ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

(27,1)c/72 caterpillar challenge

For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

Re: (27,1)c/72 caterpillar challenge

Postby chris_c » August 26th, 2016, 12:28 pm

biggiemac wrote:What spark must a reaction provide to turn that MWSS into a HWSS without disrupting the other HWSS?


I did some playing around with JLS. I know I have cheated by choosing the MWSS in its "leftmost" phase but it still gives me some confidence that the idea is possible in general. Probably it is worth searching for a direct HWSS edgeshooter before pursuing this idea further.

x = 14, y = 10, rule = B3/S23
8bo$2bo5bo$b3o2bo$2obo2b2o$3o8b3o$3o4bo$b2o4bo$6bobo$6bo3bo$6bo3bo!
chris_c
 
Posts: 851
Joined: June 28th, 2014, 7:15 am

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » August 26th, 2016, 6:23 pm

Straights in the helix can be delayed and nudged; it's possible to move these HWSS each a cell diagonally. Doing this, the clearance becomes much more manageable. Here are the 4 options, the rightmost having the highest clearance. The inserters I know still fail, but just barely.

x = 134, y = 89, rule = B3/S23
43bo79bo$2bo39b3o37bo39b3o$b3o37b2obo36b3o37b2obo$2obo37b3o36b2obo37b
3o$3o38b3o36b3o38b3o$3o38b3o36b3o38b3o$3o39b2o36b3o39b2o$b2o78b2o7$82b
o39bo$3bo39bo37b3o37b3o$2b3o37b3o36bob2o36bob2o$2bob2o36bob2o36b3o37b
3o$3b3o37b3o36b3o37b3o$3b3o37b3o36b3o37b3o$3b3o37b3o36b2o38b2o$3b2o38b
2o6$46bo79bo$5bo39b3o37bo39b3o$4b3o37b2obo36b3o37b2obo$3b2obo37b3o36b
2obo37b3o$3b3o38b3o36b3o38b3o$3b3o38b3o36b3o38b3o$3b3o39b2o36b3o39b2o$
4b2o78b2o7$85bo39bo$6bo39bo37b3o37b3o$5b3o37b3o36bob2o36bob2o$5bob2o
36bob2o36b3o37b3o$6b3o37b3o36b3o37b3o$6b3o37b3o36b3o37b3o$6b3o37b3o36b
2o38b2o$6b2o38b2o6$49bo79bo$8bo39b3o37bo39b3o$7b3o37b2obo36b3o37b2obo$
6b2obo37b3o36b2obo37b3o$6b3o38b3o36b3o38b3o$6b3o38b3o36b3o38b3o$6b3o
39b2o36b3o39b2o$7b2o78b2o7$88bo39bo$9bo39bo37b3o37b3o$8b3o37b3o36bob2o
36bob2o$8bob2o36bob2o36b3o37b3o$9b3o37b3o36b3o37b3o$9b3o37b3o36b3o37b
3o$9b3o37b3o36b2o38b2o$9b2o38b2o6$52bo79bo$11bo39b3o37bo39b3o$10b3o37b
2obo36b3o37b2obo$9b2obo37b3o36b2obo37b3o$9b3o38b3o36b3o38b3o$9b3o38b3o
36b3o38b3o$9b3o39b2o36b3o39b2o$10b2o78b2o!


There might even be something that uses the spark of the other ship advantageously, but such a tailored search would be a lot for a one-time use case.
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: (27,1)c/72 caterpillar challenge

Postby chris_c » August 26th, 2016, 7:03 pm

biggiemac wrote:Straights in the helix can be delayed and nudged; it's possible to move these HWSS each a cell diagonally. Doing this, the clearance becomes much more manageable. Here are the 4 options, the rightmost having the highest clearance. The inserters I know still fail, but just barely.


The HWSS seed from here works for the last 2 cases I believe (I added a single block for cleanup):

x = 27, y = 30, rule = B3/S23
25bo$24bo$24b3o4$3b2o$2bo2bo$3b2o8$16bo$16bo$3o13bo3$9b2o$9b2o6$6b2o$
6b2o!


I still haven't worked out where this seed comes from though.
chris_c
 
Posts: 851
Joined: June 28th, 2014, 7:15 am

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » August 26th, 2016, 7:17 pm

That's great! I looked at that recipe yesterday but forgot about it when trying the nudged version. It just ekes by.
x = 150, y = 156, rule = B3/S23
148bo$147bo$38bo108b3o$37bo$37b3o$127b2o$126bo2bo$17b2o108b2o$16bo2bo$
17b2o6$140bo$140bo$30bo93b3o13bo$30bo$14b3o13bo$133b2o$133b2o$23b2o$
23b2o4$130b2o$130b2o$20b2o$20b2o50$112bo$111b3o$2bo107b2obo$b3o106b3o$
2obo106b3o19b2o$3o107b3o18bo2bo$3o19b2o87b2o19bobo$3o18bo2bo108bo$b2o
19bobo$23bo4$122bo$111bo10bo$2bo9bo97b3o8bo$b3o8bo97bob2o3b3ob3o$bob2o
6bo99b3o8bobo$2b3o2b3ob3o97b3o9bo4b3o$2b3o7bobo96b3o13bob3o$2b3o8bo4b
3o90b2o14bo4bo$2b2o13bob3o106b4o4b3o$17bo4bo106b3o$18b4o4b3o$19b3o2$
133b2o3b2o$133b2o3b2o$23b2o3b2o97b2o$23b2o3b2o97b2o$17b2o$17b2o10$114b
o$5bo107b3o$4b3o106bob2o$4bob2o106b3o$5b3o106b3o$5b3o106b3o$5b3o106b2o
$5b2o20$117bo$8bo107b3o$7b3o106bob2o$7bob2o106b3o$8b3o106b3o$8b3o106b
3o$8b3o106b2o$8b2o!


I'm not particularly concerned yet with how to build it, since what's expensive or not in these cases still depends a lot on the construction. I'm just happy to know something relatively simple does the trick. I'll edit this post with the full helix synthesized later.
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: (27,1)c/72 caterpillar challenge

Postby chris_c » August 26th, 2016, 7:43 pm

biggiemac wrote:I'm not particularly concerned yet with how to build it, since what's expensive or not in these cases still depends a lot on the construction. I'm just happy to know something relatively simple does the trick. I'll edit this post with the full helix synthesized later.


It can be built in 6 gliders by mimicking a later stage:

x = 28, y = 20, rule = B3/S23
26bo$25bo$25b3o$4bo$3bo$3b3o2$11bo$9b2o$10b2o$b2o$2o$2bo5$7b2o$6b2o$8b
o!
chris_c
 
Posts: 851
Joined: June 28th, 2014, 7:15 am

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » August 26th, 2016, 8:38 pm

Actually if you choose the second-from-right configuration, 5 is sufficient :D
x = 40, y = 85, rule = B3/S23
38bo$37bo$37b3o$16bo$15bo$15b3o2$23bo$21b2o$22b2o$13b2o$2bo9b2o$b3o10b
o$2obo$3o$3o$3o$b2o16b2o$18b2o$20bo5$2bo$b3o$bob2o$2b3o$2b3o$2b3o$2b2o
21$5bo$4b3o$4bob2o$5b3o$5b3o$5b3o$5b2o21$8bo$7b3o$7bob2o$8b3o$8b3o$8b
3o$8b2o!


The two working configurations are otherwise equal, so this has me sold on that one.

Edit: well, nevermind. The spark overshoots the lane, and interferes with a nearby LWSS if I choose this orientation. I hadn't realized before. The rightmost orientation is the only one that actually works.
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » August 27th, 2016, 4:03 am

Ok, here is the helix showing every insertion.

x = 128, y = 787, rule = B3/S23
53b3o$53bo2bo$53bo2bo$54b3o3$51b2o$48b2ob2o$48bo2b4o$40bo10b3obo6bo$
39b3o10bo2bo5b3o$9b3o13bo6b3o4bob2o6b2o3bo5b2obo$9bo2bo11b3o5bo2bo4b3o
7bo9b3o$9bo7b3o4bob2o4bo7b2o4b3o2b2o8b2o$9bo3bo3bo2bo4b3o4bo3bo9b3o$9b
o3bo3bo7b2o5bo3bo9b3o$9bo7bo3bo10bo13b3o$10bobo4bo3bo11bobo11b2o$17bo$
18bobo$60bo$59b3o$58b2obo$9bo15bo32b3o5bo$8b3o13b3o32b2o4b3o$8bob2o11b
2obo4b3o6bo24bob2o$9b3o7bo3b3o4bo2bo5b3o24b3o$9b3o6b3o3b2o7bo4b2obo4b
3o7b3o7b2o$9b3o5b2obo8bo3bo4b3o4bo2bo7bo2bo28bo$9b2o6b3o9bo3bo5b2o7bo
7bo31bobo$17b3o13bo10bo3bo7bo3bo27b2o$18b2o10bobo11bo3bo7bo3bo$48bo7bo
$b3o41bobo9bobo$o2bo$3bo81bobo$3bo39bo21bo19b2o$obo39b3o19b3o19bo$12b
3o13bo6b3o4bob2o5bo11b2obo$12bo2bo11b3o5bo2bo4b3o4b3o10b3o$12bo7b3o4bo
b2o4bo7b2o4b2obo11b2o$12bo3bo3bo2bo4b3o4bo3bo9b3o$12bo3bo3bo7b2o5bo3bo
9b3o$12bo7bo3bo10bo13b3o$13bobo4bo3bo11bobo11b2o$20bo$21bobo$63bo$62b
3o$61b2obo$12bo15bo32b3o5bo$11b3o13b3o32b2o4b3o$11bob2o11b2obo4b3o6bo
24bob2o$12b3o7bo3b3o4bo2bo5b3o24b3o$12b3o6b3o3b2o7bo4b2obo4b3o7b3o7b2o
$12b3o5b2obo8bo3bo4b3o4bo2bo7bo2bo$12b2o6b3o9bo3bo5b2o7bo7bo$20b3o13bo
10bo3bo7bo3bo$21b2o10bobo11bo3bo7bo3bo19b2o$51bo7bo22b2o$4b3o41bobo9bo
bo21bo$3bo2bo$6bo$6bo39bo21bo$3bobo39b3o19b3o$15b3o13bo6b3o4bob2o5bo
11b2obo$15bo2bo11b3o5bo2bo4b3o4b3o10b3o22b2o$15bo7b3o4bob2o4bo7b2o4b2o
bo11b2o21b2o$15bo3bo3bo2bo4b3o4bo3bo9b3o37bo$15bo3bo3bo7b2o5bo3bo9b3o$
15bo7bo3bo10bo13b3o$16bobo4bo3bo11bobo11b2o$23bo$24bobo$66bo$65b3o$64b
2obo$15bo15bo32b3o$14b3o13b3o32b2o$14bob2o11b2obo4b3o6bo$15b3o7bo3b3o
4bo2bo5b3o$15b3o6b3o3b2o7bo4b2obo4b3o7b3o$15b3o5b2obo8bo3bo4b3o4bo2bo
7bo2bo$15b2o6b3o9bo3bo5b2o7bo7bo51bobo$23b3o13bo10bo3bo7bo3bo47b2o$24b
2o10bobo11bo3bo7bo3bo48bo$54bo7bo$7b3o41bobo9bobo$6bo2bo$9bo$9bo39bo
21bo$6bobo39b3o19b3o$18b3o13bo6b3o4bob2o5bo11b2obo$18bo2bo11b3o5bo2bo
4b3o4b3o10b3o$18bo7b3o4bob2o4bo7b2o4b2obo11b2o$18bo3bo3bo2bo4b3o4bo3bo
9b3o$18bo3bo3bo7b2o5bo3bo9b3o$18bo7bo3bo10bo13b3o$19bobo4bo3bo11bobo
11b2o$26bo$27bobo$69bo$68b3o$67b2obo$18bo15bo32b3o$17b3o13b3o32b2o$17b
ob2o11b2obo4b3o6bo46bobo$18b3o7bo3b3o4bo2bo5b3o45b2o$18b3o6b3o3b2o7bo
4b2obo4b3o7b3o29bo$18b3o5b2obo8bo3bo4b3o4bo2bo7bo2bo18bo$18b2o6b3o9bo
3bo5b2o7bo7bo20bobo$26b3o13bo10bo3bo7bo3bo15bobo$27b2o10bobo11bo3bo7bo
3bo15b2o$57bo7bo$10b3o41bobo9bobo$9bo2bo$12bo$12bo39bo21bo$9bobo39b3o
19b3o$21b3o13bo6b3o4bob2o5bo11b2obo18bo$21bo2bo11b3o5bo2bo4b3o4b3o10b
3o18b2o$21bo7b3o4bob2o4bo7b2o4b2obo11b2o18bobo$21bo3bo3bo2bo4b3o4bo3bo
9b3o$21bo3bo3bo7b2o5bo3bo9b3o$21bo7bo3bo10bo13b3o$22bobo4bo3bo11bobo
11b2o$29bo$30bobo$72bo$71b3o$70b2obo$21bo15bo32b3o$20b3o13b3o32b2o$20b
ob2o11b2obo4b3o6bo$21b3o7bo3b3o4bo2bo5b3o$21b3o6b3o3b2o7bo4b2obo4b3o7b
3o$21b3o5b2obo8bo3bo4b3o4bo2bo7bo2bo$21b2o6b3o9bo3bo5b2o7bo7bo$29b3o
13bo10bo3bo7bo3bo$30b2o10bobo11bo3bo7bo3bo$60bo7bo$13b3o41bobo9bobo$
12bo2bo$15bo$15bo39bo$12bobo39b3o$24b3o13bo6b3o4bob2o5bo$24bo2bo11b3o
5bo2bo4b3o4b3o$24bo7b3o4bob2o4bo7b2o4b2obo53bobo$24bo3bo3bo2bo4b3o4bo
3bo9b3o54b2o$24bo3bo3bo7b2o5bo3bo9b3o55bo$24bo7bo3bo10bo13b3o$25bobo4b
o3bo11bobo11b2o$32bo$33bobo$75bo$74b3o$73b2obo$24bo15bo32b3o$23b3o13b
3o32b2o$23bob2o11b2obo4b3o6bo$24b3o7bo3b3o4bo2bo5b3o$24b3o6b3o3b2o7bo
4b2obo4b3o7b3o$24b3o5b2obo8bo3bo4b3o4bo2bo7bo2bo$24b2o6b3o9bo3bo5b2o7b
o7bo$32b3o13bo10bo3bo7bo3bo$33b2o10bobo11bo3bo7bo3bo$63bo7bo$16b3o41bo
bo9bobo$15bo2bo$18bo$18bo39bo41bobo$15bobo39b3o40b2o$27b3o13bo6b3o4bob
2o5bo34bo$27bo2bo11b3o5bo2bo4b3o4b3o23bo$27bo7b3o4bob2o4bo7b2o4b2obo
22bobo$27bo3bo3bo2bo4b3o4bo3bo9b3o22bobo$27bo3bo3bo7b2o5bo3bo9b3o22b2o
$27bo7bo3bo10bo13b3o$28bobo4bo3bo11bobo11b2o$35bo$36bobo$78bo$77b3o$
76b2obo18bo$27bo15bo32b3o18b2o$26b3o13b3o32b2o18bobo$26bob2o11b2obo4b
3o6bo$27b3o7bo3b3o4bo2bo5b3o$27b3o6b3o3b2o7bo4b2obo4b3o7b3o$27b3o5b2ob
o8bo3bo4b3o4bo2bo7bo2bo$27b2o6b3o9bo3bo5b2o7bo7bo$35b3o13bo10bo3bo7bo
3bo$36b2o10bobo11bo3bo7bo3bo$66bo7bo$19b3o41bobo9bobo$18bo2bo$21bo$21b
o39bo$18bobo39b3o$30b3o13bo6b3o4bob2o5bo$30bo2bo11b3o5bo2bo4b3o4b3o$
30bo7b3o4bob2o4bo7b2o4b2obo$30bo3bo3bo2bo4b3o4bo3bo9b3o$30bo3bo3bo7b2o
5bo3bo9b3o$30bo7bo3bo10bo13b3o$31bobo4bo3bo11bobo11b2o$38bo$39bobo4$
30bo15bo$29b3o13b3o$29bob2o11b2obo4b3o6bo$30b3o7bo3b3o4bo2bo5b3o$30b3o
6b3o3b2o7bo4b2obo4b3o7b3o$30b3o5b2obo8bo3bo4b3o4bo2bo7bo2bo$30b2o6b3o
9bo3bo5b2o7bo7bo$38b3o13bo10bo3bo7bo3bo$39b2o10bobo11bo3bo7bo3bo$69bo
7bo$22b3o41bobo9bobo$21bo2bo$24bo$24bo39bo$21bobo39b3o$33b3o13bo6b3o4b
ob2o5bo$33bo2bo11b3o5bo2bo4b3o4b3o$33bo7b3o4bob2o4bo7b2o4b2obo$33bo3bo
3bo2bo4b3o4bo3bo9b3o$33bo3bo3bo7b2o5bo3bo9b3o$33bo7bo3bo10bo13b3o$34bo
bo4bo3bo11bobo11b2o$41bo50b2o$42bobo47b2o4$33bo15bo$32b3o13b3o$32bob2o
11b2obo4b3o6bo$33b3o7bo3b3o4bo2bo5b3o28bo$33b3o6b3o3b2o7bo4b2obo4b3o7b
3o11bobo$33b3o5b2obo8bo3bo4b3o4bo2bo7bo2bo10b2o$33b2o6b3o9bo3bo5b2o7bo
7bo27b3o$41b3o13bo10bo3bo7bo3bo5bo17bo$42b2o10bobo11bo3bo7bo3bo5bo18bo
$72bo7bo9bo$25b3o41bobo9bobo$24bo2bo$27bo$27bo39bo$24bobo39b3o$36b3o
13bo6b3o4bob2o5bo$36bo2bo11b3o5bo2bo4b3o4b3o$36bo7b3o4bob2o4bo7b2o4b2o
bo$36bo3bo3bo2bo4b3o4bo3bo9b3o$36bo3bo3bo7b2o5bo3bo9b3o$36bo7bo3bo10bo
13b3o$37bobo4bo3bo11bobo11b2o$44bo$45bobo4$36bo15bo$35b3o13b3o$35bob2o
11b2obo4b3o6bo$36b3o7bo3b3o4bo2bo5b3o$36b3o6b3o3b2o7bo4b2obo4b3o$36b3o
5b2obo8bo3bo4b3o4bo2bo$36b2o6b3o9bo3bo5b2o7bo$44b3o13bo10bo3bo$45b2o
10bobo11bo3bo$75bo$28b3o41bobo$27bo2bo$30bo$30bo39bo16bo$27bobo39b3o
15bo$39b3o13bo6b3o4bob2o5bo8bo$39bo2bo11b3o5bo2bo4b3o4b3o$39bo7b3o4bob
2o4bo7b2o4b2obo3b3o3b3o5bo$39bo3bo3bo2bo4b3o4bo3bo9b3o16b2o$39bo3bo3bo
7b2o5bo3bo9b3o8bo8b2o5b2o$39bo7bo3bo10bo13b3o8bo14bobo$40bobo4bo3bo11b
obo11b2o8bo14b2o$47bo$48bobo42b2o$92b2o$94bo2$39bo15bo$38b3o13b3o$38bo
b2o11b2obo4b3o6bo$39b3o7bo3b3o4bo2bo5b3o$39b3o6b3o3b2o7bo4b2obo4b3o$
39b3o5b2obo8bo3bo4b3o4bo2bo$39b2o6b3o9bo3bo5b2o7bo$47b3o13bo10bo3bo16b
2o$48b2o10bobo11bo3bo16b2o$78bo$31b3o41bobo$30bo2bo$33bo$33bo39bo$30bo
bo39b3o$42b3o13bo6b3o4bob2o$42bo2bo11b3o5bo2bo4b3o$42bo7b3o4bob2o4bo7b
2o$42bo3bo3bo2bo4b3o4bo3bo$42bo3bo3bo7b2o5bo3bo$42bo7bo3bo10bo$43bobo
4bo3bo11bobo$50bo$51bobo37b2o$91b2o3$42bo15bo$41b3o13b3o$41bob2o11b2ob
o4b3o6bo$42b3o7bo3b3o4bo2bo5b3o$42b3o6b3o3b2o7bo4b2obo4b3o11bo$42b3o5b
2obo8bo3bo4b3o4bo2bo10bo$42b2o6b3o9bo3bo5b2o7bo10b3o12b2o$50b3o13bo10b
o3bo25bobo$51b2o10bobo11bo3bo7bo17bo$81bo7bo$34b3o41bobo8bo$33bo2bo$
36bo$36bo39bo$33bobo39b3o$45b3o13bo6b3o4bob2o$45bo2bo11b3o5bo2bo4b3o$
45bo7b3o4bob2o4bo7b2o23bo$45bo3bo3bo2bo4b3o4bo3bo28bobo$45bo3bo3bo7b2o
5bo3bo28b2o$45bo7bo3bo10bo$46bobo4bo3bo11bobo$53bo$54bobo4$45bo15bo$
44b3o13b3o31b4o$44bob2o11b2obo4b3o6bo17bo3bo$45b3o7bo3b3o4bo2bo5b3o16b
o$45b3o6b3o3b2o7bo4b2obo17bo2bo$45b3o5b2obo8bo3bo4b3o$45b2o6b3o9bo3bo
5b2o8b2o$53b3o13bo15bobo$54b2o10bobo16bo2$37b3o$36bo2bo49b2o$39bo48b2o
$39bo50bo$36bobo$48b3o13bo6b3o$48bo2bo11b3o5bo2bo$48bo7b3o4bob2o4bo$
48bo3bo3bo2bo4b3o4bo3bo$48bo3bo3bo7b2o5bo3bo$48bo7bo3bo10bo$49bobo4bo
3bo11bobo$56bo$57bobo$122bobo$122b2o$123bo$48bo15bo$47b3o13b3o$47bob2o
11b2obo4b3o6bo$48b3o7bo3b3o4bo2bo5b3o$48b3o6b3o3b2o7bo4b2obo$48b3o5b2o
bo8bo3bo4b3o$48b2o6b3o9bo3bo5b2o$56b3o13bo$57b2o10bobo2$40b3o$39bo2bo$
42bo$42bo$39bobo$51b3o13bo6b3o$51bo2bo11b3o5bo2bo$51bo7b3o4bob2o4bo$
51bo3bo3bo2bo4b3o4bo3bo$51bo3bo3bo7b2o5bo3bo$51bo7bo3bo10bo$52bobo4bo
3bo11bobo25bobo$59bo43b2o$60bobo32bo8bo$94bobo$93bobo$93b2o$51bo15bo$
50b3o13b3o$50bob2o11b2obo4b3o6bo$51b3o7bo3b3o4bo2bo5b3o$51b3o6b3o3b2o
7bo4b2obo$51b3o5b2obo8bo3bo4b3o18bo$51b2o6b3o9bo3bo5b2o17b2o$59b3o13bo
24bobo$60b2o10bobo2$43b3o$42bo2bo$45bo$45bo$42bobo$54b3o13bo6b3o$54bo
2bo11b3o5bo2bo$54bo7b3o4bob2o4bo$54bo3bo3bo2bo4b3o4bo3bo$54bo3bo3bo7b
2o5bo3bo$54bo7bo3bo10bo$55bobo4bo3bo11bobo$62bo$63bobo4$54bo15bo$53b3o
13b3o$53bob2o11b2obo4b3o$54b3o7bo3b3o4bo2bo$54b3o6b3o3b2o7bo$54b3o5b2o
bo8bo3bo$54b2o6b3o9bo3bo$62b3o13bo$63b2o10bobo2$46b3o$45bo2bo$48bo$48b
o40b3o$45bobo$57b3o13bo6b3o4bo5bo$57bo2bo11b3o5bo2bo3bo5bo5bo$57bo7b3o
4bob2o4bo6bo5bo5bobo$57bo3bo3bo2bo4b3o4bo3bo14b2o5b2o$57bo3bo3bo7b2o5b
o3bo4b3o13bobo$57bo7bo3bo10bo24b2o$58bobo4bo3bo11bobo$65bo30b2o$66bobo
27bobo$96bo3$57bo15bo$56b3o13b3o$56bob2o11b2obo4b3o$57b3o7bo3b3o4bo2bo
$57b3o6b3o3b2o7bo$57b3o5b2obo8bo3bo$57b2o6b3o9bo3bo16b2o$65b3o13bo16b
2o$66b2o10bobo2$49b3o$48bo2bo$51bo$51bo$48bobo$60b3o13bo$60bo2bo11b3o$
60bo7b3o4bob2o$60bo3bo3bo2bo4b3o$60bo3bo3bo7b2o$60bo7bo3bo$61bobo4bo3b
o21b2o$68bo25b2o$69bobo4$60bo15bo$59b3o13b3o$59bob2o11b2obo4b3o11bo$
60b3o7bo3b3o4bo2bo10bo$60b3o6b3o3b2o7bo10b3o12b2o$60b3o5b2obo8bo3bo25b
obo$60b2o6b3o9bo3bo7bo17bo$68b3o13bo7bo$69b2o10bobo8bo2$52b3o$51bo2bo$
54bo$54bo$51bobo$63b3o13bo$63bo2bo11b3o$63bo7b3o4bob2o$63bo3bo3bo2bo4b
3o$63bo3bo3bo7b2o$63bo7bo3bo25bo$64bobo4bo3bo25bobo$71bo29b2o$72bobo2$
100bobo$100b2o$63bo15bo21bo$62b3o13b3o$62bob2o11b2obo$63b3o7bo3b3o$63b
3o6b3o3b2o$63b3o5b2obo$63b2o6b3o$71b3o$72b2o2$55b3o$54bo2bo$57bo$57bo$
54bobo$66b3o13bo$66bo2bo11b3o$66bo7b3o4bob2o$66bo3bo3bo2bo4b3o$66bo3bo
3bo7b2o$66bo7bo3bo$67bobo4bo3bo$74bo$75bobo2$98b2o$97b2o$66bo15bo16bo$
65b3o13b3o$65bob2o11b2obo$66b3o7bo3b3o$66b3o6b3o3b2o21b2o$66b3o5b2obo
25b2o$66b2o6b3o28bo$74b3o$75b2o2$58b3o$57bo2bo$60bo$60bo$57bobo$69b3o$
69bo2bo$69bo7b3o$69bo3bo3bo2bo$69bo3bo3bo$69bo7bo3bo$70bobo4bo3bo$77bo
$78bobo$98bo$97bo$97b3o$69bo15bo$68b3o13b3o$68bob2o11b2obo11bo$69b3o7b
o3b3o10b2o$69b3o6b3o3b2o11b2o$69b3o5b2obo$69b2o6b3o$77b3o$78b2o2$61b3o
$60bo2bo$63bo$63bo$60bobo$72b3o$72bo2bo19bo$72bo7b3o11b2o$72bo3bo3bo2b
o10bobo$72bo3bo3bo$72bo7bo3bo$73bobo4bo3bo$80bo20bo$81bobo16b2o$100bob
o3$72bo$71b3o53bo$71bob2o50b2o$72b3o7bo43b2o$72b3o6b3o$72b3o5b2obo$72b
2o6b3o$80b3o$81b2o2$64b3o$63bo2bo$66bo$66bo$63bobo$75b3o$75bo2bo$75bo
7b3o$75bo3bo3bo2bo$75bo3bo3bo$75bo7bo3bo$76bobo4bo3bo$83bo$84bobo2$
102bo$100b2o$75bo25b2o$74b3o$74bob2o$75b3o7bo$75b3o6b3o$75b3o5b2obo13b
o$75b2o6b3o13bobo$83b3o14bo$84b2o$94b3o4b3o$67b3o31bo$66bo2bo32bo$69bo
$69bo$66bobo$78b3o$78bo2bo$78bo7b3o$78bo3bo3bo2bo$78bo3bo3bo$78bo7bo3b
o$79bobo4bo3bo$86bo$87bobo4$78bo$77b3o$77bob2o$78b3o$78b3o$78b3o$78b2o
4$70b3o28b2o$69bo2bo28b2o$72bo$72bo$69bobo$81b3o$81bo2bo$81bo7b3o$81bo
3bo3bo2bo$81bo3bo3bo12bo$81bo7bo3bo8bobo11b3o$82bobo4bo3bo8b2o12bo$89b
o9bo17bo$90bobo6bo$99bo3$81bo$80b3o$80bob2o$81b3o$81b3o$81b3o$81b2o4$
73b3o$72bo2bo$75bo$75bo17b3o$72bobo$84b3o4bo5bo$84bo2bo3bo5bo5bo$84bo
6bo5bo5bobo$84bo3bo14b2o5b2o$84bo3bo4b3o13bobo$84bo24b2o$85bobo$100b2o
$100bobo$100bo3$84bo$83b3o$83bob2o$84b3o$84b3o$84b3o$84b2o16b2o$102b2o
3$76b3o$75bo2bo$78bo$78bo$75bobo6$98b2o$98b2o6$87bo$86b3o$86bob2o9bobo
$87b3o9b2o13b2o$87b3o10bo12b2o$87b3o25bo$87b2o6b3o4$79b3o$78bo2bo$81bo
$81bo$78bobo21$95bobo$95b2o$82b3o11bo$81bo2bo$84bo10bo$84bo9bo$81bobo
10b3o12$92b2o$92bobo$92bo4$98b2o$98bobo$98bo!


