H and T values for tightest 2-glider salvos:

`x = 202, y = 68, rule = B3/S23`

80bobobo3bo5bobo4bo3bo2bobobo2bobobo3bobo2bobobo15bobo5bo4bo5bo3bo3bob

o4bobo2$82bo5bo3bo8bo3bo4bo4bo6bo7bo16bo7bobo3bo5bo3bo2bo3bo2bo2$82bo

5bo3bo2bobo3bobobo4bo4bobobo3bobo4bo17bobo3bo3bo2bo5bo3bo2bo3bo3bobo2$

82bo5bo3bo4bo3bo3bo4bo4bo10bo3bo20bo2bobobo2bo6bobo3bo3bo6bo2$82bo5bo

5bobo4bo3bo4bo4bobobo3bobo4bo17bobo3bo3bo2bobobo3bo5bobo4bobo8$63bobob

obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobob

obobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobobo2$63b

o137bo2$63bo137bo5$167bo20bo$147bo20bo17bobo$125bobo17bobo18b3o18b2o$

51bo19bo19bo13bobo3bo14b2o3bo14b2o3bo19bo19bo$52bo19bo12bobo4bo13b2o4b

o13bo5bo19bo19bo19bo$50b3o12bobo2b3o13b2o2b3o13bo3b3o17b3o17b3o17b3o

17b3o$66b2o18bo$48bo17bo$46bobo$47b2o2$51bo6bo13bo5bo14bo4bo15bo3bo16b

o2bo17bobo18b2o19bo$51bo6bo13bo5bo14bo4bo15bo3bo16bo2bo17bobo18b2o19bo

5$28bo3bo17bobobo15bobobo15bobobo15bo3bo15bobobo15bobobo17bo17bobobo2$

28bo3bo21bo15bo19bo19bo3bo19bo19bo17bo17bo3bo$37bobobo$28bobobo21bo15b

obobo15bobobo15bobobo15bobobo15bobobo17bo17bo3bo$37bobobo$28bo3bo21bo

15bo3bo19bo19bo19bo15bo21bo17bo3bo2$28bo3bo21bo15bobobo15bobobo19bo15b

obobo15bobobo17bo17bobobo9$o5bo3bo3bo4bo8bobobo37bobobo17bo17bobobo15b

obobo15bo3bobobo11bo3bobobo11bo3bo3bo2$obobobo3bo3bobo2bo10bo39bo21bo

21bo19bo15bo3bo3bo11bo7bo11bo3bo3bo$37bobobo$o2bo2bo3bo3bo2bobo10bo30b

obobo4bobobo9bobobo3bo17bobobo19bo15bo3bo3bo11bo3bobobo11bo3bobobo$37b

obobo$o5bo3bo3bo4bo10bo43bo17bo21bo19bo15bo3bo3bo11bo3bo15bo7bo2$o5bo

3bo3bo4bo10bo39bobobo17bo17bobobo19bo15bo3bobobo11bo3bobobo11bo7bo!

There is no minimum value for T when H =7 (or more) because the glider paths never interfere with each other in that case. The H spacing is shown with domino tic marks indicating the diagonal tracks each glider is using. For H=0 they are on the same track.

A Herschel edge-shooter (also in Dave Green's post) can do almost all 2-glider salvos (notably not T=14 H=0) but there may be optimal all-glider solutions for particular cases. That is the purpose of this thread.

Example: 7-glider solution for maximally tight H=6 salvo:

`x = 45, y = 44, rule = B3/S23`

44bo$42b2o$43b2o9$35b3o$37bo$36bo10$25b3o$27bo$26bo2$bo$b2o$obo3$12b2o

10b3o$11bobo12bo$13bo11bo7$2b2o$3b2o$2bo!

Can it be done with fewer gliders? I hope so.

EDIT: a correction has been made to the H=1 entry in the salvos table. Minimum T value is 12.