ConwayLife.com - A community for Conway's Game of Life and related cellular automata
Home  •  LifeWiki  •  Forums  •  Download Golly

How to use dr?

For scripts to aid with computation or simulation in cellular automata.

How to use dr?

Postby testitemqlstudop » January 26th, 2019, 9:00 pm

I downloaded and ran dr, but all of the reported "oscillators" aren't even stable:

Rule set to B3/S23
Type '?' for list of commands

; Looks for billiard tables with 180-degree rotational symmetry.
; The 4s in the read command cause the background of the central 9 cells
; to not be checked for consistency.  The variable v127 is set to 1 so
; that the cells marked with 4s are not considered when checking the
; Looks for billiard tables with 180-degree rotational symmetry.
; bounds on changed cells.
c18
h9
w9
v127 1
rot180symm
r39 39
444
444
444!
skipstable
skipfizzle; The 4s in the read command cause the background of the central 9 cells
; to not be checked for consistency.  The variable v127 is set to 1 so
; that the cells marked with 4s are not considered when checking the
; bounds on changed cells.
var[127] = 1


Reading file 'knownrotors'
4562 known rotors read

Max height of changed region = 9
Max width of changed region = 9
Max number of changed cells = 18
Probability = 50
Skipping stable outcomes
Skipping fizzle outcomes
Height = 81
Width = 81
180 degree rotational symmetry
Gen 0.  Rows 38 - 42.  Cols 38 - 42.
,
,
,
,
,
Beginning search
maxgenreached = 1
Change counts: 0
Sizes: 0x0
Gen 0.  Rows 36 - 44.  Cols 36 - 44.
,
,,,...
,.o.oo
,.oo.o.
,..ooo..
,,.o.oo.
,,,oo.o.
,,,...
,
maxgenreached = 2
Full change counts: 0 7
Change counts: 0 0
Sizes: 0x0 0x0
Gen 0.  Rows 35 - 45.  Cols 35 - 45.
,
,
,,.....o.
,,.o.oo..
,,.oo.o.o
,,..ooo..
,,o.o.oo.
,,..oo.o.
,,.o.....
,
,
maxgenreached = 3
Full change counts: 0 7 15
Change counts: 0 0 10
Sizes: 0x0 0x0 5x5
Gen 0.  Rows 34 - 46.  Cols 34 - 46.
,
,
,,o.o.oo.o
,,o.....o.o
,,..o.oo..o
,,o.oo.o.o.
,,o..ooo..o
,,.o.o.oo.o
,,o..oo.o..
,,o.o.....o
,,,o.oo.o.o
,
,
maxgenreached = 4
Full change counts: 0 7 15 25
Change counts: 0 0 10 16
Sizes: 0x0 0x0 5x5 7x7
Gen 0.  Rows 32 - 48.  Cols 34 - 46.
,
,
,,.o....o.o
,,.o.oo...o
,.o.o.oo..o
,.o.....o.o
,.o.o.oo..o
,,o.oo.o.o.
,,o..ooo..o
,,.o.o.oo.o
,,o..oo.o.o.
,,o.o.....o.
,,o..oo.o.o.
,,o...oo.o.
,,o.o....o.
,
,
maxgenreached = 5
Full change counts: 0 7 15 25 23
Change counts: 0 0 10 16 16
Sizes: 0x0 0x0 5x5 7x7 7x9
Gen 0.  Rows 32 - 48.  Cols 32 - 48.
,
,
,,,,,,...o
,,,,,.oo..
,,..o.o.oo..o
,,o.o.....o.o.
,,o.o.o.oo..o.o
,,o.o.oo.o.o.o.
,,..o..ooo..o..
,,.o.o.o.oo.o.o
,,o.o..oo.o.o.o
,,,.o.o.....o.o
,,,,o..oo.o.o..
,,,,,,,..oo.
,,,,,,,o...
,
,
maxgenreached = 6
Full change counts: 0 7 15 21 25  25
Change counts: 0 0 10 12 18  18
Sizes: 0x0 0x0 5x5 7x7 7x7  7x9
Gen 0.  Rows 33 - 47.  Cols 32 - 48.
,
,
,,,,.....o.o.
,,,ooooooo.o.
,,o.......o.o.
,,..o.o.oo..o.o
,,.oo.oo.o.oo.o
,,o....ooo....o
,,o.oo.o.oo.oo.
,,o.o..oo.o.o..
,,,.o.o.......o
,,,,.o.ooooooo
,,,,.o.o.....
,
,
maxgenreached = 7
Full change counts: 0 7 15 19 19  19 25
Change counts: 0 0 10 10 12  14 18
Sizes: 0x0 0x0 5x5 5x7 5x7  5x7 7x7
Gen 0.  Rows 33 - 47.  Cols 32 - 48.
,
,
,,,,,,,.o.o.
,,,,......o.oo.
,,.oo.....o..o.
,,.o..o.oo..o..
,,..o.oo.o.oo.o
,,o.o..ooo..o.o
,,o.oo.o.oo.o..
,,..o..oo.o..o.
,,.o..o.....oo.
,,.oo.o......
,,,,,.o.o.
,
,
maxgenreached = 8
Full change counts: 0 7 15 19 19  19 25 23
Change counts: 0 0 10 10 12  14 18 18
Sizes: 0x0 0x0 5x5 5x7 5x7  5x7 7x7 7x7
Gen 0.  Rows 33 - 47.  Cols 32 - 48.
,
,
,,,,,,,.o.o.
,,,,......o.oo.
,,.oo.....o..o.
,,.o..o.oo..o..
,,..o.oo.o.oo.o
,,o.o..ooo..o.o
,,o.oo.o.oo.o..
,,..o..oo.o..o.
,,.o..o.....oo.
,,.oo.o......
,,,,,.o.o.
,
,
maxgenreached = 9
Full change counts: 0 7 15 19 19  19 25 23 19
Change counts: 0 0 10 10 12  14 18 18 16
Sizes: 0x0 0x0 5x5 5x7 5x7  5x7 7x7 7x7 5x7
Gen 0.  Rows 33 - 47.  Cols 32 - 48.
,
,
,,,,,,,.o.o.
,,,.......o.oo.
,,.oo.....o..o.
,,.o..o.oo..o..
,,..o.oo.o.oo.o
,,o.o..ooo..o.o
,,o.oo.o.oo.o..
,,..o..oo.o..o.
,,.o..o.....oo.
,,.oo.o.......
,,,,,.o.o.
,
,
maxgenreached = 10
Full change counts: 0 7 13 19 25  23 19 23 23 25
Change counts: 0 0 8 10 18  16 12 16 16 18
Sizes: 0x0 0x0 5x5 7x7 7x9  7x9 7x9 7x9 7x9 9x9
Gen 0.  Rows 32 - 48.  Cols 32 - 48.
,
,
,,,,,,.oo..
,,,,.....oo
,,,,ooooo...
,,........ooo..
,,.oo.o.oo...o.
,,o.o.oo.o.oo.o
,,o.o..ooo..o.o
,,o.oo.o.oo.o.o
,,.o...oo.o.oo.
,,..ooo........
,,,,,...ooooo
,,,,,,oo.....
,,,,,,..oo.
,
,
maxgenreached = 11
Full change counts: 0 7 13 19 25  23 19 23 23 25  21
Change counts: 0 0 8 10 18  16 12 16 16 18  16
Sizes: 0x0 0x0 5x5 7x7 7x9  7x9 7x9 7x9 7x9 9x9  9x9
Gen 0.  Rows 32 - 48.  Cols 32 - 48.
,
,
,,,,,,.oo..
,,,,.....oo
,,,,ooooo...
,,........ooo..
,,.oo.o.oo...o.
,,o.o.oo.o.oo.o
,,o.o..ooo..o.o
,,o.oo.o.oo.o.o
,,.o...oo.o.oo.
,,..ooo........
,,,,,...ooooo
,,,,,,oo.....
,,,,,,..oo.
,
,
computecellorbackup calls: 1 000000
Gen 0.  Rows 32 - 48.  Cols 32 - 48.
,
,
,,,,,,,,.o.
,,,,,,.o.oo
,,,,.o.oo..
,,...o....oo..
,,ooo.o.oo..ooo
,,..o.oo.o.o...
,,..o..ooo..o..
,,...o.o.oo.o..
,,ooo..oo.o.ooo
,,,..oo....o...
,,,,,,..oo.o.
,,,,,,oo.o.
,,,,,,.o.
,
,
Full change counts: 0 7 11 15 23
Change counts: 0 0 6 8 14
Sizes: 0x0 0x0 5x5 7x7 9x9
computecellorbackup calls: 2 000000
Gen 0.  Rows 34 - 46.  Cols 33 - 47.
,
,
,,,..ooooooo
,,,oo.......
,,o..o.oooo.
,,.o.oo.o..o.
,,.o..ooo..o.
,,.o..o.oo.o.
,,,.oooo.o..o
,,,.......oo
,,,ooooooo..
,
,
Full change counts: 0 7 11 11
Change counts: 0 0 8 10
Sizes: 0x0 0x0 5x5 5x7
computecellorbackup calls: 3 000000
Gen 0.  Rows 32 - 48.  Cols 33 - 47.
,
,,,,,,,...
,,,,,,,.oo.o..
,,,o..oo.o.oo.
,,,..o...o..o.
,,,o.o...oo..
,,.o.o.oo..oo
,,.o.oo.o.o..
,,.o..ooo..o.
,,..o.o.oo.o.
,,oo..oo.o.o.
,,..oo...o.o
,.o..o...o..
,.oo.o.oo..o
,..o.oo.
,,,,,...
,
Full change counts: 0 7 9 21 21  21
Change counts: 0 0 4 14 14  14
Sizes: 0x0 0x0 5x5 7x7 9x7  9x7
computecellorbackup calls: 4 000000
Gen 0.  Rows 33 - 47.  Cols 33 - 47.
,
,
,,,.o.....oo
,,..o.oooo...
,,oo.o....ooo
,,...o.oo.o..
,,...oo.o....
,,,...ooo...
,,....o.oo...
,,..o.oo.o...
,,ooo....o.oo
,,...oooo.o..
,,,oo.....o.
,
,
Full change counts: 0 7 13 23 23
Change counts: 0 0 8 16 16
Sizes: 0x0 0x0 5x5 7x7 7x9
maxgenreached = 12
Full change counts: 0 7 13 19 19  23 25 25 23 23  19 19
Change counts: 0 0 8 12 12  16 18 18 16 16  12 14
Sizes: 0x0 0x0 5x5 7x5 7x5  9x5 9x7 9x9 9x9 9x9  5x9 5x9
Gen 0.  Rows 32 - 48.  Cols 32 - 48.
,
,,,,,,,,...
,,,,,oo.ooo
,,,,,.o.o..
,,,,o.o.....o.o
,,,.o.o....oo..
,,o.o.o.oo...o.
,,..o.oo.o.oo.o
,,o.o..ooo..o.o
,,o.oo.o.oo.o..
,,.o...oo.o.o.o
,,..oo....o.o.
,,o.o.....o.o
,,,,,,..o.o.
,,,,,,ooo.oo
,,,,,,...
,
maxgenreached = 13
Full change counts: 0 7 13 19 19  23 25 25 23 23  19 19 21
Change counts: 0 0 8 12 12  16 18 18 16 16  12 14 18
Sizes: 0x0 0x0 5x5 7x5 7x5  9x5 9x7 9x9 9x9 9x9  5x9 5x9 7x9
Gen 0.  Rows 32 - 48.  Cols 32 - 48.
,
,,,,,,,,...
,,,,,oo.ooo
,,,,,.o.o..
,,,,o.o.....o.o
,,o.o.o....oo..
,,o.o.o.oo...o.
,,..o.oo.o.oo.o
,,o.o..ooo..o.o
,,o.oo.o.oo.o..
,,.o...oo.o.o.o
,,..oo....o.o.o
,,o.o.....o.o
,,,,,,..o.o.
,,,,,,ooo.oo
,,,,,,...
,
maxgenreached = 14
Full change counts: 0 7 13 19 19  23 25 25 23 23  19 19 21 23
Change counts: 0 0 8 12 12  16 18 18 16 16  12 14 18 16
Sizes: 0x0 0x0 5x5 7x5 7x5  9x5 9x7 9x9 9x9 9x9  5x9 5x9 7x9 7x9
Gen 0.  Rows 32 - 48.  Cols 32 - 48.
,
,,,,,,,,...
,,,,,oo.ooo
,,....o.o..
,,.oo.o.....o.
,,o.o.o....oo..
,,o.o.o.oo...oo
,,o.o.oo.o.oo..
,,o.o..ooo..o.o
,,..oo.o.oo.o.o
,,oo...oo.o.o.o
,,..oo....o.o.o
,,,.o.....o.oo.
,,,,,,..o.o....
,,,,,,ooo.oo
,,,,,,...
,
computecellorbackup calls: 5 000000
Gen 0.  Rows 32 - 48.  Cols 33 - 47.
,
,
,,,,,o...
,,,,,..oo
,,,,.oo.o.oo.
,,...o.....o.
,,.o.o.oooo..
,,oo.oo.o....
,,....ooo....
,,....o.oo.oo
,,..oooo.o.o.
,,.o.....o...
,,.oo.o.oo.
,,,,,,oo..
,,,,,,...o
,
,
Full change counts: 0 7 9 21 25
Change counts: 0 0 6 16 18
Sizes: 0x0 0x0 5x5 7x7 9x9
computecellorbackup calls: 6 000000
Gen 0.  Rows 33 - 47.  Cols 33 - 47.
,
,,,,,,,...
,,,,,,..o...o
,,,,o.oooooo.
,,...o......o
,,oo.o.ooo..o
,,.o.oo.o....
,,....ooo....
,,....o.oo.o.
,,o..ooo.o.oo
,,o......o...
,,.oooooo.o
,,o...o..
,,,,,...
,
Full change counts: 0 7 9 21 25
Change counts: 0 0 6 12 16
Sizes: 0x0 0x0 5x5 7x7 9x9
computecellorbackup calls: 7 000000
Gen 0.  Rows 32 - 48.  Cols 33 - 47.
,
,
,,,oo....
,,o...oo.....
,,o.oo.oooo..
,,.o.o.....o.
,,...o.ooo..o
,,...oo.o....
,,,...ooo...
,,....o.oo...
,,o..ooo.o...
,,.o.....o.o.
,,..oooo.oo.o
,,.....oo...o
,,,,,,....oo
,
,
Full change counts: 0 7 9 23 25
Change counts: 0 0 6 14 16
Sizes: 0x0 0x0 5x5 7x7 9x9
computecellorbackup calls: 8 000000
Gen 0.  Rows 33 - 47.  Cols 32 - 48.
,
,
,,.....o.....o
,,o..oo.ooooo..
,,..o.o......oo
,,.oo.o.ooo..o.
,,..o.oo.o.....
,,o....ooo....o
,,.....o.oo.o..
,,.o..ooo.o.oo.
,,oo......o.o..
,,..ooooo.oo..o
,,,o.....o.....
,
,
Full change counts: 0 7 9 23 23
Change counts: 0 0 6 14 14
Sizes: 0x0 0x0 5x5 7x7 9x9
computecellorbackup calls: 9 000000
Gen 0.  Rows 33 - 47.  Cols 32 - 48.
,
,
,,o..o.o..o..
,,..o..oo....
,,.oo.o.....oo.
,,.o..o.ooo..o.
,,..o.oo.o.oo..
,,o.o..ooo..o.o
,,..oo.o.oo.o..
,,.o..ooo.o..o.
,,.oo.....o.oo.
,,,,....oo..o..
,,,,..o..o.o..o
,
,
Full change counts: 0 7 9 19 23
Change counts: 0 0 6 14 18
Sizes: 0x0 0x0 5x5 7x7 9x7
computecellorbackup calls: 10 000000
Gen 0.  Rows 32 - 48.  Cols 32 - 48.
,
,
,,,,,,,,,,.oo.o
,,,,,,,........
,,,,..ooooooooo
,,,,oo.......o.
,,,,..o.ooo....
,,,,..oo.o....
,,,,...o.o...
,,,....o.oo..
,,....ooo.o..
,,.o.......oo
,,ooooooooo..
,,........
,,o.oo.
,
,
Full change counts: 0 4 14 14 20  22
Change counts: 0 0 8 10 16  18
Sizes: 0x0 0x0 5x5 7x7 9x9  9x9
computecellorbackup calls: 11 000000
Gen 0.  Rows 32 - 48.  Cols 32 - 48.
,
,
,,,,,.oo.o.o.o
,,,.o.o..o.o..
,,,.o..ooo.oo.
,,,.o.......o.
,,o.o.o.ooo...
,,..o.oo.o.ooo.
,,.o...o.o...o.
,,.ooo.o.oo.o..
,,,...ooo.o.o.o
,,,.o.......o.
,,,.oo.ooo..o.
,,,..o.o..o.o.
,,,o.o.o.oo.
,
,
Full change counts: 0 4 14 14 20  16 20
Change counts: 0 0 8 12 18  16 18
Sizes: 0x0 0x0 5x5 7x7 9x7  9x7 9x9
computecellorbackup calls: 12 000000
Gen 0.  Rows 32 - 48.  Cols 32 - 48.
,
,
,,,,,,.o.oo...o
,,,,oo.o..o..o.
,,,,.o.oo....o.
,,,,..o.....oo.
,,,oo.o.ooo...
,,,.o.oo.o....
,,,....o.o....
,,,....o.oo.o.
,,,...ooo.o.oo
,,.oo.....o..
,,.o....oo.o.
,,.o..o..o.oo
,,o...oo.o.
,
,
Full change counts: 0 4 12 20 22  22
Change counts: 0 0 6 14 16  18
Sizes: 0x0 0x0 5x5 7x7 9x5  9x7
computecellorbackup calls: 13 000000
Gen 0.  Rows 32 - 48.  Cols 33 - 47.
,
,
,,,,,.o..o..
,,,,,.o.o.o..
,,oo.o.oo.ooo
,,.o.o.......
,,...o.ooooo.
,,...oo.o..oo
,,....o.o....
,,oo..o.oo...
,,.ooooo.o...
,,.......o.o.
,,ooo.oo.o.oo
,,..o.o.o.
,,,..o..o.
,
,
Full change counts: 0 4 8 18 22  18
Change counts: 0 0 2 12 16  14
Sizes: 0x0 0x0 5x1 7x5 9x7  9x7
*****  Period 4 at gen 2
p4 r16 7x7 ..3..C. C.1.A.. .A...13 ....... 31...A. ..A.1.C .C..3..      <- unknown: split rotor (gap = 1)
u6 r24 7x7 ..3..C. C.A.1.. .1A@AA3 .@...@. 3AA@A1. ..1.A.C .C..3..      <- unknown
Full change counts: 0 4 8 16 24  16 8
Change counts: 0 0 2 10 18  10 2
Sizes: 0x0 0x0 5x1 5x5 7x7  7x7 5x1
Gen 0.  Rows 32 - 48.  Cols 32 - 48.
,
,
,,,,,,,,o....o
,,o..o....oo..
,,..o.oooo.oo.
,,.oo.o......o
,,.o..o.ooooo.
,,..o.oo.o..o.
,,o.o..o.o..o.o
,,,.o..o.oo.o..
,,,.ooooo.o..o.
,,,o......o.oo.
,,,.oo.oooo.o..
,,,..oo....o..o
,,,o....o
,
,
^C


