Sokwe wrote:It might be possible to get something out of this transparent block reaction...
x = 49, y = 31, rule = LifeHistory
6.16B2C.2C$4.18B.C.2C$2.13B2A3B3.C$2.11BA2BA3B2.2C$.10B.7B2.4D$2.9B.A
6B$.10B.A7B$10B3.ABA3BA$3B8.3B2A5B$2B11.2B2A4BAB$B9.2B.3B2A3B3A$D9.2B
.2B2A4BAB$D12.B2A5B27.B$11.2BABA3BAB26.2B$13.2A6B25.3B$14.A2B2A3B.2A
20.4B$14.B3A5B2AB18.4B$14.2BA9B17.4B$14.12B16.4B$15.11B15.4B$18.7B15.
4B$17.8B14.4B$13.A.10B13.4B$5.D5.4BA2BA8B4.3B3.4B$5.CA2.2A4B5A7B2A2.
9B$5.CA2.A3BA4B2A2B2A3BABA.8B$5.D3.ABA3B3ABA2B2A5B2A7B$10.2A4BA5B2A2B
4A.6B$14.2B2.5BABA2B3.6B$19.3B2A3BA3.6B$22.B3A!
Sokwe wrote:Edit: This B->G works, but that's fairly boring...
x = 17, y = 28, rule = B3/S23
14bo$13bo$13b3o16$b2o4b2o$b2o4bobo$8bo2$2bo$b3o11bo$2o2bo10b2o$16bo$
16bo$15bo!
Extrementhusiast wrote:Well, here's a rather interesting partial B-to-B, which requires a glider to reset it:Code: Select allx = 17, y = 28, rule = B3/S23
14bo$13bo$13b3o16$b2o4b2o$b2o4bobo$8bo2$2bo$b3o11bo$2o2bo10b2o$16bo$
16bo$15bo!
x = 307, y = 307, rule = B3/S23
146b2obo$146bob2o25bo$173b3o$147b5o20bo$146bo4bo20b2o22b2obobo$145bo2b
o47b2ob2obo$142bo2bob2o43bo9b3o$141bobobo5bo38b3o3b5o4bo$142bo2bo4bobo
36bo5bo4b6o$145b2o2bo2bo13b3o7b2o11b2o4bob3o$150b2o16bo7b2o18bo2bo2b2o
$142b2o23bo29b4o3bo$141bobo2b2o9bo41bo3b2o$141bobobobo8b2obobo$140b2ob
o2bo8b2o2b3o49b2o$139bo3bo2b2o8bo2bobo49bo$140bobo3b2o9b2o3b2o45bobo$
139b2obo2b3o10b3ob2o45b2o$142bobo14b2o$139b2obobo19b2o$139b2obo2bo18bo
$143b2o20b3o$167bo$189b2o$189b2o$164bo10b2o$162b3o9bobo$161bo12bo$161b
2o10b2o$153b2o$153b2o6$170b2o$170bo41b2o$168bobo41bobo$168b2o44bo$214b
2o7$204b2o$172b2o30b2o$172bobo$174bo20b2obo$174b2o19bob2o$164b2o$164b
2o$145bob2o56b2o$145b2obo55bo2bo6b2o$204bo8bobo$154b2o47bo3bo5bo$154b
2o46bo4bo4b2o$204bobo$206b2o$206b2o$193b2o9bob2ob2o$194bo10bobo$194bob
o9bo$164b2o29b2o15b2o$164bo47b2o$162bobo$161b3o$147bo11b3o33b2o$147b3o
10b2o32bobo$150bo8bo34bo$149b2o42b2o4$148b2o31b2o$148b2o31bo14b2o$179b
obo14b2o13b2o$179b2o30bo$212b3o$149b3o62bo$152bo$142b2o67b2o$142b2o5b
2o59bo2bob2o$150b2o3b2o54bobob2o$150b2o4b2o39bo13bobo$149bo2b5o40b2o9b
3o2bob2o$149b7o39bob2o9b2o3bobo$150bo44b3o10b2o2bo3bo$84b2obobo53b2o6b
