For discussion of specific patterns or specific families of patterns, both newly-discovered and well-known.

GUYTU6J wrote:Could we prove or disprove that all spaceship partials can be completed(even at an incredible width)?

For a suitable definition of "partial", proving this would essentially require a formula that outputs spaceships.
For more lenient definitions of partial, however, it should be trivial to construct infeasible partials that cannot possibly work, like a glider as a c/4 diagonal partial in the opposite direction or something silly like that.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]

Posts: 1889
Joined: November 8th, 2014, 8:48 pm
Location: Getting a snacker from R-Bee's

For the definition of "partial" in which cells which cannot be affected within the period from outside must be correct, it might be possible to construct a partial with a GoE in the back which is partially reconstructed. It can't be completed due to the impossibility of producing the (full) GoE.
I like making rules
fluffykitty

Posts: 617
Joined: June 14th, 2014, 5:03 pm

Extension of 60P5H2V0:
x = 19, y = 245bo7bo$5bo7bo$$5boo5boo5booboboboo6bobobobo6bobobobo6bo5bo5bo7bo4booboobooboo4bobbooboobbo4bobbooboobbo4boobbobobbooo6booboo6boo7bobo7bobboo3booboo3boobbobbobbobobbobboo5bobobobo5bo3o5bobo5b3obo4bobobobo4bo8bobo6boo3boo3booboo3booboo5bo7bo! x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)$$x_1=\eta xV^*_\eta=c^2\sqrt{\Lambda\eta}K=\frac{\Lambda u^2}2P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$http://conwaylife.com/wiki/A_for_all Aidan F. Pierce A for awesome Posts: 1877 Joined: September 13th, 2014, 5:36 pm Location: 0x-1 ### Re: Spaceship Discussion Thread Here are two new 90-cell 2c/5 ships: x = 78, y = 15, rule = B3/S234b3o39b3o3bob2o38bob2o2bo41bob2o40b2o2b2o4b2o17b4o13b2o4b2o3bo4b3o3bo8bo2bo4bo13bo4b3o3bo8b2o4b2o3bo6bo5b4o5bo14b2o3bo6bo5bo5bo6b2o4bobo4bo4b2o15bo6b2o4bobo4bobo4b2o6b3ob4ob2obobo4b3o7bo4b2o6b3ob3o4bo8bo2ob4o9bo7b3obo4b2o7b2ob4o9bo7b3obo4b2ob5o11b4o4bo8bo8b5o11b5ob2obobo4b3o17b2obo4bo33b2obo4bo4b2o22bo41b4o5bo23b2o40bo2bo4bo69b4o! The first one was found by extending part of A for awesome's 59-cell ship using gfind. The second one was found by noticing that the trailing component on the first ship could be flipped. A for awesome wrote:Extension of 60P5H2V0 This is known and can be found in jslife. The tagalong can connect to four different phases of the ship: x = 24, y = 110, rule = B3/S237bo6b5o5bo5bo6b2o7bo2bo2bo2b2o9bob2ob2o6bo7b4o2bob2o6b4o4bo3bo3bo2bobo2b2obobob2o4b7o5bo24b7o5bo3bo3bo2bobo2b2obobob2o2bob2o6b4o4bob2ob2o6bo7b4o2b2o9bo7bo2bo2bo6b2o5bo5bo6b5o7bo106b2obo6b5o5bo3b2o6b2o6b2o5bob4o8bobo3bo6bo7b4ob2o2b2o5b4o4bo3bo3bo2bobo2b2obobob2o4b7o5bo24b7o5bo3bo3bo2bobo2b2obobob2ob2o2b2o5b4o4bobo3bo6bo7b4ob4o8bo6b2o5bo6b2o5bo3b2o6b5o6b2obo106bo2b2o5bo5bo4bo5bob2o2b2ob3o5bob6o6boo4b2o5bo7b4ob2ob3o5b4o4bo2b2o6bobo2b2obobob2o4b7o5bo24b7o5bo2b2o6bobo2b2obobob2ob2ob3o5b4o4boo4b2o5bo7b4ob6o6bo2b2ob3o5bo5bob2o5bo4bo5bo6bo2b2o115b2o2b2o4b2o5bob2obo6bo4bobo11boo6bo4bo7b4ob2obobo5b4o4bob2o5bobobo2b2obobob2o3b8o5bo23b8o5bob2o5bobobo2b2obobob2ob2obobo5b4o4boo6bo4bo7b4obo11bobo6bo4bo5bob2o4b2o5b2o2b2o! Edit: Here are three more 2c/5 ships that are slightly too big to be included in the small ships collection: x = 42, y = 74, rule = B3/S234b2ob2o3bobo2bo20bo3b2obo11b2o4b2o2b7o2bo4bo3bobo3bobo7bob2o3b2o3b5o3b3o2b2o3bob2o12b2ob2o2bo4b5o2bobobo4bo3bobobobo6bob2obo4bo4bo5b3obo2b2obob4o2bo7bo5bobobo3b3ob2o15bo4b2obo4b2o18bo19bobo175bo4bobo3bo2bob3obobobo4bobo2b2o6bo12bo17bo4b2o2b3o2bo9b2o4b4o6b3o4b2o7b2obobob2o7bo3b2o3b2o3o4bo5b4obobo8b2o5b2oo6bo8bo4bobo2bo7bo2o4bo9bo3b2obo2bo4bo2bo2b3o12bo2bo5bo6bo2b3o22b2ob2o2bo4b5o22b2obobo2bo3b2obo28bo28bobo145bo4bobo3bo2bob3obo26bobobobo4bobo17bo2b2o6bo11b2obobo2bo3b2obo4b2o2b3o2bo8b2ob2o2bo4b5o4b2o7b2obobobo5bo6bo2b3o3o4bo5b4obob2obo2bo4bo2boo6bo8bo4bobo2bo7bo2o4bo9bo3bo8b2o5b2o2b3o12bo2b2o7bo3b2o3b2o23b2o4b4o6b3o23bo17bo! -Matthias Merzenich Sokwe Moderator Posts: 1480 Joined: July 9th, 2009, 2:44 pm ### Re: Spaceship Discussion Thread 2c/10 glide symmetry partial x = 6, y = 11, rule = B3/S232o2o32b3o22bo2bo3b3o2b2ob2o! Current status: outside the continent of cellular automata. Specifically, not on the plain of life. GUYTU6J Posts: 670 Joined: August 5th, 2016, 10:27 am Location: My Glimmering Garden ### Re: Spaceship Discussion Thread GUYTU6J wrote:2c/10 glide symmetry partial x = 6, y = 11, rule = B3/S232o2o32b3o22bo2bo3b3o2b2ob2o! That more closely resembles a tagalong component than a partial. Making a c/5 ship with the ability to support that seems somewhat difficult if you ask me. LifeWiki: Like Wikipedia but with more spaceships. [citation needed] BlinkerSpawn Posts: 1889 Joined: November 8th, 2014, 8:48 pm Location: Getting a snacker from R-Bee's ### Re: Spaceship Discussion Thread Oh,that's right.But it will be more amazing if it is used as a spaceship's both front end and back end. Current status: outside the continent of cellular automata. Specifically, not on the plain of life. GUYTU6J Posts: 670 Joined: August 5th, 2016, 10:27 am Location: My Glimmering Garden ### Re: Spaceship Discussion Thread GUYTU6J wrote:Oh,that's right.But it will be more amazing if it is used as a spaceship's both front end and back end. Except it can't be a front end because the blocks are in front of the LOM. And the reaction's too slow to be supportable by a block chain from a puffer but the reaction can be supported by gliders from a c/5 p10 backrake or a certain spark: x = 16, y = 8, rule = B3/S232b3o7b3o22bo2bo6bo2bo3b3o7b3o23o8b2o2bobo11bo! LifeWiki: Like Wikipedia but with more spaceships. [citation needed] BlinkerSpawn Posts: 1889 Joined: November 8th, 2014, 8:48 pm Location: Getting a snacker from R-Bee's ### Re: Spaceship Discussion Thread BlinkerSpawn wrote: GUYTU6J wrote:Oh,that's right.But it will be more amazing if it is used as a spaceship's both front end and back end. Except it can't be a front end because the blocks are in front of the LOM. And the reaction's too slow to be supportable by a block chain from a puffer but the reaction can be supported by gliders from a c/5 p10 backrake or a certain spark: x = 16, y = 8, rule = B3/S232b3o7b3o22bo2bo6bo2bo3b3o7b3o23o8b2o2bobo11bo! x = 80, y = 94, rule = B3/S23ob2o2o4bobo5b2o5bo3bo10b2o9b2o13bobo14b2o14bo3bo19b2o18b2o22bobo23b2o23bo3bo28b2o27b2o31bobo32b2o32bo3bo37b2o36b2o40bobo41b2o41bo3bo46b2o45b2o49bobo50b2o50bo3bo55b2o54b2o58bobo59b2o59bo3bo64b2o63b2o67bobo68b2o68bo3bo73b2o72b2o476b3o276bo2bo77b3o274b3o76bo70b2o3bo69bobo71bo65b3o67bo61b2o3bo60bobo62bo56b3o58bo52b2o3bo51bobo53bo47b3o49bo43b2o3bo42bobo44bo38b3o40bo34b2o3bo33bobo35bo29b3o31bo25b2o3bo24bobo26bo20b3o22bo16b2o3bo15bobo17bo11b3o13bo7b2o3bo6bobo8bo2b3o4bo3bo! PHPBB12345 Posts: 583 Joined: August 5th, 2015, 11:55 pm ### Re: Spaceship Discussion Thread A possible small 2c/5 component: x = 13, y = 13oo$$bbo7bobo$bobo8bo$bobbo4bo$boboo3bobo$4bobbo$5boboo$5bo3boo$6boo$6booboo$8bo!
I don't know if it can be attached to anything known.
x₁=ηx
V ⃰_η=c²√(Λη)
K=(Λu²)/2
Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)

$$x_1=\eta x$$
$$V^*_\eta=c^2\sqrt{\Lambda\eta}$$
$$K=\frac{\Lambda u^2}2$$
$$P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