How do I use dr and interpret its output?
zdr wrote:Nice archive.
I am the Retrograde Anomaly.
They will not win.
User avatar
testitemqlstudop
 
Posts: 431
Joined: July 21st, 2016, 11:45 am
Location: very very very very boats

Re: How to use dr?

Postby Sokwe » January 26th, 2019, 10:16 pm

testitemqlstudop wrote:I downloaded and ran dr, but all of the reported "oscillators" aren't even stable. How do I use dr and interpret its output?

dr only reports the stator cells that are necessary for the pattern to work. This means that the edges will be unstable. To get a working pattern you will have to stabilize the edges yourself. For example, dr reported a p4 with split rotor that occurs after 2 generations. Here is a possible stabilization of the pattern:
x = 19, y = 19, rule = B3/S23
7bo$6bobo$6bobo$3b2obob2o4b2o$3bo2bo4b2o2bo$5bob4ob2o$4b2obo6b4o$4bo2b
ob5o4bo$5bob2obo2bob3o$3bobo2bobo2bobo$b3obo2bob2obo$o4b5obo2bo$b4o6bo
b2o$5b2ob4obo$3bo2b2o4bo2bo$3b2o4b2obob2o$10bobo$10bobo$11bo!


I noticed that you are using my modification. I hope that you compile the code yourself instead of using the pre-compiled Windows executable that I included in the zip file. The code can be found here.

Also, please ask questions about dr in the dr thread.
-Matthias Merzenich
Sokwe
Moderator
 
Posts: 1407
Joined: July 9th, 2009, 2:44 pm

Re: How to use dr?

Postby testitemqlstudop » January 26th, 2019, 10:30 pm

Sokwe wrote:
testitemqlstudop wrote:I downloaded and ran dr, but all of the reported "oscillators" aren't even stable. How do I use dr and interpret its output?

dr only reports the stator cells that are necessary for the pattern to work. This means that the edges will be unstable. To get a working pattern you will have to stabilize the edges yourself. For example, dr reported a p4 with split rotor that occurs after 2 generations. Here is a possible stabilization of the pattern:
x = 19, y = 19, rule = B3/S23
7bo$6bobo$6bobo$3b2obob2o4b2o$3bo2bo4b2o2bo$5bob4ob2o$4b2obo6b4o$4bo2b
ob5o4bo$5bob2obo2bob3o$3bobo2bobo2bobo$b3obo2bob2obo$o4b5obo2bo$b4o6bo
b2o$5b2ob4obo$3bo2b2o4bo2bo$3b2o4b2obob2o$10bobo$10bobo$11bo!