o43bobo11bo2bob2o$40bo14b2o27b2ob2obo52b2o63bobobobo$38b3o14bo24b2o8b
3o115b2o2bobo$37bo18b3o6b2o13bo3b5o4bo118b2o$14bo22b2o19bo6b2o11bobo2b
o4b6o55b2o27b2o$14b3o61b2o3bob2o62b2o14b2o11b2o$17bo66b2obob3o74bo$16b
2o27b2o39bo5bo70b3o37b2o$35b2o2bobo3bobob3o35bo3b2o70bo39bo$34b3obo3bo
2bobo40bo115b3o$33b2o6bo3b3o51b2o105bo$7b2o25bob5o3bo3bo50bo$6bobo2b2o
22b4o4bo4bo48bobo$6bobobobo24bo6bo3bo48b2o$5b2obo2bo33bo$4bo3bo$5bobo
3b2o$4b2obobo2bo$7bobo40b2o$4b2obobobo39bo25b2o$4b2obo2bo39bo13b2o3b2o
6b2o$8b2o40b2o13bo3bo$62b3o5b3o$62bo9bo$6b2o$7bo$7bobo13b2o$8b2o13b2o
5$159bo$158bo$76bo81b3o$76b3o$79bo$78b2o9b3obobo$89b3o3bo$9b2o76b2o$9b
2o14b2o60bo3b3o$b2o22bo25bo35bo3bo$2bo23b3o20b3o36bo2bo$2bobo23bo19bo
40bo2bo$3b2o43b2o42bo$36bo55bo$36b3o52b3o$39bo51b3o$38b2o51bo2bo$21b2o
69bo193b2obobo$21bo74bo49b2o4b2o132b2ob2obo$19bobo30b2o11bo28b2obo48b
2o4bobo137b3o4bo$19b2o4b2o25b2o11b3o29bo55bo68b2o62b5o4bo2bobo$26bo41b
o28b2o116b2o5b2o61bo5b5o3bo$26bobo38b2o14bo63bo67b2o68bob3o$27b2o53bo
63b3o102b2o33bo6bo3b5o$82b3o60b2o2bo15b2o84bo35bo2bobobo2bo4bo2b2o$
165b2o50b2o17b2o14bo36b2o2b2o5bo2bo2bo$217b2o17bo14b2o47b2obobo$35bo
175b2o21bobo60bo5bob2o$33b2o4bo104bo66b2o21b2o60bobo4bo$33bo5b2o16b2o
188bo48bo2bo2b2o$28b2o2b3o5b2o15b2o82bo9b2o12b2o79bo2bo47b2o$24bo3b2o
10bo99bobo8b2o11bobo79bo29b2o$8b2o13bo8bo2b2o2bo100b2o4b2o3bo13bo83bo
26b2o$3b2o2bo2bo13b2o6bo205b3o6b2o$3bo4bobo14bo7bobo35b2o21b2o50b2o2bo
87bo6bob2obo$2obo5bo24bo35bobo21b2o142bobo7bob2o$bobob2o9bo37b2o14bo
17b2o149b2o3bo2b3ob2o$o2bo2bo5b2o3bo36bo14b2o17b2o155bo4bo$2o2bo4bo2bo
5bo36bo86b2o$5b5o3b3obob2o33b2o82bo3b2o134b2o$18b2obo68b2o47b2o97b2o
38bobo$7bo3b6o4bo61b2o5b2o46b2o68b2o28bo41bo$6bobo2bo4b5o62b2o68bo55bo
29b3o11b2o25b2o4b2o$7bo4b3o137bobo4b2o48bobo29bo11b2o30bobo$14bob2ob2o
132b2o4b2o49b2o73bo$15bobob2o263b2o$267b2o$267bo$268b3o$270bo$257b2o
43b2o$198bo59bo19bo23bobo$197b2o56b3o20b3o23bo$197bobo55bo25bo22b2o$
280b2o13bo$294b3o$211b2o73b3o7bo$211b2o14b2o57bo2bo$227bo58bo2bo$228b
3o56bobo$230bo7$282b2o13b2o$282b2o13bobo$219b2o78bo$219b2o78b2o$234bo
9bo$234b3o5b3o$237bo3bo13b2o26bo13b2o$228b2o6b2o3b2o13bo26bobo10bo2bob
2o$228b2o25bo27b2o11b2obob2o$255b2o20b2o16bobobo$211b2o64b2o15bobo2bob
