112bo5\$310bo\$310bobo659bo\$310b2o113bobo544bobo\$425b2o545b2o113bobo\$412bobo11bo660b2o\$412b2o660bobo11bo\$285bobo125bo660b2o\$285b2o660bobo125bo\$286bo660b2o\$948bo\$1703bobo\$1703b2o\$344bo1345bobo11bo\$344bobo659bo683b2o\$322bobo19b2o660bobo682bo\$322b2o660bobo19b2o\$323bo660b2o\$985bo3\$1551bo\$1551bobo\$1551b2o113bobo\$1666b2o\$1653bobo11bo\$1653b2o\$1526bobo125bo\$1526b2o\$1527bo4\$1585bo\$1585bobo\$1563bobo19b2o\$443bobo1117b2o\$443b2o660bobo456bo\$430bobo11bo660b2o\$430b2o660bobo11bo\$431bo660b2o\$1093bo5\$291bo\$291bobo659bo\$291b2o113bobo544bobo\$406b2o545b2o113bobo\$393bobo11bo660b2o\$393b2o660bobo11bo\$266bobo125bo660b2o\$266b2o660bobo125bo\$267bo660b2o\$929bo\$1684bobo\$1684b2o\$325bo1345bobo11bo\$325bobo659bo683b2o\$303bobo19b2o660bobo682bo\$303b2o660bobo19b2o\$304bo660b2o\$966bo3\$1532bo\$1532bobo\$1532b2o113bobo\$1647b2o\$1634bobo11bo\$1634b2o\$1507bobo125bo\$1507b2o\$1508bo4\$1566bo\$1566bobo\$1544bobo19b2o\$424bobo1117b2o\$424b2o660bobo456bo\$411bobo11bo660b2o\$411b2o660bobo11bo\$412bo660b2o\$1074bo5\$272bo\$272bobo659bo\$272b2o113bobo544bobo\$387b2o545b2o113bobo\$374bobo11bo660b2o\$374b2o660bobo11bo\$247bobo125bo660b2o\$247b2o660bobo125bo\$248bo660b2o\$910bo\$1665bobo\$1665b2o\$306bo1345bobo11bo\$306bobo659bo683b2o\$284bobo19b2o660bobo682bo\$284b2o660bobo19b2o\$285bo660b2o\$947bo3\$1513bo\$1513bobo\$1513b2o113bobo\$1628b2o\$1615bobo11bo\$1615b2o\$1488bobo125bo\$1488b2o\$1489bo4\$1547bo\$1547bobo\$1525bobo19b2o\$405bobo1117b2o\$405b2o660bobo456bo\$392bobo11bo660b2o\$392b2o660bobo11bo\$393bo660b2o\$1055bo5\$253bo\$253bobo659bo\$253b2o113bobo544bobo\$368b2o545b2o113bobo\$355bobo11bo660b2o\$355b2o660bobo11bo\$228bobo125bo660b2o\$228b2o660bobo125bo\$229bo660b2o\$891bo\$1646bobo\$1646b2o\$287bo1345bobo11bo\$287bobo659bo683b2o\$265bobo19b2o660bobo682bo\$265b2o660bobo19b2o\$266bo660b2o\$928bo3\$1494bo\$1494bobo\$1494b2o113bobo\$1609b2o\$1596bobo11bo\$1596b2o\$1469bobo125bo\$1469b2o\$1470bo4\$1528bo\$1528bobo\$1506bobo19b2o\$386bobo1117b2o\$386b2o660bobo456bo\$373bobo11bo660b2o\$373b2o660bobo11bo\$374bo660b2o\$1036bo5\$234bo\$234bobo659bo\$234b2o113bobo544bobo\$349b2o545b2o113bobo\$336bobo11bo660b2o\$336b2o660bobo11bo\$209bobo125bo660b2o\$209b2o660bobo125bo\$210bo660b2o\$872bo\$1627bobo\$1627b2o\$268bo1345bobo11bo\$268bobo659bo683b2o\$246bobo19b2o660bobo682bo\$246b2o660bobo19b2o\$247bo660b2o\$909bo3\$1475bo\$1475bobo\$1475b2o113bobo\$1590b2o\$1577bobo11bo\$1577b2o\$1450bobo125bo\$1450b2o\$1451bo4\$1509bo\$1509bobo\$1487bobo19b2o\$367bobo1117b2o\$367b2o660bobo456bo\$354bobo11bo660b2o\$354b2o660bobo11bo\$355bo660b2o\$1017bo5\$215bo\$215bobo659bo\$215b2o113bobo544bobo\$330b2o545b2o113bobo\$317bobo11bo660b2o\$317b2o660bobo11bo\$190bobo125bo660b2o\$190b2o660bobo125bo\$191bo660b2o\$853bo\$1608bobo\$1608b2o\$249bo1345bobo11bo\$249bobo659bo683b2o\$227bobo19b2o660bobo682bo\$227b2o660bobo19b2o\$190b3o35bo660b2o\$190bo2bo658b3o35bo\$189bo3bo658bo2bo\$194bo656bo3bo\$190b3ob2o660bo599bo\$194bo657b3ob2o598bobo\$189bo3b2o661bo599b2o113bobo\$193bo657bo3b2o714b2o\$205bo21b3o625bo702bobo11bo\$204b3o20bo2bo636bo21b3o666b2o\$186bobo18bo18bo3bo635b3o20bo2bo538bobo125bo\$186b2o17b2o24bo616bobo18bo18bo3bo538b2o\$187bo18bo20b3ob2o615b2o17b2o24bo538bo\$231bo617bo18bo20b3ob2o\$226bo3b2o661bo\$230bo10bo2b2o642bo3b2o\$245b2o645bo10bo2b2o582bo\$244b2o661b2o581bobo\$223bobo680b2o560bobo19b2o\$223b2o15b2o2b2o102bobo534bobo580b2o\$224bo21bo101b2o535b2o15b2o2b2o102bobo456bo\$204b2o34b4o91bobo11bo536bo21bo101b2o\$197b2ob2o40bo2bo89b2o529b2o34b4o91bobo11bo\$197b2o2b3obo5bo124bo522b2ob2o40bo2bo89b2o\$197bo2bob2o6bobo646b2o2b3obo5bo124bo\$205bo4bobo646bo2bob2o6bobo\$179bo4bo4bo8bo2b3obo5bo655bo4bobo\$178bo2bo2bo3bobo25bo624bo4bo4bo8bo2b3obo5bo\$178bo2b2