## Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

For discussion of other cellular automata.

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

danny wrote:Can it gun?:
`x = 14, y = 16, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e4bo\$2b3o\$2bo5\$b2o2b3o3b2o\$2bo2bobo3bo\$o4b3o5bo4\$2bo\$2b3o\$4bo!`

Yes, kind of possible:
`x = 37, y = 37, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e2\$24bo\$22b3o\$22bo\$25b3o\$25bobo\$25b3o\$20bo\$22bo8b2o\$21b2o2b3o3bo\$25bobo5bo2\$25bo2bo\$14bo11b3o\$6bo5b5o10bo\$8bo3bo3bo\$7b2o2b2obob2o\$12bo3bo\$12b5o\$14bo5bo11bo\$19b3o8b3o\$19bobo8bo\$20bo2\$16bo\$14bo13bo\$16b3o\$16b3o\$17bo10bo2\$15bo3bo\$26bobobo\$24b2ob3ob2o\$25bo2bo2bo\$25b2o3b2o!`

Still, larger than e.g.:
`x = 33, y = 22, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e2\$10b2o\$11bo5bo3bo2bo\$9bo3b3o3b2obob3o\$6b2o5bobo3bob2o3bo\$4bo2bo5b3o3b2obobo\$4b2ob2o8bo3bo2b2o2\$5b3o\$bo4bo\$3b7o\$3bo2bo2bo\$3b2o3b2o2\$6bo\$5b3o2\$2b2ob3ob2o\$3bo2bo2bo\$3b2o3b2o!`

I found this interesting thinning salvo (illustrated for p32 G, p48 R):
`x = 212, y = 194, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e9\$188bo\$186bobo\$186b3o22\$188bo\$186bobo\$186b3o22\$188bo\$186bobo\$186b3o22\$188bo\$186bobo\$186b3o22\$188bo\$186bobo\$186b3o22\$188bo\$186bobo\$186b3o22\$188bo\$186bobo\$186b3o22\$188bo\$186bobo\$7b2o14b2o14b2o14b2o14b2o14b2o14b2o14b2o14b2o14b2o14b2o14b2ob3o\$6bob2o12bob2o12bob2o12bob2o12bob2o12bob2o12bob2o12bob2o12bob2o12bob2o12bob2o12bob2o\$7b2o14b2o14b2o14b2o14b2o14b2o14b2o14b2o14b2o14b2o14b2o14b2o!`

The p16 G and p24 special case
`x = 115, y = 106, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e10\$107bo\$105bobo\$105b3o10\$107bo\$105bobo\$105b3o10\$107bo\$105bobo\$105b3o10\$107bo\$105bobo\$105b3o10\$107bo\$105bobo\$105b3o10\$107bo\$105bobo\$105b3o10\$107bo\$105bobo\$105b3o10\$107bo\$105bobo\$14b2o6b2o6b2o6b2o6b2o6b2o6b2o6b2o6b2o6b2o6b2o6b2ob3o\$13bob2o4bob2o4bob2o4bob2o4bob2o4bob2o4bob2o4bob2o4bob2o4bob2o4bob2o4bob2o\$14b2o6b2o6b2o6b2o6b2o6b2o6b2o6b2o6b2o6b2o6b2o6b2o!`

allows for this small p96 G gun:
`x = 25, y = 24, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e5b2o\$3bo2bo\$3b2ob2o2\$4b3o\$o4bo\$2b7o\$2bo2bo2bo\$2b2o3b2o2\$5bo14bo\$4b3o15bo2\$b2ob3ob2o6bo2b2o2bo\$2bo2bo2bo8b2obo\$2b2o3b2o7bo7bo\$17bo3bo\$13bo2bo5bo\$17b2ob2o2bo\$17b3o2bo2\$16bo\$18bo\$20bo!`

2718281828

Posts: 681
Joined: August 8th, 2017, 5:38 pm

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

2718281828 wrote:A slightly smaller p17 gun (new:top, old:bottom) - but not uniformly smaller:
`x = 52, y = 61, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e\$4bo5bo2bo2bo\$38bo3bo2\$4bo11bo\$39b3o\$35b2o2bobo2b2o\$4bo11bo13bo4bo3b3o3bo\$28bo3bo4bo5bo\$28b5o3b2o5b2o\$4bo11bo13bo\$24bo2b2o\$26bo6bo6bo\$4bo11bo9bo6bo4b4o\$26bo6bo6bo\$24bo2b2o\$30bo\$28b5o3b2o5b2o\$28bo3bo4bo5bo\$30bo4bo3b3o3bo\$35b2o2bobo2b2o\$39b3o3\$38bo3bo9\$43bo2\$41bo2\$36b2o3bo\$37bo\$35bo5bo\$30bo15bo\$32bo4b2o5bo\$31b2o2bo2bo5b2o\$35b2o2\$31bo\$30b2o3b2o\$31bo\$27bo\$35b2o\$35bo2bo5b2o\$37b2o5bo\$46bo\$35bo5bo\$37bo\$36b2o3bo2\$41bo2\$43bo!`

I makes use of different sparkers.