2o$211b2o80bo4b2obo$216b2o69b2o7bobo3bo$216b2o69b2o7bobob2o$208b2o17bo
bo64bobobobo$207bobo16bo2bo28b2o34b2o2bobo$207bo19bo2bob2o24b2o38b2o$
100bo105b2o22bo2bo51b2o$100b3o128b2o52b2o$103bo39bo70b2o2b2o11b2o$102b
2o37b3o70bobobo2bo67b2o$140bo74bo6bo66bo$127b2o11b2o14b2o61b3obo3b2o
61b3o$116b2o9b2o27b2o55b5o5bo2bobo11b2o6bo19b2o22bo$93b2o20bobo95bo4b
5o3bo13b2o6b3o18bo$92bobo2b2o12b2o4bo96b3o8b2o24bo14b3o$92bobobobo11bo
bo49b2o52bob2ob2o27b2o14bo$91b2obobo12b2obo49b2o53bobob2o$90bo3bo15b2o
bo44b2o$91bob2o2bo13b3o44b2o$90b2obob4o$93bobobo$90b2obobobo$90b2obo2b
o66b2o$94b2o67b2o2$92bo$92b3o$95bo30b2o$94b2o13b2o14bobo$109b2o14bo$
124b2o4$112b2o42b2o$112bo43bo$110bobo44b3o$110b2o47bo$143b2o$142bobo$
93b2o47bo$93b2o15b2o29b2o$110bobo$112bo$112b2o4$93b2o56b2o$93bo57b2o$
91bobo$91b2o65bob2o$158b2obo$141b2o$141b2o$108b2obo19b2o12b2o$108bob2o
20bo$132bobo16bo$101b2o30b2o6b3o7bo4b2o$101b2o37bo3bo5b2o3bo2bo$139bo
5bo9bo3bo$139bo6b3o5b2o3bo$139bo6b2o6bo3bo$140bo3bob3o7bob2obo$141b3o
3bobo3bo2bob2ob2o$147b2o4bo4b2obo$91b2o54bobo3b2o5bo$92bo44b2o8b3o6b4o
$92bobo41bobo9b2o8bo$93b2o41bo$135b2o3$148bo$147bo$147b3o$152b2o$107b
2o43b2o$107b2o23b2o10b2o$132bo12bo$130bobo9b3o$130b2o10bo$116b2o$116b
2o$139bo$99b2o38b3o20b2o$99b2o5b4o32bo18bo2bob2o$106bo2b2o30b2o17bobob
ob2o$107bo2b2o48bobobo$96b2o9bo2bo48b4obob2o$95bobo10b2o50bo2b2obo$95b
o67bo3bo$94b2o65bobob2o$159bobobobo$102b2ob3o51b2o2bobo$102bob4o55b2o$
103bo3bo2bo18b2o24b2o$108b2obo4b2o11b2o23bo2bo2b2o$101b5o5bo5bo36bobo
4bo2bo$101bo4b5o3b3o38bo5bobobo$102b3o9bo43b2obo2bo$104bob2ob2o47bo2bo
$105bobob2o22b2o20bo4bo$134bo20b5o$131b3o$131bo25b2obo$157bob2o!
Extrementhusiast wrote:Well, here's a rather interesting partial B-to-B, which requires a glider to reset it:Code: Select allx = 17, y = 28, rule = B3/S23
14bo$13bo$13b3o16$b2o4b2o$b2o4bobo$8bo2$2bo$b3o11bo$2o2bo10b2o$16bo$
16bo$15bo!
x = 9, y = 3, rule = B3/S23
3o4b2o$2bo4b2o$3o!
Kazyan wrote:There's likely a compact way to hook that up to one of the more complicated B-to-H subcomponents, and point an escaping glider back via Snark. Might be small enough to use for something.
x = 169, y = 59, rule = LifeHistory
119.A2$117.A.3A$29.A89.2A.A8.A$28.3A88.A.2A6.3A$27.3A.A88.3A.A3.A$28.