A for awesome

Posts: 1877
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

A for awesome wrote:A possible small 2c/5 component

Here is a 79-cell ship and a 90-cell ship using this component (found with gfind):
x = 41, y = 42, rule = B3/S2332b2o$12bo19bo$7b3o2bo15b3o$10bo4bo$7bobo3bo4bo8bo3bo$6b3o3bo6b2o4b2o4bo$4b2o6bo3bo4b2obo4b2o$2b2o9b2obobo2b4o4bobo$2b2ob2o6b2obobo2b2o4bo$bo3bobo15b4o$2bobo3bo7b2o6bo$2bobo2bo2bo2$9b2o18$8b2o$7b4o27bo$6b2o2bo22b2o2bo2bo$5bo3bo9bo13bob2o$12b2o5bo13bob2o$3b2o3bo2b2ob3ob2obo12bo5bo$2bo9bobobo3bo4bob2ob3obo2b3o$bo2b2obo5b2obo4bo2b2obo3bo$2obo4bo5b2o7b2o2bo2bo$b2ob2ob2o14bo5b2o$5b5o! Here are two more 2c/5 ships that are slightly too large for the small ships collection: x = 38, y = 34, rule = B3/S233b2ob2o4b2o3b3o11bo$2bobo5b2o3bob2o11bobo$bo8b2o4bob3o8bo3b3o$o9b5o5bobob3o3bob3o$bo4bo6b3o4b2obo7b2o$2b2o3b3o13bob2o$11bo10b2o4bobo$bobobo4bo14b3o2bo$o4bo3bo14b2o4bo$ob4o21b3o$2o25b2o11$11bo$6b3o2bo9b3o2bobo$9bo4bo4b2o3bobobo5b3o$6bobo3bo5b4ob2obo6bo$5b3o3bo5b2o18bo$3b2o6bo3bobo5b3obo3b2o3bo$b2o9b2obo2b3o2b2obo2bo3bo$b2ob2o6b2ob2o2b2o2b2ob4o3b2o$o3bobo8bo13bo3b2o$bobo3bo$bobo2bo2bo2$8b2o! Edit: the 79-cell ship can support the B-heptomino tagalong to give an 86-cell ship: x = 33, y = 16, rule = B3/S2316bo$15bo$14b2o15b2o$11bo3b2o14bo$6b3o2bo4bo10b3o$9bo4bo$6bobo3bo4bo8bo3bo$5b3o3bo6b2o4b2o4bo$3b2o6bo3bo4b2obo4b2o$b2o9b2obobo2b4o4bobo$b2ob2o6b2obobo2b2o4bo$o3bobo15b4o$bobo3bo7b2o6bo$bobo2bo2bo2$8b2o! Edit 2: while running a width-11 knightt search I found this small 2c/5 tagalong that can be attached to the back of the 34-cell ship to make a 54-cell ship: x = 18, y = 15, rule = B3/S235bo3bo$5bo3bo$4bobo$3b3o2b2o2$6b2o$6b2o5bo$6b2o3bobo$11bo$2b2obo5b3o$bobo2bo6b3o$2o3bo6b2o2bo$bobobo7bob2o$2b2ob2o7b4o$5bo!

Obviously there are other known ships that can pull this tagalong, but I haven't enumerated all the small cases yet.
-Matthias Merzenich
Sokwe
Moderator

Posts: 1480
Joined: July 9th, 2009, 2:44 pm

This all looks like real progress after a decade of practically no activity on small periods space ships. Could we extend this to short wide ones? This would then give the flexibility to finalize puffer engines, grey ships and other extensible structures.

Also, further progress in the p6 and p7 area (more examples) would help.
HartmutHolzwart

Posts: 422
Joined: June 27th, 2009, 10:58 am
Location: Germany

HartmutHolzwart wrote:Could we extend this to short wide ones?