o5bobo9bo2b2o5b2o3bobo622bo2bo2bo3bobo25bo\$181b2o18bob2o3b2o2bo2bobo622bo2b2o5bobo9bo2b2o5b2o3bobo\$182b2o19bo4b2o6bo626b2o18bob2o3b2o2bo2bobo\$183b2o18b2o5b2obo97bobo530b2o19bo4b2o6bo\$211b3o97b2o532b2o18b2o5b2obo97bobo\$211bo2bo7b2o27b3o44bobo11bo560b3o97b2o\$212b2o8bobobo8b2o17bo43b2o573bo2bo7b2o27b3o44bobo11bo\$218b3o2b2o2bo7b3obo4b2o5bo3bo43bo574b2o8bobobo8b2o17bo43b2o\$217b2ob2ob2o2bo10b3o6bo4bo3bo623b3o2b2o2bo7b3obo4b2o5bo3bo43bo\$218bob2o16bo6bobo4bo3bo622b2ob2ob2o2bo10b3o6bo4bo3bo\$219bo28bo7bo623bob2o16bo6bobo4bo3bo\$245bobo7bo625bo28bo7bo670bobo\$245bo8bo652bobo7bo671b2o\$247b2o658bo8bo659bobo11bo\$909b2o90bo574b2o\$1000b3o574bo\$999b5o\$999b2ob3o\$1000b2ob2o\$986b3o13bo\$987bo\$192bo794b3o447bo\$192bobo659bo582bobo\$192b2o660bobo580b2o113bobo\$854b2o696b2o\$1539bobo11bo\$964bo574b2o\$167bobo793b3o446bobo125bo\$167b2o660bobo130b5o445b2o\$168bo660b2o131b2ob3o445bo\$830bo132b2ob2o\$949b3o13bo\$332bo617bo\$226bo104b3o616b3o518bo\$226bobo101b2o2bo553bo582bobo\$204bobo19b2o70bo31b5o553bobo558bobo19b2o\$204b2o8bo82b3o29bo2b2o532bobo19b2o559b2o\$205bo7bobo80b2o2bo16b2o11b2o534b2o8bo573bo\$213bobo80b2ob2o15bo2b2o546bo7bobo\$214bo84b3o14b2ob2o554bobo\$284bo12bob2o16bo2bo16bo538bo\$283b3o10bo2bo17b5o15b2o\$282b2o2bo12bo19b3o\$282bo3bo9bobo23bo15b2o\$282bob2o11bo40bo\$282b2o20bo17b2o\$303b3o16b2o\$302bobobo17bo\$239bo43bo18bo3bo15b2o14b2o\$240b2o41bo16b2o5b2o29b2o561bo\$239b2o49bo8bo4bo4bo592b2o\$289b3o6b3o2bobo2b3o13b2o575b2o\$288b5o6bo4bo4bo14b2o\$287b2o3b2o6b3o4b2o\$286b3o3b3o9b2o\$287b2o3b2o8bo5bo\$288b5o10b2o20bobo1242bobo\$289b3o12bo2bo17b2o660bobo580b2o\$290bo13b2o6bobo11bo660b2o568bobo11bo\$312b2o660bobo11bo568b2o\$290b2o21bo660b2o582bo\$290b2o683bo2\$213bo\$212bobo660bo\$212bobo659bobo\$173bo39bo660bobo541bo\$173bobo659bo39bo542bobo\$173b2o113bobo544bobo580b2o113bobo\$288b2o28b2o515b2o113bobo580b2o\$275bobo11bo27bo2b5o625b2o568bobo11bo\$275b2o39b2ob6o612bobo11bo568b2o\$148bobo125bo39b2obo3bo9bo603b2o454bobo125bo\$148b2o165b2o2b4obo9bo475bobo125bo454b2o\$149bo166b2o4bobobo7bo475b2o582bo\$317bo8bo484bo3\$207bo1244bo108bo\$207bobo659bo582bobo105b3o\$185bobo19b2o660bobo558bobo19b2o105b5o\$185b2o660bobo19b2o559b2o127b2ob3o\$186bo660b2o582bo128b2ob2o\$848bo697b3o13bo\$1547bo\$1547b3o5\$212bo1311bo\$211bobo660bo648b3o\$211bobo659bobo646b5o33b2o\$212bo43bo616bobo646b2ob3o32b2o\$257b2o615bo43bo604b2ob2o39b2o\$256b2o661b2o588b3o13bo20b2o16b5o\$918b2o590bo35b2o14bo4bo\$1510b3o40bo8bo3b3o\$1552bobo6bo4b4o2bo\$1551b2obo6bobo2bo2b3obo\$330bo1218b2o2bo8bo3b3o2bobo\$306bobo21bo1218b5o4bo8bo4bo\$176bo129b2o22bo637bobo450bo126bo4bo3bobo4bobo\$175b3o115bobo11bo530bo129b2o450b3o125bob3o4bobo4bobo\$174b5o114b2o31b3o3b3o502b3o115bobo11bo449b5o99b2o24b3o2bo3bo\$174b2ob3o114bo541b5o114b2o462b2ob3o98b2o25bo\$175b2ob2o150bo505b2ob3o114bo463b2ob2o105b2o19bo4bo\$177bo152bo506b2ob2o580bo86b2o16b5o19bo4bo\$330bo508bo669b2o14bo4bo24bo\$1516bo8bo3b3o\$193b3o1242b3o74bobo6bo4b4o2bo\$154bo37bo2bo659b3o541bo37bo2bo73b2obo6bobo2bo2b3obo\$154bobo39bo619bo37bo2bo541bobo39bo70b2o2bo8bo3b3o2bobo\$154b2o36b2o75bobo43b3o498bobo39bo540b2o36b2o73b5o4bo8bo4bo\$192b2o3bo71b2o43bo3bo497b2o36b2o75bobo503b2o3bo68bo4bo3bobo4bobo\$197bo58bobo11bo43b2o3bo534b2o3bo71b2o509bo68bob3o4bobo4bobo\$175b2o18bo60b2o601bo58bobo11bo487b2o18bo71b3o2bo3bo\$129b2o44b2o16b3o15bo45bo57bo521b2o18bo60b2o454b2o44b2o16b3o72bo\$129b2o51b2o9b2o15bobo107bo470b2o44b2o16b3o15bo45bo454b2o51b2o9b2o74bo4bo\$179b5o9bo16bobo105b2o471b2o51b2o9b2o15bobo549b5o9bo75bo4bo\$130b2o2b2o41bo4bo16b3o9bo108b2o519b5o9bo16bobo500b2o2b2o41bo4bo16b3o71bo\$130b2o3bo41bo3b3o136b2o470b2o2b2o41bo4bo16b3o9bo501b2o3bo41bo3b3o118bobo\$129b2o3b2o40bo4b4o2bo10bobobo117bobo469b2o3bo41bo3b3o528b2o3b2o40bo4b4o2bo10bobobo99b2o\$