I have converted most syntheses into pairs of gliders converging on an inexpensive constellation. My thought is that this will be good because it leaves nothing too crowded. I don't really have a plan for most of the LWSS though. I have left the one-sided synthesis from the old caterpillar for most of them, and a glider-pair-and-longboat for others, but I feel like both are nonideal. Is there a glider-pair plus spartan still life collision that gives a clean LWSS with clearance at least -3? The longboat has 7 lanes more than is necessary and isn't clean, while the standard block is 2 lanes shy so needs to be built at the last second. Most helices considered in the past needed clearance at least 0, so I feel like there might be some unpublished -1 or -2 that does the job efficiently.
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: (27,1)c/72 caterpillar challenge

Postby chris_c » August 27th, 2016, 7:40 am

Here are some slow-pair LWSS recipes that are sufficiently edge shooting. In particular I think the first one is both cleaner and faster than the longboat method.

x = 290, y = 88, rule = LifeHistory
46.A$44.2A$45.2A7$162.A.A$162.2A$163.A123.A$286.A$286.3A7$18.A.A$18.
2A$19.A8$274.A$274.A.A$274.2A3$144.A$143.A$143.3A3$260.2A$261.A$5.A.A
250.3A$5.2A251.A$.2A3.A$2A$2.A2$127.A$127.A.A$127.2A$131.3A$131.A$
132.A$268.3A$268.A$269.A2$20.A$19.2A$19.A.A5$145.2A$144.2A$146.A5$
287.3A$287.A$288.A10$50.A$49.2A116.3A$49.A.A115.A$168.A!


And here is a way to clean up the recent HWSS seed with only two blocks:

x = 20, y = 18, rule = LifeHistory
12.2A$12.2A5$2.3A2$A5.A$A5.A5.A$A5.A5.A.A$12.2A$2.3A13.2A$18.2A2$9.2A
$9.A.A$9.A!
chris_c
 
Posts: 851
Joined: June 28th, 2014, 7:15 am

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » August 27th, 2016, 12:32 pm

Thanks for the help! One thing, I feel like the constellation itself won't be built by slow pairs, at least not from the same direction as the trigger gliders. The syntheses of the left helix will be a bit tricky to manage because the current construction clusters cannot fire NW gliders (a limitation of the X spacing of the tracks themselves). My thought is that construction clusters need to build these seeds on their right with slow salvos and pairs, and also build multiple frozen tracks further to the right. Some of these tracks will be the next construction cluster, and others will be trigger glider specialists. Then the original cluster destroys itself, letting the constellations and trigger gliders reach the left helix.

All the while, other clusters are working on the rightmost helix, which still doesn't presently exist. I'm still trying to find a minimum sustainable cluster with enough construction capacity to build itself to a full set. That should reduce the number of fanout ships.

Lastly, period tripling should occur. My thought is to leave things p72 as long as possible, and make some slight alteration to each recipe that allows one object (trigger glider or still life) to encode fire/no fire. That's more or less what I did with the bunched NW salvos in the waterbear.

Edit: An example of fire/no fire encoding for the good HWSS inserter. We have almost all p72 inputs and clean p216 output. The only p216 input is whether one blinker from the TL has been destroyed. Remember the constellations are built from the left so this is the easy side to modify.
x = 235, y = 533, rule = B3/S23
203bo$201b2o$202b2o43$184bo$182b2o$183b2o43$165bo$163b2o$164b2o43$146b
o$144b2o$145b2o16$40b2o$40b2o5$30b3o2$28bo5bo$28bo5bo$28bo5bo2$30b3o
13b2o$46b2o2$52b2o$52b2o11$39b2o86bo$39b2o84b2o$126b2o4$29b3o2$33bo$
33bo$33bo2$29b3o13b2o$45b2o2$51b2o$51b2o11$38b2o$38b2o5$28b3o2$32bo$
32bo$32bo2$28b3o13b2o$44b2o2$50b2o$50b2o2$108bo$106b2o$107b2o7$37b2o$
37b2o5$27b3o2$25bo5bo$25bo5bo$25bo5bo2$27b3o13b2o$43b2o2$49b2o$49b2o
11$36b2o$36b2o5$26b3o2$30bo$30bo58bo$30bo56b2o$88b2o$26b3o13b2o$42b2o
2$48b2o$48b2o11$35b2o$35b2o5$25b3o2$29bo$29bo$29bo2$25b3o13b2o$41b2o2$
47b2o$47b2o11$34b2o34bo$34b2o32b2o$69b2o4$24b3o2$3b3o16bo5bo$3bo2bo15b
o5bo$3bo18bo5bo$3bo3bo$3bo3bo16b3o13b2o$3bo36b2o$4bobo$46b2o151b2o$46b
2o150b2o$200bo5$2b3o$bo2bo$4bo175b2o$o3bo174b2o$o3bo176bo$4bo28b2o$bob
o29b2o5$23b3o135b2o$160b2o$6b3o18bo134bo70b2o$6bo2bo17bo204b2o$6bo20bo
206bo$6bo3bo$6bo3bo12b3o13b2o$6bo32b2o$7bobo$45b2o95b2o$45b2o94b2o$
143bo70b2o$51bo161b2o$49b2o164bo$50b2o2$5b3o$4bo2bo$7bo115b2o$3bo3bo
114b2o$3bo3bo116bo70b2o$7bo24b2o160b2o$4bobo25b2o162bo5$22b3o79b2o$
103b2o$9b3o14bo78bo70b2o$9bo2bo13bo148b2o$9bo16bo150bo$9bo3bo$9bo3bo8b
3o13b2o$9bo28b2o$10bobo$44b2o39b2o$44b2o38b2o$86bo70b2o$156b2o$158bo3$
8b3o$7bo2bo$10bo55b2o$6bo3bo54b2o$6bo3bo56bo70b2o$10bo20b2o104b2o$7bob
o21b2o106bo5$21b3o23b2o$46b2o$12b3o4bo5bo22bo70b2o$12bo2bo3bo5bo6bo85b
2o$12bo6bo5bo4b2o88bo$12bo3bo14b2o$12bo3bo4b3o13b2o$12bo24b2o$13bobo$
28b2o13b2o$27b2o14b2o$29bo70b2o$99b2o$101bo3$11b3o$10bo2bo$13bo$9bo3bo
$9bo3bo67b2o$13bo16b2o48b2o$10bobo17b2o50bo6$24b2o3b2o3b3o$24b2o2bob2o
2bo3bo23b2o$35bo3bo21b2o$36bo26bo$37bo2bo$39bo4$37bo$37bo5b2o$37bo4b2o
$44bo3$14b3o$13bo2bo$16bo$12bo3bo$12bo3bo$16bo$13bobo21$17b3o$16bo2bo$
19bo$15bo3bo$15bo3bo$19bo$16bobo21$20b3o$19bo2bo$22bo$18bo3bo$18bo3bo$
22bo$19bobo21$23b3o$22bo2bo$25bo$21bo3bo$21bo3bo$25bo$22bobo!


And one for the MWSS
x = 162, y = 455, rule = B3/S23
161bo$159b2o$160b2o22$136bo$134b2o$135b2o19$142bo$140b2o$141b2o22$117b
o$115b2o$116b2o19$123bo$121b2o$122b2o22$98bo$96b2o$97b2o19$104bo$102b
2o$103b2o2$26bo$25bobo$26bo2$20b3o4$40bo$40bo$40bo10$79bo$77b2o$78b2o
5$25bo$24bobo$25bo2$19b3o4$39bo$39bo$39bo4$85bo$83b2o$84b2o11$24bo$23b
obo$24bo2$18b3o7$60bo$58b2o$59b2o14$23bo$22bobo$23bo2$17b3o$66bo$64b2o
$65b2o$37bo$37bo$37bo17$22bo$21bobo$22bo18bo$39b2o$16b3o21b2o93b3o$
135bo$136bo2$36bo$36bo$36bo3$116b3o$116bo$117bo7$97b3o$47bo49bo$45b2o
51bo$2bo43b2o$b3o$2obo17bo$3o17bobo$3o18bo$b2o$15b3o60b3o$78bo$79bo6$
3b3o$3bo2bo52b3o$3bo55bo$3bo3bo52bo$3bo3bo$3bo$4bobo2$22bo$20b2o$21b2o
17b3o$40bo$41bo$5bo$4b3o$3b2obo13bo$3b3o13bobo$3b3o14bo$4b2o$14b3o4b3o
$21bo$22bo6$6b3o$6bo2bo$6bo$6bo3bo$6bo3bo$6bo$7bobo21$9b3o$9bo2bo$9bo$
9bo3bo$9bo3bo$9bo$10bobo21$12b3o$12bo2bo$12bo$12bo3bo$12bo3bo$12bo$13b
obo21$15b3o$15bo2bo$15bo$15bo3bo$15bo3bo$15bo$16bobo21$18b3o$18bo2bo$
18bo$18bo3bo$18bo3bo$18bo$19bobo21$21b3o$21bo2bo$21bo$21bo3bo$21bo3bo$
21bo$22bobo!


I'm looking for one for the cheap HWSS with no p216 input except for the previously built HWSS's spark. That would be neat. What I have so far doesn't work but here it is anyway just to see what I mean.
x = 90, y = 142, rule = B3/S23
73bo$72bo$72b3o43$54bo$17b2o34bo$17b2o34b3o6$11b2o$11b2o4$15bo$15bo$
15bo13$16b2o$16b2o6$10b2o$10b2o4$14bo$14bo$14bo3$35bo$34bo$34b3o8$15b
2o$15b2o6$9b2o$9b2o2$87b2o$87bobo$13bo73bo$13bo$13bo5$68b2o$68bobo$68b
o6$14b2o$14b2o33b2o$49bobo$49bo4$8b2o$2b3o3b2o6bo$bo2bo10bo$4bo10b3o
12b2o$o3bo25bobo$o3bo7bo17bo$4bo7bo$bobo8bo!
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » August 27th, 2016, 9:36 pm

Here's a rather clean cheap period tripler based on an MWSS. I am still looking to see if there is one with less debris.
x = 120, y = 281, rule = B3/S23
obo$b2o$bo43$17bobo$18b2o$18bo43$34bobo$35b2o$35bo19$118b2o$118b2o$
111bo$111bo$111bo20$51bobo$52b2o$52bo$117b2o$117b2o$110bo$110bo$110bo
23$116b2o$116b2o$109bo$109bo$109bo11$68bobo$69b2o$69bo10$115b2o$115b2o
$108bo$108bo$108bo23$114b2o$114b2o$107bo$107bo$107bo$bo$b2o82bobo$obo
83b2o$86bo6$18bo$18b2o$17bobo7$35bo$35b2o$34bobo2$113b2o$113b2o$106bo$
106bo$106bo$52bo$52b2o$51bobo7$69bo$69b2o$68bobo7$86bo$86b2o14bobo$85b
obo15b2o$103bo$112b2o$112b2o$105bo$105bo$105bo$103bo$103b2o$102bobo!
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: (27,1)c/72 caterpillar challenge

Postby chris_c » August 29th, 2016, 7:49 am

Here are some reactions that vanish but if you delete the central still life in any of the patterns I believe you get an LWSS that works for every position in the helix:

x = 147, y = 25, rule = B3/S23
9bo$8bo36bo49bo41bo$8b3o33bo49bo41bo$4bo39b3o47b3o39b3o$4bo35bo49bo41b
o$4bo35bo49bo41bo$40bo49bo41bo$3o3b3o$36b3o3b3o41b3o3b3o33b3o3b3o3$40b
o97b2o$3o36bobo50bo45b2o$38bo2bo49bobo$39b2o50bo2bo$92b2o$3b3o$38b2o
48b2o40b2o$38bobo47bobo39bobo$39bo49bo41bo2$17bo$16b2o35bo49bo41bo$16b
obo33b2o48b2o40b2o$52bobo47bobo39bobo!


How do these rate for difficulty to construct?

EDIT: Hmmm... no. I don't think that recipe is edgy enough when used with x1 streams :(

x = 94, y = 157, rule = B3/S23
65bo$64bo$64b3o27$8bo$8bo$8bo2$4b3o3b3o5$4b3o4$7b3o3$46bo$45bo$45b3o9$
7bo$7bo$7bo2$3b3o3b3o5$3b3o4$6b3o14$6bo$6bo$6bo2$2b3o3b3o3$27bo$26bo$
2b3o21b3o4$5b3o14$5bo$5bo$5bo2$b3o3b3o4$92bo$91b2o$91bobo3$4b3o4$73bo$
72b2o$72bobo6$8bo$7bo46bo$4bo2b3o43b2o$4bo48bobo$4bo2$3o3b3o4$35bo$3o
31b2o$34bobo3$3b3o4$16bo$15b2o$15bobo!


EDIT2:
biggiemac wrote:I'm looking for one for the cheap HWSS with no p216 input except for the previously built HWSS's spark. That would be neat. What I have so far doesn't work but here it is anyway just to see what I mean.


It looks hard to make that work but here is a more mundane possibility where the presence or absence of the HWSS is controlled by a single SE glider.

x = 32, y = 31, rule = B3/S23
8b2o$4b2o2b2o$4b2o$12bobo$12b2o$13bo3$bo$2bo$3o4$b3o14$29b3o$29bo$30bo
!


EDIT3: Same idea as above but the SE glider makes the HWSS appear instead of disappear:

x = 164, y = 208, rule = B3/S23
144bobo$144b2o$145bo43$125bobo$125b2o$126bo3$o$b2o$2o17$68b2o$64b2o2b
2o$64b2o11$61b2o$61bobo$62bo6$106bobo$106b2o$107bo4$67b2o$63b2o2b2o$
63b2o11$60b2o$60bobo$61bo12$66b2o$62b2o2b2o$62b2o10$87bobo$59b2o26b2o$
59bobo26bo$60bo12$65b2o$61b2o2b2o$61b2o11$58b2o$58bobo$59bo4$161b3o$
161bo$162bo6$64b2o$60b2o2b2o76b3o$60b2o80bo$68bobo72bo$68b2o$69bo3$51b
o$52b2o$51b2o70b3o$123bo$124bo$57b2o$57bobo$58bo4$104b3o$104bo$105bo7$
85b3o$85bo$86bo!
chris_c
 
Posts: 851
Joined: June 28th, 2014, 7:15 am

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » August 29th, 2016, 5:51 pm

The nice thing about the MWSS-based tripler is that the two trigger gliders can be sent as-is by the backrakes and forerakes. With the lane and phase restrictions, that's pretty good luck on our part.

I also found a much cleaner way to triple the period by placing a loaf next to the blinker. Shown is the final steps to a x3 loaf stream, which can easily be converted into a 2/3 density rake in either direction. That means the x3 alterations will probably be of the form "glider makes *WSS disappear" rather than appear.