It would certainly be nice to have more short c/4 and 2c/5 components. One possible way to make a short c/6 orthogonal ship might be to start with this well known component:
x = 10, y = 8, rule = B3/S232b2ob2o$b4obo$o6bo$bo4bo$6bo$4bo3b2o$8bo$8bo! I think I have run through a full height-9 c/6 search using WLS and found nothing, so it might be best to search at a height of 10. The 2c/5 width-11 knightt search finished, and I have attached the results to this post. Attachments knightt-2c5-w11.rle (60.4 KiB) Downloaded 116 times -Matthias Merzenich Sokwe Moderator Posts: 1480 Joined: July 9th, 2009, 2:44 pm ### Re: Spaceship Discussion Thread A rather sparky 75(?)-cell ship: x = 14, y = 274bo$5bo$obo$obbo$obboo$o4bo$b4o$bo4bo$oobo3bo$oobo$3bobo3boo$3bobo$obb3oboboo$b3o5bo$$9bobbo10boo4bo4bo3bo4b5o3b3obboo3bo5bo3boboo9bobo6boob3o7bo3bo7bobo8bobbo9b3o! On an unrelated note, I have eliminated the possibility of a (2,1)c/6 knightship with a diagonal width of 14 half-diagonals in all phases using JLS, and I have almost certainly eliminated the possibility of a knightship with the same single-phase width (certain quirks with JLS's unset cells make it hard for me to know for certain, but the probability that a partial ever almost reached the edge of the grid that I used seems astronomically low). x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)$$x_1=\eta xV^*_\eta=c^2\sqrt{\Lambda\eta}K=\frac{\Lambda u^2}2P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$http://conwaylife.com/wiki/A_for_all Aidan F. Pierce A for awesome Posts: 1877 Joined: September 13th, 2014, 5:36 pm Location: 0x-1 ### Re: Spaceship Discussion Thread A for awesome wrote:A rather sparky 75(?)-cell ship It's 77 cells. The back end showed up in the knightt search I ran yesterday. A small tagalong from that search makes an 83-cell ship and the B-heptomino tagalong makes an 84-cell ship: x = 31, y = 45, rule = B3/S2323b2o18bo2b4o14b2o2bo2bobobo3b2o13b2obo4bo2bo3bo8b2o4bob3o2bob2o3b3o20b2ob2o7b3o5b2o4b2o5b2o8bo3b3o2bo7bo3b3obo2b4o3bo2b2o2obo7b2ob2ob2ob2obobob2o5bobob2o8bo1229bo28b2o27b2obo223b2o4bo18bo2b4o14b2o2bo2bobobo13b2obo4bo2bo8b2o4bob3o2bob2o20b2ob2o7b3o5b2o4b2o5b2o8bo3b3o2bo7bo3b3obo2b4o3bo2b2o2obo7b2ob2ob2ob2obobob2o5bobob2o8bo! I noticed that applying one of my new tagalongs to the new 56-cell ship gives a 73-cell ship: x = 28, y = 16, rule = B3/S2317bo15b2o3bo15b2o2bo10b2o3b4obo7b2obo6bobob2o2bob2o2bo4bobo6bo2o4bo2b2ob4o4b3oo4bo3b2o3bo5b2o5o7b2o9bo13bo7bo2bo22bo2bo3b3o16bob2o3bo19bo2b2o3bo4b2o! This is the first known 73-cell 2c/5 ship. Now 2c/5 ships are known for all bit counts from 56 to 90. I'm sure that every bit count over 90 could be achieved using only components found in the current small ships collection. A for awesome wrote:I have eliminated the possibility of a (2,1)c/6 knightship with a diagonal width of 14 half-diagonals in all phases using JLS Could you describe your method for this search? I suspect I know what it is, but I'm curious. -Matthias Merzenich Sokwe Moderator Posts: 1480 Joined: July 9th, 2009, 2:44 pm ### Re: Spaceship Discussion Thread Sokwe wrote: A for awesome wrote:I have eliminated the possibility of a (2,1)c/6 knightship with a diagonal width of 14 half-diagonals in all phases using JLS Could you describe your method for this search? I suspect I know what it is, but I'm curious. It's relatively ugly and requires a lot of manual intervention. (Also, I'm not quite as confident about the single-phase prediction as I was before.) I first set up a large grid of off cells in one phase, and empty those that fall inside the requisite diagonal swath. The swath must entirely intersect the leading edge of the grid (not the corner). I then mark all cells at the trailing edge of the grid that could possibly be active in a longer partial as unset in all phases. Next, I mark the first cell in the leading row (that is not preprocessed to be empty) as on, and start the search. When that completes, I mark that cell off, set the next one in the row on, and restart the search. I continue that until the last cell in that row has been set to off. If a solution is ever output, that means that either there is a ship or a very long partial. I feel like there should be a better way, but the JLS manual doesn't have anything. I've been setting up most of my recent searches in a similar way, in fact, except with a knightwise swath instead of a diagonal one. However, I would be surprised if no one has done a search for knightships on a knightwise swath before. x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)$$x_1=\eta xV^*_\eta=c^2\sqrt{\Lambda\eta}K=\frac{\Lambda u^2}2P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$http://conwaylife.com/wiki/A_for_all Aidan F. Pierce A for awesome Posts: 1877 Joined: September 13th, 2014, 5:36 pm Location: 0x-1 ### Re: Spaceship Discussion Thread c/8 partial. Front wibbles in WLS, tried to extend with zfind at width 10 and this is the best it could find. x = 22, y = 43, rule = B3/S23b2o16b2o4o14b4oo2b2o12b2o2bobo18bo6b2o6b2o7b2o4b2o5b3obo2bob3o8b6o8b6o29b4o7b3o2b3o7bo6bo6bo3b2o3bo6bo8bo7bobo2bobo6bo2bo2bo2bo7b2o4b2o7bob4obo9b4o7bobo2bobo7bobo2bobo5b2ob2o2b2ob2o4bobo2b4o2bobo9b4o8bob2obo4b3ob2o2b2ob3o2b5o2bo2bo2b5o2b2obob2o4b2obob2o3bo3bobo2bobo3bo5b2o2bo2bo2b2o6bo2bo2bo2bo2b3obob2o2b2obob3o6bo8bo2b2ob2ob6ob2ob2o3bo4b2o2b2o4bo2b2o14b2o3bob5o2b5obo3bo3bobo2bobo3bo3b2o2b2ob2ob2o2b2ob3ob2o2b4o2b2ob3o4b2ob2o4b2ob2obo2b2obo6bob2o2bo! -Josh Ball. velcrorex Posts: 339 Joined: November 1st, 2009, 1:33 pm ### Re: Spaceship Discussion Thread It's a pity that I couldn't complete it. By the way,I noticed two partials with the same front end but different period x = 42, y = 15, rule = B3/S232b2o3b2o3b2o14b2o3b2o3b2o2b3obo2bob3o14b3obo2bob3ob2o10b2o12b2o10b2o4bob4obo18bob4obob5o4b5o11b2o2bob4obo2b2ob3o3b2o3b3o14b2o6b2ob2obob4obob2o14b4o2b4o3bob2o2b2obo17b2o4b2ob2o10b2obobo3b2o3bobo13bo3bo2bo3bobo12bo12b2obobo2bobob2oo2bo2bo2bo2bo2bo10b2o3bo4bo3b2oobo4b2o4bobo10b3ob2o4b2ob3oo2bob2o2b2obo2bo14bo2b2o2bo3ob2ob2ob2ob3o11b2o3bo2bo3b2o! Current status: outside the continent of cellular automata. Specifically, not on the plain of life. GUYTU6J Posts: 670 Joined: August 5th, 2016, 10:27 am Location: My