130b2ob2o41bobo2bo2b3obo9b2ob2o119bo468b2o3b2o40bo4b4o2bo10bobobo510b2ob2o41bobo2bo2b3obo9b2ob2o86bobo11bo\$131b2ob2o41bo3b3o2bobo7b2o5b2o116bo470b2ob2o41bobo2bo2b3obo9b2ob2o511b2ob2o41bo3b3o2bobo7b2o5b2o84b2o\$132bo2bo46bo4bo6bo2bo2bo2bo2bo586b2ob2o41bo3b3o2bobo7b2o5b2o510bo2bo46bo4bo6bo2bo2bo2bo2bo83bo\$132bo2bo43bobo12bobo2bobo2bobo587bo2bo46bo4bo6bo2bo2bo2bo2bo508bo2bo43bobo12bobo2bobo2bobo\$134b2o43bobo12bo3b3o2bo2bo115b2o5bo464bo2bo43bobo12bobo2bobo2bobo510b2o43bobo12bo3b3o2bo2bo\$196b2ob3o2bo117b2o5bo466b2o43bobo12bo3b3o2bo2bo572b2ob3o2bo\$198b2o3b2o124bo528b2ob3o2bo576b2o3b2o\$146bo2b2o50bo658b2o3b2o524bo2b2o50bo\$136b2o12b2o47b2o124b3o3b3o474bo2b2o50bo517b2o12b2o47b2o\$136b2o11b2o647b2o12b2o47b2o518b2o11b2o\$200b2o127bo468b2o11b2o632b2o63bobo\$145b2o2b2o159bo18bo532b2o526b2o2b2o114b2o\$151bo158bobo16bo477b2o2b2o583bo100bobo11bo\$145b4o161b2o501bo576b4o103b2o\$125bobo19bo2bo656b4o559bobo19bo2bo102bo\$125b2o146bo513bobo19bo2bo557b2o\$126bo147b2o511b2o146bo435bo\$273b2o513bo147b2o\$322b2o611b2o\$322b2o\$142b3o39bo1202b3o39bo\$145bo38bobo617b3o39bo543bo38bobo\$140b2o20bobo19b2o138bo482bo38bobo536b2o20bobo19b2o\$140b2o3bo16b2o123bobo33b3o476b2o20bobo19b2o537b2o3bo16b2o\$140b2ob5o7bo7bo123b2o33bo2bo476b2o3bo16b2o123bobo433b2ob5o7bo7bo\$142b2o10bobo117bobo11bo34b3o476b2ob5o7bo7bo123b2o436b2o10bobo\$154bo2bo116b2o47b3o478b2o10bobo117bobo11bo448bo2bo\$146bo3bo4bo119bo48b2o4bo485bo2bo116b2o453bo3bo4bo\$147bo2bo8bo168b3o477bo3bo4bo119bo454bo2bo8bo\$143b2o4bo7bobo168b3o478bo2bo8bo566b2o4bo7bobo\$143b2o7bo652b2o4bo7bobo566b2o7bo\$122bo30b2o650b2o7bo552bo30b2o\$122bo203b2o456bo30b2o550bo\$325bo3bo454bo\$324bo4bo\$250bobo71bob3o2b2o\$250b2o73bo586bobo\$237bobo11bo76bo583b2o\$237b2o89bo570bobo11bo\$238bo89bo570b2o\$900bo13\$131bo\$131bobo659bo\$131b2o660bobo\$291bo501b2o\$291bobo\$291b2o\$106bobo\$106b2o182bo477bobo\$107bo183b2o475b2o182bo\$290b2o477bo183b2o\$952b2o2\$165bo\$165bobo659bo\$143bobo19b2o660bobo\$143b2o123bobo534bobo19b2o\$144bo123b2o535b2o123bobo\$255bobo11bo536bo123b2o\$255b2o660bobo11bo\$256bo660b2o\$918bo7\$231bobo\$231b2o660bobo\$218bobo11bo660b2o\$218b2o660bobo11bo\$219bo660b2o\$881bo5\$259bo\$258b3o660bo\$257b5o658b3o\$257b2ob3o656b5o\$258b2ob2o656b2ob3o\$244b3o13bo659b2ob2o\$245bo660b3o13bo\$245b3o659bo\$112bo794b3o\$112bobo659bo\$112b2o660bobo\$774b2o\$222bo\$221b3o660bo\$87bobo130b5o33b2o623b3o\$87b2o131b2ob3o32b2o489bobo130b5o33b2o\$88bo132b2ob2o39b2o482b2o131b2ob3o32b2o\$207b3o13bo20b2o16b5o483bo132b2ob2o39b2o\$208bo35b2o14bo4bo603b3o13bo20b2o16b5o\$208b3o40bo8bo3b3o603bo35b2o14bo4bo\$146bo103bobo6bo4b4o2bo599b3o40bo8bo3b3o\$146bobo100b2obo6bobo2bo2b3obo536bo103bobo6bo4b4o2bo\$124bobo19b2o99b2o2bo8bo3b3o2bobo536bobo100b2obo6bobo2bo2b3obo\$124b2o121b5o4bo8bo4bo515bobo19b2o99b2o2bo8bo3b3o2bobo\$125bo120bo4bo3bobo4bobo521b2o121b5o4bo8bo4bo\$246bob3o4bobo4bobo522bo120bo4bo3bobo4bobo\$221b2o24b3o2bo3bo651bob3o4bobo4bobo\$221b2o25bo634b2o24b3o2bo3bo\$228b2o19bo4bo628b2o25bo\$207b2o16b5o19bo4bo635b2o19bo4bo\$207b2o14bo4bo24bo615b2o16b5o19bo4bo\$214bo8bo3b3o639b2o14bo4bo24bo\$213bobo6bo4b4o2bo642bo8bo3b3o\$212b2obo6bobo2bo2b3obo640bobo6bo4b4o2bo\$210b2o2bo8bo3b3o2bobo639b2obo6bobo2bo2b3obo\$210b5o4bo8bo4bo638b2o2bo8bo3b3o2bobo\$209bo4bo3bobo4bobo644b5o4bo8bo4bo\$209bob3o4bobo4bobo643bo4bo3bobo4bobo\$210b3o2bo3bo651bob3o4bobo4bobo\$211bo660b3o2bo3bo\$212bo4bo655bo\$212bo4bo656bo4bo\$216bo657bo4bo\$245bobo630bo\$245b2o660bobo\$232bobo11bo660b2o\$232b2o660bobo11bo\$233bo660b2o\$895bo5\$93bo\$93bobo659bo\$93b2o113bobo544bobo\$208b2o545b2o113bobo\$195bobo11bo660b2o\$195b2o660bobo11bo\$68bobo125bo660b2o\$68b2o660bobo125bo\$69bo660b2o\$731bo3\$127bo\$127bobo659bo\$105bobo19b2o660bobo\$105b2o660bobo19b2o\$106bo660b2o\$768bo!`