x = 478, y = 1063, rule = B3/S23
#C [[ T 0 ZOOM -1.6 PAUSE 1 "Let's try waypoints"
#C T 90 ZOOM 3 X 90 Y -60
#C T 390 ZOOM 2 X 90 Y -175
#C T 500 ZOOM -1 X 0 Y 100
#C T 700 ZOOM 2 X 90 Y 70
#C T 950 ZOOM -2 X 0 Y 120 ]]
401bo$401bobo$401b2o$427bobo$427b2o$414bobo11bo$414b2o$415bo16$477bo$
475b2o$454bo21b2o$454bobo$454b2o18$382bo$382bobo$382b2o$408bobo$408b2o
$395bobo11bo$395b2o$396bo16$458bo$456b2o$435bo21b2o$435bobo$435b2o18$
363bo$363bobo$363b2o$389bobo$389b2o$376bobo11bo$376b2o$377bo16$439bo$
437b2o$416bo21b2o$416bobo$416b2o18$344bo$344bobo$344b2o$370bobo$370b2o
$357bobo11bo$357b2o$358bo16$420bo$418b2o$397bo21b2o$397bobo$397b2o18$
325bo$325bobo$325b2o$351bobo$351b2o$338bobo11bo$338b2o$339bo16$401bo$
399b2o$378bo21b2o$378bobo$378b2o18$306bo$306bobo$306b2o$332bobo$332b2o
$319bobo11bo$319b2o$320bo16$382bo$380b2o$359bo21b2o$359bobo$359b2o18$
287bo$287bobo$287b2o$313bobo$313b2o$300bobo11bo$300b2o$301bo16$363bo$
361b2o$340bo21b2o$340bobo$340b2o18$268bo$268bobo$268b2o$294bobo$294b2o
64bo$281bobo11bo63bobo$281b2o75bo2bo$282bo76b2o$353bo$353bo$353bo13$
344bo$342b2o$321bo21b2o$321bobo$321b2o4$359bo$282bo75bobo$281b3o73bo2b
o$281bo2bo73b2o$283b2o67bo$283bo68bo$268bo11b2o70bo$252b3o12b3o10b4o$
251bo2bo11b2o2bo10bo2bo$251b2obo11b2ob2o11bo$269b3o$267bob2o10bobo$
266bo2bo11b2o$269bo$251b3o12bobo18b3o$251b2o14bo19b3o$274bo$258b3o12b
3o$257bo3bo10bobobo7bo7b2o17bo$256bo5bo9bo3bo7bobo6b2o15b3o$257bo3bo8b
2o5b2o4bo9b2o18bo$258b3o8bo4bo4bo7b3o2b3o16b2o$268b3o2bobo2b3o10b3o18b
o$269bo4bo4bo5bo4b3o$270b3o4b2o7bo3bo$259b2o13b2o11b2o$259b2o11bo5bo
50bo$273b2o53b3o27bo$274bo2bo49bo2b2o25bobo$274b2o51bo3bo24bo2bo$329bo
bo25b2o$310b2o39bo$310b2o14b2ob2o20bo$317bo10bo22bo$245bo69b2obo$245bo
bo66b3obo$245b2o32bo33bo4bo16bo$271bobo5b2o31bo2bob2o3bo11b3o$271b2o5b
obo31bo4bo3bobo9b5o$258bobo11bo39bo3b2o3bobo8bo5bo$258b2o56bo5bo8b2o2b
o2b2o$259bo53bo16b3obobob3o$314b2o15b2o2bo2b2o$319b2o11bo5bo$333b5o$
296bo37bo2bo$296b2o39bo$295bobo36bo2bo$335b2o6$357bo$356bobo$355bo2bo$
321bo34b2o$319b2o29bo$298bo21b2o28bo$298bobo49bo$298b2o16$315bobo$255b
o60b2o$226bo27b3o59bo$226bobo24b2o2bo$226b2o25b5o98bo$252bo2b2o98bobo$
228b3o9b2o11b2o99bo2bo$227bo3bo7bo2b2o111b2o$227bo2b2o7b2ob2o43bo61bo$
227b2o11bo2bo16bo25b3o60bo$240b5o15b2o24b3o60bo$229b2o11b3o$228bo2bo
13bo15b2o23b4o$230b2o29bo23b5o$245b2o38b2obo$245b2o$247bo$232b2o11b2o
14b2o42bo$232b2o27b2o41b3o$303bo2b2o$247b2o37b2o15b3o$247b2o37b2o$222b
o70bo$222bobo67bobo$222b2o68bobo9bo$248bobo42bo9bobo$248b2o40b3o5bo4bo
bo$235bobo11bo38b2obo5bobo11bo$235b2o51b3obo4bobo10b3o$236bo55b2o4bo
10b5o$291bo3bo12b2o3b2o$291b2ob2o13b5o41bo$248bo44b3o14b3o41bobo$248b
2o61bo41bo2bo$247bobo104b2o$348bo$218bo92b2o35bo$219bo91b2o35bo$218bob
o$218bo4bo$218bo$218bo5bo22bo8bo8bo$246b3o8bo7b2o$246b4o7bo6bobo$220bo
bo17bo8bo$221bo18b2o56bo33bobo$239bo2bo53b2o35b2o$240bobo32bo21b2o34bo
$211bo27bo2bo32bobo$210b3o13bo12bo2bo32b2o$210b3o12b3o11bobo40bo$224b
5o11b3o39b2o$210b4o10b2ob3o51bobo$209b5o11b2ob2o$209b2obo14bo4$354bo$
299bo53bobo$210b2o27b2o58b2o51bo2bo$210b2o27b2o57bobo52b2o$217bo129bo$
216bobo6b2o14bo105bo$216bobo6b2o13b3o104bo$217bo14b2o5bob2o6b3o$214b3o
5bo6b5o4b2obo7b3o15bo2b2o$212b2obo5bobo3bo4bo6b2o8bo2bo18b2o$212b3obo
4bobo3bo3b3o6bo2b2o5bobo17b2o44bo$216b2o4bo3bo4b4o2bo6b3o3b2o64b2o$
215bo3bo6bobo2bo2b3obo6b2o19b2o2b2o43bobo$215b2ob2o7bo3b3o2bobo7bo25bo
12b3o$217b3o12bo4bo28b4o$229bobo36bo2bo13bobo$229bobo56bo$284bo3bo2$
284bo2b2o44bo$333b2o$332bobo4b3o$339bo$241bo98bo$241b2o24b2o$240bobo
23b2ob2o14b2o$266b2o9b3o5b2o$265b2o4bo8bo11bo$264bobobo8bo3bo9bobo$
199bo64bo2bo3bo6bo3bo8bobo$199bobo62bo6bo6bo3bo9bo$199b2o64b2o3bo6bo4b
o5b4o5bo$225b2o31bo10bo11bo5bo8bobo$225b2o31b2o13bo3bo2bo6bobob2o3bobo
$212bobo42bobo13bo14b2ob2o4bo44b2o$212b2o12b2o2b2o58bo3bo47b2o$213bo
12b2o3bo58b2o3bo$225b2o3b2o59b2obo$200bo14bo10b2ob2o62bo$199b3o12b3o
10b2ob2o$198b2o2bo10b2ob2o10bo2bo$202b2o9bo14bo2bo$199b3ob2o25b2o$200b
o2b2o10bo$199b3o13b2o$202b2o10bob2o$202b2o28b2o$232b2o2$195bo22bo$195b
obo20b2o$195b2o$221bobo51bo$221b2o30b3o17b2o$208bobo11bo29bo3bo17b2o
76bo$208b2o42b2o3bo93bobo$209bo140bo2bo$253bo97b2o$258bo$256b2o$258b2o
$258b2o14b3o$209bo48bobo12bo2bo$207bobo7bo42bo12b2o2b2o$205b2ob2o7b2o
11bo28bo13bo5bo$198bo6b3o8bobo7b2o2b3o41b3o$187b6o4bobo6b3o14b2ob2obo
2bo45b2o$189bo2bo15bo12bo3bobo3b2o27b2o12b3o2bo$208bo11bo5bo33b2o13bo
2bo$190bo2bo25bo5bo51b2o$191b3o25bo6bo$219bo4bobo$220bo5bo7bo36bo$221b
2o11b2o33b2o$233bobo12bo21b2o$248bobo$248b2o$210b3o$211bo$211b3o2$181b
3o12b3o152bo$180bo2bo11bo3bo150bobo$184bo159b3o2bo2bo$180b2o18bo149b2o
$180b2o3bo9b5o$185bo10bo$183bo86b2o$181b3o$181b2o27b2o$181bo28b2o39bob
o16bo2bob2o$187b3o27bo34bo19b4o$196b2o18bobo56bo$186bobobo5b2o17b2obo
56bo$186b2ob2o12bo9b2o2bo$184b2o5b2o9bobo8b5o4bo$182bo2bo2bo2bo2bo7bob
o7bo4bo3bobo14b3o$182bobo2bobo2bobo8bo8bob3o4bobo13bo3bo$182bo3b3o2bo
2bo5bo12b3o2bo3bo19bo$184b2ob3o2bo6bob2o4b3o4bo$186b2o3b2o5b2o7b3o5bo
4bo16b2o3bo$189bo13bo11bo4bo18b3o$187b2o12b2obo14bo$202b4o51bo$188b2o
16bo49b3o$256bob2o$255b2o$255b2o$255b2o$259bo$238b2o18b2o$238b2o16bobo
$210bo32bo2bo8bo2bo$210b2o31bo12b2o5bo$172bo36bobo29bo21bo$172bobo64b
2o6bo91b2o$172b2o65bo3bo5b2o10bobobo73b2o$198bobo38bo3bo5bobo9b5o$198b
2o40bo3bob2obobo7b2ob3ob2o$185bobo11bo43bo2bo3bo9b2obob2o$185b2o57b2o
10b2o2bo3b4ob2o$186bo40bo31bo5b3o$227b2o31bo3b2ob2o$226bobo31b3ob4o$
199b3o59bo$199bobo61bo$197bo3bo60bobo$197bob2o2bo$197bo3bo$171bo13b3o
11b2o$170b3o12bo2bo16bo$169b2o2bo10bo3bo10bo5bo$173bo15bo9bo4bo$172bo
12b3ob2o11b3o$168bo20bo$168bobo13bo3b2o159bo$168b2o18bo159bobo$194bobo
51bo98bo2bo$194b2o50b2o100b2o$181bobo11bo29bo21b2o$181b2o42bobo$182bo
42b2o2$227b3o$226bo3bo$226bo2b2o$226b2o$207bo$194b2o10bobo19b2o$193bo
2bo2bo7bobo17bo2bo$194b7o6b4o18b2o$161bob3o13bobo4b2o8b2o2bo5b3ob2o$
159b2ob4o11b2o3bo3bobo8bob2o4bo2bob2o33b3o$161bo3bo3b2o10b3o2bobo10b2o
2b2o3b4o32bo2bo$162bo6b2o8bobo5bo9bo4bo2b2o3bo20b2o11b2o2bo$162b3o34bo
2b2o2bo3bo20b2o14b2o$164bo27b4obo4bo4bobo$193bo3bo46bo$193b4o45b2o$
194bo26bo21b2o$221bobo$203bo17b2o$203b2o143bo$202bobo142bobo$341b3o2bo
2bo$347b2o$182bo$181b3o$181bo2bo$183b2o$183bo$168bo11b2o70bobo$152b3o
12b3o10b4o41bo24b3o$151bo2bo11b2o2bo10bo2bo38bo2bo17bo2bo6b4o$151b2obo
11b2ob2o11bo40b3o18bo2bo5bo3bo$169b3o51bo18b2ob2ob2o4b3o$167bob2o10bob
o37b3o18bo4b3o7bo$166bo2bo11b2o59b3o2b2o5b4o$169bo74bo2b2o7b2o$151b3o
12bobo18b3o56b2o$151b2o14bo19b3o56bo$174bo$158b3o12b3o$157bo3bo10bobob
o7bo7b2o$156bo5bo9bo3bo7bobo6b2o$157bo3bo8b2o5b2o4bo9b2o15bo$158b3o8bo
4bo4bo7b3o2b3o14b3o$168b3o2bobo2b3o10b3o15b3o$169bo4bo4bo5bo4b3o$170b
3o4b2o7bo3bo18b4o$159b2o13b2o11b2o19b5o$159b2o11bo5bo29b2obo$173b2o$
174bo2bo$174b2o52bo$227b3o$226bo2b2o105b2o$209b2o15b3o107b2o$209b2o$
145bo70bo$145bobo67bobo$145b2o32bo35bobo9bo$171bobo5b2o35bo9bobo$171b
2o5bobo32b3o5bo4bobo$158bobo11bo38b2obo5bobo11bo$158b2o51b3obo4bobo10b
3o$159bo55b2o4bo10b5o$214bo3bo12b2o3b2o$214b2ob2o13b5o$216b3o14b3o$
196bo37bo$196b2o$195bobo$234b2o$234b2o$170b3o$170bo2bo172bo$169bo3bo
171bobo$137bo2b2o27b3o2bo169bo2bo$141b2o27b4o171b2o$140b2o14b3o$156bo
2bo$136b2o2b2o14bo2bo7bobo51bo$142bo12b4o8b2o50b2o$136b4o15b2o11bo29bo
21b2o$138bo2bo12bo43bobo$155bo42b2o$155bo6$199bo$137b2o59b3o$136b2ob2o
27bo10bo17b2o2bo$136b2o29bo2bo6b2o22b2o$135b2o4bo7bo4bo11bo4bo8b2o16b
3ob2o$134bobobo9bo5b3o10bo3bo8b2o17bo2b2o$134bo2bo3bo5bo6b3o11b3ob2o3b
o3b3o14b3o$134bo6bo4b2o3b3ob2o16bo4b3ob2o17b2o$135b2o3bo9bob2ob2o11b2o
3bo27b2o12b3o$139bo16bo7b4o3b2o44bo$143bo7bo2b2o8b2obo2bo44b3o127bo$
143bo21bob2o25bo149bobo$194bobo19bo121b3o2bo2bo$194b2o18b3o127b2o$212b
3o$213b2o2$172bo$172b2o$171bobo5$153bo$152b3o68bo$151b2o2bo39b2o26b2o$
151bo3bo38b4o8bobo13bob2o$151bob2o41bobo7bobob2o14bo$139bo11b2o41bo2b
2o8bo3bo3b2o5b2o2b2o$123b3o12b3o52bo15bo7b3o6b3o$122bo3bo10b2obo52b2o
23b2o6b2o$122b2o3bo24bo64bo8bo$152bo65b2o$123bo35bo$128bo10bo18b3o$
126b2o10bo18b5o$128b2o7b2o17b2o3b2o$128b2o25b3o3b3o$128bobo13b2o10b2o
3b2o$130bo12bo2b2o9b5o$129bo13b2ob2o10b3o$143b2o2bo11bo$145b2o33b3o$
130b2o27b2o18bo2bo150b2o$130b2o27b2o22bo149b2o$179b2o$145b2o32b2o3bo$
145b2o37bo$182bo$180b3o$118bo61b2o$118bobo59bo18bo$118b2o66b3o9b3o$
144bobo50bo2b2o$144b2o39bobobo7b2o$131bobo11bo39b2ob2o7b2o$131b2o15bo
34b2o5b2o$132bo15b2o31bo2bo2bo2bo2bo8bo$147bobo31bobo2bobo2bobo8bobo$
181bo3b3o2bo2bo10bo$183b2ob3o2bo10bo2bo$185b2o3b2o11bobo$188bo16bo$
186b2o155bo$342bobo$165bo21b2o152bo2bo$165b2o38b2o135b2o$164bobo38b2o
4$137bobo$135bo4bo$135bo4bo53bo$108bo14bo15b2o51b2o$107b3o13b2o46bo21b
2o$110bo11bo2bo9b2o2b2o30bobo$108b2o13bobo9b2o2b2o30b2o$109bo12bo2bo
10bob3o$122bo2bo13bo$122bobo13bo$123b3o47bo$172bobo$171b2ob2o$172bob2o
$169b2o2b3o$174bo$107b2o64bo$107b2o27b2o34b2o$114bo21bobo38b2o$112b2ob
o6b2o12bob2o7bo29b2o11b2o150bo$111b3obo6b2o11bob3o6b3o27b2o12bobo148bo
bo$110bo4bo18b2obobo6b4o26bo15b2o141b3o2bo2bo$109bo2bob2o3bo4bo13b3o8b
2o40bo149b2o$109bo4bo3bobob4o13bo10b2o37bobo$109bo3b2o3bobobob2o11b2o
7b5o16bo20b2o$113bo5b2o3bo12bo8b4o17bobo18b3o$110bo11b2o17bobo3b2o18b
2o$111b2o10bo2b2o5bo8bo$116b2o9b3o3b2o$128b2o$129bo6$139bo$139b2o57bo$
138bobo22bo33bobo$162bobo31b2o2b2o$161b2o3bo24bo5b5o$167bo21b2obo9bo$
163bo3bo21bo2b2o8b3o$189bo2bo9bo$95bo67b2ob2o22b3o$95bobo58bo6b2ob2o$
95b2o59b2o7bo$121bobo31bobo$121b2o$108bobo11bo$108b2o$109bo2$330b2o$
173bo156b2o$173b2o$172bobo7$190bo$190b2o$189bobo2$171bo$169b2o$148bo
21b2o$148bobo$148b2o$207bo$207b2o131bo$206bobo130bobo$338bo2bo$339b2o
5$224bo$224b2o$223bobo6$76bo$76bobo162bo$76b2o163b2o$102bobo135bobo$
102b2o$89bobo11bo$89b2o$90bo3$258bo$258b2o79bo$257bobo78bobo$332b3o2bo
2bo$338b2o5$275bo$275b2o$274bobo2$152bo$150b2o$129bo21b2o$129bobo$129b
2o$292bo$292b2o$291bobo7$309bo$309b2o$308bobo6$57bo$57bobo$57b2o$83bob
o$83b2o$70bobo11bo$70b2o$71bo16$133bo$131b2o$110bo21b2o$110bobo$110b2o
18$38bo$38bobo$38b2o296bo$64bobo268bobo$64b2o268bo2bo$51bobo11bo269b2o
$51b2o$52bo16$114bo$112b2o$91bo21b2o$91bobo$91b2o18$19bo$19bobo$19b2o$
45bobo$45b2o$32bobo11bo$32b2o$33bo16$95bo$93b2o$72bo21b2o$72bobo$72b2o
11$333bo$332bobo$331bo2bo$332b2o4$o$obo$2o$26bobo$26b2o$13bobo11bo$13b
2o$14bo!


I'm still looking for which cluster is most easily able to place that constellation. One could do it via monochromatic slow salvos but it wouldn't be as easy as finding a free loaf. Unfortunately, all of the properly-oriented loaves I've come across so far are the wrong color, so there's a chance we have to slow-construct both.
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: (27,1)c/72 caterpillar challenge

Postby chris_c » August 29th, 2016, 7:11 pm

biggiemac wrote:I also found a much cleaner way to triple the period by placing a loaf next to the blinker. Shown is the final steps to a x3 loaf stream, which can easily be converted into a 2/3 density rake in either direction. That means the x3 alterations will probably be of the form "glider makes *WSS disappear" rather than appear.


That's convenient. I think I found a "glider-makes-*WSS-disappear" type pattern that should work for all the LWSS (I really should double check though):

x = 321, y = 402, rule = B3/S23
312bobo$312b2o$313bo23$bo$2bo$3o18$293bobo$293b2o$294bo23$18bo$19bo$
17b3o18$274bobo$274b2o$275bo23$35bo$36bo$34b3o18$255bobo$255b2o$256bo
4$117bo$116bobo$115bo2bo$116b2o15$140bo$52bo87bo$53bo86bo$51b3o$136b3o
3b2o$142bobo$143b2o8$140bo$140bo$140bo5$236bobo$236b2o$237bo4$139bo$
139bo$139bo2$135b3o3b2o$141bobo$142b2o8$139bo$139bo$139bo3$69bo$70bo$
68b3o6$138bo$138bo$138bo2$134b3o3b2o$140bobo$141b2o3$114bo$113bobo$
112bo2bo$113b2o102bobo$217b2o$138bo79bo$138bo$138bo11$137bo$137bo$137b
o2$133b3o3b2o$139bobo$140b2o4$86bo$87bo$85b3o2$137bo$137bo$137bo11$
136bo$136bo$136bo$198bobo$132b3o3b2o58b2o$138bobo58bo$139b2o8$136bo$
136bo$136bo11$135bo$103bo31bo$104bo30bo$102b3o$131b3o3b2o$137bobo$138b
2o3$111bo$110bobo$109bo2bo$110b2o2$135bo$135bo$135bo11$134bo$134bo$
134bo2$130b3o3b2o$136bobo$137b2o8$134bo$134bo$134bo8$318b2o$318bobo$
318bo7$299b2o$299bobo$299bo7$280b2o$280bobo$280bo7$261b2o$261bobo$261b
o7$242b2o$242bobo$242bo7$223b2o$223bobo$223bo7$204b2o$204bobo$204bo!


The two blinkers plus ship configuration is only two gliders away from a traffic light so hopefully it is easy to construct?

EDIT: Oh, and I guess this HWSS is slighty simpler than the one above (it trades one ship for two blocks):

x = 125, y = 221, rule = B3/S23
100bo$99bo$99b3o43$81bo$80bo$80b3o34$6b3o2$10bo$10bo$10bo$23b2o$6b3o
13bobo$22b2o2$62bo$61bo$61b3o2$10b2o$10b2o13$5b3o2$3bo5bo$3bo5bo$3bo5b
o$22b2o$5b3o13bobo$21b2o6$9b2o$9b2o13$4b3o36bo$42bo$8bo33b3o$8bo$8bo$
21b2o$4b3o13bobo$20b2o6$8b2o$8b2o13$3b3o2$7bo$7bo$7bo$20b2o$3b3o13bobo
$19b2o5$96b3o$7b2o87bo$7b2o88bo4$24bo$23bo$23b3o96b2o$77b3o42bobo$77bo
44bo$78bo4$2b3o2$o5bo96b2o$o5bo51b3o42bobo$o5bo51bo44bo$19b2o38bo$2b3o
13bobo$18b2o4$84b2o$39b3o42bobo$6b2o31bo44bo$6b2o32bo6$65b2o$20b3o42bo
bo$20bo44bo$21bo6$46b2o$46bobo$46bo!
chris_c
 
Posts: 851
Joined: June 28th, 2014, 7:15 am

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » August 29th, 2016, 8:12 pm

The LWSS inserter works, even for the tricky spot where the Caterpillar synthesis didn't and I had to resort to the one from the Waterbear. Good find!
x = 201, y = 477, rule = B3/S23
193bo$193bobo$193b2o43$174bo$174bobo$174b2o43$155bo$155bobo$155b2o43$
136bo$136bobo$136b2o16$27b3o2$25bo$25bo4b2o$25bo4bobo$31b2o9$27b3o13$
117bo$31b3o83bobo$117b2o$29bo5bo$29bo5bo$29bo5bo2$31b3o7$26b3o14$30b3o
2$28bo5bo$28bo5bo$28bo5bo2$30b3o7$25b3o4$98bo$98bobo$98b2o7$24b3o2$22b
o$22bo4b2o$22bo4bobo$28b2o9$24b3o14$28b3o2$26bo5bo$26bo5bo$26bo5bo2$
28b3o2$79bo$79bobo$79b2o3$23b3o14$27b3o2$25bo5bo$25bo5bo$25bo5bo2$27b
3o7$22b3o13$21b3o36bo$60bobo$19bo40b2o$19bo4b2o$19bo4bobo$25b2o9$21b3o
2$199b2o$198b2o$200bo7$180b2o$179b2o$181bo$25b3o2$23bo5bo$23bo5bo$23bo
5bo2$25b3o133b2o$160b2o$162bo5$20b3o2$142b2o$141b2o$41bo101bo$41bobo$
41b2o5$123b2o$122b2o$124bo$24b3o2$22bo5bo$22bo5bo$22bo5bo2$24b3o77b2o$
103b2o$105bo5$19b3o2$85b2o$84b2o$86bo$9b3o$3bo4bo2bo$2b3o6bo$2bob2o5bo
$3b3o2bobo$3b3o$3b3o60b2o$3b2o13b2ob2o42b2o$21b2o44bo$18b3o2$19b2o$19b
3o$18bo2bo$18bobo$2bo15bobo26b2o$b3o5b3o34b2o$2obo5bo2bo35bo$3o6bo$3o
6bo$3o7bobo$b2o$18b3o2$28b2o$27b2o$29bo2$6bo$5b3o$5bob2o$6b3o$6b3o$6b
3o$6b2o8$5bo$4b3o5b3o$3b2obo5bo2bo$3b3o6bo$3b3o6bo$3b3o7bobo$4b2o7$9bo
$8b3o$8bob2o$9b3o$9b3o$9b3o$9b2o8$8bo$7b3o5b3o$6b2obo5bo2bo$6b3o6bo$6b
3o6bo$6b3o7bobo$7b2o7$12bo$11b3o$11bob2o$12b3o$12b3o$12b3o$12b2o!


If it can be built by a monochromatic NE salvo with all gliders the same shape, then cheap or not is just a matter of how many rephasings need to occur between consecutive gliders. The original targets for the salvo depend still on which cluster we use.

Going back to the scripts I posted in the earlier pages, there are plenty of options with backrakes. There are the _C3 options which includes 3C3, my favorite from early on. These all have the backrake in bi-block position relative to the forerakes, up to shifts of 2N horizontally. The _C0 options also have the backrake in bi-block position. There are the _D1 options which have the backrake in interchange position. Then there are the _B0 options, which I don't like for a few reasons, the biggest that they leave a blinker behind during the backrake that proves a pain to get rid of. If we want the ability to perform forerake, backrake and rephasing interchangeably, then our options are (2-4)C3 and (2-4)D1. We get forerake and backrake but no rephasing from (2-5)C0, which isn't a dealbreaker but makes rephasing a bit tricky, as it must be achieved by mutually annihilating pairs and trios of rakes. The MWSS tripler requires the gliders be in bi-block position, so I am inclined to throw out (2-4)D1, but there could be an equally appealing construction on those tracks that I just haven't searched for.

In refining the options further, I'm just looking for still lives that get sparked by the passing climber into new constellations, and seeing if the constellations that arise are convenient to present construction efforts. The frozen track construction benefitted from a constellation with a correctly colored and oriented loaf. Other constructions that will happen very often are triplers and *WSS seed constellations, but I think frozen tracks of both colors are probably the most needed recipe so I will still be looking out for them. I'm just not the greatest at seeing how many cheap construction gliders it takes to get from A to B, and don't quite know how to automate a search for something like that. If any one cluster can make a frozen track in under 500 vertical cells it will likely be the champion.
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: (27,1)c/72 caterpillar challenge

Postby chris_c » August 29th, 2016, 8:33 pm

biggiemac wrote:If it can be built by a monochromatic NE salvo with all gliders the same shape, then cheap or not is just a matter of how many rephasings need to occur between consecutive gliders. The original targets for the salvo depend still on which cluster we use.


Well the two blinkers plus ship part can be made with monochromatic monoparity slow salvo from a traffic light. I don't know how to get the other blinker there yet but I can run a search tomorrow. What objects would I be allowed to start from? (And I suppose I need to know their parity and color also?)

x = 13, y = 20, rule = B3/S23
8b3o2$6bo5bo$6bo5bo$6bo5bo2$8b3o3$3b2o$2bobo$4bo6$b2o$obo$2bo!
chris_c
 
Posts: 851
Joined: June 28th, 2014, 7:15 am

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » August 29th, 2016, 10:24 pm

Assuming we using a cluster with a backrake in the bi-block position, the following are always permitted, with the glider parity and color dictating those of salvos in both directions.
x = 83, y = 18, rule = B3/S23
bo19bo19bo19bo19bo$2bo19bo19bo19bo19bo$3o17b3o17b3o17b3o17b3o4$4b3o13b
3o13b3o$6bo15bo15bo$5bo15bo15bo7$63b3o11b3o$65bo13bo$64bo13bo!


But there are many many more exotic starting constellations. I will try to find all of the "cheap" ones for all of 2C3, 3C3 and 4C3, where "cheap" here means that they can immediately proceed and follow backrakes and forerakes. There are further options if we allow cycling through the congruence class.

They're tricky to enumerate because if the spark can reach an object, it can cause there to be a new reachable object for a later climber and so on. An example is the chain of three follow-up sparks to 2C3's cheap block, which leave the three pictured constellations, with gliders for parity and color reference.
x = 306, y = 481, rule = B3/S23
149bobo$149b2o$150bo25bo$175bo$163bo11b3o$162bo$162b3o14$285bobo$285b
2o$286bo2$299bo$298bo$298b3o19$130bobo$130b2o$131bo25bo$156bo$144bo11b
3o$143bo$143b3o14$266bobo$266b2o$267bo2$280bo$279bo$279b3o19$111bobo$
111b2o$112bo25bo$137bo$125bo11b3o$124bo$124b3o14$247bobo$247b2o$248bo
2$261bo$260bo$260b3o19$92bobo$92b2o$93bo25bo$118bo$106bo11b3o$105bo$
105b3o14$228bobo$228b2o$229bo2$242bo$109bo131bo$108bobo130b3o$107bo3bo
$108bo2bo$80bo14bo12bo2bo$79b3o13bo13bobo$79bo2bo11bobo$81b2o$81bo14b
2o$78b2o$78b4o14b2o$79bo2bo$80bo2$79bobo26b2o$79b2o27b2o$115bo$85b3o6b
2o18bob2o$85b3o6b2o15b3o$101bo8b5o$100bobo6bo2bo2b3o2bo$82bo7b2o8bobo
6bobo4bo2bobo$82bobo6b2o5bo2bo8bo3b2o3bobo$81bo9b2o4b4o5bo8bo4bo$85b3o
2b3o3bo4bo3bobo4b3o$89b3o4bobob2o3bobo4b2o$83bo4b3o6b2o2b2o3bo$84bo3bo
12bo$85b2o12bob4o$99b5o$101b2o7$108b3o$110bo$109bo$69bobo137bobo$69b2o
138b2o$70bo25bo113bo$95bo$83bo11b3o125bo$82bo139bo$82b3o40b3o94b3o$
127bo$126bo7$142b3o$144bo$143bo7$159b3o$161bo36b3o12b3o$160bo38bo16bo$
199b3o11bo2bo$214b2o$214b2o$213bo2bo$213bo$215b2o$176b3o$178bo$177bo2$
198b2o$198b2o$205bo$204bobo6b2o$203b2obo6b2o$193b3o5b2o2bo$195bo5b5o4b
o$194bo5bo4bo3bobo2b3o$50bobo25b3o119bob3o4bob3obo8bo$50b2o26bo2bo119b
3o2bo3bo2bo9b3o$51bo25bo2b2o120bo10b3o2bo2bo4bo$76bo2bo123bo4bo8bo6bob
o$53bo10b2o11b2o124bo4bo9bo5b2o$52b3o8bo2bo140bo11b3o$51b2ob2o8bob2o
15bo$51bo12bo$65bobo16b2o$53bo10bo2b2o14bobo$53b2o15bo14b2o$52bob2o14b
o13bo2$69b2o$69b2o$56bo13bo14b2o$56b2o27b2o2$71b2o$71b2o$46bobo137bobo
$46b2o138b2o6b2o$47bo25bo113bo6b2o$72bo$60bo11b3o125bo$59bo139bo$59b3o
137b3o5$71b3o$73bo$72bo$42bo$41bobo$43bo$45b2o$42b6o$42bobobobo23bo7bo
$43b5o22b2o7bobo6b3o$44b3o24bo2bo6bo8bo$44b3o25bobo5bo8bo6$193b2o$105b
3o85b2o$61bo45bo$59b2ob2o42bo$59b2ob2o$60bob3o$59b3o$32bo13b3o$31b3o
12bo2bo$30b2o2bo13b2o$30bo3bo87b3o$30bob2o10bo2bo76bo$30b2o13b2o76bo$
48b2o10b2o$47b3o10b2o$31bo16bo18bo$31bo13bo2bo17bobo$38bo7b2o18bobo98b
obo$37b3o27bo99b2o$36b5o11bobo84b3o26bo$35b2o3b2o9bobobo7b3o5b2o68bo$
34b3o3b3o20bob2o5b2o66bo40bo$35b2o3b2o7bo7bo5bob2o113bo$36b5o17bo7bo
113b3o$37b3o9b3o6bo8b3o$38bo10b2o8bo5bo4bo$49b2o2bo4bo10bo$38b2o10bob
3o2b2o6bo101b3o12b3o7b2o$38b2o10b2ob4o9bo89b3o8bo2bo10bo2bo7b2o$52b2o
104bo7bo3bo9bo4bo$53bo103bo13bo10bo$167b3ob2o$171bo11b2o$166bo3b2o10bo
bo$170bo11bobo2$188bo$23bobo137bobo20bo$23b2o33b3o102b2o21b2o$24bo25bo
9bo103bo$49bo9bo$37bo11b3o125bo$36bo139bo$36b3o137b3o85bo$265bo$263b3o
2$75b3o$77bo$76bo3$173b2o$156bo4bo4bo5bo2bo$155bo2bo2bo3bobo5b2o$155bo
2b2o5bobo9b2o$15bo31b2o43b3o63b2o17b2o$15b2o30bob2o43bo64b2o119b2o$14b
o2bo31b2o42bo66b2o23b2o92bo2bo$15bobo15bo13b2o136b2o93b2o$14bo2bo15b2o
10b2o237b2o$14bo2bo17bo248b2o$14bobo16b2o10bobo$15b3o14bobo11bo245b2o$
33bo258b2o$31bobo75b3o$29bo81bo$29bobo78bo2$263b3o$265bo$264bo$14b2o$
14b2o$56bo69b3o$16bo39b2o70bo$15b3o8bo4bo10b3o13bo68bo$14bob2o6b4o3bo
11b2obo10b3o$13b2obo7b2obob2obo9bob2obo7bob3o87bo13b3o$14b2o8b2o15b2o
4b2o4bo5bo86b3o12bo2bo7b2o$15bo2b2o10bobo9bo3b2o6bo4bo85b2o2bo10bo3bo
6bo2bo$19b3o7b2obo10b4o99bob2o10b4o8b2o$20b2o5bob3o12bo12bo85bo2b3o12b
o14b2o$21bo5bo12b2o101bo32b2o$40b2o99b2ob3o$142b5o14bo22b2o$152bo7bobo
21b2o$152b2o$167b3o$153b2o11bo3bo$153bo11bo5bo$47b3o115bo5bo$49bo115bo
5bo$48bo117bo3bo88bo$153b2o12b3o90bo$153b2o103b3o2$168b2o$168b2o2$64b
3o$66bo$obo62bo74bobo$2o138b2o$bo25bo113bo$26bo$14bo11b3o125bo$13bo
139bo14bo3bo$13b3o137b3o11b5obo101b2o$81b3o82bob3o3bo100bobo$83bo82bo
4b3o102bo$82bo84bo$168bo14b2o$183b2o3$283b2o$283b2o$98b3o$100bo157b3o$
99bo160bo$259bo5$301b3o$115b3o11b3o12b3o$117bo12bo16bo14b2o135bo5bo$
116bo13b3o11bo2bo14bobo134bo5bo$145b2o16bo135bo5bo$145b2o$144bo2bo153b
3o$144bo$146b2o2$170b2o$170b2o2$129b2o52b2o$129b2o51bo$136bo$135bobo6b
2o34bo3bo$134b2obo6b2o34bo3bo$132b2o2bo43bo3bo$132b5o4bo38bob2o$131bo
4bo3bobo2b3o32bob2o$131bob3o4bob3obo8bo24bo$132b3o2bo3bo2bo9b3o$133bo
10b3o2bo2bo4bo$134bo4bo8bo6bobo$134bo4bo9bo5b2o$138bo11b3o6$259bo11b2o
$260bo9bo2bo$258b3o10bobo$272bo6$117bobo$117b2o$118bo2$131bo151b2o$
130bo152b2o$130b3o8$301b3o2$299bo5bo$258b3o38bo5bo$260bo38bo5bo$259bo$
301b3o!