A3.A8.A86.2A$29.A3.A5.3A80.A$30.A.3A3.A87.A$31.3A4.2A85.A.A$2A30.A93.
2A2.2A$2A.A32.A93.2A$4.A8.A21.A.A$.A9.3A22.2A2.2A$2.A.2A4.A29.2A$4.2A
4.2A2$8.A$7.A.A$8.2A2.2A$12.2A4$156.2A$156.2A5.2A$163.2A$127.2A$128.A
$127.A33.2A$127.2A32.2A$3.2C4.2A101.2C4.2A47.2A$3.2C4.A.A100.2C4.A.A
46.2A$10.A108.A$42.A$4.A35.3A70.A$3.3A33.A72.3A15.2A$2.2A2.A20.D11.2A
70.2A2.A14.2A$25.3D$25.D.D$25.D3$67.D$65.3D72.2A$48.2A15.D.D73.A$48.
2A15.D72.3A18.3D$25.2A49.A61.A20.D$24.A.A48.A.A80.3D$24.A50.A.A$23.2A
10.2A39.A$36.A$33.3A9.2A$33.A11.A$46.A$45.2A$163.2A$162.A2.A$163.2A!
x = 18, y = 11, rule = LifeBellman
13E$13E$10E2C$9E3.C$4E2C5.2C$4EC.2C$3E3.C.C$3E2C2.2C7.2A$3EC11.2A$4E
12.2A$5E12.A!
x = 12, y = 10, rule = B3/S23
2b2obo$2bob2o2bo$6b3o$o2b2o$4ob2o$5bobo2b2o$2b2o2b2o2b2o$2bo6b2o$obo7b
o$2o!
x = 13, y = 10, rule = B3/S23
2b2obo$2bob2o2bo$6b3o$o2b2o$4ob2o$5bobo2bo$2b2o2b2o2bo$2bo6b4o$obo7bo$
2o!
x = 56, y = 49, rule = LifeHistory
9.2C$8.C.C$8.C$3.C.2C.2C2.2B3.C$3.2C.C.7B.C.C$6.C3.6B.C$6.2C2.6B10.2C
$4.2C4.6B10.C$5.C4.6B7.BC.C$5.C.CB.6B3.3B.B2C$6.2CB.14B$8.16B$9.14B$
8.16B$8.18B$6.22B$6.19BC2B$5.13B.4BCBC3B$5.12B2.4B3C2B$2.3D12B2.4BC5B
$.D2BD13B2.10B$BDBD14B9.4B$.BD16B9.4B$3.16B10.4B$5.4B.10B10.4B$6.15B
10.4B$6.15B11.4B$5.16B12.4B$4.17B13.4B$4.16B15.4B$5.11B20.4B$7.5B.3B
21.4B$9.B3.5B20.4B$8.3B4.B2C21.4B$7.B2CB5.C23.4B$8.2C7.3C21.4B$19.C
22.4B$43.4B$44.4B$45.4B$46.4B$47.4B$48.4B$49.4B$50.4B$51.4B$52.BDBD$
53.B2D$54.D!
kiho park wrote:It convert a Herschel to Herschel and R-Pentomino...
Edit : 1H to 2HCode: Select allx = 136, y = 75, rule = LifeHistory
55.2A$54.B2AB$54.3B$55.B$53.5B$53.B3D2B$53.2BD3B$53.2B3DB$53.6B$53.6B
$53.6B$53.5B$52.6B$53.6B$52.7B$52.6B$52.6B$52.6B$51.8B$52.8B$51.9B$
51.9B$51.10B$51.5B2A3B9.2A10.B$51.5B2A4B9.A8.5B$51.11B9.A.AB4.6B$51.
4BD7BA.A6.2AB.B2.6B$53.B3D4B2.2A.A7.13B$39.A13.D2B2D2B6.A8.12B$39.3A
11.5B8.2A5.14B$42.A10.5B9.2B3.16B$30.2A9.2A9.6B8.6B.15B4.3B$31.A5.3B.