Glimmering Garden ### Re: Spaceship Discussion Thread I ran the width-12 c/4 orthogonal knightt search. The results are attached to this post, although they are probably not very useful to anyone. I looked through the ships a little and managed to construct the following small ships based on new components: x = 56, y = 80, rule = B3/S23b2o47bo3o47b2o2b2obo15b2o31bo2bo2b2ob2o10b3obo10b2o19bo7bo5bob3o13b3o2b2o7bobo6bobo9bo20b3o3bo6bobo10bo9b2ob2o16bo4bo2bo14b3o13bo5bo6bobo5bobobob2o20b2o7bobob3o4b2o3bo12bo11bo6bobo4b3obo6bo12bo2bo12bo2bo9b2o19b2o2b2o11bobobob2o19bo15b2o3bo37bo1129bo28b2o16bo2bo16bo2bo4b2obo14b2obo4b4obobo19bo3bo2b2obo13bo2bobo9bo9bo3bobo3bobo7bo2b2o5b3o4bobo4bob2o3bo4bo2b2o2bo4b2o5bo2b3o4bo5bo4b2o5bo5b2o2bo2b2o2o3bo2bo1116b2obo12bobo3b2o10b2o4bo12bob3o17b2o3bobo16bo4bo2bo20bo3bo14bobobobo5b3o4boboboo2b2o4b2obobo5b2o2o7boo3bo6b3o5b2o4bo2bo10b2o2bo7b3o4bo14bo13b2o11bo2b2o9b2o11bo! I also found this 70-cell ship that has probably been seen before, but has been overlooked for some reason: x = 34, y = 11, rule = B3/S236bo4b2o3bo4b3o5bobobob2o3b2o4bo2bo6bo3b2o3bo6bobo8b2o2b2o7bo7bo9b2o7bo4bo3b2o2bo3bo2bo2bo2bo2b2ob2o6bo3b2o2bo2b3o6bobo9bo9bo8bo2bo3o6b2o11b2o3bob2ob2o8bo14bo! I am also running the width-12 2c/5 knightt search. So far it has found these two small tagalongs: x = 36, y = 44, rule = B3/S236bo7bob2obo5bobo6bobo3bo4bo3b3o2bobobo7bobo5bob3o3bobo5bob2o3bo6b2o6bobobo3bo2bob3o14bobobo4bo6bo2bo2b2obo11b2o3bobobo2bo12b2o12bo2o3bo24bo3bobobobo23b2ob2o2b2ob2o23bo5bo25b2ob2o1126bo2bo26bo3bo25bo2bo2bo24b3o212bo3bob2obobo4bo11bo4bo4bobo2b2obobo11bo2b2obobobo4b2obobo11b2o9bo2bo4bo15bob3o2bo3b4o6bo8bo11b2o5bobo7bo4bo3b3o5bob3o6b2o22b2obobobo2bo2o3bobobobo2b2ob2o5bo! A for awesome wrote:I mark the first cell in the leading row (that is not preprocessed to be empty) as on, and start the search. When that completes, I mark that cell off, set the next one in the row on, and restart the search. This is what I suspected. Do you do this for every cell in the entire diagonal row (as opposed to the first half-diagonal)? Do you also do this in every phase? Attachments knightt-c4-w12.zip (384.2 KiB) Downloaded 115 times -Matthias Merzenich Sokwe Moderator Posts: 1480 Joined: July 9th, 2009, 2:44 pm ### Re: Spaceship Discussion Thread Sokwe wrote: A for awesome wrote:I mark the first cell in the leading row (that is not preprocessed to be empty) as on, and start the search. When that completes, I mark that cell off, set the next one in the row on, and restart the search. This is what I suspected. Do you do this for every cell in the entire diagonal row (as opposed to the first half-diagonal)? Do you also do this in every phase? Every cell, but not every phase. [s]That's why I'm sure about the every-phase width result, but not the single-phase width result.[/s]EDIT 3: Never mind, I would have to do this for every phase to truly rule out all ships. I'll do that for the width-16 search. EDIT: I'm currently doing the same thing at 15hd width, and the second-to-last phase of the search underwent 7788888882 iterations exactly. I suspect that mathematics itself just played a joke on me. EDIT 2: I finished the last search phase, so there are (probably) no width-15hd (2,1)c/6 knightships. For width-16 I'll give up on the single-phase width search concept, because it didn't work anyway. EDIT 3: See above. EDIT 4: An example partial (probably not one of the longest ones): x = 16, y = 133boobbobbob5obbooobo5b3o9bobooboboboobb4obobbobbo3b4o3bo3bo10boo6bo3bo4bo5bobb4obbo5bobo3bobo6bo4b3o! EDIT 5: An interesting 2c/5 frontend: x = 13, y = 13oobooobbo4boobbo3bobo3bo4b4obbo4bo6bo4bob6o3bo3bo4bo6boobb3o6bo4bo3bobb3o4b4o! x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)$$x_1=\eta xV^*_\eta=c^2\sqrt{\Lambda\eta}K=\frac{\Lambda u^2}2P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}$$http://conwaylife.com/wiki/A_for_all Aidan F. Pierce A for awesome Posts: 1877 Joined: September 13th, 2014, 5:36 pm Location: 0x-1 ### Re: Spaceship Discussion Thread Here are two new 2c/5 tagalongs from the still ongoing width-12 search: x = 28, y = 45, rule = B3/S2312bo3bob2o11bo4bo3bo11bo2b2obobo11b2o15bob3o6bo8bo5bobo7bo4bo3b3o5bob3o8b4obo6b2o10b2o2bo18b2o3bo2b2obo14bobobo2bo2o3bobobobo2b2ob2o5bo96bo5bobo4bo3b3o5bob3o6b2o22b2obobobo2bo2o3bo17bobobobo16b2o2b2ob2o15bo5bo9b2o6bo12b2ob3o4bobo8bobo3b2o2bo3bo2bo8bo4bobo2bo3bo5b2obo3bob2o7bo2bo5b2o3b2o4b2ob3obo3bo4bo13b4o4bo5bo3bo8b2obob2o5bo! Here are all of the new 2c/5 ships found since I last updated the small ships collection: x = 166, y = 498, rule = B3/S235bo3bo5bo3bo4bobo3b3o2b2o26b2o6b2o5bo6b2o3bobo11bo2b2obo5b3obobo2bo6b3o2o3bo6b2o2bobobobo7bob2o2b2ob2o7b4o5bo1112bo3bob2o11bo4bo3bo11bo2b2obobo11b2o15bob3o6bo8bo5bobo7bo4bo3b3o5bob3o8b4obo6b2o10b2o2bo18b2o3bo2b2obo14bobobo2bo2o3bobobobo2b2ob2o5bo1117bo15b2o3bo15b2o2bo10b2o3b4obo7b2obo6bobob2o2bob2o2bo4bobo6bo2o4bo2b2ob4o4b3oo4bo3b2o3bo5b2o5o7b2o9bo13bo7bo2bo22bo2bo3b3o16bob2o3bo19bo2b2o3bo4b2o1237b2o2b2o36b2o37bob2o23b2o8bo6bo18bo2b4o8bo14b2o2bo2bobobo6bo13b2obo4bo2bo8b2obob2o8b2o4bob3o2bob2o8b2o5b2o20b2ob2o10b4o7b3o5b2o4b2o15bobo5b2o8bo24bo3b3o32bobo2bo7bo3b3o18b4o7bobo2b4o3bo2b2o17b2o5b2o2bobo2obo7b2ob2o17b2obob2o4bob2ob2obobob2o19bo11b3o5bobob2o22bo12b3o8bo24bo6bo4b2o2bo37bob2o5bob2o36b2o9b4o37b2o2b2o12139bo2b2o96bo41bob2o95b5o25bo3bob2o5bo2bo31b2o61bo5bo23bo4bo3bo3bo2bo11bo19bo13bo7bob2obo36b2o27bo2b2obobo6bo6b3o2bo15b3o14bobo6bobo3bo39bo24b2o10b2o9bo4bo28bo3b3o2bobobo7bobo29b2o30bob3o3b3o6bobo3bo4bo8bo3bo13bob3o3bobo5bob2o3bo16b2ob2o4b2o24bo8bo9bo5b3o3bo6b2o4b2o4bo14b2o6bobobo3bo2bob3o14bobo5b2o4bo20bobo7bo3b2o6bo3bo4b2obo4b2o23bobobo4bo6bo2bo9bo8b2o4bo4bo14bo3b3ob2o9b2obobo2b4o4bobo10b2obo11b2o3bo19bo9b6o3bobo15bob3o8b4obob2ob2o6b2obobo2b2o4bo13bobo2bo12b2o12bo9bo4bo6b2o4bo18b2o10b2o2boo3bobo15b4o13b2o3bo24bo3bo9b2o3b3o9b3o28b2o3bobobo3bo7b2o6bo16bobobo23b2ob2o19bo9b3o10b2obo14bobobo2bo2bo31b2ob2o23bo12bobobo4bo9b2o2bo8bobo2bo44bo25b2ob2o6bo4bo3bo11bob2o7b2o3bo8b2o71bob4o16b4o7bobobo81b2o32b2ob2o118bo953b2o14b2o2bo32b4o14b3o33b2o10b3obo34b3o9bobobob3obo29bo9bo3b6o30bo2bo9bo28bo3bob2o2b2o10bobo24bo4bo3bo2b2o5bo31bo2b2obobo5bo3bo27b2o4bobo34bob3o3b3o2b2o22bo8bo31bobo7bo6b2o22bo3b3o6b2o5bo17bob3o8b4obo6b2o3bobo18b2o10b2o2bo11bo32b2o3bo2b2obo5