This isn't the only constellation at depth 3, and I'm not yet sure how deep some of the others go. You can feel free to start here though, all the pictured constellations are known to be cheap.
x = 108, y = 109, rule = B3/S23
bo$2bo$3o76b2o$78bo2bo$79b2o$83b2o$83b2o2$91b2o$91b2o31$28bo$27bobo47b
2o$27bo2bo46bobo$28b2o48bo2$36b2o$31b2o3b2o$27bo3b2o$26bobo$26bobo56b
2o$27bo10bo46b2o$37bobo$37b2o7$103b3o2$101bo5bo$101bo5bo$101bo5bo2$
103b3o11$73b2o$72bo2bo$73bobo$74bo10$85b2o$85b2o3$31bo$30bobo$30bo2bo$
31b2o$22bo$22bo$22bo13b2o65b3o$36b2o$101bo5bo$101bo5bo$101bo5bo$38bo$
37bobo63b3o$3o34b2o$2bo$bo!



If you run a search, please do also keep a look out for frozen tracks of each color. The loaf + block should appear reasonably often, perhaps even the eater + hive.
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » August 30th, 2016, 3:02 am

Here are all the cheap target constellations for 2C3, 3C3 and 4C3.

x = 1419, y = 293, rule = LifeHistory
140.F90.F88.F71.F89.F89.F89.F89.F27.2A60.F89.F27.2A60.F89.F89.F71.F
71.F71.F$140.F90.F88.F71.F89.F89.F89.F89.F26.A2.A59.F89.F27.2A60.F89.
F28.2A59.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F89.F27.A.A59.F89.
F89.F89.F27.A.A59.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F89.F28.A
60.F89.F89.F89.F27.2A8.B51.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.
F89.F89.F24.A64.F36.B52.F89.F36.3A50.F71.F71.F71.F$140.F31.2A57.F88.F
71.F89.F89.F89.F31.2A56.F89.F23.BAB63.F35.3A51.F89.F37.B51.F71.F71.F
71.F$102.2A36.F31.A.A56.F88.F71.F89.F89.F89.F31.A.A55.F89.F24.A64.F
36.B52.F89.F89.F71.F71.F71.F$102.2A36.F32.A18.A38.F88.F34.2A35.F89.F
31.2A56.F89.F32.A56.F89.F89.F89.F89.F89.F71.F71.F25.B45.F$92.2A46.F
50.A.A37.F17.2A29.A39.F33.A2.A34.F49.A39.F30.A2.A55.F49.A39.F89.F89.F
89.F89.F89.F35.2A52.F71.F71.F24.3A44.F$71.B19.A2.A45.F45.2A3.A2.A36.F
17.A.A27.BAB38.F34.2A35.F48.BAB38.F31.2A56.F48.BAB38.F89.F89.F89.F89.
F89.F35.2A52.F71.F71.F25.B45.F$70.2BA18.A2.A45.F44.A2.A3.2A37.F18.A
18.A10.A39.F38.2A31.F39.2A8.A39.F89.F18.2A29.A39.F89.F89.F89.F89.F89.
F89.F71.F71.F71.F$70.3BA18.2A21.A24.F45.2A43.F36.A.A49.F38.2A31.F38.A
2.A47.F89.F17.A2.A68.F89.F89.F89.F89.F89.F89.F71.F71.F71.F$71.3A40.BA
B23.F90.F31.2A3.A2.A48.F71.F39.2A48.F89.F18.2A69.F89.F89.F89.F89.F89.
F89.F71.F71.F71.F$115.A24.F39.2A23.2A24.F30.A2.A3.2A24.2A23.F46.2A23.
F43.2A19.2A23.F64.2A23.F64.2A23.F39.2A48.F39.2A48.F39.2A48.F39.2A48.F
39.2A48.F39.2A48.F71.F71.F71.F$140.F39.2A23.2A24.F31.2A30.2A23.F46.2A
23.F43.2A19.2A23.F64.2A23.F64.2A23.F39.2A48.F39.2A48.F39.2A48.F39.2A
48.F39.2A48.F39.2A48.F71.F71.F23.B47.F$140.F90.F88.F71.F89.F89.F89.F
89.F89.F89.F89.F89.F89.F71.F71.F22.3A46.F$97.2A41.F90.F25.2A61.F71.F
89.F89.F89.F89.F89.F89.F89.F89.F89.F71.F71.F23.B47.F$97.2A41.F45.A44.
F25.2A61.F71.F89.F89.F89.F89.F89.F89.F89.F89.F89.F71.F71.F71.F$2.4D7.
4D7.4D112.F44.A.A43.F88.F71.F89.F89.F89.F89.F89.F89.F89.F89.F89.F28.A
42.F71.F29.2A40.F$.6D5.6D5.6D111.F44.A2.A5.2A35.F52.2A34.F71.F53.2A
34.F54.B34.F53.2A34.F89.F89.F89.F89.F89.F89.F27.A.A4.2A35.F31.2A38.F
29.2A40.F$3D2.3D3.3D2.3D3.3D2.3D110.F45.2A6.2A35.F31.A20.2A34.F71.F
53.2A34.F53.3A33.F53.2A34.F89.F89.F89.F89.F89.F89.F27.A.A4.2A35.F30.A
2.A37.F71.F$2D4.2D3.2D4.2D3.2D4.2D110.F90.F30.A.A55.F71.F89.F54.B34.F
89.F89.F89.F89.F89.F89.F89.F28.A42.F30.A.A38.F71.F$2D4.2D3.2D14.3D
110.F90.F30.A2.A5.2A47.F71.F89.F47.A41.F41.B47.F58.B30.F58.B30.F58.B
30.F58.B30.F58.B30.F58.B30.F71.F31.A39.F71.F$5.3D3.2D13.3D111.F90.F
31.2A6.2A47.F71.F89.F46.A.A40.F40.3A46.F57.3A29.F57.3A29.F57.3A29.F
57.3A29.F57.3A29.F57.3A29.F71.F71.F71.F$5.2D4.2D13.3D111.F90.F88.F71.
F89.F47.2A40.F41.B47.F58.B30.F58.B30.F58.B30.F58.B30.F58.B30.F58.B30.
F71.F71.F71.F$4.3D4.2D14.3D110.F90.F88.F71.F89.F89.F34.A54.F55.A5.A
27.F55.A5.A27.F55.A5.A27.F55.A5.A27.F55.A5.A27.F55.A5.A27.F71.F71.F
71.F$3.3D5.2D4.2D3.2D4.2D110.F90.F88.F71.F89.F89.F33.A.A53.F54.BAB3.B
AB26.F54.BAB3.BAB26.F54.BAB3.BAB26.F54.BAB3.BAB26.F54.BAB3.BAB26.F54.
BAB3.BAB26.F71.F71.F71.F$2.3D6.3D2.3D3.3D2.3D110.F90.F88.F71.F89.F89.
F34.2A53.F55.A5.A27.F26.2A27.A5.A27.F55.A5.A27.F26.2A27.A5.A27.F55.A
5.A27.F55.A5.A27.F71.F71.F71.F$8D4.6D5.6D111.F90.F88.F71.F89.F89.F89.
F58.B30.F25.A2.A29.B30.F58.B30.F26.2A30.B30.F58.B30.F27.2A29.B30.F71.
F71.F71.F$8D5.4D7.4D112.F90.F88.F71.F89.F89.F89.F57.3A29.F26.A.A28.3A
29.F57.3A29.F57.3A29.F57.3A29.F26.A.A28.3A29.F71.F71.F71.F$140.F90.F
88.F71.F89.F89.F89.F58.B30.F27.A30.B30.F58.B30.F58.B30.F58.B30.F26.2A
8.B21.B30.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F89.F89.F23.A65.F
35.B53.F89.F35.3A51.F71.F71.F71.F$140.F30.2A58.F88.F71.F89.F89.F89.F
30.2A57.F89.F22.BAB64.F34.3A52.F89.F36.B52.F71.F71.F71.F$101.2A37.F
30.A.A57.F88.F71.F89.F89.F89.F30.A.A56.F89.F23.A65.F35.B53.F89.F89.F
71.F71.F71.F$101.2A37.F31.A18.A39.F88.F33.2A36.F89.F30.2A57.F89.F31.A
57.F89.F89.F89.F89.F89.F71.F71.F24.B46.F$91.2A47.F49.A.A38.F16.2A29.A
40.F32.A2.A35.F48.A40.F29.A2.A56.F48.A40.F89.F89.F89.F89.F89.F34.2A
53.F71.F71.F23.3A45.F$90.A2.A46.F44.2A3.A2.A37.F16.A.A27.BAB39.F33.2A
36.F47.BAB39.F30.2A57.F47.BAB39.F89.F89.F89.F89.F89.F34.2A53.F71.F71.
F24.B46.F$90.A2.A46.F43.A2.A3.2A38.F17.A18.A10.A40.F37.2A32.F38.2A8.A
40.F89.F17.2A29.A40.F89.F89.F89.F89.F89.F89.F71.F71.F71.F$91.2A21.A
25.F44.2A44.F35.A.A50.F37.2A32.F37.A2.A48.F89.F16.A2.A69.F89.F89.F89.
F89.F89.F89.F71.F71.F71.F$113.BAB24.F90.F30.2A3.A2.A49.F71.F38.2A49.F
89.F17.2A70.F89.F89.F89.F89.F89.F89.F71.F71.F71.F$114.A25.F38.2A23.2A
25.F29.A2.A3.2A24.2A24.F45.2A24.F42.2A19.2A24.F63.2A24.F63.2A24.F38.
2A49.F38.2A49.F38.2A49.F38.2A49.F38.2A49.F38.2A49.F71.F71.F71.F$140.F
38.2A23.2A25.F30.2A30.2A24.F45.2A24.F42.2A19.2A24.F63.2A24.F63.2A24.F
38.2A49.F38.2A49.F38.2A49.F38.2A49.F38.2A49.F38.2A49.F71.F71.F22.B48.
F$140.F90.F88.F71.F89.F89.F89.F89.F89.F89.F89.F89.F89.F71.F71.F21.3A
47.F$96.2A42.F90.F24.2A62.F71.F89.F89.F89.F89.F89.F89.F89.F89.F89.F
71.F71.F22.B48.F$96.2A42.F44.A45.F24.2A62.F71.F89.F89.F89.F89.F89.F
89.F89.F89.F89.F71.F71.F71.F$140.F43.A.A44.F88.F71.F89.F89.F89.F89.F
89.F89.F89.F89.F89.F27.A43.F71.F28.2A41.F$140.F43.A2.A5.2A36.F51.2A
35.F71.F52.2A35.F53.B35.F52.2A35.F89.F89.F89.F89.F89.F89.F26.A.A4.2A
36.F30.2A39.F28.2A41.F$140.F44.2A6.2A36.F30.A20.2A35.F71.F52.2A35.F
52.3A34.F52.2A35.F89.F89.F89.F89.F89.F89.F26.A.A4.2A36.F29.A2.A38.F
71.F$140.F90.F29.A.A56.F71.F89.F53.B35.F89.F89.F89.F89.F89.F89.F89.F
27.A43.F29.A.A39.F71.F$140.F90.F29.A2.A5.2A48.F71.F89.F46.A42.F40.B
48.F57.B31.F57.B31.F57.B31.F57.B31.F57.B31.F57.B31.F71.F30.A40.F71.F$
140.F90.F30.2A6.2A48.F71.F89.F45.A.A41.F39.3A47.F56.3A30.F56.3A30.F
56.3A30.F56.3A30.F56.3A30.F56.3A30.F71.F71.F71.F$140.F90.F88.F71.F89.
F46.2A41.F40.B48.F57.B31.F57.B31.F57.B31.F57.B31.F57.B31.F57.B31.F71.
F71.F71.F$140.F90.F88.F71.F89.F89.F33.A55.F54.A5.A28.F54.A5.A28.F54.A
5.A28.F54.A5.A28.F54.A5.A28.F54.A5.A28.F71.F71.F71.F$140.F90.F88.F71.
F89.F89.F32.A.A54.F53.BAB3.BAB27.F53.BAB3.BAB27.F53.BAB3.BAB27.F53.BA
B3.BAB27.F53.BAB3.BAB27.F53.BAB3.BAB27.F71.F71.F71.F$140.F90.F88.F71.
F89.F89.F33.2A54.F54.A5.A28.F25.2A27.A5.A28.F54.A5.A28.F25.2A27.A5.A
28.F54.A5.A28.F54.A5.A28.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F
57.B31.F24.A2.A29.B31.F57.B31.F25.2A30.B31.F57.B31.F26.2A29.B31.F71.F
71.F71.F$140.F90.F88.F71.F89.F89.F89.F56.3A30.F25.A.A28.3A30.F56.3A
30.F56.3A30.F56.3A30.F25.A.A28.3A30.F71.F71.F71.F$140.F90.F88.F71.F
89.F89.F89.F57.B31.F26.A30.B31.F57.B31.F57.B31.F57.B31.F25.2A8.B21.B
31.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F89.F89.F22.A66.F34.B54.
F89.F34.3A52.F71.F71.F71.F$140.F29.2A59.F88.F71.F89.F89.F89.F29.2A58.
F89.F21.BAB65.F33.3A53.F89.F35.B53.F71.F71.F71.F$100.2A38.F29.A.A58.F
88.F71.F89.F89.F89.F29.A.A57.F89.F22.A66.F34.B54.F89.F89.F71.F71.F71.
F$100.2A38.F30.A18.A40.F88.F32.2A37.F89.F29.2A58.F89.F30.A58.F89.F89.
F89.F89.F89.F71.F71.F23.B47.F$90.2A48.F48.A.A39.F15.2A29.A41.F31.A2.A
36.F47.A41.F28.A2.A57.F47.A41.F89.F89.F89.F89.F89.F33.2A54.F71.F71.F
22.3A46.F$89.A2.A47.F43.2A3.A2.A38.F15.A.A27.BAB40.F32.2A37.F46.BAB
40.F29.2A58.F46.BAB40.F89.F89.F89.F89.F89.F33.2A54.F71.F71.F23.B47.F$
89.A2.A47.F42.A2.A3.2A39.F16.A18.A10.A41.F36.2A33.F37.2A8.A41.F89.F
16.2A29.A41.F89.F89.F89.F89.F89.F89.F71.F71.F71.F$90.2A21.A26.F43.2A
45.F34.A.A51.F36.2A33.F36.A2.A49.F89.F15.A2.A70.F89.F89.F89.F89.F89.F
89.F71.F71.F71.F$71.3A38.BAB25.F90.F29.2A3.A2.A50.F71.F37.2A50.F89.F
16.2A71.F89.F89.F89.F89.F89.F89.F71.F71.F71.F$70.3BA39.A26.F37.2A23.
2A26.F28.A2.A3.2A24.2A25.F44.2A25.F41.2A19.2A25.F62.2A25.F62.2A25.F
37.2A50.F37.2A50.F37.2A50.F37.2A50.F37.2A50.F37.2A50.F71.F71.F71.F$
70.2BA67.F37.2A23.2A26.F29.2A30.2A25.F44.2A25.F41.2A19.2A25.F62.2A25.
F62.2A25.F37.2A50.F37.2A50.F37.2A50.F37.2A50.F37.2A50.F37.2A50.F71.F
71.F21.B49.F$71.B68.F90.F88.F71.F89.F89.F89.F89.F89.F89.F89.F89.F89.F
71.F71.F20.3A48.F$95.2A43.F90.F23.2A63.F71.F89.F89.F89.F89.F89.F89.F
89.F89.F89.F71.F71.F21.B49.F$95.2A43.F43.A46.F23.2A63.F71.F89.F89.F
89.F89.F89.F89.F89.F89.F89.F71.F71.F71.F$140.F42.A.A45.F88.F71.F89.F
89.F89.F89.F89.F89.F89.F89.F89.F26.A44.F71.F27.2A42.F$140.F42.A2.A5.
2A37.F50.2A36.F71.F51.2A36.F52.B36.F51.2A36.F89.F89.F89.F89.F89.F89.F
25.A.A4.2A37.F29.2A40.F27.2A42.F$140.F43.2A6.2A37.F29.A20.2A36.F71.F
51.2A36.F51.3A35.F51.2A36.F89.F89.F89.F89.F89.F89.F25.A.A4.2A37.F28.A
2.A39.F71.F$140.F90.F28.A.A57.F71.F89.F52.B36.F89.F89.F89.F89.F89.F
89.F89.F26.A44.F28.A.A40.F71.F$140.F90.F28.A2.A5.2A49.F71.F89.F45.A
43.F39.B49.F56.B32.F56.B32.F56.B32.F56.B32.F56.B32.F56.B32.F71.F29.A
41.F71.F$140.F90.F29.2A6.2A49.F71.F89.F44.A.A42.F38.3A48.F55.3A31.F
55.3A31.F55.3A31.F55.3A31.F55.3A31.F55.3A31.F71.F71.F71.F$140.F90.F
88.F71.F89.F45.2A42.F39.B49.F56.B32.F56.B32.F56.B32.F56.B32.F56.B32.F
56.B32.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F32.A56.F53.A5.A29.F53.A
5.A29.F53.A5.A29.F53.A5.A29.F53.A5.A29.F53.A5.A29.F71.F71.F71.F$140.F
90.F88.F71.F89.F89.F31.A.A55.F52.BAB3.BAB28.F52.BAB3.BAB28.F52.BAB3.B
AB28.F52.BAB3.BAB28.F52.BAB3.BAB28.F52.BAB3.BAB28.F71.F71.F71.F$140.F
90.F88.F71.F89.F89.F32.2A55.F53.A5.A29.F53.A5.A29.F53.A5.A29.F53.A5.A
29.F53.A5.A29.F53.A5.A29.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F
56.B32.F56.B32.F56.B32.F56.B32.F56.B32.F56.B32.F71.F71.F71.F$140.F90.
F88.F71.F89.F89.F89.F55.3A31.F55.3A31.F55.3A31.F55.3A31.F55.3A31.F55.
3A31.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F56.B32.F56.B32.F56.B
32.F56.B32.F56.B32.F56.B32.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.
F89.F89.F89.F89.F89.F89.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F
89.F89.F89.F89.F89.F89.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F89.
F89.F89.F89.F89.F89.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F89.F
89.F89.F89.F89.F89.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F89.F89.
F89.F89.F89.F89.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F89.F89.F
89.F89.F89.F89.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F89.F89.F89.
F89.F89.F89.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F89.F89.F89.F
89.F89.F89.F71.F71.F71.F$140.F90.F88.F71.F89.F89.F89.F89.F89.F89.F89.
F89.F89.F71.F71.F71.F$140.F90.F88.F71.F$140.F90.F88.F71.F$140.F90.F
88.F71.F$140.F90.F88.F71.F$140.F90.F88.F71.F$140.F90.F88.F71.F$140.F
90.F88.F71.F$140.F90.F88.F71.F$140.F90.F88.F24.B46.F$140.F90.F88.F23.
3A45.F$140.F90.F88.F24.B46.F$140.F90.F88.F71.F$140.F90.F88.F71.F$140.
F90.F88.F71.F$140.F34.A55.F88.F71.F$100.A39.F33.A.A54.F30.A57.F71.F$
99.A.A38.F33.A2.A53.F29.A.A56.F71.F$99.A2.A37.F34.2A54.F29.A2.A55.F
24.2A45.F$100.2A38.F25.A64.F30.2A56.F24.2A45.F$140.F24.BAB63.F88.F71.
F$108.2A30.F25.A13.2A49.F38.2A48.F71.F$103.2A3.2A30.F39.2A49.F23.2A
13.2A48.F20.2A49.F$99.A3.2A35.F90.F23.2A63.F19.A2.A48.F$71.B26.A.A39.
F90.F88.F20.2A23.2A24.F$70.2BA25.A.A39.F90.F88.F44.A2.A23.F$70.3BA25.
A10.A29.F41.A48.F40.A47.F17.A27.2A4.A19.F$71.3A35.A.A28.F40.A.A47.F
39.A.A46.F16.BAB31.A.A18.F$109.2A29.F40.2A48.F39.2A47.F17.A32.2A19.F$
140.F90.F88.F71.F$140.F90.F88.F71.F$140.F90.F88.F71.F$140.F90.F88.F
71.F$2.4D7.4D7.4D112.F90.F88.F71.F$.6D5.6D5.6D111.F90.F88.F71.F$3D2.
3D3.3D2.3D3.3D2.3D110.F90.F88.F71.F$2D4.2D3.2D4.2D3.2D4.2D110.F90.F
88.F23.B47.F$5.3D3.2D14.3D110.F90.F88.F22.3A46.F$4.4D3.2D13.3D111.F
90.F88.F23.B47.F$4.3D4.2D13.3D111.F90.F88.F71.F$5.3D3.2D14.3D110.F90.
F88.F71.F$2D4.2D3.2D4.2D3.2D4.2D110.F90.F88.F71.F$3D2.3D3.3D2.3D3.3D
2.3D110.F33.A56.F88.F71.F$.6D5.6D5.6D70.A40.F32.A.A55.F29.A58.F71.F$
2.4D7.4D7.4D70.A.A39.F32.A2.A54.F28.A.A57.F71.F$98.A2.A38.F33.2A55.F
28.A2.A56.F23.2A46.F$99.2A39.F24.A65.F29.2A57.F23.2A46.F$140.F23.BAB
64.F88.F71.F$107.2A31.F24.A13.2A50.F37.2A49.F71.F$102.2A3.2A31.F38.2A
50.F22.2A13.2A49.F19.2A50.F$98.A3.2A36.F90.F22.2A64.F18.A2.A49.F$97.A
.A40.F90.F88.F19.2A23.2A25.F$97.A.A40.F90.F88.F43.A2.A24.F$98.A10.A
30.F40.A49.F39.A48.F16.A27.2A4.A20.F$108.A.A29.F39.A.A48.F38.A.A47.F
15.BAB31.A.A19.F$108.2A30.F39.2A49.F38.2A48.F16.A32.2A20.F$140.F90.F
88.F71.F$140.F90.F88.F71.F$140.F90.F88.F71.F$140.F90.F88.F71.F$140.F
90.F88.F71.F$140.F90.F88.F71.F$140.F90.F88.F71.F$140.F90.F88.F22.B48.
F$140.F90.F88.F21.3A47.F$140.F90.F88.F22.B48.F$140.F90.F88.F71.F$140.
F90.F88.F71.F$140.F90.F88.F71.F$140.F32.A57.F88.F71.F$98.A41.F31.A.A
56.F28.A59.F71.F$97.A.A40.F31.A2.A55.F27.A.A58.F71.F$97.A2.A39.F32.2A
56.F27.A2.A57.F22.2A47.F$98.2A40.F23.A66.F28.2A58.F22.2A47.F$140.F22.
BAB65.F88.F71.F$106.2A32.F23.A13.2A51.F36.2A50.F71.F$101.2A3.2A32.F
37.2A51.F21.2A13.2A50.F18.2A51.F$97.A3.2A37.F90.F21.2A65.F17.A2.A50.F
$96.A.A41.F90.F88.F18.2A23.2A26.F$96.A.A41.F90.F88.F42.A2.A25.F$97.A
10.A31.F39.A50.F38.A49.F15.A27.2A4.A21.F$71.3A33.A.A30.F38.A.A49.F37.
A.A48.F14.BAB31.A.A20.F$70.3BA33.2A31.F38.2A50.F37.2A49.F15.A32.2A21.
F$70.2BA67.F90.F88.F71.F$71.B68.F90.F88.F71.F$140.F90.F88.F71.F$140.F
90.F88.F71.F$140.F90.F88.F71.F$140.F90.F88.F71.F$140.F90.F88.F71.F$
140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F
$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.
F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F
90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.
F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$
140.F90.F$140.F90.F$140.F90.F$101.2A37.F32.2A56.F$101.2A37.F32.2A56.F
$140.F90.F$140.F90.F$140.F90.F$71.B68.F90.F$70.2BA67.F90.F$70.3BA26.A
4.2A33.F32.2A56.F$71.3A25.A.A3.2A33.F31.A2.A55.F$100.2A38.F31.A.A56.F
$140.F32.A57.F$140.F90.F$140.F31.B58.F$140.F30.3A57.F$6.2D5.4D7.4D
112.F31.B58.F$5.3D4.6D5.6D111.F90.F$4.4D3.3D2.3D3.3D2.3D110.F90.F$3.
2D.2D3.2D4.2D3.2D4.2D110.F90.F$2.2D2.2D3.2D14.3D110.F90.F$.2D3.2D3.2D
13.3D111.F90.F$.7D3.2D13.3D111.F90.F$.7D3.2D14.3D110.F90.F$6.2D3.2D4.
2D3.2D4.2D110.F90.F$6.2D3.3D2.3D3.3D2.3D110.F90.F$6.2D4.6D5.6D111.F
90.F$6.2D5.4D7.4D112.F90.F$140.F90.F$100.2A38.F31.2A57.F$100.2A38.F
31.2A57.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$99.A4.2A
34.F31.2A57.F$98.A.A3.2A34.F30.A2.A56.F$99.2A39.F30.A.A57.F$140.F31.A
58.F$140.F90.F$140.F30.B59.F$140.F29.3A58.F$140.F30.B59.F$140.F90.F$
140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F
$140.F90.F$140.F90.F$140.F90.F$140.F90.F$99.2A39.F30.2A58.F$99.2A39.F
30.2A58.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F$98.A4.2A
35.F30.2A58.F$71.3A23.A.A3.2A35.F29.A2.A57.F$70.3BA24.2A40.F29.A.A58.
F$70.2BA67.F30.A59.F$71.B68.F90.F$140.F29.B60.F$140.F28.3A59.F$140.F
29.B60.F$140.F90.F$140.F90.F$140.F90.F$140.F90.F!