5B.3B2.8B6.22B.7B$31.A.AB.4B3.20B2.22B.B2A5B$32.2AB.27B2.23BA2BA5B$
34.55B2A6B$34.62B$34.51B.6B.2B$34.46B.2B2.8B.B$17.2B13.47B7.6B.B2A$
17.3B12.43B15.B3.A.A$17.4B10.2A13B2.9B.B3.B3.10B19.2A$18.4B9.2AB.12B
2.7B11.9B$19.4B9.B.13B.9B8.11B$7.2A3.2A6.4B11.11B3.7B9.2A3.2B3D2B$6.B
2AB.B2AB6.4B10.10B4.7B10.A3.2BD4B$7.2B2.3B3.B4.4B8.11B3.9B6.3A4.B3D4B
.2B$8.3B.3B.4B3.4B6.11B5.7B7.A6.12B$2A5.7B.13B4.13B6.3B16.14B$.A5.23B
.16B4.5B14.15B23.2A$.A.AB.19B.8B.4B2A7B6.2A15.14B24.A$2.2AB.33B2A7B6.
A19.11B23.A$4.45B6.3A15.13B2.2B18.2A$4.33BD12B7.A14.19B8.2A8.B$4.33B
2D10B21.B.21B6.A.A7.3B$5.33B2D7B19.2A.2A22B7.AB6.6B$7.31BD10B18.A.A.B
.21B5.2B3.B2.10B$5.32BD12B15.A.A.A.A23B.B2.19B3.2B2.6B$5.2A3.26B3.12B
14.2A3.2A.B.19B.12BD3B2A15BD3B$6.A3.20B4.B6.10B23.33B2D2B2A15BDBDB.2B
$3.3A6.15B7.2A7.7B24.21B2D11B2D18B3D3B2A$3.A8.11B12.A9.2B2.BA22.23B2D
10BD21BDB.B2A$11.13B10.A14.A.A19.A24BD10BD24B2.B$10.15B9.2A14.2A17.3A
2.7B.17B.4B5.13B.B$10.16B42.A5.7B3.7B.12B5.7B.B$10.17B41.2A4.7B4.5B4.
8B$10.16B48.5B6.4B5.6B$12.14B46.2AB.2B7.4B6.4B$11.4B.2B2A6B45.A.AB10.
B2AB$10.4B2.2B2A6B45.A14.2A$9.4B2.11B44.2A$8.4B4.2B3D4B$7.4B5.3BD4B$
6.4B7.2B3D2B$6.3B8.7B!
x = 82, y = 68, rule = LifeHistory
12.B2A47.B2A$10.2BA2BAB43.2BA2BAB$10.3B2A3B42.3B2A3B$8.12B38.12B$7.
14B36.14B$8.13B37.13B$8.14B36.14B$7.15B35.15B$7.14B36.14B$7.13B37.13B
$7.B3D4B.3B38.B3D4B.3B$7.2BD4B43.2BD4B$7.2B3D2B43.2B3D2B$7.6B44.6B$6.
7B43.7B$5.8B42.8B$4.8B42.8B$3.9B41.9B$3.3B.6B40.3B.6B$3.2B.7B40.2B.7B
$3.B2.6B41.B2.6B$6.6B44.6B$6.6B44.6B$5.8B42.8B$6.8B42.8B$5.9B41.9B$5.
9B41.9B$5.10B40.10B$5.5B2C3B40.5B2C3B$5.5B2C4B39.5B2C4B$5.11B39.11B$
5.4BD7BC.2C34.4BD7BC.2C$7.B3D4B2.2C.C36.B3D4B2.2C.C$.2A4.D2B2D2B9.CB
26.2A4.D2B2D2B$2.A4.6B9.BCBC26.A4.6B$2.A.AB.6B8.2B2C27.A.AB.6B$3.2AB.
7B6.4B29.2AB.7B$5.8B6.4B32.8B$6.7B5.4B34.7B$6.7B4.4B35.7B8.CB$2.B4.7B
2.4B32.B4.7B6.BCBC$.A2B.B.6B2.4B32.A2B.B.6B6.2B2C$A.A15B32.A.A11B4.4B
$.AB.13B34.AB.3B2A5B3.4B$4.12B38.3B2A4B3.4B$4.11B39.8B3.4B$5.10B40.5B
EB2.4B$3.14B36.3B2A2BEBE4B$3.15B35.3B2A2B2E6B$2.2A14B.2B31.2A14B.2B$
2.2A6BE9B2A30.2A16B2A$3.7BEBE5B.B2A31.15B.B2A$5.5B2E6B2.B34.13B2.B$5.