I noticed that you are using my modification. I hope that you compile the code yourself instead of using the pre-compiled Windows executable that I included in the zip file. The code can be found here.

Also, please ask questions about dr in the dr thread.


Ohhhh, so that's why there's the little dots on the outside. Thanks!
And yeah, I compiled the code myself.
Thanks!
zdr wrote:Nice archive.
I am the Retrograde Anomaly.
They will not win.
User avatar
testitemqlstudop
 
Posts: 431
Joined: July 21st, 2016, 11:45 am
Location: very very very very boats

Re: How to use dr?

Postby dvgrn » January 26th, 2019, 11:24 pm

Sokwe wrote:To get a working pattern you will have to stabilize the edges yourself. For example, dr reported a p4 with split rotor that occurs after 2 generations. Here is a possible stabilization of the pattern...

I've never played around much with dr, so decided to see if I could figure this out independently. Here's the stabilization I ended up with:

x = 17, y = 17, rule = B3/S23
3b2ob2o5b2o$3bob2obob2o2bo$2obo4b2o2b2o$obo2b2o4bo2b3o$2bob2ob4obo3bo$
bobo3bo4b2obo$bo2bobo2b2o2bob2o$2bobobo4b2o3bo$b2obo7bob2o$o3b2o4bobob
o$2obo2b2o2bobo2bo$bob2o4bo3bobo$o3bob4ob2obo$3o2bo4b2o2bobo$3b2o2b2o
4bob2o$2bo2b2obob2obo$2b2o5b2ob2o!

Here's the JDF file that I put together in JavaLifeSearch to get the above as the first solution (without bothering to set a maximum population to get a more optimal answer).

samplep4osc.jdf:
# JavaLifeSearch status file, automatically generated
#
# Any changes to it, including changing order of lines, may cause
# any kinds of strange behaviour after loading it to JLS
# including errors, deadlocks, or crashes.

[Properties]

columns=17
rows=17
generations=4
periods={4,1,2,3,4,5,6}
outer_space_unset=No
symmetry=Rotate-90
tile_horizontal=No
tile_horizontal_shift_down=0
tile_horizontal_shift_future=0
tile_vertical=No
tile_vertical_shift_right=0
tile_vertical_shift_future=0
tile_temporal=Yes
tile_temporal_shift_right=0
tile_temporal_shift_down=0
translation=None
rule_birth={No,No,No,Yes,No,No,No,No,No}
rule_survival={No,No,Yes,Yes,No,No,No,No,No}

[SearchOptions]

sort_generations_first=Yes
sort_to_future=Yes
sort_start_column=0
sort_start_row=0
sort_type=Horizontal
sort_reverse=No
prepare_in_background=Yes
ignore_subperiods=No
prune_with_combination=No
pause_each_iteration=No
pause_on_solution=Yes
save_solutions=No
save_solutions_file=
save_solutions_spacing=20
save_solutions_all_generations=No
save_status=No
save_status_file=
save_status_period=60
display_status=Yes
display_status_period=5
limit_generation_0=No
limit_generation_0_cells=1
limit_generation_0_variables_only=No
layers_live_constraint=No
layers_live_cells=1
layers_live_cells_variables_only=No
layers_active_constraint=No
layers_active_cells=1
layers_active_cells_variables_only=No
layers_from_sorting=Yes
layers_start_column=0
layers_start_row=0
layers_type=Columns

[CellArray]

read_only=Yes

cells{0,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,5}={18,18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18}
cells{0,6}={18,18,18,18,18,0,18,0,18,1,18,18,18,18,18,18,18}
cells{0,7}={18,18,18,18,18,18,1,18,18,18,0,1,18,18,18,18,18}
cells{0,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,9}={18,18,18,18,18,1,0,18,18,18,1,18,18,18,18,18,18}
cells{0,10}={18,18,18,18,18,18,18,1,18,0,18,0,18,18,18,18,18}
cells{0,11}={18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18,18}
cells{0,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

cells{1,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,5}={18,18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18}
cells{1,6}={18,18,18,18,18,0,18,1,18,0,18,18,18,18,18,18,18}
cells{1,7}={18,18,18,18,18,18,0,18,18,18,1,1,18,18,18,18,18}
cells{1,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,9}={18,18,18,18,18,1,1,18,18,18,0,18,18,18,18,18,18}
cells{1,10}={18,18,18,18,18,18,18,0,18,1,18,0,18,18,18,18,18}
cells{1,11}={18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18,18}
cells{1,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

cells{2,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,5}={18,18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18}
cells{2,6}={18,18,18,18,18,1,18,1,18,0,18,18,18,18,18,18,18}
cells{2,7}={18,18,18,18,18,18,0,18,18,18,1,0,18,18,18,18,18}
cells{2,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,9}={18,18,18,18,18,0,1,18,18,18,0,18,18,18,18,18,18}
cells{2,10}={18,18,18,18,18,18,18,0,18,1,18,1,18,18,18,18,18}
cells{2,11}={18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18,18}
cells{2,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

cells{3,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,5}={18,18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18}
cells{3,6}={18,18,18,18,18,1,18,0,18,1,18,18,18,18,18,18,18}
cells{3,7}={18,18,18,18,18,18,1,18,18,18,0,0,18,18,18,18,18}
cells{3,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,9}={18,18,18,18,18,0,0,18,18,18,1,18,18,18,18,18,18}
cells{3,10}={18,18,18,18,18,18,18,1,18,0,18,1,18,18,18,18,18}
cells{3,11}={18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18,18}
cells{3,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

stacks{0}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{1}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{2}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{3}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{4}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{5}={0,0,0,0,0,0,0,16,0,0,16,0,0,0,0,0,0}
stacks{6}={0,0,0,0,0,16,0,16,0,16,0,0,0,0,0,0,0}
stacks{7}={0,0,0,0,0,0,16,0,0,0,16,16,0,0,0,0,0}
stacks{8}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{9}={0,0,0,0,0,16,16,0,0,0,16,0,0,0,0,0,0}
stacks{10}={0,0,0,0,0,0,0,16,0,16,0,16,0,0,0,0,0}
stacks{11}={0,0,0,0,0,0,16,0,0,16,0,0,0,0,0,0,0}
stacks{12}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{13}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{14}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{15}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{16}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

[Search]

cell_count=1156
search_mode=Yes
variable_count=69
time_passed_ns=61143101
iterations_done=30475
solutions_found=1

cells{0,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,5}={18,18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18}
cells{0,6}={18,18,18,18,18,0,18,0,18,1,18,18,18,18,18,18,18}
cells{0,7}={18,18,18,18,18,18,1,18,18,18,0,1,18,18,18,18,18}
cells{0,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,9}={18,18,18,18,18,1,0,18,18,18,1,18,18,18,18,18,18}
cells{0,10}={18,18,18,18,18,18,18,1,18,0,18,0,18,18,18,18,18}
cells{0,11}={18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18,18}
cells{0,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

cells{1,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,5}={18,18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18}
cells{1,6}={18,18,18,18,18,0,18,1,18,0,18,18,18,18,18,18,18}
cells{1,7}={18,18,18,18,18,18,0,18,18,18,1,1,18,18,18,18,18}
cells{1,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,9}={18,18,18,18,18,1,1,18,18,18,0,18,18,18,18,18,18}
cells{1,10}={18,18,18,18,18,18,18,0,18,1,18,0,18,18,18,18,18}
cells{1,11}={18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18,18}
cells{1,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

cells{2,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,5}={18,18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18}
cells{2,6}={18,18,18,18,18,1,18,1,18,0,18,18,18,18,18,18,18}
cells{2,7}={18,18,18,18,18,18,0,18,18,18,1,0,18,18,18,18,18}
cells{2,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,9}={18,18,18,18,18,0,1,18,18,18,0,18,18,18,18,18,18}
cells{2,10}={18,18,18,18,18,18,18,0,18,1,18,1,18,18,18,18,18}
cells{2,11}={18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18,18}
cells{2,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

cells{3,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,5}={18,18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18}
cells{3,6}={18,18,18,18,18,1,18,0,18,1,18,18,18,18,18,18,18}
cells{3,7}={18,18,18,18,18,18,1,18,18,18,0,0,18,18,18,18,18}
cells{3,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,9}={18,18,18,18,18,0,0,18,18,18,1,18,18,18,18,18,18}
cells{3,10}={18,18,18,18,18,18,18,1,18,0,18,1,18,18,18,18,18}
cells{3,11}={18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18,18}
cells{3,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

stacks{0}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{1}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{2}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{3}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{4}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{5}={0,0,0,0,0,0,0,16,0,0,16,0,0,0,0,0,0}
stacks{6}={0,0,0,0,0,16,0,16,0,16,0,0,0,0,0,0,0}
stacks{7}={0,0,0,0,0,0,16,0,0,0,16,16,0,0,0,0,0}
stacks{8}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{9}={0,0,0,0,0,16,16,0,0,0,16,0,0,0,0,0,0}
stacks{10}={0,0,0,0,0,0,0,16,0,16,0,16,0,0,0,0,0}
stacks{11}={0,0,0,0,0,0,16,0,0,16,0,0,0,0,0,0,0}
stacks{12}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{13}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{14}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{15}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{16}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

# Representatives:
# Variable index for each cell, -1 for cells without a variable

representative{0,0}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0}
representative{0,1}={15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,16,1}
representative{0,2}={14,29,30,31,32,33,34,35,36,37,38,39,40,41,30,17,2}
representative{0,3}={13,28,41,42,43,44,45,46,47,48,49,50,51,42,31,18,3}
representative{0,4}={12,27,40,51,52,53,54,55,56,57,58,59,52,43,32,19,4}
representative{0,5}={11,26,39,50,59,60,61,-1,62,63,-1,60,53,44,33,20,5}
representative{0,6}={10,25,38,49,58,-1,64,-1,65,-1,64,61,54,45,34,21,6}
representative{0,7}={9,24,37,48,57,63,-1,66,67,66,-1,-1,55,46,35,22,7}
representative{0,8}={8,23,36,47,56,62,65,67,68,67,65,62,56,47,36,23,8}
representative{0,9}={7,22,35,46,55,-1,-1,66,67,66,-1,63,57,48,37,24,9}
representative{0,10}={6,21,34,45,54,61,64,-1,65,-1,64,-1,58,49,38,25,10}
representative{0,11}={5,20,33,44,53,60,-1,63,62,-1,61,60,59,50,39,26,11}
representative{0,12}={4,19,32,43,52,59,58,57,56,55,54,53,52,51,40,27,12}
representative{0,13}={3,18,31,42,51,50,49,48,47,46,45,44,43,42,41,28,13}
representative{0,14}={2,17,30,41,40,39,38,37,36,35,34,33,32,31,30,29,14}
representative{0,15}={1,16,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15}
representative{0,16}={0,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0}