2C3 has an infinite progression possible, and I only show the first two elements. The infinite progression moves a hive and block, leaving another block and blinker every time. There are 3 possible terminations to the sequence, all of which only interact with the most recent block and blinker.

I have left out a few extremely messy options from 3C3. I presume there could be many ways to stabilize messes using a rake - I only looked at those using the spark and they still seemed excessively messy, in many cases the steady state wasn't even x1.

For constructions, we get slow pairs and singletons of the shape and color shown at the left of the rows. NE rakes will cost 6 rephasings on average, or around 250 vertical cells. Following is the number of rephasings required when the second slow glider is displaced between -24 and 24 lanes relative to the first.
+16, -10: no rephasings
+6, -20: one
+22, -4: two
+12, -14: three
+2, -24: four
+18, -8: five
+8, -18: six
etc (+x is eleven minus the cost of -x), with offset 0 being the maximal 12 rephasings. (In organizing the above table of constellations, I unfortunately lost the information on the initial lane. I can try to redo it and preserve that info.)

This only applies to NE rakes, because the lane is fixed by the track. SE rakes can always be made to work first try but take a lot more vertical space to reach distant targets.

Another thing to note: there is a construction based on the 2G -> TL + G collision to cleanly provide a glider with its phase advanced by 1 relative to the native rakes in not too much vertical space. This works for both NE and SE rakes. The color isn't changed, unfortunately. Still, this might significantly improve some recipes.

Lastly, the above is only the "cheap" target constellations. There are a wealth of more "costly" targets, for which the extra cost to produce is equal to that of 13 rephasings in every case. I will look into those tomorrow, in case they improve recipes.
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: (27,1)c/72 caterpillar challenge

Postby chris_c » August 30th, 2016, 1:17 pm

biggiemac wrote:Here are all the cheap target constellations for 2C3, 3C3 and 4C3.


Thanks for that. I chopped up my slow salvo search script to make it monochromatic and placed as many those targets that looked smallish at the top of the script until I ran out of patience.

Running to a search depth of 8 gliders here are some highlights... options for the block and loaf configuration in either color in 8 gliders and the LWSS seed in 10 gliders:

x = 1164, y = 381, rule = B3/S23
1157b3o7$1155b3o3$1162b2o$1162b2o15$277b3o$1156b3o5$657bo$275b3o378bob
o$656bo2bo494b3o$657b2o$282b2o$282b2o381b2o494b2o$650b2o13b2o494b2o$
650b2o3$667bo$666bobo$666b2o9$276b3o$1155b3o5$656bo$274b3o378bobo$655b
o2bo494b3o$656b2o$281b2o$281b2o381b2o494b2o$649b2o13b2o494b2o$649b2o3$
666bo$665bobo$665b2o9$275b3o$1154b3o5$655bo$273b3o378bobo$654bo2bo494b
3o$655b2o$280b2o$280b2o381b2o494b2o$648b2o13b2o494b2o$648b2o3$665bo$
664bobo$664b2o9$274b3o$1153b3o5$654bo$272b3o378bobo$653bo2bo494b3o$
654b2o$279b2o$279b2o381b2o494b2o$647b2o13b2o494b2o$647b2o3$664bo$663bo
bo$663b2o9$273b3o757b3o$1035bo116b3o$1034bo4$653bo$271b3o378bobo$652bo
2bo494b3o$653b2o395b3o$278b2o772bo$278b2o381b2o388bo105b2o$646b2o13b2o
494b2o$646b2o3$663bo$662bobo$662b2o403b3o$1069bo$1068bo2$1015b3o$1017b
o$1016bo2$153b3o$155bo116b3o809b3o$154bo368b3o560bo64b3o$525bo559bo$
524bo$1032b3o$985b3o46bo$652bo334bo45bo$270b3o378bobo332bo$170b3o478bo
2bo494b3o$172bo479b2o447b3o$171bo105b2o261b3o560bo$277b2o263bo117b2o
440bo53b2o$541bo103b2o13b2o494b2o$645b2o402b3o$128b3o871b3o46bo$130bo
873bo45bo$129bo532bo340bo$187b3o471bobo$189bo471b2o455b3o$188bo368b3o
560bo$559bo559bo$558bo$504b3o559b3o$145b3o358bo512b3o46bo$147bo357bo
515bo45bo$146bo873bo$204b3o759b3o$206bo64b3o694bo166b3o$205bo368b3o
390bo169bo$576bo559bo$575bo$521b3o559b3o$162b3o358bo512b3o46bo$164bo
357bo128bo386bo45bo$163bo105b3o378bobo384bo$221b3o426bo2bo329b3o$223bo
427b2o332bo$222bo53b2o313b3o390bo$276b2o315bo65b2o$592bo51b2o13b2o$
538b3o103b2o454b3o$179b3o358bo512b3o46bo$181bo302b3o52bo515bo45bo$97b
3o80bo305bo174bo281b3o108bo$99bo138b3o244bo174bobo282bo54b3o$98bo141bo
419b2o282bo57bo$239bo368b3o390bo$610bo$609bo$555b3o559b3o$196b3o358bo
512b3o46bo$198bo302b3o52bo515bo45bo$114b3o80bo305bo456b3o108bo$116bo
138b3o244bo459bo54b3o$115bo141bo703bo57bo$256bo368b3o390bo$627bo$626bo
$572b3o$213b3o358bo512b3o$215bo302b3o52bo515bo$131b3o80bo238b3o64bo
456b3o108bo$133bo321bo63bo459bo54b3o$132bo321bo523bo57bo$924b3o108bo$
79b3o844bo$81bo843bo$80bo508b3o$230b3o358bo$232bo302b3o52bo$148b3o80bo
238b3o64bo456b3o$150bo321bo63bo459bo54b3o$149bo321bo523bo57bo$941b3o
108bo$96b3o844bo$98bo843bo$97bo508b3o$608bo$552b3o52bo$165b3o319b3o64b
o456b3o$167bo321bo63bo459bo54b3o$166bo321bo523bo57bo$958b3o108bo$113b
3o787b3o54bo$58b3o54bo789bo53bo$60bo53bo789bo$59bo$569b3o$182b3o319b3o
64bo456b3o$184bo321bo63bo459bo$183bo258b3o60bo523bo$444bo530b3o$130b3o
310bo476b3o54bo$75b3o54bo789bo53bo$77bo53bo789bo$76bo$586b3o$199b3o
319b3o64bo456b3o$201bo321bo63bo459bo$200bo258b3o60bo523bo$34b3o424bo
530b3o$36bo110b3o310bo476b3o54bo$35bo56b3o54bo789bo53bo$94bo53bo789bo$
93bo$417b3o$419bo118b3o$418bo121bo$476b3o60bo$51b3o424bo530b3o$53bo
110b3o310bo476b3o54bo$52bo56b3o54bo789bo53bo$111bo53bo789bo$110bo$434b
3o$436bo118b3o$435bo121bo$493b3o60bo$68b3o424bo530b3o$70bo110b3o310bo
476b3o54bo$69bo56b3o54bo789bo53bo$128bo53bo789bo$127bo$451b3o$453bo$
452bo$510b3o$85b3o424bo$87bo423bo476b3o$86bo56b3o844bo$24b3o118bo843bo
$26bo117bo$25bo442b3o383b3o$405b3o62bo385bo$407bo61bo385bo$406bo120b3o
$102b3o424bo$104bo423bo476b3o$103bo56b3o844bo$41b3o118bo843bo$43bo117b
o$42bo442b3o383b3o$422b3o62bo385bo$424bo61bo385bo$423bo120b3o$119b3o
424bo$3o118bo423bo$2bo117bo724b3o$bo56b3o786bo$60bo785bo$59bo442b3o
383b3o$439b3o62bo385bo$384b3o54bo61bo385bo$386bo53bo$136b3o246bo$17b3o
118bo$19bo117bo724b3o$18bo56b3o786bo$77bo785bo$76bo442b3o383b3o$456b3o
62bo385bo$401b3o54bo61bo385bo$403bo53bo$402bo430b3o$34b3o798bo$36bo
797bo44b3o$35bo56b3o786bo$94bo785bo$93bo828b3o$473b3o448bo$418b3o54bo
447bo$420bo53bo$419bo430b3o$51b3o798bo$53bo797bo44b3o$52bo56b3o786bo$
111bo785bo$110bo828b3o$490b3o448bo$435b3o54bo447bo$437bo53bo$436bo430b
3o$68b3o798bo$70bo797bo44b3o$69bo56b3o786bo$128bo785bo$127bo828b3o$
507b3o448bo$452b3o54bo447bo$454bo53bo$453bo430b3o$85b3o798bo$87bo797bo
44b3o$86bo845bo$931bo3$469b3o$471bo$470bo430b3o$102b3o798bo$104bo797bo
44b3o$103bo845bo$948bo3$486b3o$488bo$487bo430b3o$920bo$919bo7$935b3o$
937bo$936bo!


Here is the script:

import golly as g
from hashlib import sha256
from itertools import chain

#arbitrary numbers
MAX_GENERATIONS = 160
MAX_POPULATION = 30
MAX_HEIGHT = 23
MAX_LANES = 26
MAX_GLIDERS = 8

#NE glider
GLIDER = g.parse('3o$2bo$bo!')

#put any ad-hoc patterns that you want to bombard with slow gliders here.
TARGET_PATTERNS = [
    'b2o$o2bo$b2o$5b2o$5b2o2$13b2o$13b2o!',
    '2bo$bobo4b2o$bobo4b2o$2bo!',
    '2b2o$bo2bo$bobo$2bo!',
    '2b3o7$3o3$7b2o$7b2o!',
    '2bo$bobo$bo2bo$2b2o2$10b2o$5b2o3b2o$bo3b2o$obo$obo$bo10bo$11bobo$11b2o!',
    '10bo$9bobo$9bo2bo$10b2o$bo$bo$bo13b2o$15b2o4$17bo$16bobo$16b2o!',
    '8bo$7bobo$7bo2bo$8b2o2$16b2o$b2o13b2o$b2o3$18bo$17bobo$17b2o!',
    '2b2o$2b2o6$2b2o$bo2bo$bobo$2bo3$3o!',
    '2b2o$2b2o6$bo4b2o$obo3b2o$b2o!'
    ]

TARGET_PATTERNS = [('blob%d' % i, patt) for i, patt in enumerate(TARGET_PATTERNS)]

wanted = ["2b2o3b2o$bobo2bo2bo$bo5b2o$2o!",
          "2b2o$2b2o3$bo$obo$o2bo$b2o!"]

wanted_color = ["2b3o2$o5bo$o5bo$o5bo2$2b3o8$2b3o!",
                "$3b3o13$2b3o2$o5bo$o5bo$o5bo2$2b3o!"]

wanted = [g.parse(x) for x in wanted]
wanted_color = [g.parse(x) for x in wanted_color]

# test if sub_cells appears in cells_set (optionally with same color)
def find_wanted(cells_set, sub_cells, color=False):

    x0, y0 = sub_cells[0], sub_cells[1]
    for x, y in cells_set:
        dx, dy = x - x0, y - y0
        if color and ((dx ^ dy) & 1):
            continue
        if all((sub_cells[j] + dx, sub_cells[j+1] + dy) in cells_set for j in range(0, len(sub_cells), 2)):
            return True

    return False
   

TARGETS = []
for name, pattern in TARGET_PATTERNS:
  cells = g.parse(pattern)
  p = len(cells) / 2
  TARGETS.append((name, cells, p))

def patterns_identical(cells1, cells2):
  if len(cells1) != len(cells2):
    return False
  if sum(cells1) != sum(cells2):
    return False
  return sorted(zip(cells1[::2], cells1[1::2])) == sorted(zip(cells2[::2], cells2[1::2]))

def is_p2(cells):
  return patterns_identical(cells, g.evolve(cells, 2))

def get_shooting_range(cells):

  min_d1 = max_d1 = cells[0] + cells[1]
  min_d2 = cells[0] - cells[1]

  for i in range(2, len(cells), 2):
    min_d1 = min(min_d1, cells[i] + cells[i+1])
    max_d1 = max(max_d1, cells[i] + cells[i+1])
    min_d2 = min(min_d2, cells[i] - cells[i+1])
 
  min_lane = min_d1 - 6
  max_lane = max_d1 + 3
  shift = 6 - min_d2 // 2

  return min_lane, max_lane, shift

def get_pattern_to_try(cells, lane, offset=50):
    y = lane // 2 + offset
    return cells + g.transform(GLIDER, lane - y, y)

offset = 0

def display_solution(start, lanes, debug, last_cells):

  global offset

  cells = [c for n, c, _ in TARGETS if n == start][0]
  i = 100
  for lane in lanes:
    cells = get_pattern_to_try(cells, lane, i)
    i += 100
  g.putcells(cells, 0, offset)
  for i, p in enumerate(debug):
    g.putcells(p, 100 + 100 * i, offset)
  g.putcells(last_cells, 100 + 100 * len(debug), offset)
  g.select(g.getrect())
  g.copy()
  g.select([])
#  g.fit()
  g.update()
  g.show(' '.join(chain([str(start), str(len(lanes))], [str(lane) for lane in lanes])))
  offset += 400
  g.update()


randoms = []
for i in range(4096):
  randoms.append(int(sha256(str(i)).hexdigest()[:16], 16))

def to_hashable(cells):
  if not cells:
    return 0

  minx = min(cells[::2])
  miny = min(cells[1::2])
 
  hash = 0
  for i in range(0, len(cells), 2):
    hash ^= randoms[64 * (cells[i] & 63) + (cells[i+1] & 63)]

  return hash

g.new('')

new_queue = []
for name, cells, _ in TARGETS:
  new_queue.append( (name, [], cells, []) )

seen = set()

for n in range(MAX_GLIDERS):

  queue = new_queue
  new_queue = []
 
  count = 0

  for start, lanes, last, debug in queue:
 
    g.show(str((n+1,count,len(queue))))
    count += 1

    min_lane, max_lane, shift = get_shooting_range(last)

    for lane in range(min_lane, min(min_lane + MAX_LANES, max_lane + 1)):

        # monochromatic
        if lane % 2:
            continue
       
        start_cells = get_pattern_to_try(last, lane, shift)
        new_cells = g.evolve(start_cells, MAX_GENERATIONS)

        if not new_cells or len(new_cells) > 2 * MAX_POPULATION:
            continue

        if max(new_cells[1::2]) - min(new_cells[1::2]) >= MAX_HEIGHT:
            continue

        if not is_p2(new_cells):
            continue

        new_hashable = to_hashable(new_cells)       

        if new_hashable in seen:
          continue

        seen.add(new_hashable)
       
        new_lanes = lanes + [lane]
        new_debug = debug + [start_cells]

        cells_set = set(zip(new_cells[::2], new_cells[1::2]))

        if any(find_wanted(cells_set, w, False) for w in wanted):
            display_solution(start, new_lanes, new_debug, new_cells)

        if any(find_wanted(cells_set, w, True) for w in wanted_color):
            display_solution(start, new_lanes, new_debug, new_cells)

        if n + 1 < MAX_GLIDERS:
          new_queue.append( (start, new_lanes, new_cells, new_debug) )


Here is the full result file. It took a couple of hours to run and contains messier versions of the loaf + block seed that may or may not be more useful than the clean version. The things it looks for are the block and loaf configuration, the eater + hive and the traffic light + blinker configuration for the LWSS both with the blinker being above or below the TL. The blinker + TL configuration is only reported if it is of the correct color. It only searches by glider count and does not know anything about rephaser cost.

results271.rle.gz
8 glider monochromatic monoparity search starting from a handful of targets.
(23.82 KiB) Downloaded 121 times
chris_c
 
Posts: 851
Joined: June 28th, 2014, 7:15 am

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » August 30th, 2016, 1:58 pm

Thanks for running the script! I think there should be some effort put into looking for slow pairs, since we have the option. The 3C3 block + loaf posted earlier was one of those constellations plus only 6 slow signals, one of which was a pair, and is the current record at I think 670 vertical cells. I worked it out manually so I doubt it's in the upper echelon of possible results.
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » August 30th, 2016, 8:40 pm