Here's two creating a single glider track.

`x = 1113, y = 2049, rule = B3/S2360\$973bobo\$973b2o\$960bobo11bo\$960b2o\$961bo6\$821bo\$821bobo\$821b2o113bobo\$936b2o\$923bobo11bo\$923b2o\$796bobo125bo\$796b2o\$797bo4\$855bo\$855bobo\$833bobo19b2o\$833b2o\$834bo19\$954bobo\$954b2o\$941bobo11bo\$941b2o\$942bo6\$802bo\$802bobo\$802b2o113bobo\$917b2o\$904bobo11bo\$904b2o\$777bobo125bo\$777b2o\$778bo4\$836bo\$836bobo\$814bobo19b2o\$814b2o\$815bo19\$935bobo\$935b2o\$922bobo11bo\$922b2o\$923bo6\$783bo\$783bobo\$783b2o113bobo\$898b2o\$885bobo11bo\$885b2o\$758bobo125bo\$758b2o\$759bo4\$817bo\$817bobo\$795bobo19b2o\$795b2o\$796bo19\$916bobo\$916b2o\$903bobo11bo\$903b2o\$904bo6\$764bo\$764bobo\$764b2o113bobo\$879b2o\$866bobo11bo\$866b2o\$739bobo125bo\$739b2o\$740bo4\$798bo\$798bobo\$776bobo19b2o\$776b2o\$777bo19\$897bobo\$897b2o\$884bobo11bo\$884b2o\$885bo6\$745bo\$745bobo\$745b2o113bobo\$860b2o\$847bobo11bo\$847b2o\$720bobo125bo\$720b2o\$721bo4\$779bo\$779bobo\$757bobo19b2o\$757b2o\$758bo19\$878bobo\$878b2o\$865bobo11bo\$865b2o\$866bo6\$726bo\$726bobo\$726b2o113bobo\$841b2o\$828bobo11bo\$828b2o\$701bobo125bo\$701b2o\$702bo4\$760bo\$760bobo\$738bobo19b2o\$738b2o\$739bo19\$859bobo\$859b2o\$846bobo11bo\$846b2o\$847bo6\$707bo\$707bobo\$707b2o113bobo\$822b2o\$809bobo11bo\$809b2o\$682bobo125bo\$682b2o\$683bo4\$741bo\$741bobo\$719bobo19b2o\$719b2o\$720bo19\$840bobo\$840b2o\$827bobo11bo\$827b2o\$828bo6\$688bo\$688bobo\$688b2o113bobo\$803b2o\$790bobo11bo\$790b2o\$663bobo125bo\$663b2o\$664bo4\$722bo\$722bobo\$700bobo19b2o\$700b2o\$701bo19\$821bobo\$821b2o\$808bobo11bo\$808b2o\$809bo6\$669bo\$669bobo\$669b2o113bobo\$784b2o\$771bobo11bo\$771b2o\$644bobo125bo\$644b2o\$645bo4\$703bo\$703bobo\$681bobo19b2o\$681b2o\$682bo19\$802bobo\$802b2o\$789bobo11bo\$789b2o\$790bo6\$650bo\$650bobo\$650b2o113bobo\$765b2o\$752bobo11bo\$752b2o\$625bobo125bo\$625b2o\$626bo4\$684bo\$684bobo\$662bobo19b2o\$662b2o\$663bo19\$783bobo\$783b2o\$770bobo11bo\$770b2o\$771bo6\$631bo\$631bobo\$631b2o113bobo\$746b2o\$733bobo11bo\$733b2o\$606bobo125bo\$606b2o\$607bo4\$665bo\$665bobo\$643bobo19b2o\$643b2o\$644bo19\$764bobo\$764b2o\$751bobo11bo\$751b2o\$752bo6\$612bo\$612bobo\$612b2o113bobo\$727b2o\$714bobo11bo\$714b2o\$587bobo125bo\$587b2o\$588bo4\$646bo\$646bobo\$624bobo19b2o\$624b2o\$625bo19\$745bobo\$745b2o\$732bobo11bo\$732b2o\$733bo6\$593bo\$593bobo\$593b2o113bobo\$708b2o\$695bobo11bo\$695b2o\$568bobo125bo\$568b2o\$569bo4\$627bo\$627bobo\$605bobo19b2o\$605b2o\$606bo19\$726bobo\$726b2o\$713bobo11bo\$713b2o\$714bo6\$574bo\$574bobo\$574b2o113bobo\$689b2o\$676bobo11bo\$676b2o\$549bobo125bo\$549b2o\$550bo4\$608bo\$608bobo\$586bobo19b2o\$586b2o\$587bo19\$707bobo\$707b2o\$694bobo11bo\$694b2o\$695bo6\$555bo\$555bobo\$555b2o113bobo\$670b2o\$657bobo11bo\$657b2o\$530bobo125bo\$530b2o\$531bo4\$589bo\$589bobo\$567bobo19b2o\$567b2o\$568bo19\$688bobo\$688b2o\$675bobo11bo\$675b2o\$676bo6\$536bo\$536bobo\$536b2o113bobo\$651b2o\$638bobo11bo\$638b2o\$511bobo125bo\$511b2o\$512bo4\$570bo\$570bobo\$548bobo19b2o\$548b2o\$549bo19\$669bobo\$669b2o\$656bobo11bo\$656b2o\$657bo6\$517bo\$517bobo\$517b2o113bobo\$632b2o\$619bobo11bo\$619b2o\$492bobo125bo\$492b2o\$493bo4\$551bo\$551bobo\$529bobo19b2o\$529b2o\$530bo19\$650bobo\$650b2o\$637bobo11bo\$637b2o\$638bo6\$498bo\$498bobo\$498b2o113bobo\$613b2o\$600bobo11bo\$600b2o\$473bobo125bo\$473b2o\$474bo4\$532bo\$532bobo\$510bobo19b2o\$510b2o\$511bo19\$631bobo\$631b2o\$618bobo11bo\$618b2o\$619bo6\$479bo\$479bobo\$479b2o113bobo\$594b2o\$581bobo11bo\$581b2o\$454bobo125bo\$454b2o\$455bo4\$513bo\$513bobo\$491bobo19b2o\$491b2o\$492bo19\$612bobo\$612b2o\$599bobo11bo\$599b2o\$600bo6\$460bo\$460bobo\$460b2o113bobo\$575b2o\$562bobo11bo\$562b2o\$435bobo125bo\$435b2o\$436bo4\$494bo\$494bobo\$472bobo19b2o\$472b2o\$473bo19\$593bobo\$593b2o\$580bobo11bo\$580b2o\$581bo6\$441bo\$441bobo\$441b2o113bobo\$556b2o\$543bobo11bo\$543b2o\$416bobo125bo\$416b2o\$417bo4\$475bo\$475bobo\$453bobo19b2o\$453b2o\$454bo19\$574bobo\$574b2o\$561bobo11bo\$561b2o\$562bo6\$422bo\$422bobo\$422b2o113bobo\$537b2o\$524bobo11bo\$524b2o\$397bobo125bo\$397b2o\$398bo4\$456bo\$456bobo\$434bobo19b2o\$434b2o\$435bo19\$555bobo\$555b2o\$542bobo11bo\$542b2o\$543bo6\$403bo\$403bobo\$403b2o113bobo\$518b2o\$505bobo11bo\$505b2o\$378bobo125bo\$378b2o\$379bo4\$437bo\$437bobo\$415bobo19b2o\$415b2o\$416bo19\$536bobo\$536b2o\$523bobo11bo\$523b2o\$524bo6\$384bo\$384bobo\$384b2o113bobo\$499b2o\$486bobo11bo\$486b2o\$359bobo125bo\$359b2o\$360bo4\$418bo\$418bobo\$396bobo19b2o\$396b2o\$397bo19\$517bobo\$517b2o\$504bobo11bo\$346bo157b2o\$345b3o157bo\$344b2o2bo\$344b2ob2o\$347b3o\$345bob2o\$344bo2bo\$347bo17bo\$344bobo18bobo15bo\$345bo19b2o15b3o95bobo\$352bo28b2o2bo94b2o\$351b3o27b2ob2o81bobo11bo\$350bobobo29b3o80b2o\$350bo3bo12bo14bob2o82bo\$348b2o5b2o9bobo12bo2bo\$347bo4bo4bo7b2ob2o14bo\$346b3o2bobo2b3o7bob2o11bobo\$347bo4bo4bo5b2o2b3o12bo\$348b3o4b2o11bo20bo10b3o\$352b2o13bo20b3o8bo3bo\$350bo5bo9b2o19bobobo7b2o3bo\$351b2o18b2o14bo3bo\$352bo2bo15b2o12b2o5b2o6bo\$352b2o16b2o12bo4bo4bo10bo\$370bo12b3o2bobo2b3o7b2o\$384bo4bo4bo10b2o\$385b3o4b2o11b2o\$361bo27b2o14bobo\$361bobo23bo5bo13bo\$361b2o25b2o16bo\$389bo2bo\$389b2o\$407b2o\$336bobo68b2o\$336b2o\$337bo4\$395bo\$395bobo\$356b2o15bobo19b2o\$362bo10b2o123bobo\$361bobo10bo123b2o\$359bo125bobo11bo\$358bo3bo122b2o\$359b3o124bo14bo\$500b3o\$499b2ob2o\$499bo2\$486b3o12bo\$373bo112bobo12b2o\$372bobo109bo3bo11bob2o\$372bobo13bo72bobo20bob2o2bo\$373bo15b2o70b2o21bo3bo\$388b2o58bobo11bo23b2o\$448b2o42bo11bo\$449bo14bo21bo5bo11b2o\$463b3o20bo4bo\$462b2ob2o22b3o\$462bo\$494bobo\$449b3o12bo29b2o\$449bobo12b2o15bobo11bo\$447bo3bo11bob2o14b2o\$447bob2o2bo28bo\$447bo3bo\$449b2o\$455bo11bo\$449bo5bo11b2o\$449bo4bo\$342bo109b3o\$342bobo\$342b2o113bobo41bo\$457b2o42bo\$444bobo11bo40b4o2bo\$444b2o52b3ob2obo\$317bobo125bo30bo20bo10bo\$317b2o53bo103bobo18bo2bo4bo\$318bo52bobo101b2ob3o11b9o4bo3bo\$371bobo104b3o14bo2bo7b2o\$372bo105b3o12bo4bo\$478bobo12b2o2bo\$376bo100b2ob2o13b2o\$376bobo99bobo\$354bobo19b2o86bo14bo\$354b2o108bo\$355bo106b4o2bo\$461b3ob2obo\$439bo20bo10bo\$439bobo18bo2bo4bo\$438b2ob3o11b9o4bo3bo\$441b3o14bo2bo7b2o\$441b3o12bo4bo\$441bobo12b2o2bo\$440b2ob2o13b2o\$441bobo\$442bo\$405bo\$406b2o\$405b2o5\$371bo\$370bobo102bobo\$370bobo102b2o\$371bo90bobo11bo\$462b2o\$463bo6\$323bo\$323bobo\$323b2o113bobo\$438b2o\$425bobo11bo\$425b2o\$298bobo125bo\$298b2o\$299bo4\$357bo\$357bobo\$335bobo19b2o\$335b2o\$336bo33bo\$369bobo\$338bo30bobo\$337b3o30bo\$336b2ob2o\$336bo2\$338bo\$338b2o\$337bob2o2\$356bo65bo\$355b3o65b2o\$341bo12b2o2bo63b2o\$341b2o15bo\$287b3o67bo\$288bo64bo\$288b3o62bobo\$331bobo19b2o\$331b2o123bobo\$332bo123b2o\$443bobo11bo\$443b2o\$444bo4\$287b2o80bo\$287b2o16b3o60bobo\$294bo9bo3bo54bo4bobo\$293bobo8b2o3bo51bo3bo3bo\$292b2obo65bo3bo53bobo\$290b2o2bo10bo21bo27b2o3bo2b4o52b2o\$290b5o4bo10bo15bobo25b4o9b2o37bobo11bo\$289bo4bo3bobo7b2o18bo24bo4bo5b2o40b2o\$289bob3o4bobo9b2o18b2o20b2o4b2o4b2o41bo\$290b3o2bo3bo10b2o15b6o20b2o3bo6b4o\$291bo18bobo14bobobobo24bo\$292bo4bo14bo15b5o22bobo\$292bo4bo13bo17b3o24bo\$296bo32b3o2\$312b2o\$312b2o6\$300bo\$300bobo\$300b2o4\$275bobo\$275b2o162bo\$276bo163b2o\$439b2o3\$334bo\$334bobo\$312bobo19b2o\$312b2o123bobo\$313bo123b2o\$424bobo11bo\$424b2o\$425bo8\$400bobo\$400b2o\$387bobo11bo\$387b2o\$388bo14\$281bo\$281bobo\$281b2o4\$256bobo\$256b2o198bo\$257bo199b2o\$456b2o3\$315bo\$315bobo\$293bobo19b2o\$293b2o123bobo\$294bo123b2o\$405bobo11bo\$405b2o\$406bo14bo\$420b3o\$419b2ob2o\$419bo2\$406b3o12bo\$406bobo12b2o\$404bo3bo11bob2o\$381bobo20bob2o2bo\$381b2o21bo3bo\$368bobo11bo23b2o\$368b2o42bo11bo\$369bo14bo21bo5bo11b2o\$383b3o20bo4bo\$382b2ob2o22b3o\$382bo\$414bobo\$369b3o12bo29b2o\$369bobo12b2o15bobo11bo\$367bo3bo11bob2o14b2o\$367bob2o2bo28bo\$367bo3bo\$369b2o\$375bo11bo\$369bo5bo11b2o\$369bo4bo\$262bo109b3o\$262bobo\$262b2o113bobo41bo\$377b2o42bo\$364bobo11bo40b4o2bo\$364b2o52b3ob2obo\$237bobo125bo30bo20bo10bo\$237b2o157bobo18bo2bo4bo47bo\$238bo156b2ob3o11b9o4bo3bo44b2o\$398b3o14bo2bo7b2o45b2o\$398b3o12bo4bo\$398bobo12b2o2bo\$296bo100b2ob2o13b2o\$296bobo99bobo\$274bobo19b2o86bo14bo\$274b2o108bo\$275bo106b4o2bo\$381b3ob2obo\$359bo20bo10bo\$359bobo18bo2bo4bo\$358b2ob3o11b9o4bo3bo\$361b3o14bo2bo7b2o\$361b3o12bo4bo\$361bobo12b2o2bo\$360b2ob2o13b2o\$361bobo\$362bo9\$395bobo\$395b2o\$382bobo11bo\$224bo157b2o\$223b3o157bo\$222b2o2bo\$222b2ob2o\$225b3o\$223bob2o\$222bo2bo\$225bo17bo\$222bobo18bobo15bo\$223bo19b2o15b3o95bobo\$230bo28b2o2bo94b2o\$229b3o27b2ob2o81bobo11bo\$228bobobo29b3o80b2o\$228bo3bo12bo14bob2o82bo\$226b2o5b2o9bobo12bo2bo227bo\$225bo4bo4bo7b2ob2o14bo228b2o\$224b3o2bobo2b3o7bob2o11bobo228b2o\$225bo4bo4bo5b2o2b3o12bo\$226b3o4b2o11bo20bo10b3o\$230b2o13bo20b3o8bo3bo\$228bo5bo9b2o19bobobo7b2o3bo\$229b2o18b2o14bo3bo\$230bo2bo15b2o12b2o5b2o6bo\$230b2o16b2o12bo4bo4bo10bo\$248bo12b3o2bobo2b3o7b2o\$262bo4bo4bo10b2o\$263b3o4b2o11b2o\$239bo27b2o14bobo\$239bobo23bo5bo13bo\$239b2o25b2o16bo\$267bo2bo\$267b2o\$285b2o\$214bobo68b2o\$214b2o\$215