b3o14b2obo14bobobo2bo6b3o11bobo2bo2o3bo6b2o2bo9b2o3bobobobo7bob2o10bobobo2b2ob2o7b4o10b2ob2o5bo25bo118bo6b2o3bo6b2o2bo6b4obo38bo8b2o7bo11bob3o5b2o6bo5bo8b2o5b2o3bo2b2obo7bo2bo3bobo8b2o4bo3bo15b2o2bo5b2o12bo4b6o3bo3bo3bo4b2o3bo2bo25b2o5bo2b2oboob2oboo3boob2ob2obo4bobo4bobo6128bobo22b2o128bobo21b6o89b2ob2o31b2obo8bo2b2o9bo3bo88bo35bob2o8bob2o11bo4b2o26bo2bo57b2ob2o9bo2bo19bo3bo7bo2bo11bo2bo26bo3bo57bo3bo8bo3bo18bob2obo5bo2bo25bo2bo2bo59bo8bo3b2o19b2obo8bo15b2o5bo24b3o60bo13b2o31b2o17bo4b3o61b2o22bo15b2ob2o23bo4b3o21b2o12bo3bob2obobo4bo27bo2b4o21b2ob3o14b2obo21b2o5bo12b2obo8bo11bo4bo4bobo2b2obobo20b2o2bo2bobobo3b2o14b2o22b2o2bo36bob2obo5bo2bo11bo2b2obobobo4b2obobo19b2obo4bo2bo3bo17b2obo20bobo4bo11bo2bo17bo3bo7bo2bo11b2o9bo2bo4bo15b2o4bob3o2bob2o3b3o16bo19b5ob5o11bo4b2o14bob2o8bob2o15bob3o2bo3b4o28b2ob2o17bo6b3o15bo2bo18bo3bo17b2obo8bo2b2o6bo8bo11b2o16b3o5b2o4b2o19bo3bo3b2o15b5ob5o12b6o18bobo5bobo7bo27b2o8bo25bobo26bobo4bo13b2o21bobo4bo3b3o30b3o34b3o2b2o22b2o2bo5bob3o30bo7bo3b3o49b2obo6b2o31bo2b4o3bo2b2o27b2o18b2ob2o20b2o22b2o38b2obo7b2ob2o27b2o5bo12b2o9bo13bo2b4o17bo2b4o2b2obo33b2ob2obobob2o30b2o3bobo11bo3b2o4b3o13bo2b4o17bo2b4obobo2bo36bobob2o37bo14bo3bo4b2o15bo23bo2o3bo40bo30b2obo5b3o12bo2bo8bo16bo23bobobobo70bobo2bo6b3o20bo2bo16b2o22b2o2b2ob2o68b2o3bo6b2o2bo20bo2bo15b2o22b2o5bo70bobobo7bob2o20bob2o77b2ob2o7b4o20bo2b2o10b3o2b2o17b3o2b2o80bo48bobo21bobo130bo3bo19bo3bo130bo3bo19bo3bo933b2ob2o20b2ob2o13bo4bo3bo23bo24bo17bobo4bo3bo22b2ob2o20b2ob2o13bo3b3o3bobo26bo3bo20bo3bo13bob3o2b3o2b2o26bo24bo15b2o31bo24bo68bo5b2o22bo24bo22b2o45b2o5b2o21b2ob3o19b2ob3o17b3o44b2obo4bo22b2o23b2o23bobo26b2obo21b2obo18bo43b2o4boo2b4o22bo24bo19b2o38bo2b4oo2b4o4b3ob2o14b3o22b3o14bo36b2o2bo2bobobo2o8bo2bo18b2o23b2o15b2o2b2o29b2obo4bo2bo10b3o63bo27b2o4bob3o2bob2o10b2o17b2o22b2o19bobo39b2ob2o13b2o13b6o18b6o15bo5bo23b3o5b2o4b2o2b2o8bo2bo11bo3bo19bo3bo17bo5bo21b2o8bo2bo2b4o2bobobobo9bo4b2o17bo4b2o16b2o23b3o2bo2b4o2bo4bo10bo2bo20bo2bo24bo18bo7bo3b3o3bo8bo2bo59b2o3bo6b2o8bo2b4o3bo2b2o6bo5bo2bo13b2o5bo16b2o5bo14bo3bo6bo2bo6b2obo7b2ob2o7b2o20bo4b3o16bo4b3o14bo3bo4b2o11b2ob2obobob2o7b2o25b2o22b2o14b3obo5bo3bo12bobob2o25b2obo8bo11b2obo8bo11bo4bo4bo3bo16bo4b3o2b2o13bob2obo5bo2bo9bob2obo5bo2bo9bobobob2o3bobo5bobo16bo3bo7bo2bo8bo3bo7bo2bo8bo3bobo3b2obo6bo3bo13bob2o8bob2o8bob2o8bob2o8b2ob3o6bo3bo14b2obo8bo2b2o7b2obo8bo2b2o13bo4bo28bobo21bobo24b2o28bobo21bobo24b2o831bo22bo30bobo20bobo5bo23bo3b3o16bo3b3o2b2ob2o23bob3o4bo2b2o9bob3obobobo25b2o5bob2o12b2o29bo3bo2o3bo32bo2bo43b2o2b2obobo2bo25b2o3bo2bo14b2o26b2ob2o2bo2b2obo25b3o5bo14b3o25b2obob2obo32bo3b2o17bo5bo19bo3bo5bo6b2o22bo5b3o14bo5b3o20b3o5bob3o19b2o7bo13b2o5b2o22bo4bo3b3o3b3ob2o8bo22bo10bo15b2o11bo5bobo5bo2bo12b2o2b2o17b2o2b2o2bo2bo14bo2bo7bobo6bo6b3o15bo22bo6bo2bo12bo3b2o6bo13b2o14bobo20bobo6bob2o11b3o2b2o6b3o16b2o10bo5bo16bo5bo4bo2b2o10b2o5b2o8bo2bo9bo5bo16bo5bo20bo5bo2b4o2bobobobo8b2o21b2o24b2obo5bo2b4o2bo4bo14bo22bo24bob3o6bo8bo2bo11b2o3bo17b2o3bo18bo6bo9bo5bo2bo11bo3bo18bo3bo17bo9b2o10b2o18bo3bo18bo3bo16b2ob3o4b2obo10b2o17b3obo18b3obo16b2o10bobo28bo4bo17bo4bo17b2obo7bo3bo7b3o2b2o13bobobob2o15bobobob2o17bo10b2o2bo8bobo16bo3bobo16bo3bobo20b3o10bo9bo3bo13b2ob3o17b2ob3o22b2o9bo3bo20bo22bo34b2o21b2o34b2o21b2o1028bobo21bobo6bo21bobo21bobo4b2o3bo15b2obo8bo2b2o7b2obo8bo2b2o4b2o2bo15bob2o8bob2o8bob2o8bob2o4b4obo14bo3bo7bo2bo8bo3bo7bo2bo24bob2obo5bo2bo9bob2obo5bo2bo25b2obo8bo11b2obo8bob2obo29b2o22b2o28boob2obo23bo4b3o16bo4b3o26boo3bo24b2o5bo16b2o5bo25b2o15b2o12bo7bob2obo15boob2o79bo3b2o14bo12bobo6bobo3bo13bob2obo6b3ob2o10bo2bo20bo2bo23b3o2bo4bo10b3o13bo3b3o2bobobo7bobo5b2o4bobo3bo2bo13bo4b2o17bo4b2o23bo4bo29bob3o3bobo5bob2o3bo5b2o4bobo3b3o14bo3bo19bo3bo22bobo3bo4bo8bo3bo14b2o6bobobo3bo2bob3o5bo10b2o16b6o18b6o19b3o3bo6b2o4b2o4bo22bobobo4bo6bo2bo13b2o14b2o22b2o20b2o6bo3bo4b2obo4b2o11b2obo11b2o3bo2b2o8bo2bo57b2o9b2obobo2b4o4bobo9bobo2bo12b2o12bo2bo2b4o2bobobobo55b2ob2o6b2obobo2b2o4bo12b2o3bo24bo3bo2bo2b4o2bo4bo8b7o21b7o12bo3bobo15b4o14bobobo23b2ob2o3bo8bo2bo9bo6bo20bo6bo12bobo3bo7b2o6bo17b2ob2o23bo6bo5bo2bo9b2o3bo22b2o3bo14bobo2bo2bo34bo25b2ob2o7b2o18bob2o24bob2o7b2o21b2o26b2o20b2o30bobo25bobo4b3o2b2o18bo27bo5bobo20bo4bo22bo4bo6bo3bo17bo5bo21bo5bo6bo3bo17bo2b2o23bo2b2o29b4o24b4o30bo27bo1138b2o38bo2bo37bo3b2o36b3o2b2o5b2o2b2o26b2o4b2o32bo5bob2o5bo23b2obobo6bo4b4o25bob3obo10bo2b2o20bo6boo10bo2bo20bo9b2ob2obob2o4bo2bo18b2ob3o4b2obob2o5b2o3b4o16b2o10bobo3b4o7bo2b2o15b2obo7bo3bo6bobo4bo2b2o17bo10b2o2bo8bo4bo2b3o11bo6b3o10bo6bobo4b2o2b2o11bo3bo3b2o3b4o22bobob2o5b2o18b3o2b2ob2obob2oo30b2obo29b2obo6bo22b2o5bob2o4b2o21b2obo5b2o2b2o15bobo2bo25b2o3bo26bobobo27b2ob2o30bo1030b2ob2o21b2ob2o29bo25bo25b2o10bo17b2ob2o21b2ob2o21b6o23b2o27b2o7b2ob2o17bo3bo21bo3bo19bo3bo24b6o23b6o6bobobo21bo25bo20bo4b2o21bo3bo24bo3bo5b2o3bo17bo25bo24bo2bo24bo4b2o22bo4b2o6bobo2bo14bo25bo54bo2bo25bo2bo7b2obo14b2ob3o20b2ob3o24b2o5bo24b2o24b2o29bo4b3o20b2o5bo21b2o5bo11b2o12b2obo22b2obo31b2o21bo4b3o21bo4b3o9bo2bo13bo25bo24b2obo8bo24b2o27b2o8b5ob2o12b3o23b3o19bob2obo5bo2bo14b2obo8bo16b2obo8bo7bo21b2o24b2o19bo3bo7bo2bo12bob2obo5bo2bo14bob2obo5bo2bo8b2o66bob2o8bob2o12bo3bo7bo2bo13bo3bo7bo2bo9b3o20bo25bo18b2obo8bo2b2o10bob2o8bob2o13bob2o8bob2o11bo19b2o24b2o21bobo22b2obo8bo2b2o12b2obo8bo2b2o5bo26bo25bo21bobo25bobo26bobo5bo3bo98bobo26bobo4bobo22b2o22b2o22bo3bo3b3o2b2o18b3o10bo10b6o19bo3bo23bo3bo23bo3bo26bo10b2o2bo9bo3bo20bobo26bo3bo23bo3bo6b2o17b2obo7bo3bo10bo4b2o17b3o2b2o22bobo25bobo6b2o5bo10b2o10bobo12bo2bo48b3o2b2o21b3o2b2o6b2o3bobo11b2ob3o4b2obo39b2o11bo14bo9b2o15b2o5bo17b2o26b2o26b2o2b2obo5b3o14bo6bo17bo4b3o17b2o26b2o26b2obobo2bo6b3o17bob3o20b2o46b2o26b2o2o3bo6b2o2bo12b2obo16b2obo8bo12b2obobobobo7bob2o12bo18bob2obo5bo2bo10bobo2bo23b2obo24b2obo2b2ob2o7b4o10b2o18bo3bo7bo2bo8b2o3bo23bobo2bo22bobo2bo5bo21b3o2b2o14bob2o8bob2o9bobobo22b2o3bo22b2o3bo28bo3b2o15b2obo8bo2b2o8b2ob2o22bobobo23bobobo29bo2bo19bobo22bo24b2ob2o23b2ob2o29b2o21bobo50bo27bo1135bo2bo6bo28bo3bo5bobo26bo3b2o4bo3b3o24b2o5bob3o25b2ob2o11bo6b2o30b2obo8b2o41b2o2bo4bobo2b2obo36bobo3bobobo2bo32b5ob3o2o3bo17bo15bo2bobobobo16b2o15b5ob3o2b2ob2o15bo19bobo3bo5bo9b2o6bo17b2o2bo4bobo12b2ob3o4bobo13b2obo8b2o8bobo3b2o2bo3bo2bo9b2ob2o11bo8bo4bobo2bo3bo12b2o9bo5b2obo3bob2o7bo2bo7bo3b2o4b3o5b2o3b2o4b2ob3obo3bo7bo3bo4b2o4bo13b4o4bo8bo2bo8bo5bo3bo8b2obob2o20bo2bo5bo40bo2bo46bob2o47bo2b2o3145b2o145bo2bo144bo3b2o143b3o2b2o144b2o145bo145b2obo52b3o39b3o52bo51bob2o38bob2o47bo8b2o40bo41bo49bo7b4o27bo10b2o40b2o48b2ob3o6b2o2bo22b2o2bo2bo9b2o4b2o17b4o13b2o4b2o40b2o5bo3bo9bo13bob2o14bo4b3o3bo8bo2bo4bo13bo4b3o3bo8b2o26b2obo12b2o5bo13bob2o15b2o3bo6bo5b4o5bo14b2o3bo6bo5bo29bo3b2o3bo2b2ob3ob2obo12bo5bo12bo6b2o4bobo4bo4b2o15bo6b2o4bobo4bo21bo6b3o2bo9bobobo3bo4bob2ob3obo2b3o9bo4b2o6b3ob4ob2obobo4b3o7bo4b2o6b3ob3o4bo8bo12bo3bo3b2obo2b2obo5b2obo4bo2b2obo3bo16b2ob4o9bo7b3obo4b2o7b2ob4o9bo7b3obo4b2o11bobo2obo4bo5b2o7b2o2bo2bo18b5o11b4o4bo8bo8b5o11b5ob2obobo4b3o9b3o2b2ob2ob2ob2o14bo5b2o34b2obo4bo33b2obo4bo4b2o5b5o60bo41b4o5bo16b2o71b2o40bo2bo4bo16b2o5bo117b4o17b2o3bobo143bo134b2obo5b3o133bobo2bo6b3o132b2o3bo6b2o2bo133bobobo7bob2o134b2ob2o7b4o137bo! Here is the updated unique 2c/5 ships collection: #C This collection contains all known "unique" 2c/5 ships up to 90 bits.