I said 670, I was mistaken. The post on the earlier page was about 1670 vertical cells to a frozen track. Using a pi + blinker reaction found in the results file, I improved it to just under 1000. This has more debris hidden behind the trail, but I believe some of the rephasers can be turned into rakes to improve that. I still want to keep looking, there's certainly something better. Half of this one's height is just spent rephasing to send the last glider.
x = 644, y = 1565, rule = B3/S23
641bo$641bobo$619bobo19b2o$619b2o$620bo18$547bobo$547b2o$548bo25bo$
573bo$561bo11b3o$560bo$560b3o17$622bo$622bobo$600bobo19b2o$600b2o$601b
o18$528bobo$528b2o$529bo25bo$554bo$542bo11b3o$541bo$541b3o17$603bo$
603bobo$581bobo19b2o$581b2o$582bo18$509bobo$509b2o$510bo25bo$535bo$
523bo11b3o$522bo$522b3o17$584bo$584bobo$562bobo19b2o$562b2o$563bo18$
490bobo$490b2o$491bo25bo$516bo$504bo11b3o$503bo$503b3o17$565bo$565bobo
$543bobo19b2o$543b2o$544bo18$471bobo$471b2o$472bo25bo$497bo$485bo11b3o
$484bo$484b3o17$546bo$546bobo$524bobo19b2o$524b2o$525bo18$452bobo$452b
2o$453bo25bo$478bo$466bo11b3o$465bo$465b3o17$527bo$527bobo$505bobo19b
2o$505b2o$506bo18$433bobo$433b2o$434bo25bo$459bo$447bo11b3o$446bo$446b
3o17$508bo$508bobo$486bobo19b2o$486b2o$487bo18$414bobo$414b2o$415bo25b
o$440bo$428bo11b3o$427bo$427b3o17$489bo$489bobo$467bobo19b2o$467b2o$
468bo18$395bobo$395b2o$396bo25bo$421bo$409bo11b3o$408bo$408b3o17$470bo
$470bobo$448bobo19b2o$448b2o$449bo18$376bobo$376b2o$377bo25bo$402bo$
390bo11b3o$389bo$389b3o17$451bo$451bobo$429bobo19b2o$429b2o$430bo18$
357bobo$357b2o$358bo25bo$383bo$371bo11b3o$370bo$370b3o13$349bo31b2o$
349b2o30bob2o$348bo2bo31b2o$349bobo15bo13b2o$348bo2bo15b2o10b2o51bo$
348bo2bo17bo62bobo$348bobo16b2o10bobo28bobo19b2o$349b3o14bobo11bo29b2o
$367bo43bo$365bobo$363bo$363bobo5$348b2o$348b2o$390bo$350bo39b2o$349b
3o8bo4bo10b3o13bo$348bob2o6b4o3bo11b2obo10b3o$347b2obo7b2obob2obo9bob
2obo7bob3o$348b2o8b2o15b2o4b2o4bo5bo$349bo2b2o10bobo9bo3b2o6bo4bo$353b
3o7b2obo10b4o21bo$354b2o5bob3o12bo12bo10b2o$355bo5bo12b2o25bo2bo$374b
2o26bobo$401bo2bo$401bo2bo$401bobo$402b3o$419b3o$419bobo$381b3o35bo2bo
$383bo36b3o$382bo37b3o$418bo2bo$421bo$418bo$401b2o$401b2o17bo$419bo$
398b3o2bo15b2o$402b3o21bo$334bobo66b2o6b3o11bobo$334b2o67bo7b3o11bobo$
335bo25bo39b2o8bo2bo11bo$360bo41bo2b2o5bobo$348bo11b3o43b3o3b2o9bo6b3o
$347bo59b2o12b3o$347b3o58bo16b2o6bo$426bo2bo$426b2o4bo$428bo2bo$424b2o
b2o$425bo12$409bo$397b2o10bobo$387bobo7b2o10b2o$387b2o$388bo18$315bobo
$315b2o$316bo25bo$341bo$329bo11b3o$328bo$328b3o65b2o$396b2o14$334bo$
332b6o$332b2o2b2o52bo$390bobo$304b3o12b3o14bo31bobo19b2o$305bo16bo9b2o
2bo31b2o$305b3o11bo2bo9b2o3bo31bo$320b2o14bo$320b2o12bobo$319bo2bo12bo
$319bo$321b2o$395b2o$395b2o3$304b2o28bo$304b2o28bo$311bo22b2o$310bobo
6b2o12bobo$309b2obo6b2o11bo2bo7b3o$307b2o2bo19bo4bo5bo3bo18b2o$307b5o
4bo14bo2b3o10bo17b2o$306bo4bo3bobo2b3o15bo8bo19bo$306bob3o4bob3obo12b
2o10b2o17b3o$307b3o2bo3bo2bo9bo4bobo2bo2b4o18bobo$308bo10b3o2bo2bo10bo
5bo20b2o13bo$309bo4bo8bo6bobo6b2o23bo14b3o$309bo4bo9bo5b2o32bo17bo$
313bo11b3o34bo17b2o$381bo7$335b3o23bobo$337bo23bobo$336bo27bo7b2o5b2o
13b2o$374bo4b2o13b2o$358bo14bo12bo$357bob2o10bo3b2o7b2obo$356bo3b2o8bo
3bo2bo5b3obo$292bobo62bo2b2o2b2o5b2ob5o3bo4bo$292b2o64b2o4b2o7b2o2bo3b
o2bob2o3bo$293bo25bo32b3o20b2o4bo4bo3bobo$318bo35bo26bo3b2o3bobo$306bo
11bo34bo31bo5bo$305bo13bo3bo58bo$305b3o15bo59b2o$319b2o3bo63b2o$319bo
3b2o$319bo3bo$292b3o12b3o10bo2bo$292bo2bo10bo2bo11b3o$291bo3bo9bo4bo
11bobo$296bo10bo15b2o$292b3ob2o$296bo11b2o$291bo3b2o10bobo$295bo11bobo
15b2o$325b2o$313bo71bo$288bobo20bo72bobo$288b2o21b2o71bo2bo$289bo25bo
69b2o$314bo52bo$302bo11b3o29b2o19bobo23b2o$301bo43bo2b2o17b2o19b2o3b2o
$301b3o41b2ob2o34bo3b2o$346bo2bo33bobo$346b5o32bobo$348b3o33bo10bo$
351bo42bobo$394b2o$351b2o15bo$302bo48b2o14b3o$300b3o50bo12b2o2bo$299bo
bo7b3o39b2o17b2o$281bo4bo4bo6b2o11bo7bo2b3o42b3ob2o$280bo2bo2bo3bobo
17bo8b2o4b2o41bo2b2o$280bo2b2o5bobo7b3o12b4o4b2o28b2o12b3o$283b2o29b4o
2bo32b2o15b2o$284b2o27b3o2bo51b2o$285b2o25b2o2b2o$313b3ob3o$314b2o3bo
43bo$315bo10b3o34bobo$328bo12bobo19b2o$327bo13b2o41bo$342bo40bobo$383b
o2bo$384b2o2$392b2o$387b2o3b2o$382b2o3b2o$380b3obo$380bo3bo$381b2o11bo
$377bo2bo12bobo$364bo15bo12b2o$363b2o12bobo$344bobo16b3o3bo$344bobo17b
obo2bo$345bo19bo2bo$367bo$369bo$269bobo97bo$269b2o$270bo25bo$295bo$
283bo11b3o$282bo$282b3o$386bo$385bobo$385bo2bo$386b2o$377bo$377bo$377b
o13b2o$391b2o4$393bo$392bobo$392b2o3$344bo$344bobo$322bobo19b2o$322b2o
$323bo6$282b3o$282bo2bo99bo$284b2o98bobo$384bo2bo$280bo2bo101b2o$254bo
13b3o10b2o93bo$253b3o12bo2bo12b2o90bo$252b2obo11bo3bo11b3o39bobo48bo
13b2o$268bo2b2o11bo40bobo62b2o$270bo10bo2bo41bo$268b2o12b2o$254bo12b3o
$253bo13b3o18bobo101bo$252b2o33bobobo99bobo$391b2o$259b2o13b3o8bo7bo$
258bo2b2o10bo3bo16bo$258b2ob2o10bo3bo7b3o6bo16b3o$258b2o2bo8b2o5b2o5b
2o8bo16bo$260b2o8bo4bo4bo4b2o2bo4bo17b3o$270bo3bobo3bo5bob3o2b2o$270bo
4bo4bo5b2ob4o$271b2o5b2o8b2o$260b2o11b6o10bo$260b2o11b2o2b2o$276b3o50b
3o$275bobo50bo2bo$275b2o51bo3bo$327b2obobo51bo$311b2o14b2ob2o51bobo$
311b2o15b3o52bo2bo$318bo65b2o$246bobo68bobo55bo$246b2o68b2obo55bo$247b
o25bo40b2o2bo56bo13b2o$272bo6b3o32b5o4bo11b3o51b2o$260bo11b3o6bo31bo4b
o3bobo9bo3bo$259bo20bo32bob3o4bobo8bo5bo$259b3o52b3o2bo3bo8bo3bo3bo$
315bo16bo2bobo2bo50bo$316bo4bo10bo3bo3bo49bobo$316bo4bo11bo5bo50b2o$
320bo13bo3bo$335b3o$296b3o37b2o$298bo37b2o$297bo38b2o9$321bo61bo$321bo
bo58bobo$299bobo19b2o59bo2bo$299b2o82b2o$300bo73bo$374bo$374bo13b2o$
388b2o4$390bo$389bobo$389b2o6$317bo$318bo$316b3o$227bobo$227b2o$228bo
25bo$253bo$241bo11b3o$240bo141bo$240b3o138bobo$381bo2bo$382b2o$373bo$
373bo$373bo13b2o$387b2o4$389bo$388bobo$388b2o$219bo31b2o$219b2o30bob2o
$218bo2bo31b2o$219bobo15bo13b2o$218bo2bo15b2o10b2o51bo$218bo2bo17bo62b
obo$218bobo16b2o10bobo28b2o20b2o$219b3o14bobo11bo29b2o$237bo$235bobo
43b2o2b2o$233bo47b2o3bo$233bobo44b2o3b2o$281b2ob2o$282b2ob2o94bo$283bo
2bo93bobo$283bo2bo93bo2bo$218b2o65b2o15bo78b2o$218b2o81b3o68bo$260bo
39b2o2bo67bo$220bo39b2o38bob4o66bo13b2o$219b3o8bo4bo10b3o13bo24b2o11bo
4bo80b2o$218bob2o6b4o3bo11b2obo10b3o23b2o11bo2b2o$217b2obo7b2obob2obo
9bob2obo7bob3o38b2o$218b2o8b2o15b2o4b2o4bo5bo70bo$219bo2b2o10bobo9bo3b
2o6bo4bo34bo36bo52bo$223b3o7b2obo10b4o47bobo32b3o51bobo$224b2o5bob3o
12bo12bo14bobo19b2o87b2o$225bo5bo12b2o30b2o$244b2o31bo7$251b3o$253bo
54bo$252bo55bo$307bo4b2o$312b3o$299bobo10bobo65bo$298b2obo8b3o2bo63bob
o$300b2o8bo4bo63bo2bo$233b3o37bo24b4o10bobo65b2o$233bo2bo31b3o2bo39bo
57bo$233bo36bo28b2o2bo67bo$204b2o63bo31b2o68bo13b2o$204b2o31bo64bo82b
2o$219b3o11bobo$205b2o2b2o8bo2bo10bo$205b2o3bo7bo2b2o9b2o$204b2o3b2o6b
o2bo166bo$205b2ob2o8b2o19b2o145bobo$206b2ob2o27bo2bo43b3o98b2o$207bo2b
o13bo13b2ob2o44bo$207bo2bo28bo2bo43bo$209b2o14b2o13b2o$224bobo$226b2o$
225bo$211b2o27b2o$211b2o27b2o20bo$261b3o38b3o$226b2o32b2o2bo39bo$226b
2o32bo3bo38bo$260bob2o$200bobo57b2o$200b2o177bo$201bo25bo123bo26bobo$
226bo34bo17b2o71bo25bo2bo$214bo11b3o32bo17b2o69b3o26b2o$213bo54bo10bob
o37b3o48bo$213b3o51b3o10b2o2b2o35bo48bo$266b5o15bo33bo49bo13b2o$265b2o
3b2o7bo2b2obo98b2o$227b3o34b3o3b3o6bo$229bo35b2o3b2o8bo4bo$228bo37b5o
11bo2b2o$267b3o13bob2o99bo$268bo15b2o99bobo$336b3o46b2o$268b2o68bo$
268b2o67bo$197bo28b2o58b2o$197bo27b3o16b3o39b2o$226bob2o16bo$227b3o15b
o$219bo8bo$217b6o$217b2o2b2o52bo77b3o$275bobo77bo$189b3o12b3o14bo31bob
o19b2o77bo$190bo16bo9b2o2bo31b2o$190b3o11bo2bo9b2o3bo31bo$205b2o14bo
156bo$205b2o12bobo155bobo$204bo2bo12bo156bo2bo$204bo173b2o$206b2o161bo
$369bo$369bo13b2o$383b2o2$189b2o28bo$189b2o28bo$196bo22b2o164bo$195bob
o6b2o12bobo163bobo$194b2obo6b2o11bo2bo7b3o131b2o20b2o$192b2o2bo19bo4bo
5bo3bo18b2o110b2o$192b5o4bo14bo2b3o10bo17b2o$191bo4bo3bobo2b3o15bo8bo
19bo$191bob3o4bob3obo12b2o10b2o17b3o$192b3o2bo3bo2bo9bo4bobo2bo2b4o18b
obo$193bo10b3o2bo2bo10bo5bo20b2o13bo$194bo4bo8bo6bobo6b2o23bo14b3o$
194bo4bo9bo5b2o32bo17bo$198bo11b3o34bo17b2o$266bo4$377bo$376bobo$376bo
2bo$220b3o23bobo128b2o$222bo23bobo119bo$221bo27bo7b2o5b2o102bo$259bo4b
2o102bo13b2o$243bo14bo12bo110b2o$242bob2o10bo3b2o7b2obo$241bo3b2o8bo3b
o2bo5b3obo$177bobo62bo2b2o2b2o5b2ob5o3bo4bo$177b2o64b2o4b2o7b2o2bo3bo
2bob2o3bo107bo$178bo25b2o31b3o20b2o4bo4bo3bobo105bobo$203bo2bo32bo26bo
3b2o3bobo83b2o20b2o$191bo12bob2o30bo31bo5bo84b2o$190bo13bo62bo$190bo
14bobo60b2o$178b3o10bo3bo8bo2b2o64b2o$178bobo14bo14bo$176bo3bo10b2o3bo
13bo$176bob2o2bo8bo3b2o$176bo3bo10bo3bo13b2o$178b2o12bo2bo13b2o$184bo
8b3o14bo$178bo5bo9bobo$178bo4bo11b2o$181b3o27b2o$211b2o163bo$375bobo$
197b2o176bo2bo$173bobo21b2o177b2o$173b2o58bo133bo$174bo25bo31b3o132bo$
199bo31b2o2bo16bo114bo13b2o$187bo11b3o29b5o16bobo126b2o$186bo43bo2b2o
17b2o$186b3o42b2o2$383bo$238bo15bo127bobo$238b2o13bobo104b2o20b2o$187b
o64b2ob2o103b2o$185b2ob2o49b2o12bob2o$185bo3bo6b3o7bo32bo10b2o2b3o$
168bo16bo12bo5bo5bo44bo$168bobo15b3o8bo6bo6bo42bo$167b2ob3o13bo16bo5bo
bo41b2o$170b3o14b2o50b2o17b2o$170b3o25b2o39b2o17b2o$170bobo24bo2bo56b
2o$169b2ob2o22b3o7bo50bo$170bobo24b3o4b3o$171bo26bobo3b3o6b3o$199b2o
14bo32bo$214bo33bobo124bo$190bo35bobo19b2o124bobo$189bobo34b2o146bo2bo
$188bo3bo34bo147b2o$189bo2bo173bo$161bo14bo12bo2bo173bo$160b3o13bo13bo
bo173bo13b2o$160bo2bo11bobo202b2o$162b2o$162bo14b2o$159b2o$159b4o14b2o
203bo$160bo2bo217bobo$161bo197b2o20b2o$359b2o$160bobo26b2o61bo$160b2o
27b2o61bo$196bo$166b3o6b2o18bob2o53bo$166b3o6b2o15b3o57bo$182bo8b5o22b
o$181bobo6bo2bo2b3o2bo16b2o$163bo7b2o8bobo6bobo4bo2bobo14bo2bo$163bobo
6b2o5bo2bo8bo3b2o3bobo15bobo$162bo9b2o4b4o5bo8bo4bo15bo2bo$166b3o2b3o
3bo4bo3bobo4b3o21bo2bo$170b3o4bobob2o3bobo4b2o22bobo$164bo4b3o6b2o2b2o
3bo30b3o153bo$165bo3bo12bo52b3o135bobo$166b2o12bob4o49bobo135bo2bo$
180b5o50bo2bo135b2o$182b2o52b3o126bo$236b3o126bo$234bo2bo127bo13b2o$
237bo141b2o$234bo$217b2o$217b2o17bo$189b3o43bo145bo$191bo27bo15b2o143b
obo$190bo27b3o21bo115b2o20b2o$150bobo64bob2o6b3o11bobo114b2o$150b2o64b
2obo7b3o11bobo$151bo25bo39b2o8bo2bo11bo$176bo41bo2b2o5bobo$164bo11b3o
43b3o3b2o9bo6b3o$163bo59b2o12b3o$163b3o40b3o15bo16b2o6bo$208bo33bo2bo$
178b3o26bo34b2o4bo$177bo2bo63bo2bo$176bo4bo58b2ob2o$178bo62bo$165bo$
149b3o12b3o12b2o192bo$149bo2bo10bo2bo11bobo191bobo$148bo3bo9b3o2b2o9bo
bo191bo2bo$148b3o2bo9bo2b3o204b2o$149b4o11b2o2b2o14bo179bo$167b3o12bo
181bo$164b4obo12b2o180bo13b2o$146bobo15b2o2b2o208b2o$146b2o19b2o$147bo
25bo$172bo52bo$160bo11b3o50bobo152bo$159bo43b2o20b2o152bobo$159b3o41b
2o152b2o20b2o$357b2o$204b2o2b2o$204b2o3bo$203b2o3b2o$204b2ob2o$205b2ob
2o$173bo11b2o19bo2bo$173bo4bobo25bo2bo$165bo42b2o15bo$139bo4b2o11b4o2b
4o11bo45b3o$138bo4b3o11b4obo4bo11b2ob2o39b2o2bo$138b2o2bo5b2o7bo5bobob
o8b2o3b3o39bob4o$139bobo3bo2b2o9b2o3b3o9b2o8bobo21b2o11bo4bo$140b2o2bo
14b2o13bo2b2o4b5o22b2o11bo2b2o144bo$141b3o26b2o2bo2bo5b4o38b2o144bobo$
171bobo2bo194bo2bo$171b2ob2o45bo150b2o$172bob2o45bobo139bo$173bo25bobo
19b2o140bo$182b3o14b2o162bo13b2o$184bo15bo176b2o$183bo2$161bo$159b2ob
2o215bo$159b2ob2o214bobo$160bob3o191b2o20b2o$159b3o194b2o$132bo13b3o
82bo$131b3o12bo2bo81bo$130b2o2bo13b2o52bo27bo4b2o$130bo3bo66bobo31b3o$
130bob2o10bo2bo53bo2bo17bobo10bobo$130b2o13b2o56bo17b2obo8b3o2bo$148b
2o10b2o39bobo19b2o8bo4bo$147b3o10b2o39b2o18b4o10bobo$131bo16bo18bo68bo
$131bo13bo2bo17bobo53b2o2bo$138bo7b2o18bobo55b2o$137b3o27bo57bo$136b5o
11bobo216bo$135b2o3b2o9bobobo7b3o5b2o197bobo$134b3o3b3o20bob2o5b2o196b
o2bo$135b2o3b2o7bo7bo5bob2o21b3o180b2o$136b5o17bo7bo22bo172bo$137b3o9b
3o6bo8b3o19b3o170bo$138bo10b2o8bo5bo4bo191bo13b2o$149b2o2bo4bo10bo206b
2o$138b2o10bob3o2b2o6bo$138b2o10b2ob4o9bo$152b2o$153bo52b3o169bo$205bo
2bo168bobo$205bo3bo145b2o20b2o$204b2obobo145b2o$188b2o14b2ob2o$188b2o
15b3o$195bo$123bobo68bobo$123b2o33b3o32b2obo$124bo25bo9bo30b2o2bo$149b
o9bo31b5o4bo11b3o$137bo11b3o38bo4bo3bobo9bo3bo$136bo53bob3o4bobo8bo5bo
$136b3o52b3o2bo3bo8bo3bo3bo$192bo16bo2bobo2bo$193bo4bo10bo3bo3bo$193bo
4bo11bo5bo153bo$175b3o19bo13bo3bo153bobo$177bo34b3o154bo2bo$176bo36b2o
155b2o$150bo62b2o146bo$149b3o61b2o146bo$148bo2b2o208bo13b2o$148bob2o
223b2o$120b2o28b2ob2o$120b2o14bo10bo5bo$122bo12b3o10bo4bo$120b3o11bo2b
2o10bo2bo224bo$119bobo12b3obo12bo224bobo$120b2o15b2o7bo207b2o20b2o$
119bo25bo52bo155b2o$119bo13bo11b3o50bobo$117bo14bo43bobo19b2o$132b3o
41b2o$177bo5$177b3o$116bobo58bobo$116bobo56bo3bo$119bo55bob2o2bo$145b
2o2bo6b3o16bo3bo189bo$113bo30b2o3bo7bo2bo16b2o189bobo$112bob2o10bo18b
2o2bo7b3o23bo184bo2bo$111bo3b2o10b2o2b2o2bobo7b2o5b2o3bobo17bo5bo185b
2o$112bo2b2o2b2o9b3obo2bo6bo2bo6bob2obo17bo4bo12b2o163bo$113b2o4b2o9bo
2bo3bo6bo2bo3b3o3bobo20b3o12bobo162bo$130bo2b4o11bo9bo38bo162bo13b2o$
131bo11b2obobo2bo43bobo176b2o$144b2o48bo$172bobo19bobo$172b2o20bo$173b
o19bo182bo$375bobo$353b2o20b2o$151b3o199b2o$153bo$152bo4$131b3o$131bo
2bo$130bo3bo68bo$131bo2b2o37bo28bobo$133bo39bo28b2obo$103bo13b3o11b2o
40bob3o9bobo6bo5bo2b2o$102b3o12bo2bo9b3o43b2o17bobo10bo$101b2o2bo10bo
3bo9b3o39b2o20b2obo10bo159bo$101b5o10b4o52b2o21b3o5bo4bo158bobo$100bo
2b2o12bo78bo8b2o160bo2bo$101b2o34b3o228b2o$136bo3bo218bo$117bo18bo3bo
218bo$108bo7bobo15b2o5b2o216bo13b2o$108b2o23bo4bo4bo229b2o$123b3o7bo3b
obo3bo$109b2o11bo3bo6bo4bo4bo$109bo11bo5bo6b2o5b2o$121bo5bo8b6o18bo
214bo$121bo5bo8b2o2b2o17b3o212bobo$122bo3bo12b3o17bo2bo189b2o20b2o$
109b2o12b3o12bobo20b2o189b2o$109b2o27b2o21bo$158b2o$124b2o32b4o$124b2o
33bo2bo$160bo2$159bobo15b3o$96bobo60b2o15bo2bo$96b2o82bo$97bo25bo41b3o
7bo4bo$122bo42b3o7bo4bo$110bo11b3o51b3o$109bo17b3o237bo$109b3o17bo32bo
7b2o194bobo$128bo33bobo6b2o10b2o181bo2bo$161bo9b2o10b2o182b2o$165b3o2b
3o10bobo172bo$169b3o12b2o172bo$163bo4b3o13b2o172bo13b2o$164bo3bo203b2o
$165b2o$144b3o$146bo37b2o$145bo38b2o188bo$373bobo$351b2o20b2o$88bo31b
2o229b2o$88b2o30bob2o$87bo2bo31b2o$88bobo15bo13b2o$87bo2bo15b2o10b2o
51bo$87bo2bo17bo62bobo$87bobo16b2o10bobo28bobo19b2o$88b3o14bobo11bo29b
2o$106bo43bo$104bobo$102bo$102bobo2$366bo$365bobo$365bo2bo$87b2o277b2o
$87b2o268bo$129bo227bo$89bo39b2o17b3o206bo13b2o$88b3o8bo4bo10b3o13bo
16bo2bo219b2o$87bob2o6b4o3bo11b2obo10b3o14bo3bo$86b2obo7b2obob2obo9bob
2obo7bob3o14b3o2bo$87b2o8b2o15b2o4b2o4bo5bo15b4o11b2o$88bo2b2o10bobo9b
o3b2o6bo4bo29b3o208bo$92b3o7b2obo10b4o42bo2bo206bobo$93b2o5bob3o12bo
12bo14bobo14b2ob2o183b2o20b2o$94bo5bo12b2o30b2o15b2ob2o183b2o$113b2o
31bo14b2ob2o$162bo$163b3o$164bo4$120b3o$122bo$121bo2$157bo$155b2o5bo
202bo$162bo201bobo$140b2ob2o219bo2bo$140bo3bo10bo2bo3b2o9bo191b2o$139b
obo5b2o7b2o3bo2b2o6bobo181bo$143b2o2b2o11bo3bobo4bo3bo180bo$73bobo25b
3o33bo4b2o17bo5bo4bo2bo180bo13b2o$73b2o26bo2bo32bo24b4ob2o3b2obo194b2o
$74bo25bo2b2o33bo25bo2bobo3b2o$99bo2bo67bo$76bo10b2o11b2o66b2o$75b3o8b
o2bo282bo$74b2ob2o8bob2o15bo264bobo$74bo12bo45b3o213b2o20b2o$88bobo16b
2o23bo3bo212b2o$76bo10bo2b2o14bobo$76b2o15bo14b2o27bo$75bob2o14bo13bo
24b5o$133bo$92b2o$92b2o$79bo13bo14b2o$79b2o27b2o41b3o$150bo2bo$94b2o
37b2o15b2obo$94b2o37b2o$69bobo68bo$69b2o68bobo222bo$70bo25bo42bobo221b
obo$95bo44bo9b3o210bo2bo$83bo11b3o39bo12b2o212b2o$82bo53bob2o4b3o208bo
$82b3o50b2o7b3o10b3o195bo$140bo15bo3bo194bo13b2o$138b2obo13bo5bo207b2o
$139b4o13bo3bo$143bo13b3o$94b3o$96bo274bo$95bo274bobo$65bo92b2o188b2o
20b2o$64bobo91b2o188b2o$66bo$68b2o$65b6o$65bobobobo23bo7bo$66b5o22b2o
7bobo6b3o$67b3o24bo2bo6bo8bo$67b3o25bobo5bo8bo$144bo$144bobo$122bobo
19b2o$122b2o$123bo$363bo$128b3o231bobo$130bo231bo2bo$129bo233b2o$354bo
$354bo$354bo13b2o$368b2o3$145b3o$147bo222bo$146bo222bobo$347b2o20b2o$
347b2o3$50bobo$50b2o$51bo25bo84b3o$76bo87bo$64bo11b3o84bo$63bo$63b3o4$
362bo$179b3o179bobo$181bo179bo2bo$180bo181b2o$353bo$353bo$353bo13b2o$
367b2o3$196b3o$198bo170bo$197bo170bobo$125bo220b2o20b2o$125bobo218b2o$
103bobo19b2o$103b2o$104bo2$213b3o$215bo$214bo6$361bo$230b3o127bobo$
232bo127bo2bo$231bo129b2o$352bo$352bo$352bo13b2o$366b2o$31bobo$31b2o$
32bo25bo188b3o$57bo191bo118bo$45bo11b3o188bo118bobo$44bo300b2o20b2o$
44b3o298b2o5$264b3o$266bo$265bo6$360bo$281b3o75bobo$283bo75bo2bo$282bo
77b2o$106bo244bo$106bobo242bo$84bobo19b2o243bo13b2o$84b2o279b2o$85bo2$
298b3o$300bo66bo$299bo66bobo$344b2o20b2o$344b2o5$315b3o$317bo$316bo5$
12bobo$12b2o345bo$13bo25bo292b3o23bobo$38bo295bo23bo2bo$26bo11b3o292bo
25b2o$25bo324bo$25b3o322bo$350bo13b2o$364b2o4$366bo$365bobo$365b2o3$
338b5o3b5o$337b2o11b2o$340bob2ob2obo$335bobo2bobobobobo2bobo$335bobo4b
obobo4bobo$336b2obo2bobobo2bob2o$87bo252b9o$87bobo$65bobo19b2o254b3o$
65b2o276b3o$66bo277bo$358bo$357bobo$357bo2bo$358b2o$349bo$349bo$349bo
13b2o$363b2o4$365bo$364bobo$364b2o4$332b2o$332b2o$20bo$19bo$7bo11b3o
309bo22bo$6bo323bobo22b2o$6b3o321bo2bo13b3o5b2o$331b2o14b3o5b3o$348bo
7$346bo$345bo16b2o$346bo15b2o4$364bo$363bobo$68bo294b2o$68bobo$46bobo
19b2o$46b2o$47bo283b2o$331b2o3$330bo$329bobo$329bo2bo$330b2o9b3o13b3o
9$361b2o$361b2o3$bo$o362bo$3o359bobo$362b2o18$49bo$49bobo$27bobo19b2o$
27b2o$28bo!


Edited to fix a paste error.
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: (27,1)c/72 caterpillar challenge

Postby chris_c » August 31st, 2016, 10:20 am

I updated the script to allow for a defined number of NE and SE gliders. Also I added some more starting configurations. Good news is that the loaf + block can be made in two NE gliders like so:

x = 97, y = 103, rule = B3/S23
63b2o$62bobo$62b2o$71b3o4$70b2o$70b2o4$74b2o$74b2o9$92b3o2$90bo5bo$90b
o5bo$90bo5bo$62b2o$61bobo28b3o$61b2o$70b3o4$69b2o$69b2o4$73b2o$73b2o9$
91b3o2$89bo5bo$89bo5bo$89bo5bo$61b2o$60bobo28b3o$60b2o$69b3o3$14b3o$
16bo51b2o$15bo52b2o4$72b2o$72b2o2$31b3o$33bo$32bo5$90b3o2$48b3o37bo5bo
$50bo37bo5bo$49bo38bo5bo2$3o87b3o$2bo$bo7$17b3o$19bo$18bo7$34b3o$36bo$
35bo!


but I don't know how to make that starting configuration so I can't tell how expensive it will be.

Another good result is this:

x = 43, y = 43, rule = B3/S23
bo$2bo$3o15$31bo$30bobo$30bo2bo$31b2o2$39b2o$34b2o3b2o$30bo3b2o$29bobo
$29bobo$30bo10bo$40bobo$40b2o10$21b3o$10b3o10bo$12bo9bo$11bo!


but unfortunately I think it needs 10 rephasers before the first NE glider (EDIT: but 0 rephasings for the second NE glider so still possibly competitive).

Here is this script (I have set MAX_GLIDERS_NE = 2 and MAX_GLIDERS_SE = 1 so this is not expensive to run):

import golly as g
from hashlib import sha256
from itertools import chain

#arbitrary numbers
MAX_GENERATIONS = 160
MAX_POPULATION = 30
MAX_HEIGHT = 24
MAX_GLIDERS_NE = 2
MAX_GLIDERS_SE = 1

GLIDER_NE = g.parse('3o$2bo$bo!')
GLIDER_SE = g.parse('bo$2bo$3o!')

#put any ad-hoc patterns that you want to bombard with slow gliders here.
TARGET_PATTERNS = [
    'b2o$b2o!',
    'b2o$o2bo$b2o$5b2o$5b2o2$13b2o$13b2o!',
    '2bo$bobo4b2o$bobo4b2o$2bo!',
    '2b2o$bo2bo$bobo$2bo!',
    '2b3o7$3o3$7b2o$7b2o!',
    '2bo$bobo$bo2bo$2b2o2$10b2o$5b2o3b2o$bo3b2o$obo$obo$bo10bo$11bobo$11b2o!',
    '10bo$9bobo$9bo2bo$10b2o$bo$bo$bo13b2o$15b2o4$17bo$16bobo$16b2o!',
    '8bo$7bobo$7bo2bo$8b2o2$16b2o$b2o13b2o$b2o3$18bo$17bobo$17b2o!',
    '2b2o$2b2o6$2b2o$bo2bo$bobo$2bo3$3o!',
    '2b2o$2b2o6$bo4b2o$obo3b2o$b2o!',
    '11b2o$11b2o$b2o$o2bo$o2bo$b2o21bo$24bo$24bo3$6b2o$6b2o!',
    '11bo$11bo$b2o8bo$o2bo$b2o$5b2o19b2o$5b2o19b2o5$15b2o$15b2o!',
    '2b2o$bo2bo$2b2o4$35b2o$35b2o6$24b3o2$18bo$17bobo$18b2o!',
    '2o$obo$bo6$8b2o$8b2o!',
    'b2o$o2bo$bobo$2bo10$13b2o$13b2o!',
    'o$o$o7$15b2o$15b2o!',
    'b2o$b2o4$9b3o8$13b2o$13b2o!',
    'b2o$obo$2o$9b3o4$8b2o$8b2o4$12b2o$12b2o!',
    '6b3o8$7b2o$7b2o3$3b2o$2bo2bo$3b2o2$o$o$o!'
    ]

TARGET_PATTERNS = [('blob%d' % i, patt) for i, patt in enumerate(TARGET_PATTERNS)]

wanted = ["2b2o3b2o$bobo2bo2bo$bo5b2o$2o!",
          "2b2o$2b2o3$bo$obo$o2bo$b2o!"]

wanted_color = ["2b3o2$o5bo$o5bo$o5bo2$2b3o8$2b3o!",
                "$3b3o13$2b3o2$o5bo$o5bo$o5bo2$2b3o!"]

wanted = [g.parse(x) for x in wanted]
wanted_color = [g.parse(x) for x in wanted_color]