14B36.14B$7.12B38.12B$7.2B2A9B37.2B2A9B$8.B2A5B.4B36.2B2A5B.4B$8.9B.
4B36.9B.4B$8.9B2.4B35.9B2.4B$6.2A.8B3.4B32.2A.8B3.4B$6.A2.6B6.4B31.A
2.6B6.4B$4.A.A3.5B7.4B28.A.A3.5B7.4B$4.2A3.6B8.4B27.2A3.6B8.4B$10.4B
10.4B32.4B10.4B$11.2B12.4B32.2B12.4B$12.2B12.4B32.2B12.4B$11.B2AB12.
4B30.B2AB12.4B$12.2A14.4B30.2A14.4B!
dvgrn wrote:Kazyan wrote:There's likely a compact way to hook that up to one of the more complicated B-to-H subcomponents, and point an escaping glider back via Snark. Might be small enough to use for something.
Don't let me discourage anyone, but every one of the obvious immediate glider outputs that I tried -- R64, Fx77, F166 (i.e., changing to a dependent-conduit output glider), etc. -- need a color-changing Snark. And the second natural glider from L112 and L156 doesn't happen to line up, and I don't think there's an H-to-G that can make that adjustment. Using a H-to-G kind of defeats the purpose of making a new conduit, anyway.
x = 68, y = 55, rule = B3/S23
31b2o$30bobo$24b2o4bo$22bo2bo2b2ob4o$22b2obobobobo2bo$25bobobobo$25bob
ob2o$26bo2$39b2o$30b2o7bo$30b2o5bobo$37b2o7$27b2o$28bo16bo$25b3o17b3o$
25bo22bo$47b2o6$65bo$39b2o24bo$40bo24b3o$40bobo24bo$41b2o3$35bo$16b2o
17b3o$17bo20bo$16bo20b2o$16b2o$b2o4b2o$b2o4bobo$8bo2$2bo$b3o15b2o15bo$
2o2bo14b2o15bo$36b3o$38bo2$45b2o$46bo$43b3o$43bo!
Extrementhusiast wrote:Well, you didn't try F171...
Extrementhusiast wrote:Also, something else: what if the reset glider came from the conduit before this, instead of after?
x = 13, y = 21, rule = B3/S23
10bo$9bobo$6bo2bobo$6b4ob2o$4b2o$3bo2b4ob2o$3b2obo2bob2o$2obo2bobo$o2b
obobo$2b2ob2o5$4b2o$4b2o4bobo$10b2o$11bo2$10b2o$10b2o!
dvgrn wrote:Extrementhusiast wrote:Also, something else: what if the reset glider came from the conduit before this, instead of after?
I thought about that, but unless the preceding conduit is a 180-degree turn, it will take several Snarks to deliver the glider to the right place. Worth looking into a little, but it's going to increase the size quite a bit more.
Kazyan wrote:Code: Select allx = 13, y = 21, rule = B3/S23
10bo$9bobo$6bo2bobo$6b4ob2o$4b2o$3bo2b4ob2o$3b2obo2bob2o$2obo2bobo$o2b
obobo$2b2ob2o5$4b2o$4b2o4bobo$10b2o$11bo2$10b2o$10b2o!
Looks interesting. If it's no good for a stable G-to-H or similar, it's probably usable as a Pi-to-H subcomponent. The bait block can be a boat/beehive/whatever works to create a Pi, too.
x = 39, y = 31, rule = LifeHistory
35.A2.A2$33.A2.A2$31.A2.A2$29.A2.A2$27.A2.A2$10.C14.A2.A$9.C.C$6.C2.C
.C11.A2.A$6.4C.2C$4.2C5.BD8.A2.A$3.C2.4CB2A$3.2C.A2.CD2A6.A2.A$2C.C2.