#C That is, each ship in this collection has some component that is not#C found in any smaller 2c/5 ship.#C#C For a complete collection of known 2c/5 ships up to 90 bits, see#C ships-2c5-small.rle#C#C Discovery credits:#C AP = Aidan F. Pierce#C DB = David Bell#C DH = Dean Hickerson#C HH = Hartmut Holzwart#C JB = Josh Ball#C MM = Matthias Merzenich#C PT = Paul Tooke#C RW = Robert Wainwright#C SS = Stephen Silver#C TC = Tim Coe#C#C 30 PT 7 Dec 2000#C 34 MM 8 Aug 2015#C 44 DH 23 Jul 1991#C 51 PT 28 Nov 2000#C 54 MM 25 Jan 2017 (tag)#C 56 MM 27 Sep 2015 (tag)#C AP 21 Jan 2017 (B-heptomino component by PT between Feb 2000 and#C Mar 2000. Larger component by PT 3 Jul 2000.)#C 57 PT 1 Nov 2000#C 58 MM 22 Jan 2017#C 59 AP 21 Jan 2017#C 60 TC 3 May 1996#C 62 MM 28 Jan 2017 (tag)#C MM 9 Aug 2015#C 64 SS 2 Mar 1999#C PT 7 Dec 2000 (tag by RW between Jul 1991 and Jul 1992)#C MM 8 Aug 2015 (tag by DB 11 May 2000)#C 66 JB Feb 2013#C PT Between Feb 2000 and Mar 2000#C 67 MM 27 Sep 2015 (tag)#C 68 HH 23 Jan 2008#C 69 HH 26 Nov 1993#C 70 HH 5 Dec 1992#C 72 PT Between Feb 2000 and Mar 2000#C PT 12 Apr 2002#C PT Between Feb 2000 and Mar 2000#C PT 7 Dec 2000 (tag by RW 25 Jul 1992)#C 74 PT 7 Dec 2000 (tag by DB between Jul 1991 and Jul 1992)#C 75 PT Between Feb 2000 and Mar 2000#C 77 AP 26 Jan 2017#C 78 PT Between Feb 2000 and Mar 2000#C 79 MM 25 Jan 2017#C MM 28 Jan 2017 (tag)#C 81 MM 10 Aug 2015#C MM 27 Sep 2015 (tag)#C 83 MM 28 Sep 2017 (tag)#C MM 26 Jan 2017 (tag)#C 85 PT 7 Dec 2000 (tag by DB 11 May 2000)#C PT Between Feb 2000 and Mar 2000#C 89 MM 28 Jan 2017 (tag)#C 90 MM 25 Jan 2017#C MM 25 Jan 2017x = 535, y = 281, rule = B3/S23282bo156bo125bo3b2obob2o155b5o121bo4bobo2bo154bo5bo121b2ob3o3bo190b2o27bo127b2o125b2obo5bo170bo19bo13bo7bob2oboobobo3bobobo13bobo91bobobo3bobobo26bo100bobobo3bobobo14bobobo138bobobo3bobobo14b3o2bo15b3o14bobo6bobo3bo25bo3b3o124b2o126b2o6bobo165bo4bo28bo3b3o2bobobo7bobo4bo3bo3bo13bob3o89bo7bo3bo11b2ob2o4b2o105bo7bo3bo14bobo144bo3bo3bo14bobo3bo4bo8bo3bo13bob3o3bobo5bob2o3bo27b2o114bobo5b2o4bo130b4o164b3o3bo6b2o4b2o4bo14b2o6bobobo3bo2bob3oobobo3bo3bo107bobobo3bobobo9bo8b2o4bo102bobobo3bobobo15bo145bo3bobobo11b2o6bo3bo4b2obo4b2o23bobobo4bo6bo2bo23b2obo114bo9b6o131b4o160b2o9b2obobo2b4o4bobo10b2obo11b2o3bo4bo3bo3bo9bobo2bo96bo7bo9bo4bo6b2o104bo3bo7bo14bobo144bo7bo9b2ob2o6b2obobo2b2o4bo13bobo2bo12b2o12bo21b2o3bo116b2o3b3o133b2o6bobo156bo3bobo15b4o13b2o3bo24bo3boobobo3bobobo9bobobo93bobobo3bobobo19bo107bobobo3bobobo14bobobo142bo3bobobo9bobo3bo7b2o6bo16bobobo23b2ob2o23b2ob2o114bobobo4bo130b2obo5bo160bobo2bo2bo31b2ob2o23bo26bo114bo4bo3bo131b2ob3o3bo203bo25b2ob2o141bob4o134bo4bobo2bo167b2o141b2o139bo3b2obob2o282bo20146b2o2b2o145b2o136b2o168b2o2bo6bo26bo3bo115bob2o132b3o167b3o2b2o2bobobo26bo3bo111bo6bo131bo3b3o163bo7b4o2bo3bo25bobo114bo139b2o2bobo5bo157b2ob5o3b2o3b2oobobo3bo3bo11b3o2b2o89bobobo3bobobo8bo6bo111bobobo3bobobo10bo2bob2o4b3o133bobobo3bobobo10b2o10b3o142b2obobo138b2ob2o2bo2bo158b2o11bo4bo3bo3bo14b2o91bo7bo3bo9b2o5bobo112bo3bo3bo14bo3bo2bo139bo3bo3bo17bo4b2o27b2o115b8o136b3o3bo162bo7bo3boobobo3bobobo14b2o91bobobo3bo3bo131bo3bo3bo16bo144bo3bobobo15b3o4bo3bo144b8o137bo176bobo4bo7bo10b2obo93bo3bo3bo3bo9b2o5bobo112bo3bo3bo15b3o3bo139bo3bo3bo22bobo2bo114b2obobo139bo3bo2bo171boboobobo7bo8b2o3bo93bobobo3bobobo8bo6bo115bo3bobobo13b2ob2o2bo2bo137bo3bobobo22bo22bobobo115bo140bo2bob2o4b3o168bo3b6o23b2ob2o114bo6bo132b2o2bobo5bo170bobobob3obo26bo119bob2o131bo3b3o178b3obo145b2o135b3o185b3o146b2o2b2o131b2o185b2o2bo14364b2ob2o363bo362b2ob2o363bo3bo366bo178b2o2bo130b3o46bo142b2obo178b3o101bo2bo26bo47bo97b2o2b2o37b2o3bo2b2o153bo3bob2o13b3obo103bo3bo28bo43b2ob3o92b2o41b2ob3o27bobo122bo4bo3bo11bobobob3obo97bo3b2o23b2o46b2o98bob2o25b2o10bo24bo4bo122bo2b2obobo12bo3b6o99b2o24b2o49b2obo91bo6bo25bobo14b4o23b3o4bo121b2o19bo108b2ob2o11bo8b2ob5o21bo23bo93bo32bobobobo3bobo2bobob2oo3bo3bo3bo9bobo95bobobo3bobobo23bob3o13bobo83bobobo3bobobo12b2obo8b2o7bo7bo4bo15b2o25b3o65bobobo4bo13bo6bo27b2obobo3bo4bo21b2o2b2o4bo115bo8bo131b2o2bo4bobo7b3o2b2obo3b2o14bobo4b2o19b2o89b2obobo6bo2bo13bo5b2o2bo2boboboo3bo3bo3bo9b2o2b5o89bo11bo13bobo7bo20bo86bo7bo16bobo3bo12b2o2bo4bo3bo11bo7bob3obobobo78bo3bo4bo14b2o5bo3bo3bo13bo3bo5b2o145bo3b3o23b3o108b5ob3o22b2o2bo9b2o8b3o3bobobo14bo3b3o83b6o3bo3b2o11bobo8b2oobobo3bobobo107bobobo3bobobo13bob3o8b4obo9b2o88bo3bobobo13bo2bo31bo7b2o4bo4bo3bo20b2o4b3o56bobobo4bo27b3o11b3o2b2o147b2o10b2o2bo9bo112b5ob3o26bo7b2ob5obo7b6o14bo5b2o80b12o5bo4bo7bo9b2o2b5o89bo3bo3bo30b2o3bo9b5ob2o82bo3bo20bobo3bo21b2o2bo6bo3bo5bo3b3o6bo78bo3bo4bo12b2o5bo11bo12b2o21b2o2b2o4bo111b2obo14bo13bo2bo109b2o2bo4bobo8b2o2bo4bo3bo7bobo2bobobob3o4b3obo11b2o87b2obobo3b2o2bo18b2o4bo7bo9bobo95bobobo3bobobo9bobo2bo29b2o85bo3bobobo12b2obo8b2o8b3o2b2obo3b2o8bobo2b3obo4bo4bobo11b3o65bobobo4bo11bo6bo2b2o3b2obo14b2o23b3o4bo110b2o3bo135b2ob2o11bo7bo7bo4bo24bobo13bo91bo15bo24bo4bo112bobobo26b2obo105b2o23b2ob5o44b2obo89bo6bo20b2obo27bobo113b2ob2o24bobo2bo103bo3b2o21b2o48b2o96bob2o19bobo2bo146bo24b2o3bo105bo3bo23b2o47b2ob3o90b2o21b2o3bo172bobobo105bo2bo29bo44bo95b2o2b2o17bobobo173b2ob2o134bo49bo117b2ob2o176bo136b3o50bo116bo363bo3bo362b2ob2o363bo364b2ob2o8183b2ob2o14bo84b2ob2o182bo17b2o3bo80bo181b2ob2o14b2o2bo80b2ob2o182bo3bo13b4obo80bo3bo185bo103bo27bobo151bo103bo191bo2bo24bo4bo149bo22bo80bo193bo3bo23b3o4bo147b2ob3o18b2o78b2ob3o188bo2bo2bo22bobo152b2o22bo79b2o192b3o34b2o21b2o2b2o4bo146b2obo23bo76b2obo221bo2b4o22b2o2b5o