bo4\$273bo\$273bobo\$234b2o15bobo19b2o\$240bo10b2o123bobo\$239bobo10bo123b2o\$237bo125bobo11bo\$236bo3bo122b2o\$237b3o124bo6\$251bo\$250bobo\$250bobo13bo72bobo\$251bo15b2o70b2o\$266b2o58bobo11bo\$326b2o\$327bo\$507bo\$508b2o\$368bo138b2o\$368b2o\$367bo2bo\$368bobo\$367bo2bo\$354bo12bo2bo\$353b3o11bobo\$352b5o11b3o\$352b2ob3o\$337b3o13b2ob2o\$337bo2bo14bo\$220bo116bo2bo\$220bobo100b2o11b4o\$220b2o101b2o11b2o\$325bo9bo\$323b3o10bo\$322bobo11bo30b2o\$195bobo125b2o42b2o\$195b2o53bo71bo\$196bo52bobo70bo30b2o14bo\$249bobo68bo32b2o13b3o\$250bo109b2o5bob2o6b3o\$357b5o4b2obo7b3o\$254bo100bo4bo6b2o8bo2bo\$254bobo98bo3b3o6bo2b2o5bobo\$232bobo19b2o98bo4b4o2bo6b3o3b2o\$232b2o120bobo2bo2b3obo6b2o\$233bo112b2o7bo3b3o2bobo7bo\$319bobo11bo12b2o12bo4bo\$319bobo10bob2o10bo2bo7bobo\$322bo13bo9bo10bobo\$331b2ob2ob2o7b2o2bo\$316bo14b2o2bo2bo5bo4b2o\$315bob2o12b2obo3bo\$314bo3b2o13b2ob2o\$315bo2b2o2b2o9b2o\$316b2o4b2o6b2o\$330b2o\$283bo\$284b2o\$283b2o3\$524bo\$525b2o\$249bo274b2o\$248bobo102bobo\$248bobo102b2o\$249bo90bobo11bo\$340b2o\$341bo6\$201bo\$201bobo158bo2bo\$201b2o113bobo46bo\$316b2o43bobo2bo\$303bobo11bo43bo4bo\$303b2o56bo2b2o\$176bobo125bo57bo\$176b2o\$177bo4\$235bo\$235bobo\$213bobo19b2o\$213b2o\$214bo33bo\$247bobo\$216bo30bobo\$215b3o30bo\$214b2ob2o\$214bo2\$216bo\$216b2o\$215bob2o132b3o\$350bo3bo11bo\$234bo65bo54bo10bo\$233b3o65b2o63bo\$219bo12b2o2bo63b2o48b2o3bo\$219b2o15bo115b3o7b3o3b3o\$165b3o67bo\$166bo64bo134bo174bo\$166b3o62bobo132bo175b2o\$209bobo19b2o133bo174b2o\$209b2o123bobo\$210bo123b2o\$321bobo11bo\$321b2o\$322bo28b2o\$351b2o\$356bo2bo\$356bo\$165b2o80bo106bo\$165b2o16b3o60bobo103b2o6bo\$172bo9bo3bo54bo4bobo103bo3bo5b2o\$171bobo8b2o3bo51bo3bo3bo104bo3bo5bobo\$170b2obo65bo3bo53bobo53bo3bob2obobo\$168b2o2bo10bo21bo27b2o3bo2b4o52b2o57bo2bo3bo\$168b5o4bo10bo15bobo25b4o9b2o37bobo11bo58b2o\$167bo4bo3bobo7b2o18bo24bo4bo5b2o40b2o\$167bob3o4bobo9b2o18b2o20b2o4b2o4b2o41bo\$168b3o2bo3bo10b2o15b6o20b2o3bo6b4o\$169bo18bobo14bobobobo24bo128bo\$170bo4bo14bo15b5o22bobo129bo\$170bo4bo13bo17b3o24bo130bo\$174bo32b3o\$361b3o3b3o\$190b2o\$190b2o173bo\$365bo\$365bo4\$178bo\$178bobo\$178b2o\$338bo\$338bobo\$338b2o\$153bobo\$153b2o162bo\$154bo163b2o\$317b2o3\$212bo345bo\$212bobo344b2o\$190bobo19b2o344b2o\$190b2o123bobo\$191bo123b2o\$302bobo11bo\$302b2o\$303bo8\$278bobo\$278b2o\$265bobo11bo\$265b2o\$266bo4\$333b2o\$332bobo\$334bo7\$350b2o\$159bo189bobo\$159bobo189bo\$159b2o4\$134bobo\$134b2o\$135bo231b2o\$366bobo\$368bo2\$193bo381bo\$193bobo380b2o\$171bobo19b2o380b2o\$171b2o123bobo\$172bo123b2o\$283bobo11bo86b2o\$283b2o98bobo\$284bo14bo85bo\$298b3o\$297b2ob2o\$297bo2\$284b3o12bo\$284bobo12b2o\$282bo3bo11bob2o99b2o\$259bobo20bob2o2bo111bobo\$259b2o21bo3bo115bo\$246bobo11bo23b2o\$246b2o42bo11bo\$247bo14bo21bo5bo11b2o\$261b3o20bo4bo\$260b2ob2o22b3o\$260bo\$292bobo123b2o\$247b3o12bo29b2o123bobo\$247bobo12b2o15bobo11bo125bo\$245bo3bo11bob2o14b2o\$245bob2o2bo28bo\$245bo3bo\$247b2o\$253bo11bo\$247bo5bo11b2o\$247bo4bo182b2o\$140bo109b3o181bobo\$140bobo293bo\$140b2o113bobo41bo\$255b2o42bo\$242bobo11bo40b4o2bo\$242b2o52b3ob2obo\$115bobo125bo30bo20bo10bo\$115b2o157bobo18bo2bo4bo\$116bo156b2ob3o11b9o4bo3bo144b2o\$276b3o14bo2bo7b2o145bobo\$276b3o12bo4bo156bo\$276bobo12b2o2bo\$174bo100b2ob2o13b2o297bo\$174bobo99bobo314b2o\$152bobo19b2o86bo14bo314b2o\$152b2o108bo\$153bo106b4o2bo\$259b3ob2obo202b2o\$237bo20bo10bo198bobo\$237bobo18bo2bo4bo203bo\$236b2ob3o11b9o4bo3bo\$239b3o14bo2bo7b2o\$239b3o12bo4bo\$239bobo12b2o2bo\$238b2ob2o13b2o\$239bobo\$240bo245b2o\$485bobo\$487bo7\$273bobo227b2o\$273b2o227bobo\$260bobo11bo229bo\$260b2o\$261bo5\$520b2o\$121bo397bobo\$121bobo397bo\$121b2o113bobo\$236b2o\$223bobo11bo\$223b2o\$96bobo125bo\$96b2o\$97bo439b2o\$536bobo\$538bo2\$155bo453bo\$155bobo452b2o\$133bobo19b2o452b2o\$133b2o\$134bo\$554b2o\$553bobo\$555bo7\$571b2o\$570bobo\$572bo7\$254bobo331b2o\$254b2o331bobo\$241bobo11bo333bo\$241b2o\$242bo5\$605b2o\$102bo501bobo\$102bobo501bo\$102b2o113bobo\$217b2o\$204bobo11bo\$204b2o\$77bobo125bo\$77b2o\$78bo3\$620bo\$136bo483bobo\$136bobo481b2o\$114bobo19b2o\$114b2o\$115bo19\$235bobo\$235b2o\$222bobo11bo\$222b2o\$223bo6\$83bo\$83bobo\$83b2o113bobo\$198b2o\$185bobo11bo\$185b2o\$58bobo125bo\$58b2o\$59bo3\$601bo\$117bo483bobo\$117bobo481b2o\$95bobo19b2o\$95b2o\$96bo19\$216bobo\$216b2o\$203bobo11bo\$203b2o\$204bo6\$64bo\$64bobo\$64b2o113bobo\$179b2o\$166bobo11bo\$166b2o\$39bobo125bo\$39b2o\$40bo3\$582bo\$98bo483bobo\$98bobo481b2o\$76bobo19b2o\$76b2o\$77bo!`
Nico Brown

