Code: Select all
x = 51, y = 29, rule = B3/S23
o$b2o$2o4$19bo$8bo8b2o$9b2o7b2o$8b2o2$21b2o$11b2o7b2o$3b2o7b2o8bo24bo$
4b2o5bo27bo5b2o$3bo33b2o7b2o$38b2o$29bo4bo$30b2obo$29b2o2b3o5b2o$40b2o
$42bo5$49b2o$48b2o$50bo!
x = 51, y = 29, rule = B3/S23
o$b2o$2o4$19bo$8bo8b2o$9b2o7b2o$8b2o2$21b2o$11b2o7b2o$3b2o7b2o8bo24bo$
4b2o5bo27bo5b2o$3bo33b2o7b2o$38b2o$29bo4bo$30b2obo$29b2o2b3o5b2o$40b2o
$42bo5$49b2o$48b2o$50bo!
Entity Valkyrie wrote:I found a 12-glider synthesis of the Simkin Glider Gun:Code: Select allx = 51, y = 29, rule = B3/S23
o$b2o$2o4$19bo$8bo8b2o$9b2o7b2o$8b2o2$21b2o$11b2o7b2o$3b2o7b2o8bo24bo$
4b2o5bo27bo5b2o$3bo33b2o7b2o$38b2o$29bo4bo$30b2obo$29b2o2b3o5b2o$40b2o
$42bo5$49b2o$48b2o$50bo!
x = 71, y = 49, rule = B3/S23
o$b2o$2o$12bobo$13b2o$13bo$37bobo$8bo28b2o$9b2o27bo$8b2o4$67bo$59bo5b
2o$57b2o7b2o$58b2o$29bo24bo$30b2o21bo$29b2o22b3o13$11b2o$3b2o7b2o$4b2o
5bo$3bo4$61b2o$60b2o$62bo5$69b2o$68b2o$70bo!
BlinkerSpawn wrote:Entity Valkyrie wrote:I found a 12-glider synthesis of the Simkin Glider Gun:Code: Select allx = 51, y = 29, rule = B3/S23
o$b2o$2o4$19bo$8bo8b2o$9b2o7b2o$8b2o2$21b2o$11b2o7b2o$3b2o7b2o8bo24bo$
4b2o5bo27bo5b2o$3bo33b2o7b2o$38b2o$29bo4bo$30b2obo$29b2o2b3o5b2o$40b2o
$42bo5$49b2o$48b2o$50bo!
Your two middle gliders would have interacted several ticks prior, but flipping the problematic block synthesis diagonally removes the conflict and allows the gliders to be pulled back arbitrarily far:Code: Select allx = 71, y = 49, rule = B3/S23
o$b2o$2o$12bobo$13b2o$13bo$37bobo$8bo28b2o$9b2o27bo$8b2o4$67bo$59bo5b
2o$57b2o7b2o$58b2o$29bo24bo$30b2o21bo$29b2o22b3o13$11b2o$3b2o7b2o$4b2o
5bo$3bo4$61b2o$60b2o$62bo5$69b2o$68b2o$70bo!
Macbi wrote:
So the record is nine gliders if we don't need any eaters?
x = 75, y = 94, rule = B3/S23
43bo$41b2o$42b2o6$12bobo$12b2o$13bo2$14b2o3bo$7bo5b2o5b2o2bo$7b2o6bo3b
2o3b2o$6bobo14bobo27bo$53bobo$53b2o$4bobo$o3b2o14b2o17bo8bo11bobo$b2o
2bo13bobo18b2o5bo13b2o$2o19bo17b2o6b3o11bo2$59b2o$60b2o5bo$6b2o51bo6b
2o$5b2o59bobo$7bo39b2o$46bobo$7bo40bo19bobo$5b2o49bo12b2o3bo$6b2o47b2o
12bo2b2o$55bobo15b2o3$2o20bo$b2o2bo14b2o34bo10b2o$o3b2o12bo2b2o31b2o
12b2o$4bobo9bobo33bo2b2o10bo$17b2o31bobo$21bo29b2o14bo$21bobo31bo12b2o
$21b2o5bo26bobo9b2o$15bo11bo27b2o5bo$4bobo2bobo4bo10b3o19bo11bo$o3b2o
4b2o2b3o26bobo4bo10b3o$b2o2bo4bo19bo13b2o2b3o22b2o$2o22b3o2b2o13bo19bo
4bo2b2o$11b3o10bo4bobo26b3o2b2o4b2o3bo$13bo11bo19b3o10bo4bobo2bobo$12b
o5b2o27bo11bo$6b2o9bobo26bo5b2o$5b2o12bo31bobo$7bo14b2o29bo$22bobo31b
2o$7bo10b2o2bo33bobo9bobo$5b2o12b2o31b2o2bo12b2o3bo$6b2o10bo34b2o14bo
2b2o$52bo20b2o3$2o15bobo$b2o2bo12b2o47b2o$o3b2o12bo49b2o$4bobo19bo40bo
$26bobo$26b2o39bo$6bobo59b2o$7b2o6bo51b2o$7bo5b2o$14b2o2$13bo11b3o6b2o
17bo19b2o$12b2o13bo5b2o18bobo13bo2b2o$12bobo11bo8bo17b2o14b2o3bo$68bob
o$20b2o$19bobo$21bo27bobo14bobo$49b2o3b2o3bo6b2o$50bo2b2o5b2o5bo$55bo
3b2o2$61bo$61b2o$60bobo6$31b2o$32b2o$31bo!
BlinkerSpawn wrote:Macbi wrote:
So the record is nine gliders if we don't need any eaters?
Eight, if there's a suitable 3G collision for the three blocks.
Users browsing this forum: Google [Bot] and 8 guests