148bo19b2o82bo179bo3bob2obobo4bo23b2o2bo2bobobo3b2oobobo4bo110bobobo3bo3bo10b2obo34b3o15bo60bobobo3bo3bo12b3o142bobobo3bobobo19bo4bo4bobo2b2obobo19b2obo4bo2bo3bo142b3obo35b2o15b2o3bo81b2o174bo2b2obobobo4b2obobo14b2o4bob3o2bob2o3b3oo8bo110bo7bo3bo8bo6bo10b2o7b2o31bo2bo59bo3bo3bo21bobo133bo3bo7bo19b2o9bo2bo4bo27b2ob2o21b2o119b2obo2b2o5bo2b3o7b3o14bo16b2o85bo3b2obo169bob3o2bo3b4o15b3o5b2o4b2oobobo4bo11bo2b4o92bobobo3bobobo10b3obo2b2o2bo29b2o78bo3bobobo15b2o140bobobo3bobobo14bo8bo11b2o14b2o8bo21bo2b4o117bobobo5bo2bobo2bo3bo17bo13b2o88bo3b2obo159bobo7bo25b3o4bo4bo12bo97bo3bo7bo13b2obob2o3b2o2bo3b3obo29b6o60bo7bo21bobo133bo3bo7bo12bo3b3o29bo7bo3b3o25bo120b2obo3bo8b2ob2obo13b2o13bo3bo84b2o168bob3o29bo2b4o3bo2b2oobobo4bo16b2o92bobobo7bo19bo28b3o13bo4b2o60bo7bo12b3o142bobobo3bobobo14b2o30b2obo7b2ob2o26b2o120bo4bo25bo17bo2bo82bo206b2ob2obobob2o178b2obo100b2obo167b2obo37bobob2o23b3o2b2o147b2o20b2o80b2o169bobo2bo39bo24bobo151b2ob3o15bo82b2ob3o163b2o3bo25bo3bo149bo103bo168bobobo25bo3bo151bo13b2obo86bo167b2ob2o185bo8bob2obo89bo166bo182bo3bo7bo3bo87bo3bo181b2ob2o8bob2o87b2ob2o182bo12b2obo87bo183b2ob2o10bobo86b2ob2o198bobo3462bo461b4o460bo2b2o460bo5bo460bo4bo461bo462bo2bo461bo3bo464bo287b2o2b3ob3o161b2o168bo2bo114b2o171bo2b2o168bo3bo114bob2o2b3o2bo160b2o26bo3bo116bobo17bo3b2o110bo6bo3b3o2bo162bo26bo3bo113bo4bo8bo9b2o113bo14bobo159b2o25bobo115b3o4bo5bo3bo7b2ob2o109bo15b3o158bo2bo18boobobo3bo3bo11b3o2b2o89bobobo3bobobo9bobo15bo10b2obo85bobobo3bobobo10b2obob2o8bo131bobobo3bobobo17b5o15b2o18bo141b2o2b2o4bo2bo19b2o2bo104b2o5b2o169bo2bo15bobo4b2o11b2oo7bo3bo14b2o91bo7bo13b2o2b5o3bob3o16bobo4bo81bo3bo16b4o141bo3bo3bo23b3o13bo7bob3obobob2o2b2o27b2o5bo118bo2bo15b5ob5o105bobo171b2o12b2o8b3o3bobob2o2boobobo3bobobo14b2o3bobo85bobobo3bobobo20bobo16bo2bo88bo3bobobo17bo139bobobo3bobobo31b2o4bo4bo3bo12bo32bo120bo18b5ob5o105bobo171bo11b2ob5obo7b5o3b3o4bo7bo10b2obo5b3o85bo3bo3bo3bo9b2o2b5o3bo2b2obo14bobo4bo81bo7bo12b4o141bo3bo7bo18bo11bo3bo5bo3b3o6b2o4bo22bobo2bo6b3o104b2o2b2o4bo2bo3b2o14b2o2bo104b2o5b2o168bo3bo9bobo2bobobob3o4b3oboobobo7bo8b2o3bo6b2o2bo82bobobo3bobobo9bobo10bo15b2obo89bo3bobobo10b2obob2o140bobobo3bobobo16b2o3bo9bobo2b3obo4bo4bobo22bobobo7bob2o105b3o4bo17b2ob2o109bo177b2o27bobo23b2ob2o7b4o105bo4bo18b2o113bo177bo2bo26bo120bobo17bo3b2o110bo6bo173bo168bo3bo114bob2o171bo168bo2bo114b2o169bo287b2o2b2o163bobo455bo3b3o456bob3o457b2o2453b2obo452bobo2bo451b2o3bo452bobobo453b2ob2o456bo9457bo33bo3bob2obobo411bobo32bo4bo4bobo23bo235b2o149bo3b3o32bo2b2obobobo23b2o3bo227bo2b4o150bob3o32b2o9bo22b2o2bo76bo7bob2obo134b2o2bo2bobobo150b2oobobo3bobobo23bob3o2bo17b2o3b4obo48bobobo3bobobo13bobo6bobo3bo98bobobo3bobobo21b2obo4bo2bo124bobobo3bobobo27bo8bo21b2obo83bo3b3o2bobobo7bo122b2o4bob3o2bob2o147b2oboo7bo17bobo7bo20bobob2o57bo11bo13bob3o3bobo5bob2o4bo93bo7bo28b2ob2o124bo3bo3bo3bo9bobo2bo25bo3b3o21bob2o2bo4bobo80b2o6bobobo3bo2bo121b3o5b2o4b2o147b2o3bo17boobobo3bobobo13bob3o20b2o4bo2b2ob4o53bobobo7bo22bobobo4bo3b2obo92bo7bo13b2o8bo133bobobo3bobobo9bobobo16b2o27b2o22bo4bo3b2o3bo77b2obo11b2o3bo5b2o113b3o166b2ob2o15bo4bo3bo3bo38b5o7b2o55bo3bo7bo9bobo2bo12b2o8bo93bo7bo10bo7bo3b3o132bo3bo7bo13bo9b2o6bo23b2obo37bo76b2o3bo135bo2b4o3bo2b2o166b2ob3o4boboobobo3bobobo9bobo2bo92bobobo7bo9bobobo117bo7bo8b2obo7b2ob2o133bobobo3bobobo16bobo3b2o2bo3bo2bo21b2o3bo27b3o86b2ob2o134b2ob2obobob2o165bo4bobo2bo3bo22bobobo27bo91bo139bobob2o164b2obo3bob2o7bo2bo23b2ob2o26bo234bo166b2o3b2o4b2ob3obo3bo26bo28b2o398bo13b4o4bo456bo3bo8b2obob2o456bo14145bo144bobo143bo3b3o144bob3o26b2o2b2o113b2o25b2o26bob2o116b2o135b2o2bo6bo22bo6bo115b3o134b3o2b2o2bobobo207b3o22bo123bo134bo7b4o2bo3bo202bob2o21bo122bo137b2ob5o3b2o3b2o159b2o40boobobo3bobobo9b2obob2o91bobobo3bobobo10b2o115bobobo3bobobo10b2o10b3o132bobobo3bobobo15b4o27bo10b2o22b2o5b2o111bo142b2o11bo158b2o2bo22b2o2bo2bo9b2o4b2o17b4oo11bo11b4o92bo7bo3bo10b2o2b2o115bo3bo3bo17bo4b2o133bo3bo3bo3bo13bo3bo9bo13bob2o14bo4b3o3bo8bo2bo4bo27bobo115bo141bo7bo3bo163b2o5bo13bob2o15b2o3bo6bo5b4o5boobobo7bo16bo90bobobo3bobobo10bobo118bo3bobobo15b3o4bo3bo130bobobo3bo3bo11b2o3bo2b2ob3ob2obo12bo5bo12bo6b2o4bobo4bo4b2o27bobo112bo5bo147bobo154bo9bobobo3bo4bob2ob3obo2b3o9bo4b2o6b3ob4ob2obobo4b3o4bo7bo11b4o92bo3bo3bo3bo9bo5bo115bo3bo3bo161bo3bo3bo9bo2b2obo5b2obo4bo2b2obo3bo16b2ob4o9bo7b3obo4b2o22b2o5b2o112b2o151bobo152b2obo4bo5b2o7b2o2bo2bo18b5o11b4o4bo8boobobo7bo9b2obob2o91bobobo3bobobo15bo115bo3bobobo22bo134bobobo3bobobo9b2ob2ob2o14bo5b2o34b2obo4bo21bo122b2o3bo145bo3b6o151b5o60bo22bo121bo3bo146bobobob3obo216b2o22bo6bo114bo3bo147b3obo26bob2o113b3obo152b3o25b2o115bo4bo152b2o2bo26b2o2b2o109bobobob2o141bo3bobo141b2ob3o148bo148b2o148b2o1824b2ob2o4b2o3b3oobobo3bobobo10bobo5b2o3bob2obo22bo8b2o4bob3oboo7bo3bo8bo9b5o5b2o22bo4bo6b3oobobo3bobobo10b2o3b3o32bo4bo3bo3bo9bobobo4bo21bo4bo3boobobo3bobobo8bob4o21b2o! Finally, here is the small 2c/5 ships collection (as an attachment, since it no longer fits in a single post): ships-2c5-small.rle (61.88 KiB) Downloaded 120 times Edit: I accidentally forgot to add some ships to the small ships collection (see this post). -Matthias Merzenich Sokwe Moderator Posts: 1480 Joined: July 9th, 2009, 2:44 pm ### Re: Spaceship Discussion Thread I finished the latest knightship search; none with a diagonal width of <= 16hd. I don't currently feel like trying 17hd just yet, and I still think we're nowhere near an actual ship. EDIT: I actually think (2,1)c/7 is somewhat more promising. Here's an example 11hd partial: x = 14, y = 13bbooboobbobobooboobo6boooo5bobo4boobbo3bo4bo4booboo5bo5boo6b4o9boobbo10b3o! EDIT 2: Slightly longer (12hd): x = 17, y = 174bo6boo3booboboobbobboo3booo3boboo4boo3bob5obo5bo7bo6b4obo10b3o12boobo11bo4bo11boobbo10bo3bobo14b3o14b3o! EDIT 3/4: Even more so (same width): x = 19, y = 183bobbo3booboboboobo4o4bo8boobboo4bobboobboboo3bo3b4o4b4o3boboo5bobbobboo3bo8boob4o$$15bobbo$13bob3o$12boboboo$$12boo3boo16boo! The front end advances for 4 full periods. Also, x = 22, y = 224bo4boobo4bo8booobb4obbooboo4bobboo4b4o4bo3b3o5bo3bob3o5bobbobbo3bo6bobbo6bobobboo7b3obboo3bo11booboob3o12bobobb3o19boo19bobo19boo15b3o15boo3bo16bo3bo19boo! is longer, but not quite as robust. x₁=ηx V ⃰_η=c²√(Λη) K=(Λu²)/2 Pₐ=1−1/(∫^∞_t₀(p(t)ˡ⁽ᵗ⁾)dt)$$x_1=\eta xV^*_\eta=c^2\sqrt{\Lambda\eta}K=\frac{\Lambda u^2}2P_a=1-\frac1{\int^\infty_{t_0}p(t)^{l(t)}dt}