# test if sub_cells appears in cells_set (optionally with same color)
def find_wanted(cells_set, sub_cells, color=False):

    x0, y0 = sub_cells[0], sub_cells[1]
    for x, y in cells_set:
        dx, dy = x - x0, y - y0
        if color and ((dx ^ dy) & 1):
            continue
        if all((sub_cells[j] + dx, sub_cells[j+1] + dy) in cells_set for j in range(0, len(sub_cells), 2)):
            return True

    return False
   

TARGETS = []
for name, pattern in TARGET_PATTERNS:
  cells = g.parse(pattern)
  p = len(cells) / 2
  TARGETS.append((name, cells, p))

def patterns_identical(cells1, cells2):
  if len(cells1) != len(cells2):
    return False
  if sum(cells1) != sum(cells2):
    return False
  return sorted(zip(cells1[::2], cells1[1::2])) == sorted(zip(cells2[::2], cells2[1::2]))

def is_p2(cells):
  return patterns_identical(cells, g.evolve(cells, 2))

def get_shooting_range(cells):

  min_d1 = max_d1 = cells[0] + cells[1]
  min_d2 = max_d2 = cells[0] - cells[1]

  for i in range(2, len(cells), 2):
    min_d1 = min(min_d1, cells[i] + cells[i+1])
    max_d1 = max(max_d1, cells[i] + cells[i+1])
    min_d2 = min(min_d2, cells[i] - cells[i+1])
    max_d2 = max(max_d2, cells[i] - cells[i+1])
 
  min_lane_ne = min_d1 - 6
  max_lane_ne = max_d1 + 3
  shift_ne = 3 - min_d2 // 2

  min_lane_se = min_d2 - 4
  max_lane_se = max_d2 + 5
  shift_se = 4 - min_d1 // 2

  shift_se += (shift_se - shift_ne) % 2

  return min_lane_ne, max_lane_ne, shift_ne, min_lane_se, max_lane_se, shift_se

def get_pattern_to_try(cells, lane, offset=50):
    y = lane // 2 + offset
    return cells + g.transform(GLIDER_NE, lane - y, y)

def add_glider_se(cells, lane, offset=50):
    y = lane // 2 + offset
    return cells + g.transform(GLIDER_SE, lane - y, -y)

offset = 0

def display_solution(start, lanes, debug, last_cells):

  global offset

  cells = [c for n, c, _ in TARGETS if n == start][0]
  i = 100
  for lane in lanes:
    try:
        lane_ne, lane_se, delay = lane
        if lane_ne is not None:
            cells = get_pattern_to_try(cells, lane_ne, i)
        cells = add_glider_se(cells, lane_se, i + delay)
    except:
        cells = get_pattern_to_try(cells, lane, i)
    i += 100
  g.putcells(cells, 0, offset)
  for i, p in enumerate(debug):
    g.putcells(p, 100 + 100 * i, offset)
  g.putcells(last_cells, 100 + 100 * len(debug), offset)
  g.select(g.getrect())
  g.copy()
  g.select([])
  g.update()
  offset += 800
  g.update()


randoms = []
for i in range(4096):
  randoms.append(int(sha256(str(i)).hexdigest()[:16], 16))

def to_hashable(cells):
  if not cells:
    return 0

  minx = min(cells[::2])
  miny = min(cells[1::2])
 
  hash = 0
  for i in range(0, len(cells), 2):
    hash ^= randoms[64 * (cells[i] & 63) + (cells[i+1] & 63)]

  return hash

def try_it(start_cells, lanes, debug):

    global seen

    new_cells = g.evolve(start_cells, MAX_GENERATIONS)
   
    if not new_cells or len(new_cells) > 2 * MAX_POPULATION:
        return None
   
    if max(new_cells[1::2]) - min(new_cells[1::2]) >= MAX_HEIGHT:
        return None
   
    if not is_p2(new_cells):
        return None
   
    new_hashable = to_hashable(new_cells)       
   
    if new_hashable in seen:
        return None
   
    seen.add(new_hashable)
   
    cells_set = set(zip(new_cells[::2], new_cells[1::2]))
   
    if any(find_wanted(cells_set, w, False) for w in wanted):
        display_solution(start, lanes, debug, new_cells)
       
    if any(find_wanted(cells_set, w, True) for w in wanted_color):
        display_solution(start, lanes, debug, new_cells)

    return new_cells


g.new('')

for i, (_,p) in enumerate(TARGET_PATTERNS):
    g.putcells(g.parse(p), 100*i, -800)

new_queue = []
for name, cells, _ in TARGETS:
  new_queue.append( (name, [], cells, [], MAX_GLIDERS_NE, MAX_GLIDERS_SE) )

seen = set()
loop = 0

while new_queue:

  queue = new_queue
  new_queue = []
 
  loop += 1
  count = 0

  for start, lanes, last, debug, num_ne, num_se in queue:
 
    g.show(str((loop,count,len(queue))))
    count += 1

    tup = get_shooting_range(last)
    min_lane_ne, max_lane_ne, shift_ne = tup[:3]
    min_lane_se, max_lane_se, shift_se = tup[-3:]
   
    if num_se > 0:
           
        se_end = min(min_lane_se + 27, max_lane_se)
       
        for lane_se in range(se_end-27, se_end+1):

            if lane_se % 2:
                continue
           
            start_cells = add_glider_se(last, lane_se, shift_se)
               
            new_lanes = lanes + [(None, lane_se, 0)]
            new_debug = debug + [start_cells]
           
            new_cells = try_it(start_cells, new_lanes, new_debug)
           
            if new_cells is not None and (num_se > 1 or num_ne > 0):
                new_queue.append( (start, new_lanes, new_cells, new_debug, num_ne, num_se-1) )

    if num_ne == 0:
        continue

    ne_end = min(min_lane_ne + 25, max_lane_ne)

    for lane in range(ne_end-25, ne_end+1):

        # monochromatic
        if lane % 2:
            continue
       
        start_cells = get_pattern_to_try(last, lane, shift_ne)

        new_lanes = lanes + [lane]
        new_debug = debug + [start_cells]   

        new_cells = try_it(start_cells, new_lanes, new_debug)

        if new_cells is not None and (num_ne > 1 or num_se > 0):
          new_queue.append( (start, new_lanes, new_cells, new_debug, num_ne-1, num_se) )

        if num_se > 0:
           
            se_end = min(min_lane_se + 27, max_lane_se)
           
            for lane_se in range(se_end-27, se_end+1):

                if lane_se % 2:
                    continue

                for delay in range(-6, 7, 2):

                    start_cells = get_pattern_to_try(last, lane, shift_ne + max(delay, 0))
                    start_cells = add_glider_se(start_cells, lane_se, shift_se - min(delay, 0))

                    new_lanes = lanes + [(lane, lane_se, shift_se - shift_ne - delay)]
                    new_debug = debug + [start_cells]

                    new_cells = try_it(start_cells, new_lanes, new_debug)

                    if new_cells is not None and (num_se > 1 or num_ne > 1):
                        new_queue.append( (start, new_lanes, new_cells, new_debug, num_ne-1, num_se-1) )
chris_c
 
Posts: 851
Joined: June 28th, 2014, 7:15 am

Re: (27,1)c/72 caterpillar challenge

Postby muzik » August 31st, 2016, 11:54 am

What are the remaining steps before the spaceship is assembled?
waiting for apgsearch to support one-dimensional rules
muzik
 
Posts: 2809
Joined: January 28th, 2016, 2:47 pm
Location: Scotland

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » August 31st, 2016, 12:20 pm

I'd say we are about 30% of the way through the planning phase. We still have to figure out the right-side helix to get a cluster started. The helix we have right now will merely feed x3 gliders to the front right corner of the ship, it's the task of a bunch of other *WSS to turn them into the first tracks. Then we need recipes for those *WSS which will be more difficult because we can't begin with still lives. We can try to constrain that helix so the waterbear recipes work. Then we need to be able to build the waterbear recipes which I haven't tried yet, they involve E LWSS so it might be tough. I think about twice to triple the cost of a frozen track.

We also need resets and a way to cleanly eliminate tracks once they've built all the right seeds. Resets might also involve E LWSS. I am confident they'll require a lot of effort to get done efficiently. Worst case there, we build the entire left helix from the first cluster (lots of recipes still needed to match color and phase of all those *WSS), and our only reset comes right after that in the form of a frozen bunch of tracks built to the right of the *WSS seeds. That would leave a huge bounding box since that's 16 constructions before a reset. I'd hope for something nicer, but I'm not sure geometry will work in our favor.

I don't think I'm willing to even start looking at the above though until it's clear which cluster is the most efficient at the constructions needed (hence the scripts being posted the last few days).

Once the planning is all taken care of and those involved are convinced the ship will be possible, then comes assembly. This probably won't be done manually like Waterbear because of how massive it will become. I'm not too skilled at script writing but it's going to be necessary for putting the pieces together. A lot of construction parallelism needs to happen to get anywhere close to the smallest it can be - I know chris_c built the parallel HBK and dazzled dvgrn, Calcyman and others by cutting an order of magnitude off its original height. I can hope for his help in a similar way here, but can't promise anything.

I hope that answers things in an informative but not too discouraging way.
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » August 31st, 2016, 10:38 pm

chris_c wrote:I updated the script to allow for a defined number of NE and SE gliders. Also I added some more starting configurations. Good news is that the loaf + block can be made in two NE gliders like so:

RLE


but I don't know how to make that starting configuration so I can't tell how expensive it will be.


Actually as good as it can be - the first glider is the 0 rephasings one. The latter takes 6 more, but I used some of them as rakes here to get the TL out of the way. Without the rakes it comes in at about 650 vertical cells, with them about 850.
x = 557, y = 1107, rule = B3/S23
405bobo$405b2o$406bo25bo$431bo$419bo11b3o$418bo$418b3o14$541bobo$541b
2o$542bo2$555bo$554bo$554b3o19$386bobo$386b2o$387bo25bo$412bo$400bo11b
3o$399bo$399b3o14$522bobo$522b2o$523bo2$536bo$535bo$535b3o19$367bobo$
367b2o$368bo25bo$393bo$381bo11b3o$380bo$380b3o14$503bobo$503b2o$504bo
2$517bo$516bo$516b3o19$348bobo$348b2o$349bo25bo$374bo$362bo11b3o$361bo
$361b3o14$484bobo$484b2o$485bo2$498bo$365bo131bo$364bobo130b3o$363bo3b
o$364bo2bo$336bo14bo12bo2bo$335b3o13bo13bobo$335bo2bo11bobo$337b2o$
337bo14b2o$334b2o$334b4o14b2o$335bo2bo$336bo2$335bobo26b2o$335b2o27b2o
$371bo$341b3o6b2o18bob2o$341b3o6b2o15b3o$357bo8b5o$356bobo6bo2bo2b3o2b
o$338bo7b2o8bobo6bobo4bo2bobo$338bobo6b2o5bo2bo8bo3b2o3bobo$337bo9b2o
4b4o5bo8bo4bo$341b3o2b3o3bo4bo3bobo4b3o$345b3o4bobob2o3bobo4b2o$339bo
4b3o6b2o2b2o3bo$340bo3bo12bo$341b2o12bob4o$355b5o$357b2o7$364b3o$366bo
$365bo$325bobo137bobo$325b2o138b2o$326bo25bo113bo$351bo$339bo11b3o125b
o$338bo139bo$338b3o40b3o94b3o$383bo$382bo7$398b3o$400bo$399bo7$415b3o$
417bo36b3o12b3o$416bo38bo16bo$455b3o11bo2bo$470b2o$470b2o$469bo2bo$
469bo$471b2o$432b3o$434bo$433bo2$454b2o$454b2o$461bo$460bobo6b2o$459b
2obo6b2o$449b3o5b2o2bo$451bo5b5o4bo$450bo5bo4bo3bobo2b3o$306bobo25b3o
119bob3o4bob3obo8bo$306b2o26bo2bo119b3o2bo3bo2bo9b3o$307bo25bo2b2o120b
o10b3o2bo2bo4bo$332bo2bo123bo4bo8bo6bobo$309bo10b2o11b2o124bo4bo9bo5b
2o$308b3o8bo2bo140bo11b3o$307b2ob2o8bob2o15bo$307bo12bo$321bobo16b2o$
309bo10bo2b2o14bobo$309b2o15bo14b2o$308bob2o14bo13bo2$325b2o$325b2o$
312bo13bo14b2o$312b2o27b2o2$327b2o$327b2o$302bobo137bobo$302b2o138b2o
6b2o$303bo25bo113bo6b2o$328bo$316bo11b3o125bo$315bo139bo$315b3o137b3o
5$327b3o$329bo$328bo$298bo$297bobo$299bo$301b2o$298b6o$298bobobobo23bo
7bo$299b5o22b2o7bobo6b3o$300b3o24bo2bo6bo8bo$300b3o25bobo5bo8bo6$449b
2o$361b3o85b2o$317bo45bo$315b2ob2o42bo$315b2ob2o$316bob3o$315b3o$288bo
13b3o$287b3o12bo2bo$286b2o2bo13b2o$286bo3bo87b3o$286bob2o10bo2bo76bo$
286b2o13b2o76bo$304b2o10b2o$303b3o10b2o$287bo16bo18bo$287bo13bo2bo17bo
bo$294bo7b2o18bobo98bobo$293b3o27bo99b2o$292b5o11bobo84b3o26bo$291b2o
3b2o9bobobo7b3o5b2o68bo$290b3o3b3o20bob2o5b2o66bo40bo$291b2o3b2o7bo7bo
5bob2o113bo$292b5o17bo7bo113b3o$293b3o9b3o6bo8b3o$294bo10b2o8bo5bo4bo$
305b2o2bo4bo10bo$294b2o10bob3o2b2o6bo101b3o12b3o7b2o$294b2o10b2ob4o9bo
89b3o8bo2bo10bo2bo7b2o$308b2o104bo7bo3bo9bo4bo$309bo103bo13bo10bo$423b
3ob2o$427bo11b2o$422bo3b2o10bobo$426bo11bobo2$444bo$279bobo137bobo20bo
$279b2o33b3o102b2o21b2o$280bo25bo9bo103bo$305bo9bo$293bo11b3o125bo$
292bo139bo$292b3o137b3o4$331b3o$333bo$332bo3$429b2o$412bo4bo4bo5bo2bo$
411bo2bo2bo3bobo5b2o$411bo2b2o5bobo9b2o$348b3o63b2o17b2o$350bo64b2o$
349bo66b2o23b2o$441b2o6$365b3o$367bo$366bo6$291b3o$291bo2bo87b3o$290bo
3bo89bo$291bo2b2o87bo$293bo$263bo13b3o11b2o110bo13b3o$262b3o12bo2bo9b
3o109b3o12bo2bo7b2o$261b2o2bo10bo3bo9b3o108b2o2bo10bo3bo6bo2bo$261b5o
10b4o122bob2o10b4o8b2o$260bo2b2o12bo121bo2b3o12bo14b2o$261b2o34b3o99bo
32b2o$296bo3bo96b2ob3o$277bo18bo3bo97b5o14bo22b2o$268bo7bobo15b2o5b2o
105bo7bobo21b2o$268b2o23bo4bo4bo104b2o$283b3o7bo3bobo3bo119b3o$269b2o
11bo3bo6bo4bo4bo105b2o11bo3bo$269bo11bo5bo6b2o5b2o106bo11bo5bo$281bo5b
o8b6o119bo5bo$281bo5bo8b2o2b2o119bo5bo$282bo3bo12b3o120bo3bo$269b2o12b
3o12bobo108b2o12b3o$269b2o27b2o109b2o2$284b2o138b2o$284b2o138b2o4$256b
obo137bobo$256b2o138b2o$257bo25bo113bo$282bo$270bo11b3o125bo$269bo17b
3o119bo14bo3bo$269b3o17bo119b3o11b5obo$288bo133bob3o3bo$422bo4b3o$423b
o$424bo14b2o$439b2o3$304b3o$306bo$305bo$393b2o$393b2o14bo$248bo31b2o
113bo12b3o$248b2o30bob2o109b3o11bo2b2o$247bo2bo31b2o108bobo12b3obo$
248bobo15bo13b2o111b2o15b2o$247bo2bo15b2o10b2o41b3o68bo$247bo2bo17bo
54bo68bo13bo$247bobo16b2o10bobo41bo67bo14bo$248b3o14bobo11bo125b3o10b
2o$266bo151bobo$264bobo152bo$262bo$262bobo2$338b3o$340bo48bobo$339bo
49bobo34b2o$247b2o143bo33b2o$247b2o$289bo96bo52b2o$249bo39b2o94bob2o
10bo17bo20bo$248b3o8bo4bo10b3o13bo92bo3b2o10b2o2b2o2bobo5bobo$247bob2o
6b4o3bo11b2obo10b3o92bo2b2o2b2o9b3obo2bo4b2o19bo3bo$246b2obo7b2obob2ob
o9bob2obo7bob3o62b3o28b2o4b2o9bo2bo3bo4b4obo15bo3bo$247b2o8b2o15b2o4b
2o4bo5bo64bo45bo2b4o6b3o2bo14bo3bo$248bo2b2o10bobo9bo3b2o6bo4bo63bo47b
o12bo3bo14bob2o$252b3o7b2obo10b4o140bo15bob2o$253b2o5bob3o12bo12bo145b
o$254bo5bo12b2o$273b2o3$372b3o$374bo$373bo$417b2o$280b3o134bobo$282bo
135bo$281bo3$389b3o$391bo$390bo34b2o$262b3o160b2o$262bo2bo31b3o$262bo
36bo$233b2o63bo74bobo$233b2o31bo106b2o$248b3o11bobo109bo$234b2o2b2o8bo
2bo10bo143b3o$234b2o3bo7bo2b2o9b2o124bo20bo$233b2o3b2o6bo2bo136bo20bo$
234b2ob2o8b2o19b2o116bo56b3o$235b2ob2o27bo2bo43b3o57b3o10bo3bo$236bo2b
o13bo13b2ob2o44bo57bobo14bo49bo5bo$236bo2bo28bo2bo43bo56bo3bo10b2o3bo
48bo5bo$238b2o14b2o13b2o101bob2o2bo8bo3b2o48bo5bo$253bobo116bo3bo10bo
3bo21b2o$255b2o117b2o12bo2bo20bobo28b3o$254bo125bo8b3o20b2o8bo$240b2o
27b2o103bo5bo9bobo28bobo$240b2o27b2o103bo4bo11b2o28bobo$331b3o43b3o42b
o$255b2o76bo$255b2o75bo$393b2o$229bobo137bobo21b2o$229b2o138b2o$230bo
25bo113bo$255bo168b2o$243bo11b3o125bo40b2o$242bo105b3o31bo$242b3o105bo
31b3o$349bo2$256b3o$258bo$257bo125bo$381b2ob2o$381bo3bo6b2ob2o45b3o$
370bo10bo11bobo$370bo11b3o9b2o2bo41bo5bo$370bob3o7bo13b3o41bo5bo$226bo
28b2o116b2o8b2o11b3o41bo5bo$226bo27b3o16b3o93b2o41b2o$255bob2o16bo93b
2o40bobo28b3o$256b3o15bo120bo4bo10b2o8bo$248bo8bo135b2ob3o2bo18bobo$
246b6o144b3o21bobo$246b2o2b2o145bo2bo20bo$396b2obo$218b3o12b3o14bo146b
3o$219bo16bo9b2o2bo$219b3o11bo2bo9b2o3bo38b3o$234b2o14bo41bo$234b2o12b
obo40bo65bo14bo$233bo2bo12bo106b3o13bo50b2o$233bo122bo2bo11bobo49b2o$
235b2o121b2o$358bo14b2o$355b2o$355b4o14b2o$307b3o46bo2bo$218b2o28bo60b
o47bo$218b2o28bo59bo$225bo22b2o106bobo$224bobo6b2o12bobo106b2o83b3o$
223b2obo6b2o11bo2bo7b3o$221b2o2bo19bo4bo5bo3bo101b3o6b2o66bo5bo$221b5o
4bo14bo2b3o10bo100b3o6b2o66bo5bo$220bo4bo3bobo2b3o15bo8bo116bo60bo5bo$
220bob3o4bob3obo12b2o10b2o62b3o50bobo31b2o$221b3o2bo3bo2bo9bo4bobo2bo
2b4o66bo32bo7b2o8bobo30bobo28b3o$222bo10b3o2bo2bo10bo5bo66bo33bobo6b2o
5bo2bo31b2o8bo$223bo4bo8bo6bobo6b2o103bo9b2o4b4o5bo35bobo$223bo4bo9bo
5b2o116b3o2b3o3bo4bo3bobo34bobo$227bo11b3o124b3o4bobob2o3bobo35bo$360b
o4b3o6b2o2b2o3bo$361bo3bo12bo$362b2o12bob4o$341b3o32b5o$343bo34b2o$
342bo$422b2o$249b3o170b2o$251bo$250bo5$206bobo137bobo$206b2o138b2o$
207bo25b2o31b3o78bo92b3o$232bo2bo32bo$220bo12bob2o30bo92bo77bo5bo$219b
o13bo125bo78bo5bo$219bo14bobo122b3o76bo5bo$207b3o10bo3bo8bo2b2o172b2o$
207bobo14bo14bo169bobo28b3o$205bo3bo10b2o3bo13bo169b2o8bo$205bob2o2bo
8bo3b2o192bobo$205bo3bo10bo3bo13b2o43b3o132bobo$207b2o12bo2bo13b2o45bo
75bo57bo$213bo8b3o14bo44bo60b3o12b3o$207bo5bo9bobo119bo2bo10bo2bo$207b
o4bo11b2o118bo3bo9b3o2b2o$210b3o27b2o102b3o2bo9bo2b3o$240b2o103b4o11b
2o2b2o$363b3o$226b2o132b4obo55b2o$202bobo21b2o72b3o39bobo15b2o2b2o55b
2o$202b2o98bo39b2o19b2o$203bo25bo71bo41bo$228bo$216bo11b3o125bo$215bo
139bo$215b3o137b3o3$317b3o119b3o$319bo$216bo101bo118bo5bo$214b2ob2o
218bo5bo$214bo3bo6b3o7bo201bo5bo$197bo16bo12bo5bo5bo169b2o$197bobo15b
3o8bo6bo6bo120bo6bo39bobo28b3o$196b2ob3o13bo16bo5bobo96b2ob2o11b4o2b4o
4bobo38b2o8bo$199b3o14b2o119bo3bo11b4obo4bo4bobo46bobo$199b3o25b2o107b
obo5b2o7bo5bobobo5bobo45bobo$199bobo24bo2bo110b2o2b2o9b2o3b3o5bo3bo45b
o$198b2ob2o22b3o7bo98bo4b2o14b2o10bo4bo$199bobo24b3o4b3o98bo32bo3bo$
200bo26bobo3b3o6b3o90bo31bo2b2o$228b2o14bo123b3o$243bo125bo2$420b2o$
420b2o4$259b3o$261bo$260bo2$328bo13b3o$327b3o12bo2bo92b3o$326b2o2bo13b
2o$326bo3bo105bo5bo$326bob2o10bo2bo92bo5bo$276b3o47b2o13b2o93bo5bo$
278bo65b2o62b2o$277bo65b3o61bobo28b3o$327bo16bo62b2o8bo$327bo13bo2bo
71bobo$183bobo148bo7b2o72bobo$183b2o148b3o81bo$184bo25bo121b5o11bobo$
209bo121b2o3b2o9bobobo$197bo11b3o81b3o34b3o3b3o$196bo98bo35b2o3b2o7bo
7bo$196b3o95bo37b5o17bo$333b3o9b3o6bo$334bo10b2o8bo63b2o$345b2o2bo4bo
64b2o$334b2o10bob3o2b2o$334b2o10b2ob4o$348b2o$210bo99b3o36bo$209b3o
100bo$208bo2b2o98bo$208bob2o$180b2o28b2ob2o$180b2o14bo10bo5bo223b3o$
182bo12b3o10bo4bo$180b3o11bo2b2o10bo2bo106bobo113bo5bo$179bobo12b3obo
12bo107b2o114bo5bo$180b2o15b2o7bo113bo114bo5bo$179bo25bo201b2o$179bo
13bo11b3o125bo72bobo28b3o$177bo14bo139bo73b2o8bo$192b3o137b3o80bobo$
415bobo$416bo5$176bobo$176bobo$179bo238b2o$205b2o2bo6b3o199b2o$173bo
30b2o3bo7bo2bo$172bob2o10bo18b2o2bo7b3o$171bo3b2o10b2o2b2o2bobo7b2o5b
2o3bobo$172bo2b2o2b2o9b3obo2bo6bo2bo6bob2obo$173b2o4b2o9bo2bo3bo6bo2bo
3b3o3bobo$190bo2b4o11bo9bo$191bo11b2obobo2bo$204b2o$436b3o2$434bo5bo$
434bo5bo$434bo5bo$211b3o192b2o$213bo191bobo28b3o$212bo192b2o8bo$414bob
o$414bobo$415bo4$228b3o$230bo$229bo$417b2o$417b2o$301b2o13b3o$160bobo
137bo2b2o11bo2bo$160b2o138b2ob2o11bo$161bo25bo113bo2bo$186bo58b3o53b5o
14bo$174bo11b3o58bo55b3o10bobo$173bo72bo59bo9bo$173b3o139b2o$306b2o
127b3o$306b2o14b2o$308bo12bo2bo108bo5bo$306b2o13b2ob2o107bo5bo$322bo2b
o107bo5bo$262b3o58b2o80b2o$264bo43b2o94bobo28b3o$263bo44b2o94b2o8bo$
413bobo$323b2o88bobo$323b2o89bo3$296bobo$179bo99b3o14b2o$177b6o98bo15b
o$177b2o2b2o97bo$310bo105b2o$149b3o12b3o14bo127bo106b2o$150bo16bo9b2o
2bo127b3o$150b3o11bo2bo9b2o3bo$165b2o14bo$165b2o12bobo$164bo2bo12bo$
164bo$166b2o2$434b3o2$325bobo104bo5bo$149b2o28bo120bo25bo105bo5bo$149b
2o28bo121bo130bo5bo$156bo22b2o118b3o102b2o$155bobo6b2o12bobo222bobo28b
3o$154b2obo6b2o11bo2bo7b3o212b2o8bo$152b2o2bo19bo4bo5bo3bo220bobo$152b
5o4bo14bo2b3o10bo219bobo$151bo4bo3bobo2b3o15bo8bo220bo$151bob3o4bob3ob
o12b2o10b2o$152b3o2bo3bo2bo9bo4bobo2bo2b4o$153bo10b3o2bo2bo10bo5bo$
154bo4bo8bo6bobo6b2o$154bo4bo9bo5b2o$158bo11b3o$415b2o$415b2o6$180b3o$
182bo$181bo$433b3o2$431bo5bo$431bo5bo$137bobo137bobo151bo5bo$137b2o
138b2o124b2o$138bo25bo32b3o78bo123bobo28b3o$163bo35bo202b2o8bo$151bo
11b3o32bo92bo119bobo$150bo139bo120bobo$150b3o137b3o119bo4$277b3o12b3o$
214b3o60bo2bo10bo2bo$216bo59bo3bo9bo4bo$215bo65bo10bo121b2o$277b3ob2o
131b2o$281bo11b2o$276bo3b2o10bobo$280bo11bobo22bo$318bo$298bo17b3o$
231b3o39bobo20bo$156bo76bo39b2o21b2o$154b6o72bo41bo$154b2o2b2o272b3o$
287bo$126b3o12b3o14bo127bo143bo5bo$127bo16bo9b2o2bo127b3o141bo5bo$127b
3o11bo2bo9b2o3bo270bo5bo$142b2o14bo243b2o$142b2o12bobo89b3o150bobo28b
3o$141bo2bo12bo92bo150b2o8bo$141bo107bo160bobo$143b2o265bobo$287bo123b
o$285b3o$284bobo7b3ob3o$271bo4bo6b2o11bobo$126b2o28bo114bo3bobo17bo4bo
$126b2o28bo109b4o5bobo7b3o11b2o$133bo22b2o107bo3bo29b2o$132bobo6b2o12b
obo107bo5bo25b6o110b2o$131b2obo6b2o11bo2bo7b3o98b2o3bo25bo3b2o110b2o$
129b2o2bo19bo4bo5bo3bo100b3o26b3o$129b5o4bo14bo2b3o10bo129bo2bo$128bo
4bo3bobo2b3o15bo8bo130b3o$128bob3o4bob3obo12b2o10b2o131bo$129b3o2bo3bo
2bo9bo4bobo2bo2b4o$130bo10b3o2bo2bo10bo5bo$131bo4bo8bo6bobo6b2o$131bo
4bo9bo5b2o$135bo11b3o281b3o2$429bo5bo$429bo5bo$429bo5bo$401b2o$400bobo
28b3o$400b2o8bo$157b3o249bobo$159bo249bobo$158bo251bo2$334bo$335bo$
333b3o$114bobo137b2o$114b2o138b2o$115bo25bo32b3o92b3o140b2o$140bo35bo
78b2o2b2o8bo2bo139b2o$128bo11b3o32bo79b2o3bo7bo2b2o$127bo126b2o3b2o6bo
2bo$127b3o125b2ob2o8b2o$256b2ob2o$257bo2bo13bo$257bo2bo$259b2o14b2o$
191b3o80bobo$193bo82b2o152b3o$192bo82bo$261b2o165bo5bo$261b2o165bo5bo$
428bo5bo$276b2o8bo113b2o$276b2o9bo111bobo28b3o$285b3o111b2o8bo$208b3o
39bobo155bobo$210bo39b2o156bobo$209bo41bo157bo2$264bo$263bo$263b3o3$
225b3o183b2o$227bo47bo135b2o$226bo48bo3$280b2o2$279b2o$247bo31bo$242b
3o2bo29b2o$244bo184b3o$243bo$427bo5bo$351bo75bo5bo$352bo74bo5bo$350b3o
46b2o$95bobo300bobo28b3o$95b2o301b2o8bo$96bo25bo136b3o145bobo$121bo
139bo145bobo$109bo11b3o136bo147bo$108bo$108b3o5$276b3o131b2o$278bo131b
2o$277bo4$303bo$304bo$302b3o$231bobo59b3o$231b2o62bo132b3o$232bo61bo$
426bo5bo$245bo180bo5bo$244bo181bo5bo$244b3o151b2o$397bobo28b3o$397b2o
8bo$310b3o93bobo$312bo93bobo$311bo95bo7$327b3o79b2o$329bo79b2o$328bo2$
368bo$369bo$367b3o$76bobo$76b2o$77bo25bo240b3o$102bo243bo80b3o$90bo11b
3o240bo$89bo335bo5bo$89b3o333bo5bo$425bo5bo$397b2o$396bobo28b3o$396b2o
8bo$361b3o41bobo$363bo41bobo$362bo43bo4$320bo$321bo$319b3o$212bobo163b
3o27b2o$212b2o166bo27b2o$213bo165bo2$226bo$225bo$225b3o3$395b3o$397bo
28b3o$396bo$424bo5bo$424bo5bo$396b2o26bo5bo$395bobo$395bo30b3o$394b3o
3b2o$395b2o5bo$402bo$397bo$397b3o$385bo11bo$386bo11b2o3b2o$384b3o15b4o
$57bobo335bo6bo2bo$57b2o336bo3b2ob2o$58bo25bo310bo3b2o$83bo$71bo11b3o
319b2o$70bo327b2o4b2o$70b3o324b2o5b2ob2o$399bo6b2o$401bobo$399b3o2bo$
398b3o$398bo4bo$399bo2bo22b3o$399b3o$423bo5bo$423bo5bo$423bo5bo$337bo$
338bo86b3o$336b3o52b3o$193bobo$193b2o$194bo2$207bo192b2o$206bo193b2o$
206b3o2$399bo$398bobo$398bo2bo$399b2o8$424b3o2$422bo5bo$402bo19bo5bo$
403bo18bo5bo$401b3o$38bobo383b3o$38b2o350b3o$39bo25bo$64bo$52bo11b3o$
51bo$51b3o345b2o$399b2o3$398bo$397bobo$397bo2bo$398b2o4$354bo$355bo$
353b3o$174bobo$174b2o247b3o$175bo$421bo5bo$188bo232bo5bo$187bo233bo5bo
$187b3o$423b3o$389b3o5$398b2o$398b2o3$397bo$396bobo$396bo2bo$397b2o2$
419bo$420bo$418b3o$19bobo$19b2o$20bo25bo$45bo376b3o$33bo11b3o$32bo387b
o5bo$32b3o385bo5bo$420bo5bo2$422b3o$388b3o5$397b2o$397b2o$371bo$372bo$
370b3o23bo$155bobo237bobo$155b2o238bo2bo$156bo239b2o2$169bo$168bo$168b
3o11$387b3o5$396b2o$396b2o2$obo$2o393bo$bo25bo366bobo$26bo367bo2bo$14b
o11b3o366b2o$13bo$13b3o13$386b2o$136bobo247b2o$136b2o$137bo2$150bo244b
2o$149bo245b2o$149b3o2$394bo$393bobo$393bo2bo$394b2o!