representative{1,0}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0}
representative{1,1}={15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,16,1}
representative{1,2}={14,29,30,31,32,33,34,35,36,37,38,39,40,41,30,17,2}
representative{1,3}={13,28,41,42,43,44,45,46,47,48,49,50,51,42,31,18,3}
representative{1,4}={12,27,40,51,52,53,54,55,56,57,58,59,52,43,32,19,4}
representative{1,5}={11,26,39,50,59,60,61,-1,62,63,-1,60,53,44,33,20,5}
representative{1,6}={10,25,38,49,58,-1,64,-1,65,-1,64,61,54,45,34,21,6}
representative{1,7}={9,24,37,48,57,63,-1,66,67,66,-1,-1,55,46,35,22,7}
representative{1,8}={8,23,36,47,56,62,65,67,68,67,65,62,56,47,36,23,8}
representative{1,9}={7,22,35,46,55,-1,-1,66,67,66,-1,63,57,48,37,24,9}
representative{1,10}={6,21,34,45,54,61,64,-1,65,-1,64,-1,58,49,38,25,10}
representative{1,11}={5,20,33,44,53,60,-1,63,62,-1,61,60,59,50,39,26,11}
representative{1,12}={4,19,32,43,52,59,58,57,56,55,54,53,52,51,40,27,12}
representative{1,13}={3,18,31,42,51,50,49,48,47,46,45,44,43,42,41,28,13}
representative{1,14}={2,17,30,41,40,39,38,37,36,35,34,33,32,31,30,29,14}
representative{1,15}={1,16,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15}
representative{1,16}={0,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0}

representative{2,0}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0}
representative{2,1}={15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,16,1}
representative{2,2}={14,29,30,31,32,33,34,35,36,37,38,39,40,41,30,17,2}
representative{2,3}={13,28,41,42,43,44,45,46,47,48,49,50,51,42,31,18,3}
representative{2,4}={12,27,40,51,52,53,54,55,56,57,58,59,52,43,32,19,4}
representative{2,5}={11,26,39,50,59,60,61,-1,62,63,-1,60,53,44,33,20,5}
representative{2,6}={10,25,38,49,58,-1,64,-1,65,-1,64,61,54,45,34,21,6}
representative{2,7}={9,24,37,48,57,63,-1,66,67,66,-1,-1,55,46,35,22,7}
representative{2,8}={8,23,36,47,56,62,65,67,68,67,65,62,56,47,36,23,8}
representative{2,9}={7,22,35,46,55,-1,-1,66,67,66,-1,63,57,48,37,24,9}
representative{2,10}={6,21,34,45,54,61,64,-1,65,-1,64,-1,58,49,38,25,10}
representative{2,11}={5,20,33,44,53,60,-1,63,62,-1,61,60,59,50,39,26,11}
representative{2,12}={4,19,32,43,52,59,58,57,56,55,54,53,52,51,40,27,12}
representative{2,13}={3,18,31,42,51,50,49,48,47,46,45,44,43,42,41,28,13}
representative{2,14}={2,17,30,41,40,39,38,37,36,35,34,33,32,31,30,29,14}
representative{2,15}={1,16,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15}
representative{2,16}={0,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0}

representative{3,0}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0}
representative{3,1}={15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,16,1}
representative{3,2}={14,29,30,31,32,33,34,35,36,37,38,39,40,41,30,17,2}
representative{3,3}={13,28,41,42,43,44,45,46,47,48,49,50,51,42,31,18,3}
representative{3,4}={12,27,40,51,52,53,54,55,56,57,58,59,52,43,32,19,4}
representative{3,5}={11,26,39,50,59,60,61,-1,62,63,-1,60,53,44,33,20,5}
representative{3,6}={10,25,38,49,58,-1,64,-1,65,-1,64,61,54,45,34,21,6}
representative{3,7}={9,24,37,48,57,63,-1,66,67,66,-1,-1,55,46,35,22,7}
representative{3,8}={8,23,36,47,56,62,65,67,68,67,65,62,56,47,36,23,8}
representative{3,9}={7,22,35,46,55,-1,-1,66,67,66,-1,63,57,48,37,24,9}
representative{3,10}={6,21,34,45,54,61,64,-1,65,-1,64,-1,58,49,38,25,10}
representative{3,11}={5,20,33,44,53,60,-1,63,62,-1,61,60,59,50,39,26,11}
representative{3,12}={4,19,32,43,52,59,58,57,56,55,54,53,52,51,40,27,12}
representative{3,13}={3,18,31,42,51,50,49,48,47,46,45,44,43,42,41,28,13}
representative{3,14}={2,17,30,41,40,39,38,37,36,35,34,33,32,31,30,29,14}
representative{3,15}={1,16,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15}
representative{3,16}={0,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0}


# Variable combination states:

combination{0}={0,0,0,1,1,0,1,1,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,1,0,1,1,0,0,1,0,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0,1,0,0,0,0}

# Stack:
# - Variable index
# - Variable value, 0 = OFF, 1 = ON
# - Item type, 0 = closed, 1 = open (i.e. the other state was not tried yet)

stack{0}={0,0,1}
stack{1}={15,0,1}
stack{2}={14,1,0}
stack{3}={13,1,0}
stack{4}={12,0,0}
stack{5}={11,0,1}
stack{6}={10,0,1}
stack{7}={9,0,1}
stack{8}={8,0,1}
stack{9}={7,1,0}
stack{10}={6,1,0}
stack{11}={5,0,0}
stack{12}={4,1,0}
stack{13}={3,1,0}
stack{14}={2,0,0}
stack{15}={1,0,1}
stack{16}={16,0,1}
stack{17}={29,1,0}
stack{18}={28,0,1}
stack{19}={27,0,1}
stack{20}={26,1,0}
stack{21}={25,1,0}
stack{22}={24,0,0}
stack{23}={23,1,0}
stack{24}={22,0,0}
stack{25}={37,1,0}
stack{26}={21,1,0}
stack{27}={38,0,0}
stack{28}={20,1,0}
stack{29}={19,0,0}
stack{30}={18,1,0}
stack{31}={17,0,0}
stack{32}={30,0,0}
stack{33}={41,1,0}
stack{34}={40,1,0}
stack{35}={39,0,0}

That was after several minutes of impressively awful conflicting red cells of various kinds, until I got a big enough region of fixed cells to make a solution possible, and also found a few places where I had incorrectly set a cell to fixed OFF where it was sometimes ON.

My only advice for JavaLifeSearch is to keep experimenting and don't give up -- if JLS is reporting an inconsistency, there's one there somewhere. They can be annoyingly hard to find.

Last item, and this was my favorite discovery:

In Sokwe's A small modification of dr thread, there's a reply from Scorbie with a really nice useful visualization script, so that you can really see what a rotor looks like without having to figure out the stator.

I've made an adjustment so that the script Just Works with no need for fiddling around with installing a separate rule first:

# rotorviewerv1.1.py

import golly as g
import os

def CreateRule():
   fname = os.path.join(g.getdir("rules"), "rotorviewer.rule")
   with open(fname, 'wb') as f:
      f.write("""@RULE rotorviewer

@TABLE

# rules:
#
# Golly rule-table format.
# Each rule: C,N,NE,E,SE,S,SW,W,NW,C'
# N.B. Where the same variable appears multiple times in a transition,
# it takes the same value each time.
#
# Default for transitions not listed: no change
#
# States:
# N.B. Initially I intended this rule to "stabilize" patterns into rotor with stator patterns.
# Didn't turn out well, and states 0 and 1 (and possibly 2 and 3) are obsolete now.
# 0: empty cell
# 1: simple ON cell
# 2: always OFF cell
# 3: always ON cell
# 4: dr's 0 cell
# 5: dr's @ cell
# 6: dr's 1 cell
# 7: dr's A cell
# 8: dr's 2 cell
# 9: dr's B cell
#10: dr's 3 cell
#11: dr's C cell
n_states:12
neighborhood:Moore
symmetries:rotate8
var x1={0,2,4,6,8,10}
var x2={0,2,4,6,8,10}
var x3={0,2,4,6,8,10}
var x4={0,2,4,6,8,10}
var x5={0,2,4,6,8,10}
var x6={0,2,4,6,8,10}
var x7={0,2,4,6,8,10}
var o1={1,3,5,7,9,11}
var o2={1,3,5,7,9,11}
var o3={1,3,5,7,9,11}
var o4={1,3,5,7,9,11}
var a1={0,1,2,3,4,5,6,7,8,9,10,11}
var a2={0,1,2,3,4,5,6,7,8,9,10,11}
var a3={0,1,2,3,4,5,6,7,8,9,10,11}
var a4={0,1,2,3,4,5,6,7,8,9,10,11}
var a5={0,1,2,3,4,5,6,7,8,9,10,11}
var a6={0,1,2,3,4,5,6,7,8,9,10,11}
var a7={0,1,2,3,4,5,6,7,8,9,10,11}
var x1'={0,1,2,4,6,8,10}
var x2'={0,1,2,4,6,8,10}
var x3'={0,1,2,4,6,8,10}
var x4'={0,1,2,4,6,8,10}
var x5'={0,1,2,4,6,8,10}
var x6'={0,1,2,4,6,8,10}
var x7'={0,1,2,4,6,8,10}
var x8'={0,1,2,4,6,8,10}
var o1'={3,5,7,9,11}
var o2'={3,5,7,9,11}
var o3'={3,5,7,9,11}
var o4'={3,5,7,9,11}
#var v={0,1}
#var n0={4,5}
#var n1={6,7}
# The commented ones are for 0 and 1 cells.
#0,x1,x2,x3,x4,x5,o1,o2,o3,1
#0,x1,x2,x3,x4,o1,x5,o2,o3,1
#0,x1,x2,x3,x4,o1,o2,x5,o3,1
#0,x1,x2,x3,o1,x4,x5,o2,o3,1
#0,x1,x2,x3,o1,x4,o2,x5,o3,1
#0,x1,x2,x3,o1,o2,x4,x5,o3,1
#0,x1,x2,o1,x3,x4,o2,x5,o3,1
#1,x1,x2,x3,x4,x5,x6,x7,a1,0
#1,a1,a2,a3,a4,o1,o2,o3,o4,0
#1,x1,a1,a2,o1,x2,o2,o3,o4,0
#1,x1,a1,a2,o1,o2,x2,o3,o4,0
#1,x1,x2,x3,o1,o2,o3,x4,o4,0
#1,x1,x2,o1,x3,x4,o2,o3,o4,0
#1,x1,x2,o1,x3,o2,x4,o3,o4,0
#1,x1,x2,o1,x3,o2,o3,x4,o4,0
#1,x1,x2,o1,o2,x3,x4,o3,o4,0
#1,x1,x2,o1,o2,x3,o3,x4,o4,0
#1,x1,o1,x2,o2,x3,o3,x4,o4,0
4,x1',x2',x3',x4',x5',o1',o2',o3',5
4,x1',x2',x3',x4',o1',x5',o2',o3',5
4,x1',x2',x3',x4',o1',o2',x5',o3',5
4,x1',x2',x3',o1',x4',x5',o2',o3',5
4,x1',x2',x3',o1',x4',o2',x5',o3',5
4,x1',x2',x3',o1',o2',x4',x5',o3',5
4,x1',x2',o1',x3',x4',o2',x5',o3',5
5,x1',x2',x3',x4',x5',x6',x7',a1,4
5,a1,a2,a3,a4,o1',o2',o3',o4',4
5,x1',a1,a2,o1',x2',o2',o3',o4',4
5,x1',a1,a2,o1',o2',x2',o3',o4',4
5,x1',x2',x3',o1',o2',o3',x4',o4',4
5,x1',x2',o1',x3',x4',o2',o3',o4',4
5,x1',x2',o1',x3',o2',x4',o3',o4',4
5,x1',x2',o1',x3',o2',o3',x4',o4',4
5,x1',x2',o1',o2',x3',x4',o3',o4',4
5,x1',x2',o1',o2',x3',o3',x4',o4',4
5,x1',o1',x2',o2',x3',o3',x4',o4',4
6,x1',x2',x3',x4',x5',x6',o1',o2',7
6,x1',x2',x3',x4',x5',o1',x6',o2',7
6,x1',x2',x3',x4',o1',x5',x6',o2',7
6,x1',x2',x3',o1',x4',x5',x6',o2',7
7,x1',x2',x3',x4',x5',x6',x7',x8',6
7,a1,a2,a3,a4,a5,o1',o2',o3',6
7,x1',a2,a3,a4,o1',x5',o2',o3',6
7,x1',a2,a3,a4,o1',o2',x5',o3',6
7,x1',a2,a3,o1',x4',x5',o2',o3',6
7,x1',a2,a3,o1',x4',o2',x5',o3',6
7,x1',a2,a3,o1',o2',x4',x5',o3',6
7,x1',a2,o1',x3',x4',o2',x5',o3',6
8,x1',x2',x3',x4',x5',x6',x7',o1',9
9,a1,a2,a3,a4,a5,a6,o1',o2',8
9,x1',a2,x3',a4,x5',o1',x6',o2',8
9,x1',x2',x3',x4',o1',x5',x6',o2',8
9,x1',x2',x3',o1',x4',x5',x6',o2',8
10,x1',x2',x3',x4',x5',x6',x7',x8',11
11,a1,a2,a3,a4,a5,a6,a7,o1',10
#v,a1,a2,a3,a4,a5,a6,a7,n0,2