ABA$C2.C.CBA9.A2.A$2.2C.CA$5.D9.A2.A2$13.A2.A$4.D$4.CA8.A$4.CA4.A.A$
4.D5.2A$11.A2$10.2A$10.2A!
x = 139, y = 38, rule = LifeHistory
35.A2.A96.A2.A2$33.A2.A96.A2.A2$31.A2.A96.A2.A2$29.A2.A96.A2.A2$27.A
2.A96.A2.A2$10.C14.A2.A81.C14.A2.A$9.C.C97.C.C$6.C2.C.C11.A2.A79.C2.C
.C11.A2.A$6.4C.2C93.4C.2C$4.2C15.A2.A79.2C15.A2.A3.2C$3.C2.4C.2A90.C
2.4C.2A15.2A$3.2C.A2.C.2A6.A2.A80.2C.A2.C.2A6.A2.A$2C.C2.A.A91.2C.C2.
A.A$C2.C.C.A9.A2.A79.C2.C.C.A9.A2.A$2.2C.CA95.2C.CA$15.A2.A96.A2.A2$
13.A2.A96.A2.A$22.AC111.AC$4.CA8.A7.AC80.CA8.A20.AC$4.CA4.A.A91.CA4.A
.A$10.2A98.2A$11.A99.A2$10.2A98.2A$10.2A98.2A$19.2A.C$19.2A.3C$25.C$
19.2C.3C$20.C.C$20.C.C$21.C!
dvgrn wrote:It's certainly not a hopeless case.
x = 26, y = 21, rule = B3/S23
10bo$9bobo$6bo2bobo$6b4ob2o$4b2o$3bo2b4ob2o$3b2obo2bob2o$2obo2bobo$o2b
obobo$2b2ob2o4$24bo$4b2o17bobo$4b2o4bobo10bobo$10b2o12bo$11bo2$10b2o$
10b2o!
Kazyan wrote:dvgrn wrote:It's certainly not a hopeless case.
No kidding:Code: Select all#C [sacrificial beehive restores the bait block]
x = 26, y = 21, rule = LifeHistory
10.C$9.C.C$6.C2.C.C$6.4C.2C$4.2C6.D$3.C2.4C.2A$3.2C.A2.CD2A$2C.C2.A.A
$C2.C.C.A$2.2CDCA4$4.D19.A$4.CA17.A.A$4.CA4.A.A10.A.A$4.D5.2A12.A$11.
A2$10.2A$10.2A!
dvgrn wrote:For me this new variant is actually a step or two down the hopefulness scale -- you've repaired the bait block but only at the cost of a beehive, which is less likely to reappear than the block was, and there's no output glider yet. But I do love to be proved wrong.
Seems like what we really ought to do is to automate the transparent-object stage of the search better. Given a promising result, try dropping all likely common objects at all possible locations nearby, and try say a 1-catalyst search for each such object and see if the object ever happens to be restored.
Ptbsearch can do this already, but is there a catgl-based way to do it that would be more efficient? It's the usual problem of defining searches that cover as much of the likely part of the search space as possible, with as little time wasted as possible re-searching the same space again and again (e.g., different eaters for the same glider.)
#C Secondary transparent block reaction and output Herschel, but primary block becomes an awkwardly-placed beehive instead of being restored. Whoops.
x = 27, y = 25, rule = B3/S23
10bo$9bobo$6bo2bobo$6b4ob2o$4b2o$3bo2b4ob2o$3b2obo2bob2o$2obo2bobo$o2b
obobo$2b2ob2o18b2o$25bo$23bobo$23b2o2$4b2o$4b2o4bobo$10b2o$11bo2$10b2o
$10b2o3$16b2o$16b2o!
x = 17, y = 16, rule = B3/S23
5b2o$5bobo$6b2o$2b2o$bobo$bo$2o7$14b3o$15bo$13b3o!
x = 38, y = 44, rule = LifeHistory
24.3D$24.DBD$23.BDBDB$23.5B$23.6B$22.7B$11.C10.8B$11.3C8.9B$14.C7.9B$
13.2C6.10B$13.5B2.13B$15.18B.2B$14.2C19B2C$14.2C17B.B2C$15.B.17B.B$
17.16B$18.14B$19.8B2.4B$20.7B3.4B$17.11B3.4B$16.12B4.4B$16.12B5.2BDB$
16.11B7.2B2D$16.B3C4B.4B6.2D$16.2BC4B4.2C$16.2B3C2B4.C$16.6B6.3C$15.