http://conwaylife.com/wiki/A_for_all

Aidan F. Pierce

A for awesome

Posts: 1877
Joined: September 13th, 2014, 5:36 pm
Location: 0x-1

I accidentally forgot to include the following ships in my small 2c/5 ships collection:
x = 272, y = 143, rule = B3/S2387bo$32b2ob2o49bobo$31bo53bo3b3o$30b2ob2o14bo36bob3o$31bo3bo12bobo36b2o$20b2o12bo12bo3b3o$18b2o3bo24bob3o17b2ob2o8b2obo$7bo7bobobo4bo6bo2bo14b2o18bo12bobo2bo$6bobo6bobobo3bo2bob3o37b2ob2o8b2o3bo$5bo3b3o2bobo5bob2o3bo15b2obo20bo3bo8bobobo4bob2obo$6bob3o3bobobo7bobo15bobo2bo8b2o12bo10b2ob2o3bobo3bo$7b2o6bobo3bo21b2o3bo7b2o3bo24bo3bobobo7bobo$15bob2obo23bobobo4bobobo4bo6bo2bo17bobo5bob2o3bo$3b2obo38b2ob2o3bobobo3bo2bob3o22bobobo3bo2bob3o$2bobo2bo40bo3bobo5bob2o3bo23bobobo4bo6bo2bo$b2o3bo45bobobo7bobo27b2o3bo$2bobobo46bobo3bo36b2o12bo$3b2ob2o45bob2obo48bo3bo$6bo99b2ob2o$107bo$108b2ob2o19$5bo3bo$5bo3bo$4bobo$3b3o2b2o33bo3bo$43bo3bo$6b2o34bobo$6b2o33b3o2b2o$6b2o$44b2o$2b2obo38b2o19b2ob2o$bobo2bo37b2o18bo$2o3bo57b2ob2o$bobobo4bob2obo24b2obo20bo3bo$2b2ob2o3bobo3bo22bobo2bo8b2o12bo$5bo3bobobo7bobo14b2o3bo7b2o3bo$9bobo5bob2o3bo14bobobo4bobobo4bo6bo2bo$10bobobo3bo2bob3o14b2ob2o3bobobo3bo2bob3o$10bobobo4bo6bo2bo13bo3bobo5bob2o3bo$13b2o3bo28bobobo7bobo$15b2o12bo18bobo3bo$26bo3bo17bob2obo$25b2ob2o$26bo$27b2ob2o19$86bo$31b2ob2o49bobo100bo$30bo53bo3b3o33bo61b2o3bo12bo63bo$29b2ob2o14bo36bob3o33b4o37bo21b2o2bo12b4o37bo21b2o3bo$30bo3bo12bobo36b2o34bo2b2o36b4o19b4obo10bo2b2o36b4o19b2o2bo$19b2o12bo12bo3b3o69bo5bo33bo2b2o8b2o25bo5bo33bo2b2o19b4obo$17b2o3bo24bob3o17b2ob2o8b2obo36bo4bo5b2o27bo5bo5b2o26bo4bo34bo5bo6b2o$6bo7bobobo4bo6bo2bo14b2o18bo12bobo2bo36bo6b2o3bo26bo4bo5bob2o2b2o4b2o16bo9b2o27bo4bo6b2o$5bobo6bobobo3bo2bob3o5bo31b2ob2o8b2o3bo38bo2bo2bobo8bo21bo6b2obo5bo4b3o17bo2bo2b2o3bo27bo9bob2o2b2o4b2o$4bo3b3o2bobo5bob2o3bo5b2o8b2obo20bo3bo8bobobo4bob2obo15bo12b3o3bobobo4b4o3bo17bo2bo2bobobo4b4o3bo17b3o3bobo8bo22bo2bo2b2obo5bo4b3o$5bob3o3bobobo7bobo5b2o8bobo2bo8b2o12bo10b2ob2o3bobo3bo13bo11bob3o3b2obo5bo4b3o17b3o3bobo8bo20bob3o3bobobo4b4o3bo17b3o3bobobo4b4o3bo$6b2o6bobo3bo13bo7b2o3bo7b2o3bo24bo3bobobo7bobo5b2o9b4obo7bob2o2b2o4b2o15bob3o3b2o3bo24b4obo4b2obo5bo4b3o15bob3o3bobo8bo$14bob2obo15bo7bobobo4bobobo4bo6bo2bo17bobo5bob2o3bo5b2o7bo2bo2bo8b2o24b4obo7b2o24bo2bo2bo7bob2o2b2o4b2o13b4obo4b2o3bo$2b2obo38b2ob2o3bobobo3bo2bob3o5bo16bobobo3bo2bob3o5bo6bo16b2o22bo2bo2bo32bo15b2o23bo2bo2bo7b2o$bobo2bo40bo3bobo5bob2o3bo5b2o16bobobo4bo6bo2bo9bo2bo23b4obo6bo40bo2bo12b2o21bo$2o3bo45bobobo7bobo5b2o20b2o3bo21b3o23b2o2bo8bo2bo37b3o23b4obo7bo2bo$bobobo46bobo3bo13bo22b2o12bo12b2obo20b2o3bo8b3o39b2obo20b2o2bo9b3o$2b2ob2o45bob2obo15bo32bo3bo13bo23bo13b2obo38bo21b2o3bo10b2obo$5bo99b2ob2o54bo63bo15bo$106bo$107b2ob2o18$5bo3bo$5bo3bo$4bobo$3b3o2b2o33bo3bo$43bo3bo$6b2o34bobo$6b2o33b3o2b2o$6b2o$44b2o$2b2obo38b2o19b2ob2o$bobo2bo37b2o18bo$2o3bo57b2ob2o$bobobo4bob2obo15bo8b2obo20bo3bo$2b2ob2o3bobo3bo13bo8bobo2bo8b2o12bo$5bo3bobobo7bobo5b2o7b2o3bo7b2o3bo$9bobo5bob2o3bo5b2o7bobobo4bobobo4bo6bo2bo$10bobobo3bo2bob3o5bo8b2ob2o3bobobo3bo2bob3o5bo$10bobobo4bo6bo2bo13bo3bobo5bob2o3bo5b2o$13b2o3bo28bobobo7bobo5b2o$15b2o12bo18bobo3bo13bo$26bo3bo17bob2obo15bo$25b2ob2o$26bo$27b2ob2o! Here is the corrected small 2c/5 ships collection: ships-2c5-small.rle (64.74 KiB) Downloaded 122 times A for awesome wrote:I actually think (2,1)c/7 is somewhat more promising. (2,1)c/7 has also not been searched very heavily, so there might be something "easy" to find that has just gone unnoticed (like copperhead). Edit: A small tagalong gives two new small 2c/5 ships: x = 34, y = 65, rule = B3/S2329bo$28b5o$27b2o4bo$28bo4bo$29b2o$29bo$28bo$26bobo$12bo3bob2obobob2o$11bo4bo4bobo$11bo2b2obobobo$11b2o9bo$15bob3o2bo$6bo8bo$5bobo7bo$4bo3b3o$5bob3o$6b2o2$2b2obo$bobo2bo$2o3bo$bobobo$2b2ob2o$5bo11$4bo$3bobo$2bo3b3o$3bob3o$4b2o2$5b2o$4b3o6bo$5bo6b5o$3bo7b2o4bo$2b2o8bo4bo$bo11b2o$2b2o2b2o5bo$4bo7bo$2bobo5bobo$bo5bob2o$bo5bo$2b2o$7bo$3b2o3bo$3bo3bo$3bo3bo$2b3obo$bo4bo$obobob2o$o3bobo$2ob3o$7bo$7b2o$7b2o! Edit 2: another tagalong: x = 38, y = 17, rule = B3/S2316bo2bo$13bo2bo3bo$12bobobo4bo$12b2o2b2o$6b2ob2o2bobobo4bo6bo$5bo8b2obo4bo6bo$4b2ob2o4bo3b2o3bo6bob3o2bo$5bo3bo4bo2b2o2bo3b2o9bo$8bo5bo3b2obo3bo2b2obobobo$4bo20bo4bo4bobo$2bo23bo3bob2obobo$b2ob3o$2o$b2obo$2bo$4b3o$5b2o! -Matthias Merzenich Sokwe Moderator Posts: 1480 Joined: July 9th, 2009, 2:44 pm ### Re: Spaceship Discussion Thread There's so many posts on 2c/5 here now... Should a new thread be made just for them? x = 81, y = 96, rule = LifeHistory58.2A$58.2A3$59.2A17.2A$59.2A17.2A3$79.2A$79.2A2$57.A$56.A$56.3A4$27.A$27.A.A$27.2A21$3.2A$3.2A2.2A$7.2A18$7.2A$7.2A2.2A$11.2A11$2A$2A2.2A$4.2A18$4.2A$4.2A2.2A$8.2A!
Gamedziner

Posts: 790
Joined: May 30th, 2016, 8:47 pm
Location: Milky Way Galaxy: Planet Earth

Gamedziner wrote:There's so many posts on 2c/5 here now... Should a new thread be made just for them?

Not really.
Most of the 2c/5 related posts are simply cumulative updates to the spaceship collections and a 2c/5 thread would divide the topic too much to be useful.
LifeWiki: Like Wikipedia but with more spaceships. [citation needed]