@COLORS

0 48 48 48
1 255 255 255
2 96 96 96
3 192 192 192
4 96 96 96
5 192 192 192
6 88 88 107
7 177 177 196
8 84 115 84
9 168 199 168
10 115 84 84
11 199 168 168

@ICONS

XPM
/* width height num_colors chars_per_pixel */
"31 341 7 1"
/* colors */
"A c #FFFFFF"
"B c #606060"
"C c #C0C0C0"
". c #303030"
"E c #0000FF"
"F c #00FF00"
"G c #FF0000"
/* icon for state 1 */
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA"
/* icon for state 2 */
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
/* icon for state 3 */
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
/* icon for state 4 */
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBB....BB..BBBBBBBBBBBB"
"BBBBBBBBBBB....BB..BBBBBBBBBBBB"
"BBBBBBBBBBB..BB....BBBBBBBBBBBB"
"BBBBBBBBBBB..BB....BBBBBBBBBBBB"
"BBBBBBB....BBBBBBBB....BBBBBBBB"
"BBBBBBB....BBBBBBBB....BBBBBBBB"
"BBBBBBB..BBBBBBBBBB..BBBBBBBBBB"
"BBBBBBB..BBBBBBBBBB..BBBBBBBBBB"
"BBBBBBBBB..BBBBBBBBBB..BBBBBBBB"
"BBBBBBBBB..BBBBBBBBBB..BBBBBBBB"
"BBBBBBB....BBBBBBBB....BBBBBBBB"
"BBBBBBB....BBBBBBBB....BBBBBBBB"
"BBBBBBB..BBBBBBBBBB..BBBBBBBBBB"
"BBBBBBB..BBBBBBBBBB..BBBBBBBBBB"
"BBBBBBBBB..BBBBBBBBBB..BBBBBBBB"
"BBBBBBBBB..BBBBBBBBBB..BBBBBBBB"
"BBBBBBB....BBBBBBBB....BBBBBBBB"
"BBBBBBB....BBBBBBBB....BBBBBBBB"
"BBBBBBB..BBBBBBBBBB..BBBBBBBBBB"
"BBBBBBB..BBBBBBBBBB..BBBBBBBBBB"
"BBBBBBBBB..BBBBBBBBBB..BBBBBBBB"
"BBBBBBBBB..BBBBBBBBBB..BBBBBBBB"
"BBBBBBB....BBBBBBBB....BBBBBBBB"
"BBBBBBB....BBBBBBBB....BBBBBBBB"
"BBBBBBBBBBB....BB..BBBBBBBBBBBB"
"BBBBBBBBBBB....BB..BBBBBBBBBBBB"
"BBBBBBBBBBB..BB....BBBBBBBBBBBB"
"BBBBBBBBBBB..BB....BBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
/* icon for state 5 */
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCC....CC..CCCCCCCCCCCC"
"CCCCCCCCCCC....CC..CCCCCCCCCCCC"
"CCCCCCCCCCC..CC....CCCCCCCCCCCC"
"CCCCCCCCCCC..CC....CCCCCCCCCCCC"
"CCCCCCC....CCCCCCCC....CCCCCCCC"
"CCCCCCC....CCCCCCCC....CCCCCCCC"
"CCCCCCC..CCCCCCCCCC..CCCCCCCCCC"
"CCCCCCC..CCCCCCCCCC..CCCCCCCCCC"
"CCCCCCCCC..CCCCCCCCCC..CCCCCCCC"
"CCCCCCCCC..CCCCCCCCCC..CCCCCCCC"
"CCCCCCC....CCCCCCCC....CCCCCCCC"
"CCCCCCC....CCCCCCCC....CCCCCCCC"
"CCCCCCC..CCCCCCCCCC..CCCCCCCCCC"
"CCCCCCC..CCCCCCCCCC..CCCCCCCCCC"
"CCCCCCCCC..CCCCCCCCCC..CCCCCCCC"
"CCCCCCCCC..CCCCCCCCCC..CCCCCCCC"
"CCCCCCC....CCCCCCCC....CCCCCCCC"
"CCCCCCC....CCCCCCCC....CCCCCCCC"
"CCCCCCC..CCCCCCCCCC..CCCCCCCCCC"
"CCCCCCC..CCCCCCCCCC..CCCCCCCCCC"
"CCCCCCCCC..CCCCCCCCCC..CCCCCCCC"
"CCCCCCCCC..CCCCCCCCCC..CCCCCCCC"
"CCCCCCC....CCCCCCCC....CCCCCCCC"
"CCCCCCC....CCCCCCCC....CCCCCCCC"
"CCCCCCCCCCC....CC..CCCCCCCCCCCC"
"CCCCCCCCCCC....CC..CCCCCCCCCCCC"
"CCCCCCCCCCC..CC....CCCCCCCCCCCC"
"CCCCCCCCCCC..CC....CCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
/* icon for state 6 */
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBEEEEBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
/* icon for state 7 */
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEEEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEEEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEECCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEECCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEEEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEEEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEEEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEEEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEECCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEECCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEEEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEEEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEEEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEEEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEECCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEECCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEEEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCEEEECCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
/* icon for state 8 */
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBFFFFBBFFBBBBBBBBBBBB"
"BBBBBBBBBBBFFFFBBFFBBBBBBBBBBBB"
"BBBBBBBBBBBFFBBFFFFBBBBBBBBBBBB"
"BBBBBBBBBBBFFBBFFFFBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBFFFFBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBFFFFBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBFFBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBFFBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBFFBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBFFBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBFFFFBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBFFFFBBBBBBBB"
"BBBBBBBBBBBFFFFBBFFBBBBBBBBBBBB"
"BBBBBBBBBBBFFFFBBFFBBBBBBBBBBBB"
"BBBBBBBBBBBFFBBFFFFBBBBBBBBBBBB"
"BBBBBBBBBBBFFBBFFFFBBBBBBBBBBBB"
"BBBBBBBFFFFBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBFFFFBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBFFBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBFFBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBFFBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBFFBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBFFFFBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBFFFFBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBFFFFBBFFBBBBBBBBBBBB"
"BBBBBBBBBBBFFFFBBFFBBBBBBBBBBBB"
"BBBBBBBBBBBFFBBFFFFBBBBBBBBBBBB"
"BBBBBBBBBBBFFBBFFFFBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
/* icon for state 9 */
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCFFFFCCFFCCCCCCCCCCC"
"CCCCCCCCCCCCFFFFCCFFCCCCCCCCCCC"
"CCCCCCCCCCCCFFCCFFFFCCCCCCCCCCC"
"CCCCCCCCCCCCFFCCFFFFCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCFFFFCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCFFFFCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCFFCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCFFCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCFFCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCFFCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCFFFFCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCFFFFCCCCCCC"
"CCCCCCCCCCCCFFFFCCFFCCCCCCCCCCC"
"CCCCCCCCCCCCFFFFCCFFCCCCCCCCCCC"
"CCCCCCCCCCCCFFCCFFFFCCCCCCCCCCC"
"CCCCCCCCCCCCFFCCFFFFCCCCCCCCCCC"
"CCCCCCCCFFFFCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCFFFFCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCFFCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCFFCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCFFCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCFFCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCFFFFCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCFFFFCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCFFFFCCFFCCCCCCCCCCC"
"CCCCCCCCCCCCFFFFCCFFCCCCCCCCCCC"
"CCCCCCCCCCCCFFCCFFFFCCCCCCCCCCC"
"CCCCCCCCCCCCFFCCFFFFCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
/* icon for state 10 */
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
"BBBBBBBBBBBBGGGGBBGGBBBBBBBBBBB"
"BBBBBBBBBBBBGGGGBBGGBBBBBBBBBBB"
"BBBBBBBBBBBBGGBBGGGGBBBBBBBBBBB"
"BBBBBBBBBBBBGGBBGGGGBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBGGGGBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBGGGGBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBGGBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBGGBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBGGBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBGGBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBGGGGBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBGGGGBBBBBBB"
"BBBBBBBBBBBBGGGGBBGGBBBBBBBBBBB"
"BBBBBBBBBBBBGGGGBBGGBBBBBBBBBBB"
"BBBBBBBBBBBBGGBBGGGGBBBBBBBBBBB"
"BBBBBBBBBBBBGGBBGGGGBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBGGGGBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBGGGGBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBGGBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBGGBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBGGBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBGGBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBGGGGBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBGGGGBBBBBBB"
"BBBBBBBBBBBBGGGGBBGGBBBBBBBBBBB"
"BBBBBBBBBBBBGGGGBBGGBBBBBBBBBBB"
"BBBBBBBBBBBBGGBBGGGGBBBBBBBBBBB"
"BBBBBBBBBBBBGGBBGGGGBBBBBBBBBBB"
"BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB"
/* icon for state 11 */
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"
"CCCCCCCCCCCCGGGGCCGGCCCCCCCCCCC"
"CCCCCCCCCCCCGGGGCCGGCCCCCCCCCCC"
"CCCCCCCCCCCCGGCCGGGGCCCCCCCCCCC"
"CCCCCCCCCCCCGGCCGGGGCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCGGGGCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCGGGGCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCGGCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCGGCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCGGCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCGGCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCGGGGCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCGGGGCCCCCCC"
"CCCCCCCCCCCCGGGGCCGGCCCCCCCCCCC"
"CCCCCCCCCCCCGGGGCCGGCCCCCCCCCCC"
"CCCCCCCCCCCCGGCCGGGGCCCCCCCCCCC"
"CCCCCCCCCCCCGGCCGGGGCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCGGGGCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCGGGGCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCGGCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCGGCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCGGCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCGGCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCGGGGCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCGGGGCCCCCCC"
"CCCCCCCCCCCCGGGGCCGGCCCCCCCCCCC"
"CCCCCCCCCCCCGGGGCCGGCCCCCCCCCCC"
"CCCCCCCCCCCCGGCCGGGGCCCCCCCCCCC"
"CCCCCCCCCCCCGGCCGGGGCCCCCCCCCCC"
"CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC"