glider_rider

Posts: 88
Joined: February 20th, 2013, 5:41 pm
Location: CA

### Re: (27,1)c/72 caterpillar challenge

One subtle problem is that the glider track does not change its phase after adding a climber. This means, that one might need up to 8 different rakes (4 forward and 4 back) for efficient synthesis. But probably not all of them are required.
Ivan Fomichev

codeholic
Moderator

Posts: 1141
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

### Re: (27,1)c/72 caterpillar challenge

codeholic wrote:No. 27/72 is greater than 1/4.

How is that even possible.

Like, doesn't that mean ships can travel faster than c/4 diagonally or something
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik

Posts: 3301
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

### Re: (27,1)c/72 caterpillar challenge

No. c/4 is the greatest speed for diagonal spaceships in Conway's Game of Life.
Ivan Fomichev

codeholic
Moderator

Posts: 1141
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

### Re: (27,1)c/72 caterpillar challenge

muzik wrote:Could there be something that deflects the gliders back around to the front again?
muzik wrote:
codeholic wrote:No. 27/72 is greater than 1/4.

How is that even possible.

Like, doesn't that mean ships can travel faster than c/4 diagonally or something

What codeholic means is that the orthogonal speed of this theoretical (27,1)c/72-ship (which is 27c/72) is faster than the orthogonal speed of a glider (which is c/4). Deflecting gliders to the front only works if the spaceship you're trying to build moves slower than c/4 in the orthogonal direction.
FractalFusion

Posts: 40
Joined: March 27th, 2009, 2:07 pm

### Re: (27,1)c/72 caterpillar challenge

Just to clarify the speed limit: If you add horizontal and vertical movement, the maximum possible movement is half the period. In this sense, the speed of this reaction is 28/72c = 7/18c, slightly under 2/5c, in particular under the c/2 speed limit.
HartmutHolzwart

Posts: 420
Joined: June 27th, 2009, 10:58 am
Location: Germany

### Re: (27,1)c/72 caterpillar challenge

Similarly, the waterbear was (23,5)c/79, and 23c/79 > c/4 but 28c/79 = ~0.35c < c/2.

The (13,1)c/31 design is much closer to the actual speed limit, because 14c/31 = ~0.45c, and its orthogonal speed of 13c/31 = ~0.42c is close to the fastest a helix can travel orthogonally without new technology (~0.44c). That's the reason the only good helices currently known are at ridiculously high multiples of the period (x16 and up) - one needs the helix to consist mostly of the ~0.44c straightaway interaction to compensate for the slower turnarounds.

Noting the above, I'm very pleasantly surprised by the x3 helix. Since the original caterpillar was ~0.38c and used a x6 helix, and the best known with current helix technology there is still x5, getting such a low multiplier at 0.375c seems like very good fortune, and probably saves us a substantial amount of engineering with filters/multipliers.

What is showing to be a real difficulty here is that the base reaction essentially grows the new H from the destroyed glider. I have yet to find a suitable still life to emulate the glider track, and without that, building and burning useful new tracks will be nearly impossible (we'd instead have to use whatever track the rake intersection left us, no real flexibility). I'll keep looking (and I'd appreciate others looking as well) for a stationary track: some interaction between H and some still life that does the same thing as the H + glider here.
Edit: It can have an entirely different debris pattern, it just needs to be some fuse of still lives that burns at the exact same velocity and leaves gliders behind for a new H to climb.