7B8.C$14.4B.B$13.4B$12.4B$11.4B$10.4B$9.4B$8.4B$7.4B$6.4B$5.4B$4.4B$
3.4B$2.4B$.D3B$D3B$3D!
A for awesome wrote:This has just got to be known:Code: Select allRLE
x = 27, y = 30, rule = B3/S23
10bo$8b3o$7bo$7b2o2$4b2o$4bobo$2o3b2o$2o23b2o$24bobo$24bo$23b2o$22bo$
22b3o$25bo$24b2o2$21b2o$21bobo$23bo$23b2o5$14b3o$5b2o8bo$6bo6b3o$3b3o$
3bo!
Kazyan wrote:Do we already have an H->2G that does this or a different-catalyst duplicate of this?
#C [[ AUTOSTART STOP 409 HEIGHT 300 THEME 9 ]]
x = 140, y = 103, rule = B3/S23
52bo$50b3o$49bo$49b2o2$46b2o$46bobo85bo$42b2o3b2o63b2o9b2o7b3o$42b2o
23b2o43b2o9b2o6bo$66bobo62b2o$66bo$65b2o$64bo$64b3o$67bo$66b2o2$63b2o
68b2obo$63bobo67b2ob3o$65bo73bo$65b2o66b2ob3o$134bobo$134bobo$135bo2$
56b3o67b3o$47b2o8bo59b2o8bo$48bo6b3o60bo6b3o$45b3o67b3o$10b2o33bo34b2o
33bo$10b2o68b2o$6bo69bo$6b3o67b3o$9bo53b2o14bo53b2o$8b2o11bo41bobo12b
2o11bo41bobo$20bobo7b2o33bo24bobo7b2o33bo$20bobo7b2o33b2o23bobo7b2o33b
2o$21bo69bo5$18b2o68b2o$18b2o68b2o$4b2o68b2o$4b2o68b2o$2o68b2o$2o68b2o
14$24b2o68b2o$23bobo67bobo$24bo69bo7$26b2obo66b2obo$26bob2o66bob2o2$
19b2o68b2o$19b2o68b2o7$9b2o68b2o$10bo69bo$10bobo67bobo$11b2o68b2o6$18b
3o67b3o$18bo69bo$17b3o67b3o8$22b2o68b2o$21bo2bo66bo2bo$22b2o68b2o!
x = 30, y = 28, rule = B3/S23
17bo$16bobo$16bobo$4bo10b2ob3o$4b3o14bo$7bo7b2ob3o$6b2o7b2obo4$25bo$
24bobo$25bo3$25b2o$26bo$2b2o22bob2o$3bo21b2ob2o$3o$o$4b2o$3bobo$3bo$2b
2o$17b3o4b2o$18bo5b2o$16b3o!
x = 27, y = 22, rule = LifeHistory
7.2C$6.B2CB$6.3B$6.2B$.B3.5B$2CB.2C2BCB2C$2CBC2BC2B2CB$.3BCBC5B$.4BC
6B$3.8BC5B.2B$3.6B3C9B$4.4BC12B$5.4BC10B$6.4B2C9B$8.13B$8.13B4.B$9.
14B.B2C$9.2B3D11B2C$10.BD12B.B$11.3D9B$13.8B$14.5B!
x = 30, y = 17, rule = B3/S23
$21b2o$21b2o2$o$obo$3o$2bo21b2o$24bo$25bo$24b2o$21b2o$21bob3o$22bo3bo$
23bo2bo$24bobob2o$23b2ob2obo!
Kazyan wrote:This one needs to wait until pretty late in the Herschel's evolution to work. I haven't figured anything out with it.
x = 30, y = 22, rule = B3/S23
21b2o$21b2o2$o$obo$3o$2bo21b2o$24bo$25bo$24b2o$21b2o$21bob3o$22bo3bo$
23bo2bo$24bobob2o$23b2ob2obo5$14b2o$14b2o!
#C [[ THUMBNAIL ]]
Users browsing this forum: No registered users and 4 guests