XPM
/* width height num_colors chars_per_pixel */
"15 165 7 1"
/* colors */
"A c #FFFFFF"
"B c #606060"
"C c #C0C0C0"
". c #303030"
"E c #0000FF"
"F c #00FF00"
"G c #FF0000"
/* icon for state 1 */
"AAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA"
"AAAAAAAAAAAAAAA"
/* icon for state 2 */
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBBBBBBBBB"
/* icon for state 3 */
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCCCCCCCCC"
/* icon for state 4 */
"BBBBBBBBBBBBBBB"
"BBBBBB..B.BBBBB"
"BBBBBB.B..BBBBB"
"BBBB..BBBB..BBB"
"BBBB.BBBBB.BBBB"
"BBBBB.BBBBB.BBB"
"BBBB..BBBB..BBB"
"BBBB.BBBBB.BBBB"
"BBBBB.BBBBB.BBB"
"BBBB..BBBB..BBB"
"BBBB.BBBBB.BBBB"
"BBBBB.BBBBB.BBB"
"BBBB..BBBB..BBB"
"BBBBBB..B.BBBBB"
"BBBBBB.B..BBBBB"
/* icon for state 5 */
"CCCCCCCCCCCCCCC"
"CCCCCC..C.CCCCC"
"CCCCCC.C..CCCCC"
"CCCC..CCCC..CCC"
"CCCC.CCCCC.CCCC"
"CCCCC.CCCCC.CCC"
"CCCC..CCCC..CCC"
"CCCC.CCCCC.CCCC"
"CCCCC.CCCCC.CCC"
"CCCC..CCCC..CCC"
"CCCC.CCCCC.CCCC"
"CCCCC.CCCCC.CCC"
"CCCC..CCCC..CCC"
"CCCCCC..C.CCCCC"
"CCCCCC.C..CCCCC"
/* icon for state 6 */
"BBBBBBBBBBBBBBB"
"BBBBBBBEEBBBBBB"
"BBBBBBBBEBBBBBB"
"BBBBBBBEBBBBBBB"
"BBBBBBBEEBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBEEBBBBBB"
"BBBBBBBBEBBBBBB"
"BBBBBBBEBBBBBBB"
"BBBBBBBEEBBBBBB"
"BBBBBBBBBBBBBBB"
"BBBBBBBEEBBBBBB"
"BBBBBBBBEBBBBBB"
"BBBBBBBEBBBBBBB"
"BBBBBBBEEBBBBBB"
/* icon for state 7 */
"CCCCCCCCCCCCCCC"
"CCCCCCCEECCCCCC"
"CCCCCCCCECCCCCC"
"CCCCCCCECCCCCCC"
"CCCCCCCEECCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCEECCCCCC"
"CCCCCCCCECCCCCC"
"CCCCCCCECCCCCCC"
"CCCCCCCEECCCCCC"
"CCCCCCCCCCCCCCC"
"CCCCCCCEECCCCCC"
"CCCCCCCCECCCCCC"
"CCCCCCCECCCCCCC"
"CCCCCCCEECCCCCC"
/* icon for state 8 */
"BBBBBBBBBBBBBBB"
"BBBBBBFFBFBBBBB"
"BBBBBBFBFFBBBBB"
"BBBBBBBBBBFFBBB"
"BBBBBBBBBBFBBBB"
"BBBBBBBBBBBFBBB"
"BBBBBBBBBBFFBBB"
"BBBBBBFFBFBBBBB"
"BBBBBBFBFFBBBBB"
"BBBBFFBBBBBBBBB"
"BBBBFBBBBBBBBBB"
"BBBBBFBBBBBBBBB"
"BBBBFFBBBBBBBBB"
"BBBBBBFFBFBBBBB"
"BBBBBBFBFFBBBBB"
/* icon for state 9 */
"CCCCCCCCCCCCCCC"
"CCCCCCFFCFCCCCC"
"CCCCCCFCFFCCCCC"
"CCCCCCCCCCFFCCC"
"CCCCCCCCCCFCCCC"
"CCCCCCCCCCCFCCC"
"CCCCCCCCCCFFCCC"
"CCCCCCFFCFCCCCC"
"CCCCCCFCFFCCCCC"
"CCCCFFCCCCCCCCC"
"CCCCFCCCCCCCCCC"
"CCCCCFCCCCCCCCC"
"CCCCFFCCCCCCCCC"
"CCCCCCFFCFCCCCC"
"CCCCCCFCFFCCCCC"
/* icon for state 10 */
"BBBBBBBBBBBBBBB"
"BBBBBGGBGBBBBBB"
"BBBBBGBGGBBBBBB"
"BBBBBBBBBGGBBBB"
"BBBBBBBBBGBBBBB"
"BBBBBBBBBBGBBBB"
"BBBBBBBBBGGBBBB"
"BBBBBGGBGBBBBBB"
"BBBBBGBGGBBBBBB"
"BBBBBBBBBGGBBBB"
"BBBBBBBBBGBBBBB"
"BBBBBBBBBBGBBBB"
"BBBBBBBBBGGBBBB"
"BBBBBGGBGBBBBBB"
"BBBBBGBGGBBBBBB"
/* icon for state 11 */
"CCCCCCCCCCCCCCC"
"CCCCCGGCGCCCCCC"
"CCCCCGCGGCCCCCC"
"CCCCCCCCCGGCCCC"
"CCCCCCCCCGCCCCC"
"CCCCCCCCCCGCCCC"
"CCCCCCCCCGGCCCC"
"CCCCCGGCGCCCCCC"
"CCCCCGCGGCCCCCC"
"CCCCCCCCCGGCCCC"
"CCCCCCCCCGCCCCC"
"CCCCCCCCCCGCCCC"
"CCCCCCCCCGGCCCC"
"CCCCCGGCGCCCCCC"
"CCCCCGCGGCCCCCC"

XPM
/* width height num_colors chars_per_pixel */
"7 77 7 1"
/* colors */
"A c #FFFFFF"
"B c #606060"
"C c #C0C0C0"
". c #303030"
"E c #0000FF"
"F c #00FF00"
"G c #FF0000"
/* icon for state 1 */
"AAAAAAA"
"AAAAAAA"
"AAAAAAA"
"AAAAAAA"
"AAAAAAA"
"AAAAAAA"
"AAAAAAA"
/* icon for state 2 */
"BBBBBBB"
"BBBBBBB"
"BBBBBBB"
"BBBBBBB"
"BBBBBBB"
"BBBBBBB"
"BBBBBBB"
/* icon for state 3 */
"CCCCCCC"
"CCCCCCC"
"CCCCCCC"
"CCCCCCC"
"CCCCCCC"
"CCCCCCC"
"CCCCCCC"
/* icon for state 4 */
"BBBBBBB"
"BB...BB"
"BB.B.BB"
"BB.B.BB"
"BB.B.BB"
"BB...BB"
"BBBBBBB"
/* icon for state 5 */
"CCCCCCC"
"CC...CC"
"CC.C.CC"
"CC.C.CC"
"CC.C.CC"
"CC...CC"
"CCCCCCC"
/* icon for state 6 */
"BBBBBBB"
"BBBEBBB"
"BBBEBBB"
"BBBEBBB"
"BBBEBBB"
"BBBEBBB"
"BBBBBBB"
/* icon for state 7 */
"CCCCCCC"
"CCCECCC"
"CCCECCC"
"CCCECCC"
"CCCECCC"
"CCCECCC"
"CCCCCCC"
/* icon for state 8 */
"BBBBBBB"
"BBFFFBB"
"BBBBFBB"
"BBFFFBB"
"BBFBBBB"
"BBFFFBB"
"BBBBBBB"
/* icon for state 9 */
"CCCCCCC"
"CCFFFCC"
"CCCCFCC"
"CCFFFCC"
"CCFCCCC"
"CCFFFCC"
"CCCCCCC"
/* icon for state 10 */
"BBBBBBB"
"BBGGGBB"
"BBBBGBB"
"BBGGGBB"
"BBBBGBB"
"BBGGGBB"
"BBBBBBB"
/* icon for state 11 */
"CCCCCCC"
"CCGGGCC"
"CCCCGCC"
"CCGGGCC"
"CCCCGCC"
"CCGGGCC"
"CCCCCCC"
""")

CreateRule()
g.new("Rotor Viewer")
g.setrule("rotorviewer")
pattern = g.getclipstr()
patlen = len(pattern)
x=0; y=0
state = {'.':0,'0':4,'1':6,'2':8,'3':10,'@':5,'A':7,'B':9,'C':11}
try:
   for i in xrange(patlen):
      if pattern[i] == ' ':
         x=0;y+=1;
      else:
         g.setcell(x,y,state[pattern[i]])
         x+=1
   g.fit()
except:
   g.warn("Error in clipboard string.")

I suppose this should be ported to Lua, so that there's also no need for fiddling around with installing the right Python... anyone interested in getting a little Lua practice?
User avatar
dvgrn
Moderator
 
Posts: 5327
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: How to use dr?

Postby testitemqlstudop » January 27th, 2019, 12:16 pm

dvgrn wrote:
Sokwe wrote:To get a working pattern you will have to stabilize the edges yourself. For example, dr reported a p4 with split rotor that occurs after 2 generations. Here is a possible stabilization of the pattern...

I've never played around much with dr, so decided to see if I could figure this out independently. Here's the stabilization I ended up with:

x = 17, y = 17, rule = B3/S23
3b2ob2o5b2o$3bob2obob2o2bo$2obo4b2o2b2o$obo2b2o4bo2b3o$2bob2ob4obo3bo$
bobo3bo4b2obo$bo2bobo2b2o2bob2o$2bobobo4b2o3bo$b2obo7bob2o$o3b2o4bobob
o$2obo2b2o2bobo2bo$bob2o4bo3bobo$o3bob4ob2obo$3o2bo4b2o2bobo$3b2o2b2o
4bob2o$2bo2b2obob2obo$2b2o5b2ob2o!