Edit2 for clarity:
codeholic wrote:One subtle problem is that the glider track does not change its phase after adding a climber. This means, that one might need up to 8 different rakes (4 forward and 4 back) for efficient synthesis. But probably not all of them are required.

This problem existed even more subtly in the waterbear; the climber didn't change the phase of the track mod 19, and the number of possible tracks was a multiple of 19 so the climbers weren't sufficient to get any desired track. Using still lives to freeze tracks for use at whatever timing allowed us to circumvent that difficulty, and if the same were possible here I think it would be much easier than building tons of rakes.
Physics: sophistication from simplicity.

biggiemac

Posts: 504
Joined: September 17th, 2014, 12:21 am
Location: California, USA

### Re: (27,1)c/72 caterpillar challenge

Unfortunately I found no other climbers with that velocity. I checked B-heptomino, pi, wing, R-pentomino and honey farm climbers. I could have missed something, of course.
Ivan Fomichev

codeholic
Moderator

Posts: 1141
Joined: September 13th, 2011, 8:23 am
Location: Hamburg, Germany

### Re: (27,1)c/72 caterpillar challenge

Darn. (Edit: does your search use only common still lives and oscillators for the fuse? I found there was a way to replace the glider with a snake that was a pretty close call, and although it would be quite rough to need to synthesize snakes or similar, it would allow a way forward)

Well, then let's get serious to find out how hard this will be.

For SE rakes, the important factors are the phase, the parity of the x displacement and the value of the y displacement. The exact x value isn't important because the climber's position along the track can be freely adjusted in 4 generation increments, which results in a 2-cell horizontal offset between SE rake positions.

Now, between gliders on the same track there is a displacement (19, 45) = (72/4 + 1, 72/4 + 27), and no relative phase. The climber causes a track displacement of (4, 20), and also no relative phase. This means our climber alone affords us no control over x parity, over phase, or over y value mod 5. (Regarding x parity: even though the x separation between climbers is 19, the x separation between stationary targets is 1 and between SE targets is 1 - 72/4 = -17, so the parity remains out of our control)

That's pretty bad. Where in the waterbear we had (23*8 + 79*2) = 342 tracks and gcd(342, 95) = 19 cosets under the climber generator, here we have (27*8 + 72*2) = 360 tracks and gcd(360, 20*8) = 40 cosets. Without a different way to alter the track, we have 40 distinct types of SE rake interactions that any given track pair will only ever be able to make a single one of.

Okay, but in the waterbear it was natural to talk about SE rake interactions because SE gliders were everywhere and our real only source of material. Here we have a massive spark to directly connect streams to generate our gliders and targets, so the above might not be so bad. But it is still inevitable that we will need to use SE or NE gliders to target stationary debris for syntheses.

What about NE gliders? Since our base reaction travels on SW gliders our constraint here is the lane. With the waterbear we had 23-5 = 18 lanes, and our climber generator moved the track by 3 lanes. That left us 3 cosets, which was inconvenient but workable. Switching cosets was the reason for some of the beehive->beehive slow transformations. Here, we have 27-1 = 26 lanes, and the base reaction moves 16 lanes. 2 cosets. Okay, this isn't perfect but better than the waterbear. Unfortunately, we don't have frozen tracks in the form of beehives so we can't reuse the solution from before.

Basically my current assessment is
pros:
sparky reaction with at least 5 pairing options
relatively cheap helix
cons:
no way to reuse the waterbear's solutions to the too-many-cosets problem..

Edit2: on a happier note, there is a simple blinker -> NE glider reaction.
`x = 88, y = 200, rule = B3/S232\$71bo\$70bo\$70b3o3\$85bo\$83b2o\$84b2o38\$52bo\$51bo\$51b3o3\$66bo\$64b2o\$65b2o20\$37b3o18\$33bo\$32bo\$32b3o3\$47bo\$45b2o\$46b2o2\$36b3o27\$35b3o9\$14bo\$13bo\$13b3o3\$28bo\$26b2o\$27b2o11\$34b3o5\$4bo\$3bobo12bobo\$2bo3bo11bo2bo\$3bo2bo10bo3b2o\$3bo2bo10bo\$4bobo\$17bo2b3o\$17b2o\$19b3o\$19b3o5\$3b2o\$3b2o\$10bo\$9bob2o5b2o\$6b3o11bo\$5b5o8b2o\$4bo2bo2b3o2bo3b2o\$4bobo4bo2bobo2bo9bo\$5bo3b2o3bobobo9b3o2b3o\$10bo4b2obob2o5b5o\$7b3o12bo4b3ob2o\$7b2o9bob4o4bo2bo\$22bobo3b3o\$23bo2bo\$24b2o6\$35b2o\$36b2o\$35bo!`
Physics: sophistication from simplicity.

biggiemac

Posts: 504
Joined: September 17th, 2014, 12:21 am
Location: California, USA

### Re: (27,1)c/72 caterpillar challenge

So, I'm taking it that this project has been scrapped? Seeing as there haven't been a word about it for over two months...

It looked to be going so well though
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik

Posts: 3301
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

### Re: (27,1)c/72 caterpillar challenge

muzik wrote:So, I'm taking it that this project has been scrapped? Seeing as there haven't been a word about it for over two months...

It looked to be going so well though

The 40-cosets problem was a deal breaker for me with how busy I was a couple months ago. Perhaps now that summer has started I won't be up until 4 a few times a week with work and can revisit it. Thanks for the bump.

If anyone else wants to contribute, I can phrase the cosets problem in more layman's terms. I'll post as an edit to this once I'm on my computer.
Physics: sophistication from simplicity.

biggiemac

Posts: 504
Joined: September 17th, 2014, 12:21 am
Location: California, USA

### Re: (27,1)c/72 caterpillar challenge

One thought I had, which might (if it pans out) alleviate some of the problems, is that if there is a single way to generate a new track that is phased or positioned relatively prime to the original ones, then instead of rephasing a single track a bunch and hoping there's some rake for one of those phasings which works, a track can build a new track, which then builds another track, etc. until a track is produced that can then be individually rephased to whatever position and timing is desired.

It's a messy and ugly trick, but it might be enough to make the project viable.

Side note: I'm currently working on making a reference page that should be helpful in the field of making spaceships like this. I may later expand it to multiple pages detailing other parts of the process, but right now it's going to have a very specific focus. I'll link to it on the forums once it's ready.
Sphenocorona

Posts: 480
Joined: April 9th, 2013, 11:03 pm

### Re: (27,1)c/72 caterpillar challenge

So approximately how big will this thing be? Seeing as it looks like we hit something problematic I'm placing my bets at quite a bit higher than the waterbear.

I'm taking it that it's going to look similar to the waterbear (being a mesh of triangles) as well?
Bored of using the Moore neighbourhood for everything? Introducing the Range-2 von Neumann isotropic non-totalistic rulespace!
muzik

Posts: 3301
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Next