The blinker has to become something p1 for it to truly be a frozen track (thawing is phase-insensitive), but what I made doesn't really work either. The gliders from the frozen track just make a mess upon hitting the block. It'd be nice to have a frozen SE rake as well, for E LWSS production, and a frozen NW rake for trigger gliders. Both would just entail putting some debris in front of the block+loaf that reflects its signal.

I looked a bit more thoroughly at the TL + glider reaction.
x = 396, y = 477, rule = B3/S23
172bobo$172b2o$173bo25bo$198bo$186bo11b3o$185bo$185b3o33$183b3o$183bo
2bo$182bo3bo$182b4o$183bo$154b2o13b3o$153bo2b2o11bo2bo$153b2ob2o11bo
13bo$154bo2bo24bobo$154b5o14bo$156b3o10bobo17b3o$159bo9bo18bo3bo$168b
2o17bo5bo$159b2o26bo5bo$159b2o14b2o10bo5bo$161bo12bo2bo10bo3bo$159b2o
13b2ob2o10b3o107bobo$175bo2bo120b2o$176b2o122bo$161b2o27b2o$161b2o27b
2o121bo$312bo$176b2o134b3o$176b2o3$149bobo$149b2o$150bo25bo$175bo$163b
o11b3o$162bo$162b3o$178b3o$180bo$179bo7$195b3o$197bo$196bo7$212b3o$
214bo$213bo$284bo13b3o$283b3o12bo2bo$282b2obo11bo3bo$298bo2b2o$300bo$
298b2o$229b3o52bo12b3o$231bo51bo13b3o$230bo51b2o2$289b2o13b3o$288bo2b
2o10bo3bo$288b2ob2o10bo3bo$288b2o2bo8b2o5b2o$290b2o8bo4bo4bo$246b3o51b
o3bobo3bo$248bo51bo4bo4bo$130bobo114bo53b2o5b2o$130b2o158b2o11b6o$131b
o25bo132b2o11b2o2b2o$156bo149b3o$144bo11b3o146bobo$143bo161b2o$143b3o$
263b3o$265bo$264bo$276bobo$276b2o$277bo2$290bo$289bo$289b3o9$147bo$
146bobo$145bo3bo134bo$146bo2bo135bo$118bo14bo12bo2bo133b3o$117b3o13bo
13bobo$117bo2bo11bobo$119b2o$119bo14b2o$116b2o$116b4o14b2o$117bo2bo$
118bo2$117bobo26b2o$117b2o27b2o$153bo$123b3o6b2o18bob2o$123b3o6b2o15b
3o$139bo8b5o$138bobo6bo2bo2b3o2bo$120bo7b2o8bobo6bobo4bo2bobo$120bobo
6b2o5bo2bo8bo3b2o3bobo$119bo9b2o4b4o5bo8bo4bo$123b3o2b3o3bo4bo3bobo4b
3o$127b3o4bobob2o3bobo4b2o$121bo4b3o6b2o2b2o3bo$122bo3bo12bo$123b2o12b
ob4o$137b5o$139b2o116bobo$257b2o$258bo2$271bo$270bo$270b3o$146b3o$148b
o$147bo$107bobo$107b2o$108bo25bo$133bo$121bo11b3o$120bo$120b3o40b3o$
165bo135bo$164bo137bo$300b3o6$180b3o63b3o12b3o$182bo64bo16bo$181bo65b
3o11bo2bo$262b2o$262b2o$261bo2bo$261bo$263b2o2$197b3o$199bo$198bo$246b
2o$246b2o$253bo$252bobo6b2o$251b2obo6b2o$249b2o2bo$214b3o32b5o4bo$216b
o31bo4bo3bobo2b3o$215bo32bob3o4bob3obo8bo$249b3o2bo3bo2bo9b3o$250bo10b
3o2bo2bo4bo$251bo4bo8bo6bobo$251bo4bo9bo5b2o$255bo11b3o2$231b3o$233bo$
232bo$88bobo$88b2o$89bo25bo$114bo$102bo11b3o$101bo$101b3o$318bo$319bo$
317b3o$234bobo$234b2o$235bo2$248bo$247bo$114bo132b3o$113b3o$81bobo28bo
2b2o$79bo4bo27b3obo$79bo4bo30b2o$83b2o14b2o$99bob2o8bo$79b2o2b2o16b2o
7bo$79b2o2b2o14b2o9b3o$80bob3o12b2o$83bo$82bo14bobo152bo$98bo128bobo
23bo$225bo4bo20b3o$225bo4bo$229b2o14b2o$245bob2o$225b2o2b2o16b2o$225b
2o2b2o14b2o$80b2o144bob3o12b2o$80bobo39bo106bo$80bob2o9bob2o13b3o8bobo
104bo14bobo$79bob3o8bo5bo11b4o6b2o122bo$78b2obobo7bo6bo11b5o5b4obo$77b
2o3b3o5bo7bo7b2o7bo5b3o2bo$78b2o3bo5bo3b2o3bo16b2o5bo3bo$79b4o7bo4b4o
13bob2o9bo$81b2o10bo4bo9bo2b4o$85bobo6b2ob2o8b2ob2o$86bo21bobo115b2o$
107bo118bobo$226bob2o9bob2o$225bob3o8bo5bo$224b2obobo7bo6bo9bo$223b2o
3b3o5bo7bo9b2o$224b2o3bo5bo3b2o3bo11bo$114b3o108b4o7bo4b4o10b3o77bo$
116bo110b2o10bo4bo8bob3o78bo$115bo115bobo6b2ob2o6bo5bo76b3o$232bo19bo
4bo2$255bo2$95b3o$95bo2bo$94bo3bo32b3o$94b4o35bo$95bo36bo$66b2o13b3o$
65bo2b2o11bo2bo$65b2ob2o11bo13bo$66bo2bo24bobo$66b5o14bo$68b3o10bobo
17b3o$71bo9bo18bo3bo43b3o$80b2o17bo5bo44bo$71b2o26bo5bo43bo119bo$71b2o
14b2o10bo5bo164bo$73bo12bo2bo10bo3bo163b3o$71b2o13b2ob2o10b3o107bobo$
87bo2bo120b2o$88b2o122bo$73b2o27b2o$73b2o27b2o61b3o57bo$167bo56bo$88b
2o76bo57b3o$88b2o3$61bobo$61b2o$62bo25bo$87bo94b3o$75bo11b3o94bo$74bo
108bo$74b3o$90b3o$92bo$91bo3$199b3o150bo$201bo151bo$200bo150b3o2$107b
3o$109bo$108bo3$80bo135b3o$78b6o134bo$78b2o2b2o133bo2$50b3o12b3o14bo
41b3o$51bo16bo9b2o2bo43bo$51b3o11bo2bo9b2o3bo41bo$66b2o14bo$66b2o12bob
o$65bo2bo12bo151b3o$65bo129bo13b3o23bo$67b2o125b3o12bo2bo21bo51bo$193b
2o2bo10bo3bo74bo$141b3o49b5o10b4o73b3o$143bo48bo2b2o12bo$142bo50b2o$
50b2o28bo$50b2o28bo128bo$57bo22b2o118bo7bobo39b3o$56bobo6b2o12bobo118b
2o50bo$55b2obo6b2o11bo2bo7b3o123b3o33bo$53b2o2bo19bo4bo5bo3bo108b2o11b
o3bo$53b5o4bo14bo2b3o10bo64b3o40bo11bo5bo$52bo4bo3bobo2b3o15bo8bo66bo
52bo5bo$52bob3o4bob3obo12b2o10b2o65bo53bo5bo$53b3o2bo3bo2bo9bo4bobo2bo
2b4o122bo3bo$54bo10b3o2bo2bo10bo5bo110b2o12b3o$55bo4bo8bo6bobo6b2o114b
2o64b3o$55bo4bo9bo5b2o191bo$59bo11b3o142b2o50bo$216b2o$175b3o$177bo$
176bo$188bobo$188b2o$189bo94b3o82bo$81b3o202bo83bo$83bo118bo82bo82b3o$
82bo118bo$201b3o4$38bobo$38b2o$39bo25bo32b3o$64bo35bo$52bo11b3o32bo
188bo2bo$51bo150bo84bo3bo$51b3o132b3o12b3o83b2o3bo$186bo2bo10bo2b2o81b
o4bo$186bo2bo10bob2o83bo3bo7bo$185b4o13b2ob2o80bo2bo9b2o$185b2o12bo5bo
$115b3o66bo15bo4bo$117bo67bo15bo2bo$116bo68bo17bo$198bo$197bo103bo$
197b3o101b2o$300bobo3$132b3o$134bo$133bo2$318bo$318b2o$317bobo$176bobo
15bob2o5bo$176bo2b4o11bo3bo3b2o4b3o70b3o$149b3o24bo2bo5b2o7bo3bo3bobo
4bo2bo$151bo26b2o5b2o11bo4bo5b3o67bo5bo$150bo28b3o13b2o12bobo67bo5bo$
208b2obo67bo5bo$209bobo123bo$210bo70b3o51b2o$334bobo2$386bo$166b3o218b
o$168bo216b3o$167bo2$352bo$352b2o39b2o$351bobo39bobo$19bobo372bo$19b2o
$20bo25bo136b3o$45bo139bo$33bo11b3o136bo$32bo$32b3o334bo$369b2o$368bob
o2$165bobo112b3o$165b2o33b3o$166bo35bo75bo5bo$201bo76bo5bo$179bo98bo5b
o$178bo207bo$178b3o99b3o103b2o$385bobo3$217b3o$219bo$218bo7$234b3o$
236bo$235bo6$279b3o$251b3o$253bo23bo5bo$252bo24bo5bo$277bo5bo2$279b3o
2$obo$2o$bo25bo240b3o$26bo243bo$14bo11b3o240bo$13bo$13b3o4$146bobo$
146b2o$147bo2$160bo$159bo$159b3o!

It provides a glider advanced by 1 in phase, and in the NE case, by 8 rephasings. This is handy for situations where only the final NE glider of a recipe is inconvenient. However, because of the phase shift, it doesn't improve the height cost of the block + blinker recipe I posted recently.

The posted pattern can combine with the constellation that has a boat in that orientation to provide another block + loaf recipe, in around 1000 cells.

Another good result is this:

x = 43, y = 43, rule = B3/S23
bo$2bo$3o15$31bo$30bobo$30bo2bo$31b2o2$39b2o$34b2o3b2o$30bo3b2o$29bobo
$29bobo$30bo10bo$40bobo$40b2o10$21b3o$10b3o10bo$12bo9bo$11bo!


but unfortunately I think it needs 10 rephasers before the first NE glider (EDIT: but 0 rephasings for the second NE glider so still possibly competitive).

Correct about the first glider. However, the rephasing accompanying the pair that is "sparking" the constellation can be turned into a NE or SE rake interchangeably. If it was just one rephasing further, it would be actually perfect.

My attempts to get two parallel TL + glider reactions going to provide the 10th and 11th lanes in less height proved fruitless - the second glider crashes into the TL because nothing can clean it up in time.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An entirely different thought:
So far, given a cluster, the "rake" and "climber pair" have been taken as lumped elements - only their relative orientation varies to change the output. However, I don't know what investigations have been done into other ways to place 5 climbers on the tracks. If the rake was the same but the front tracks no longer had a clean climber pair, there could be a few more output options.
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

Re: (27,1)c/72 caterpillar challenge

Postby biggiemac » September 1st, 2016, 4:30 am

Following up on the above, climber pair 2 has a bit of construction capability all on its own. There are two other reactions that don't destroy the track and that leave debris, plus a third if you allow rake input. The spark can interact with the debris to get a very messy forerake. This gives us a messy forerake and a rephasing.
x = 776, y = 1028, rule = B3/S23
760bobo$760b2o$761bo2$774bo$773bo$773b3o39$741bobo$741b2o$742bo2$755bo
$754bo$754b3o39$722bobo$722b2o$723bo2$736bo$735bo$735b3o39$703bobo$
703b2o$704bo2$717bo$716bo$716b3o34$405bobo$405b2o$406bo2$419bo$418bo
265bobo$418b3o263b2o$685bo2$698bo$697bo$697b3o34$386bobo$386b2o$387bo
2$400bo$399bo265bobo$399b3o263b2o$666bo2$679bo$678bo$678b3o34$367bobo$
367b2o$368bo2$381bo$380bo265bobo$380b3o263b2o$647bo2$660bo$659bo$659b
3o8$140bobo$140b2o$141bo2$154bo$153bo$153b3o4$370bo$370bo$369bobo2$
371b2o2$371b2o3$352bo$351b3o$350b2obo2$369b2o$369b2o$352bo23bo$351bo
23bobo$350b2o23bobo$373bo2bo$357b2o13b4o5bo$356bo2b2o10bo4bo3bobo$356b
2ob2o10bobob2o3bobo244bobo$356b2o2bo11b2o2b2o3bo245b2o$358b2o16bo251bo
$374bob4o$374b5o262bo$376b2o262bo$358b2o280b3o$358b2o7$121bobo$121b2o
221bobo$122bo221b2o$345bo$135bo$134bo223bo$134b3o220bo20b3o$357b3o$
376bo5bo$376bo5bo$376bo5bo2$378b3o2$366b2o$365bo2bo$358bo7b2o$342b3o
12b3o18bo$342bo2bo10bo2b2o17bo$342bo2bo10bob2o18bo$341b4o13b2ob2o$341b
2o12bo5bo$340bo15bo4bo$341bo15bo2bo$341bo17bo$354bo$353bo$353b3o4$608b
obo$608b2o$377b3o229bo2$353bo21bo5bo240bo$353bobo19bo5bo239bo$350b2o4b
o18bo5bo239b3o$349bo$346bo2bo5bo21b3o$346bo2bobo2bo$346bobo$347b2o$
346bobo$346bob2o27bo$102bobo243b2o27bo$102b2o243b2o5b3o2b2o16bo$103bo
244b2o9b2o$349bo$116bo$115bo$115b3o9$376b3o2$374bo5bo$374bo5bo$374bo5b
o2$321bobo52b3o$321b2o$322bo2$335bo$334bo41bo$334b3o39bo$347b2o4b3o2b
2o16bo$346bo2bo8b2o$347b2o$321b3o12b3o250bobo$321bo2bo10bo2bo250b2o$
320bo3bo9bo4bo250bo$325bo10bo$321b3ob2o276bo$325bo11b2o263bo$320bo3b2o
10bobo263b3o$324bo11bobo2$342bo$317bobo20bo$317b2o21b2o33b3o$318bo$
373bo5bo$83bobo245bo41bo5bo$83b2o245bo42bo5bo$84bo245b3o$375b3o$97bo$
96bo$96b3o2$375bo$331bo16b2o2b2o21bo$329b3o16bob2obo3b2o16bo$328bobo7b
2o12bo4b2o$310bo4bo4bo6b2o11b4o$309bo2bo2bo3bobo17b2o$309bo2b2o5bobo7b
3o10b3o$312b2o27bob2o247bo$313b2o26bo250bo$314b2o25bobo247bobo$342b2o
3b2o$343bo249b2o2$593b2o3$374b3o197bo$573b3o$372bo5bo193b2obo$372bo5bo
$372bo5bo212b2o$86bo504b2o$86bo287b3o197bo23bo$85bobo485bo23bobo$572b
2o23bobo$87b2o506bo2bo$579b2o13b4o5bo$87b2o285bo203bo2b2o10bo4bo3bobo$
374bo203b2ob2o10bobob2o3bobo$356b2o16bo203b2o2bo11b2o2b2o3bo$68bo287b
2o222b2o16bo$67b3o526bob4o$66b2obo526b5o$298bobo297b2o$85b2o211b2o280b
2o$85b2o212bo280b2o$68bo23bo$67bo23bobo218bo$66b2o23bobo217bo$89bo2bo
218b3o$73b2o13b4o5bo$72bo2b2o10bo4bo3bobo$72b2ob2o10bobob2o3bobo$72b2o
2bo11b2o2b2o3bo468bobo$74b2o16bo473b2o$90bob4o471bo$90b5o238bo$92b2o
239bobo244bo$74b2o257b2o244bo20b3o$74b2o503b3o$598bo5bo$598bo5bo$598bo
5bo2$600b3o2$588b2o$587bo2bo$588b2o$600bo$600bo$559bobo38bo$557bo4bo$
557bo4bo$561b2o14b2o$577bob2o$557b2o2b2o16b2o$557b2o2b2o14b2o$558bob3o
12b2o$561bo$560bo14bobo$576bo4$599b3o2$597bo5bo$279bobo276b2o37bo5bo$
279b2o277bobo36bo5bo$280bo277bob2o22b3o6bo$557bob3o18b2obobobo4b3o4b3o
$293bo262b2obobo18bo2b3o2bo2b5o$292bo262b2o3b3o25bo$292b3o261b2o3bo19b
obo2bo2bo$557b4o22b2o4bo$559b2o7bo12bo3b2o3bo8bo$568bo11b3obo2bob2o8bo
$569bo10b4ob2o2b2o8bo$579b2o2b2o$580b4o$581b2o3bo$586b2o5$606bo$607bo$
607bo2$607bo5b2o$603bo2b2o5b2o$602bo4bo5bob2o$602bo3b2o4bo4bo$602bob3o
4bobo3bo$605b2o5bo4bo$604bo10b2o$543bobo50b2o12bo3bo$543b2o51b2o12bo3b
o$544bo52b3o4bo6b3o$597bo2bo2bobo$557bo38b5obo$556bo39bobo4bobo$556b3o
22bo13bo2bo4b2o$580bobo9b2o$580bobo9bo4bo6b2o$581bo9bo4bo$592bo$592bo$
596bo$594bobo$143bobo449bo$143b2o$144bo459bo2bo$607bo$157bo449bo11bo$
156bo446b2obo11bobo$156b3o444bo13bo2bo$618b2o6$611bo$610bobo$597bo12bo
bo$597bo13bo$578b2o17bo$577bo2bo$578b2o11b2o6b3o$590b2o$590b3obo$592bo
b3o$592b2ob2o$592b2obo$594bo2$604b2o$604b2o3$524bobo91bo$524b2o91bobo$
525bo90bo2bo$617b2o$538bo$537bo$537b3o63bo$603b2o$602bobo$610bo$609bob
o$598b4o7bobo$597bo2b3o7bo$577b2o19bo3bo$124bobo449bo2bo18bo2bo$124b2o
451b2o20b3o18bo$125bo494b2o$619bobo$138bo$137bo$137b3o2$589bo$589bo13b
2o$589bo13b2o32bo$637b2o$636bobo$617bo$616bobo$615bo2bo$616b2o3$654bo$
654b2o$653bobo$595b2o12bo$595b2o11bobo$608bobo$609bo$576b2o$575bo2bo$
576b2o93bo$604bo66b2o$603bobo64bobo$603bobo$604bo$593b2o$592bo2bo4bo$
519bo72bobo4bobo$518bo74bo5bobo$518b3o79bo87bo$688b2o$687bobo$616bo$
615bobo$614bo2bo$615b2o2$105bobo$105b2o$106bo2$119bo474b2o12bo$118bo
475b2o11bobo$118b3o486bobo$608bo$575b2o$574bo2bo$575b2o$603bo$602bobo$
602bobo$603bo$592b2o$591bo2bo4bo$591bobo4bobo$592bo5bobo$599bo26$86bob
o$86b2o$87bo2$100bo$99bo$99b3o16$96bo$96b2o$98bo$96b2o$95bobo$96bo$94b
obo$92bo$92bobo8$71bo20b2o$70b3o19b3o$69b2obo22bo7b2o$94bo7bo2bo$104b
2o$88b3o11bobob2o$71bo16b2ob2o9b2obo2bo$70bo17b2obo3b2o5b2obo2bo$69b2o
19bo4b2o8bo2bo$106b2o$76b2o$75bo2b2o$75b2ob2o$75b2o2bo$77b2o4$77b2o$
77b2o125$127bobo$127b2o$128bo2$141bo$140bo$140b3o39$108bobo$108b2o$
109bo2$122bo$121bo$121b3o39$89bobo$89b2o$90bo2$103bo$102bo$102b3o31$3o
$2bo$bo6$70bobo$17b3o50b2o$19bo51bo$18bo$73bo10bo$72b3o8bo$71b2ob2o7bo
$71bo12bo3bo$88bo$73bo10b2o3bo$34b3o36b2o9bo3b2o$36bo35bob2o8bo3bo$35b
o49bo2bo$86b3o$87bobo$76bo11b2o$76b2o3$51b3o36b2o$53bo12bobo21b2o$52bo
13b2o$67bo2$80bo$79bo$79b3o!

There are a couple of other neat results but most options are really messy. The question then is: can this little pair hobble its way to a 5-track cluster all on its own? It can be as messy as it needs to be, because the 5-track cluster can clean the debris once it is established.

Back on page 3, I wrote:Here our tracks are more helpless. Once we have 3 tracks we can provide a NE rake, but can't do SE rakes or rephasing until we have built all 5, so there will need to be a much larger fanout section at the front of the ship. We also don't get the same amount of freedom with x3 that we had with x2. In x3, no matter the combination of glider and still life that supports the first track, we need at least 3 parameters to match correctly (e.g., glider 1 lane, glider 2 lane, glider 2 phase). So we cannot build all three parts arbitrarily far apart, at least two have to be very close.


If so, then I am proven happily wrong and the rightmost helix gets to be much much simpler (still no cakewalk, but producing 6 signals is much easier than 15). Even if it takes 20K height to convert two to five, I think the height cost is easily outweighed by the major reduction in number of helix syntheses.
Physics: sophistication from simplicity.
User avatar
biggiemac
 
Posts: 503
Joined: September 17th, 2014, 12:21 am
Location: California, USA

PreviousNext

Return to Patterns

Who is online

Users browsing this forum: Billabob and 3 guests