Here's the JDF file that I put together in JavaLifeSearch to get the above as the first solution (without bothering to set a maximum population to get a more optimal answer).

samplep4osc.jdf:
# JavaLifeSearch status file, automatically generated
#
# Any changes to it, including changing order of lines, may cause
# any kinds of strange behaviour after loading it to JLS
# including errors, deadlocks, or crashes.

[Properties]

columns=17
rows=17
generations=4
periods={4,1,2,3,4,5,6}
outer_space_unset=No
symmetry=Rotate-90
tile_horizontal=No
tile_horizontal_shift_down=0
tile_horizontal_shift_future=0
tile_vertical=No
tile_vertical_shift_right=0
tile_vertical_shift_future=0
tile_temporal=Yes
tile_temporal_shift_right=0
tile_temporal_shift_down=0
translation=None
rule_birth={No,No,No,Yes,No,No,No,No,No}
rule_survival={No,No,Yes,Yes,No,No,No,No,No}

[SearchOptions]

sort_generations_first=Yes
sort_to_future=Yes
sort_start_column=0
sort_start_row=0
sort_type=Horizontal
sort_reverse=No
prepare_in_background=Yes
ignore_subperiods=No
prune_with_combination=No
pause_each_iteration=No
pause_on_solution=Yes
save_solutions=No
save_solutions_file=
save_solutions_spacing=20
save_solutions_all_generations=No
save_status=No
save_status_file=
save_status_period=60
display_status=Yes
display_status_period=5
limit_generation_0=No
limit_generation_0_cells=1
limit_generation_0_variables_only=No
layers_live_constraint=No
layers_live_cells=1
layers_live_cells_variables_only=No
layers_active_constraint=No
layers_active_cells=1
layers_active_cells_variables_only=No
layers_from_sorting=Yes
layers_start_column=0
layers_start_row=0
layers_type=Columns

[CellArray]

read_only=Yes

cells{0,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,5}={18,18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18}
cells{0,6}={18,18,18,18,18,0,18,0,18,1,18,18,18,18,18,18,18}
cells{0,7}={18,18,18,18,18,18,1,18,18,18,0,1,18,18,18,18,18}
cells{0,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,9}={18,18,18,18,18,1,0,18,18,18,1,18,18,18,18,18,18}
cells{0,10}={18,18,18,18,18,18,18,1,18,0,18,0,18,18,18,18,18}
cells{0,11}={18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18,18}
cells{0,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

cells{1,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,5}={18,18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18}
cells{1,6}={18,18,18,18,18,0,18,1,18,0,18,18,18,18,18,18,18}
cells{1,7}={18,18,18,18,18,18,0,18,18,18,1,1,18,18,18,18,18}
cells{1,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,9}={18,18,18,18,18,1,1,18,18,18,0,18,18,18,18,18,18}
cells{1,10}={18,18,18,18,18,18,18,0,18,1,18,0,18,18,18,18,18}
cells{1,11}={18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18,18}
cells{1,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

cells{2,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,5}={18,18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18}
cells{2,6}={18,18,18,18,18,1,18,1,18,0,18,18,18,18,18,18,18}
cells{2,7}={18,18,18,18,18,18,0,18,18,18,1,0,18,18,18,18,18}
cells{2,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,9}={18,18,18,18,18,0,1,18,18,18,0,18,18,18,18,18,18}
cells{2,10}={18,18,18,18,18,18,18,0,18,1,18,1,18,18,18,18,18}
cells{2,11}={18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18,18}
cells{2,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

cells{3,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,5}={18,18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18}
cells{3,6}={18,18,18,18,18,1,18,0,18,1,18,18,18,18,18,18,18}
cells{3,7}={18,18,18,18,18,18,1,18,18,18,0,0,18,18,18,18,18}
cells{3,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,9}={18,18,18,18,18,0,0,18,18,18,1,18,18,18,18,18,18}
cells{3,10}={18,18,18,18,18,18,18,1,18,0,18,1,18,18,18,18,18}
cells{3,11}={18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18,18}
cells{3,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

stacks{0}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{1}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{2}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{3}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{4}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{5}={0,0,0,0,0,0,0,16,0,0,16,0,0,0,0,0,0}
stacks{6}={0,0,0,0,0,16,0,16,0,16,0,0,0,0,0,0,0}
stacks{7}={0,0,0,0,0,0,16,0,0,0,16,16,0,0,0,0,0}
stacks{8}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{9}={0,0,0,0,0,16,16,0,0,0,16,0,0,0,0,0,0}
stacks{10}={0,0,0,0,0,0,0,16,0,16,0,16,0,0,0,0,0}
stacks{11}={0,0,0,0,0,0,16,0,0,16,0,0,0,0,0,0,0}
stacks{12}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{13}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{14}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{15}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{16}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

[Search]

cell_count=1156
search_mode=Yes
variable_count=69
time_passed_ns=61143101
iterations_done=30475
solutions_found=1

cells{0,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,5}={18,18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18}
cells{0,6}={18,18,18,18,18,0,18,0,18,1,18,18,18,18,18,18,18}
cells{0,7}={18,18,18,18,18,18,1,18,18,18,0,1,18,18,18,18,18}
cells{0,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,9}={18,18,18,18,18,1,0,18,18,18,1,18,18,18,18,18,18}
cells{0,10}={18,18,18,18,18,18,18,1,18,0,18,0,18,18,18,18,18}
cells{0,11}={18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18,18}
cells{0,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{0,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

cells{1,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,5}={18,18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18}
cells{1,6}={18,18,18,18,18,0,18,1,18,0,18,18,18,18,18,18,18}
cells{1,7}={18,18,18,18,18,18,0,18,18,18,1,1,18,18,18,18,18}
cells{1,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,9}={18,18,18,18,18,1,1,18,18,18,0,18,18,18,18,18,18}
cells{1,10}={18,18,18,18,18,18,18,0,18,1,18,0,18,18,18,18,18}
cells{1,11}={18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18,18}
cells{1,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{1,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

cells{2,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,5}={18,18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18}
cells{2,6}={18,18,18,18,18,1,18,1,18,0,18,18,18,18,18,18,18}
cells{2,7}={18,18,18,18,18,18,0,18,18,18,1,0,18,18,18,18,18}
cells{2,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,9}={18,18,18,18,18,0,1,18,18,18,0,18,18,18,18,18,18}
cells{2,10}={18,18,18,18,18,18,18,0,18,1,18,1,18,18,18,18,18}
cells{2,11}={18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18,18}
cells{2,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{2,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

cells{3,0}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,1}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,2}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,3}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,4}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,5}={18,18,18,18,18,18,18,0,18,18,1,18,18,18,18,18,18}
cells{3,6}={18,18,18,18,18,1,18,0,18,1,18,18,18,18,18,18,18}
cells{3,7}={18,18,18,18,18,18,1,18,18,18,0,0,18,18,18,18,18}
cells{3,8}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,9}={18,18,18,18,18,0,0,18,18,18,1,18,18,18,18,18,18}
cells{3,10}={18,18,18,18,18,18,18,1,18,0,18,1,18,18,18,18,18}
cells{3,11}={18,18,18,18,18,18,1,18,18,0,18,18,18,18,18,18,18}
cells{3,12}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,13}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,14}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,15}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}
cells{3,16}={18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18,18}

stacks{0}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{1}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{2}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{3}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{4}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{5}={0,0,0,0,0,0,0,16,0,0,16,0,0,0,0,0,0}
stacks{6}={0,0,0,0,0,16,0,16,0,16,0,0,0,0,0,0,0}
stacks{7}={0,0,0,0,0,0,16,0,0,0,16,16,0,0,0,0,0}
stacks{8}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{9}={0,0,0,0,0,16,16,0,0,0,16,0,0,0,0,0,0}
stacks{10}={0,0,0,0,0,0,0,16,0,16,0,16,0,0,0,0,0}
stacks{11}={0,0,0,0,0,0,16,0,0,16,0,0,0,0,0,0,0}
stacks{12}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{13}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{14}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{15}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
stacks{16}={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

# Representatives:
# Variable index for each cell, -1 for cells without a variable

representative{0,0}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0}
representative{0,1}={15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,16,1}
representative{0,2}={14,29,30,31,32,33,34,35,36,37,38,39,40,41,30,17,2}
representative{0,3}={13,28,41,42,43,44,45,46,47,48,49,50,51,42,31,18,3}
representative{0,4}={12,27,40,51,52,53,54,55,56,57,58,59,52,43,32,19,4}
representative{0,5}={11,26,39,50,59,60,61,-1,62,63,-1,60,53,44,33,20,5}
representative{0,6}={10,25,38,49,58,-1,64,-1,65,-1,64,61,54,45,34,21,6}
representative{0,7}={9,24,37,48,57,63,-1,66,67,66,-1,-1,55,46,35,22,7}
representative{0,8}={8,23,36,47,56,62,65,67,68,67,65,62,56,47,36,23,8}
representative{0,9}={7,22,35,46,55,-1,-1,66,67,66,-1,63,57,48,37,24,9}
representative{0,10}={6,21,34,45,54,61,64,-1,65,-1,64,-1,58,49,38,25,10}
representative{0,11}={5,20,33,44,53,60,-1,63,62,-1,61,60,59,50,39,26,11}
representative{0,12}={4,19,32,43,52,59,58,57,56,55,54,53,52,51,40,27,12}
representative{0,13}={3,18,31,42,51,50,49,48,47,46,45,44,43,42,41,28,13}
representative{0,14}={2,17,30,41,40,39,38,37,36,35,34,33,32,31,30,29,14}
representative{0,15}={1,16,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15}
representative{0,16}={0,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0}

representative{1,0}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0}
representative{1,1}={15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,16,1}
representative{1,2}={14,29,30,31,32,33,34,35,36,37,38,39,40,41,30,17,2}
representative{1,3}={13,28,41,42,43,44,45,46,47,48,49,50,51,42,31,18,3}
representative{1,4}={12,27,40,51,52,53,54,55,56,57,58,59,52,43,32,19,4}
representative{1,5}={11,26,39,50,59,60,61,-1,62,63,-1,60,53,44,33,20,5}
representative{1,6}={10,25,38,49,58,-1,64,-1,65,-1,64,61,54,45,34,21,6}
representative{1,7}={9,24,37,48,57,63,-1,66,67,66,-1,-1,55,46,35,22,7}
representative{1,8}={8,23,36,47,56,62,65,67,68,67,65,62,56,47,36,23,8}
representative{1,9}={7,22,35,46,55,-1,-1,66,67,66,-1,63,57,48,37,24,9}
representative{1,10}={6,21,34,45,54,61,64,-1,65,-1,64,-1,58,49,38,25,10}
representative{1,11}={5,20,33,44,53,60,-1,63,62,-1,61,60,59,50,39,26,11}
representative{1,12}={4,19,32,43,52,59,58,57,56,55,54,53,52,51,40,27,12}
representative{1,13}={3,18,31,42,51,50,49,48,47,46,45,44,43,42,41,28,13}
representative{1,14}={2,17,30,41,40,39,38,37,36,35,34,33,32,31,30,29,14}
representative{1,15}={1,16,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15}
representative{1,16}={0,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0}

representative{2,0}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0}
representative{2,1}={15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,16,1}
representative{2,2}={14,29,30,31,32,33,34,35,36,37,38,39,40,41,30,17,2}
representative{2,3}={13,28,41,42,43,44,45,46,47,48,49,50,51,42,31,18,3}
representative{2,4}={12,27,40,51,52,53,54,55,56,57,58,59,52,43,32,19,4}
representative{2,5}={11,26,39,50,59,60,61,-1,62,63,-1,60,53,44,33,20,5}
representative{2,6}={10,25,38,49,58,-1,64,-1,65,-1,64,61,54,45,34,21,6}
representative{2,7}={9,24,37,48,57,63,-1,66,67,66,-1,-1,55,46,35,22,7}
representative{2,8}={8,23,36,47,56,62,65,67,68,67,65,62,56,47,36,23,8}
representative{2,9}={7,22,35,46,55,-1,-1,66,67,66,-1,63,57,48,37,24,9}
representative{2,10}={6,21,34,45,54,61,64,-1,65,-1,64,-1,58,49,38,25,10}
representative{2,11}={5,20,33,44,53,60,-1,63,62,-1,61,60,59,50,39,26,11}
representative{2,12}={4,19,32,43,52,59,58,57,56,55,54,53,52,51,40,27,12}
representative{2,13}={3,18,31,42,51,50,49,48,47,46,45,44,43,42,41,28,13}
representative{2,14}={2,17,30,41,40,39,38,37,36,35,34,33,32,31,30,29,14}
representative{2,15}={1,16,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15}
representative{2,16}={0,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0}

representative{3,0}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0}
representative{3,1}={15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,16,1}
representative{3,2}={14,29,30,31,32,33,34,35,36,37,38,39,40,41,30,17,2}
representative{3,3}={13,28,41,42,43,44,45,46,47,48,49,50,51,42,31,18,3}
representative{3,4}={12,27,40,51,52,53,54,55,56,57,58,59,52,43,32,19,4}
representative{3,5}={11,26,39,50,59,60,61,-1,62,63,-1,60,53,44,33,20,5}
representative{3,6}={10,25,38,49,58,-1,64,-1,65,-1,64,61,54,45,34,21,6}
representative{3,7}={9,24,37,48,57,63,-1,66,67,66,-1,-1,55,46,35,22,7}
representative{3,8}={8,23,36,47,56,62,65,67,68,67,65,62,56,47,36,23,8}
representative{3,9}={7,22,35,46,55,-1,-1,66,67,66,-1,63,57,48,37,24,9}
representative{3,10}={6,21,34,45,54,61,64,-1,65,-1,64,-1,58,49,38,25,10}
representative{3,11}={5,20,33,44,53,60,-1,63,62,-1,61,60,59,50,39,26,11}
representative{3,12}={4,19,32,43,52,59,58,57,56,55,54,53,52,51,40,27,12}
representative{3,13}={3,18,31,42,51,50,49,48,47,46,45,44,43,42,41,28,13}
representative{3,14}={2,17,30,41,40,39,38,37,36,35,34,33,32,31,30,29,14}
representative{3,15}={1,16,29,28,27,26,25,24,23,22,21,20,19,18,17,16,15}
representative{3,16}={0,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0}


# Variable combination states:

combination{0}={0,0,0,1,1,0,1,1,0,0,0,0,0,1,1,0,0,0,1,0,1,1,0,1,0,1,1,0,0,1,0,1,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0,1,0,0,0,0}

# Stack:
# - Variable index
# - Variable value, 0 = OFF, 1 = ON
# - Item type, 0 = closed, 1 = open (i.e. the other state was not tried yet)

stack{0}={0,0,1}
stack{1}={15,0,1}
stack{2}={14,1,0}
stack{3}={13,1,0}
stack{4}={12,0,0}
stack{5}={11,0,1}
stack{6}={10,0,1}
stack{7}={9,0,1}
stack{8}={8,0,1}
stack{9}={7,1,0}
stack{10}={6,1,0}
stack{11}={5,0,0}
stack{12}={4,1,0}
stack{13}={3,1,0}
stack{14}={2,0,0}
stack{15}={1,0,1}
stack{16}={16,0,1}
stack{17}={29,1,0}
stack{18}={28,0,1}
stack{19}={27,0,1}
stack{20}={26,1,0}
stack{21}={25,1,0}
stack{22}={24,0,0}
stack{23}={23,1,0}
stack{24}={22,0,0}
stack{25}={37,1,0}
stack{26}={21,1,0}
stack{27}={38,0,0}
stack{28}={20,1,0}
stack{29}={19,0,0}
stack{30}={18,1,0}
stack{31}={17,0,0}
stack{32}={30,0,0}
stack{33}={41,1,0}
stack{34}={40,1,0}
stack{35}={39,0,0}

That was after several minutes of impressively awful conflicting red cells of various kinds, until I got a big enough region of fixed cells to make a solution possible, and also found a few places where I had incorrectly set a cell to fixed OFF where it was sometimes ON.

My only advice for JavaLifeSearch is to keep experimenting and don't give up -- if JLS is reporting an inconsistency, there's one there somewhere. They can be annoyingly hard to find.


So if I put any dr result into JLS, it can find a stabilization for me? I'm having some difficulty configuring JLS...
zdr wrote:Nice archive.
I am the Retrograde Anomaly.
They will not win.
User avatar
testitemqlstudop
 
Posts: 431
Joined: July 21st, 2016, 11:45 am
Location: very very very very boats

Re: How to use dr?

Postby dvgrn » January 27th, 2019, 1:56 pm

testitemqlstudop wrote:So if I put any dr result into JLS, it can find a stabilization for me? I'm having some difficulty configuring JLS...

I don't know the answer to that one for sure. Seems like dr only reports results that it's pretty sure are stabilizable, but it's not clear to me how it knows that. For all I know, there might be exceptional cases where a stabilization is not technically possible for some reason. But they're definitely very rare if they exist.

First-draft answer: if there is a stabilization for a dr result of this general size, it's very likely that JLS can find it for you -- almost instantly in a lot of cases, especially something rotationally symmetric like this last one.

testitemqlstudop wrote:I'm having some difficulty configuring JLS...

Yup -- join the club... setting up JLS takes a painful amount of practice and an improbable level of attention to detail.

I think the main trick for this particular kind search (stator-finding) is to set the background to all fixed cells: once you have the size set up, immediately select the entire board, then hit Shift+F (shift applies whatever you're doing to all phases instead of just the current phase). If the area of forced cells stays well inside your initial area, you can try holding down Shift and setting successive rows and columns around the edges to OFF, and see if you still get solutions.

Another detail that might get missed on the first read through the instructions is adjusting patterns once you've drawn them or Ctrl-V pasted them into the grid -- say if you find you have to increase the size of the grid and then re-center, or something like that. Ctrl+arrow keys shift the selection, as if the selection was a torus -- stuff that falls off the right side comes back on the left. And as you might expect, Shift+Ctrl+arrow keys do the same thing but for all phases at once.

I really don't know anything else, so maybe someone else will chime in with corrections or better advice. Seems like I always have to re-learn everything about JLS every time I go back and try to use it again.
User avatar
dvgrn
Moderator
 
Posts: 5327
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: How to use dr?

Postby testitemqlstudop » January 27th, 2019, 2:07 pm

(By the way, I hoped that dr could find a 2c/3 elbow or p19 billiard, but I just don't get the commands...)

I don't think I'm doing it right -
zdr wrote:Nice archive.
I am the Retrograde Anomaly.
They will not win.
User avatar
testitemqlstudop
 
Posts: 431
Joined: July 21st, 2016, 11:45 am
Location: very very very very boats

Re: How to use dr?

Postby dvgrn » January 27th, 2019, 6:03 pm

testitemqlstudop wrote:(By the way, I hoped that dr could find a 2c/3 elbow or p19 billiard, but I just don't get the commands...)

I don't think I'm doing it right -

Doesn't look like it. Did you read my last post, about setting the background to all fixed cells, and then changing just the center part to match the rotor in question? That's one way to do it, anyway. I'm not really any good with JLS, so there may be better ways. But I don't see any fixed cells in your setup, so you could just as well find p4 oscillating support as stable support -- and there's an awful lot of that kind of thing out there, in a painfully huge search space.

Also, it looks like you might be searching for an oscillator with the pictured configuration as one of the phases. Isn't dr saying that that's a predecessor of an oscillator, not the oscillator itself?

Also you have lots of unknown cells in the middle of the pictured configuration, so theoretically JLS might have to check if any of them could be ON (though I think it will figure that out pretty quick, once everything else is set up right).

Start at the beginning
After you've tried running a piece of search software and been mystified by its output for a while, try reading through all the available tutorials and documentation from beginning to end once or twice, before you post questions. A couple of your recent questions are answered directly by the dr and JLS documentation.

Jumping right in and hunting immediately for a 2c/3 elbow or p19 oscillator is probably not too likely to work out very well. These are things that even people with a decade or two of experience with Life search programs haven't been able to find yet, and they sometimes leave searches running for weeks or months -- once they have enough experience searching for easier things successfully, so that they know roughly how long a search will take to complete.

It's fairly common that people new to these search tools will optimistically set searches running that are likely to take 100 million years or so. Theoretically these searches might just happen to turn up something right away, but in practice the first million years or so will be spent cycling through all the useless edge cases to get to the first interesting possibilities.

It works out a lot better if you start with simple searches and work your way up to harder ones, so that you get a sense for where the Frontier of Findability lies.
User avatar
dvgrn
Moderator
 
Posts: 5327
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI

Re: How to use dr?

Postby testitemqlstudop » January 27th, 2019, 6:24 pm

When I set it to "all fixed", everything would disappear and it would give me pairs of blocks and snakes. (I tried!)
zdr wrote:Nice archive.
I am the Retrograde Anomaly.
They will not win.
User avatar
testitemqlstudop
 
Posts: 431
Joined: July 21st, 2016, 11:45 am
Location: very very very very boats

Re: How to use dr?

Postby dvgrn » January 27th, 2019, 6:49 pm

dvgrn wrote:... setting the background to all fixed cells, and then changing just the center part to match the rotor in question?

testitemqlstudop wrote:When I set it to "all fixed", everything would disappear and it would give me pairs of blocks and snakes. (I tried!)

Blocks and snakes are stable, so JLS wouldn't say that they're a solution for the rotor of a p4 oscillator reported by dr. So it sounds like you didn't have the rotor set up correctly.

Use Scorbie's script to see what the rotor should look like, and then start with a fixed-cell background and set up the four phases of the rotor in JLS, exactly as Scorbie's script shows it to you. You'll put in OFF cells where cells need to be off, and then there will be fixed cells all around the outside, where you don't know whether they'll end up being ON or OFF but you know you want it to be a stator, not part of the rotor.
User avatar
dvgrn
Moderator
 
Posts: 5327
Joined: May 17th, 2009, 11:00 pm
Location: Madison, WI


Return to Scripts

Who is online

Users browsing this forum: No registered users and 1 guest