Much smaller:
`x = 20, y = 23, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e12bo3bo2\$9bo2\$10bo2bobo2b2o\$3bo15bo\$5bo3b3o5bo\$4b2o3bobo5b2o\$8b2o4bo\$10bo2bobo2\$4bobobobo2\$o9bo2bobo\$8b2o4bo\$9bobo5b2o\$9b3o5bo\$19bo\$10bo2bobo2b2o2\$9bo2\$12bo3bo!`

2718281828 wrote:
danny wrote:Can it gun?:
`x = 14, y = 16, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e4bo\$2b3o\$2bo5\$b2o2b3o3b2o\$2bo2bobo3bo\$o4b3o5bo4\$2bo\$2b3o\$4bo!`

Yes, kind of possible:
`x = 37, y = 37, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e2\$24bo\$22b3o\$22bo\$25b3o\$25bobo\$25b3o\$20bo\$22bo8b2o\$21b2o2b3o3bo\$25bobo5bo2\$25bo2bo\$14bo11b3o\$6bo5b5o10bo\$8bo3bo3bo\$7b2o2b2obob2o\$12bo3bo\$12b5o\$14bo5bo11bo\$19b3o8b3o\$19bobo8bo\$20bo2\$16bo\$14bo13bo\$16b3o\$16b3o\$17bo10bo2\$15bo3bo\$26bobobo\$24b2ob3ob2o\$25bo2bo2bo\$25b2o3b2o!`

Still, larger than e.g.:
`x = 33, y = 22, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e2\$10b2o\$11bo5bo3bo2bo\$9bo3b3o3b2obob3o\$6b2o5bobo3bob2o3bo\$4bo2bo5b3o3b2obobo\$4b2ob2o8bo3bo2b2o2\$5b3o\$bo4bo\$3b7o\$3bo2bo2bo\$3b2o3b2o2\$6bo\$5b3o2\$2b2ob3ob2o\$3bo2bo2bo\$3b2o3b2o!`

Smaller:
`x = 17, y = 20, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e4bo\$2bo2\$4bobo\$o\$2bo\$b2o3\$4bo4b3o\$2bo6bobobo\$4b2o3bo4b2o\$5bo8bo\$3bo5bo6bo3\$9bo\$5bo8bo\$5b3o4bo\$7bo!`
Iteration of sigma(n)+tau(n)-n [sigma(n)+tau(n)-n : OEIS A163163] (e.g. 16,20,28,34,24,44,46,30,50,49,11,3,3, ...) :
965808 is period 336 (max = 207085118608).
AbhpzTa

Posts: 467
Joined: April 13th, 2016, 9:40 am
Location: Ishikawa Prefecture, Japan

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

A new p27 from a C1 soup (https://catagolue.appspot.com/object/xp ... 4iz5ar6i7e):
`x = 13, y = 15, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e3b2o\$3bo\$2b2o3\$7bo3bo\$6b2o\$7bo\$12bo2\$3bo2\$2o\$bo\$b2o!`

I looks very close to a gun, as we have e.g.:
`x = 20, y = 14, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e10b2o\$10bo\$9b2o3\$14bo3bo\$13b2o\$2bo11bo\$3obo14bo\$o4bo\$2bo7bo\$2bo2bo\$2bo\$o!`

But I wasn't able to make use of it, still I constructed this p27 gun:
`x = 52, y = 32, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e10b2o\$10bo\$9b2o\$11bo2\$40b2o3b2o\$14bobobo21bo2bo2bo\$2bo36b2ob3ob2o\$3obo14bo\$o41b3o\$2b2o38b3o\$bobo4bobo3bo34bo\$2b2o4b3o2bo12b2o12b2o3b2o\$o11b2o12bo12b2o2bo2b2o\$13b2o11b3o11bo5bo\$41bobobo4\$49bo\$8bobo38b3o\$8b3o14bo22bo2bo\$5b2o2bo2b2o12bo11b4o7bo\$5bo3bo3bo12b2o12b3o2bo2b3o\$5b3o3b3o11b2o12b3o7bo\$9bo38bo2bo\$49b3o\$49bo2\$5b2ob3ob2o31bo\$6bo2bo2bo\$6b2o3b2o!`

2718281828

Posts: 681
Joined: August 8th, 2017, 5:38 pm

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

R + G reflect thingy that's probably useless
(not a heisenburp)
`x = 9, y = 4, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e6bo\$2o3b3o\$bo3bo2bo\$2o!`
c(>^w^<c)~*
This is Fluffy the cat.
Fluffy wants to discover new things that everyone likes.
Fluffy likes to watch spaceship guns in Golly.
Fluffy knows Natsuki best girl.

Redstoneboi

Posts: 335
Joined: May 14th, 2018, 3:57 am

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

A trivial (likely) known stable 2-thinning mechanism:
`x = 39, y = 31, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e3\$24bo\$14bo7b5o\$22bo3bo3b2o\$21b2obob2o2bo\$22bo3bo5bo\$22b5o\$24bo\$17b3o\$17bobo11\$17b3o\$17bobo!`

It works for p23 to p30:
`x = 343, y = 79, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e5\$16bo30bo30bo30bo30bo30bo30bo30bo30bo30bo30bo\$6bo7b5o18bo7b5o18bo7b5o18bo7b5o18bo7b5o18bo7b5o18bo7b5o18bo7b5o18bo7b5o18bo7b5o18bo7b5o\$14bo3bo3b2o21bo3bo3b2o21bo3bo3b2o21bo3bo3b2o21bo3bo3b2o21bo3bo3b2o21bo3bo3b2o21bo3bo3b2o21bo3bo3b2o21bo3bo3b2o21bo3bo3b2o\$13b2obob2o2bo21b2obob2o2bo21b2obob2o2bo21b2obob2o2bo21b2obob2o2bo21b2obob2o2bo21b2obob2o2bo21b2obob2o2bo21b2obob2o2bo21b2obob2o2bo21b2obob2o2bo\$14bo3bo5bo20bo3bo5bo20bo3bo5bo20bo3bo5bo20bo3bo5bo20bo3bo5bo20bo3bo5bo20bo3bo5bo20bo3bo5bo20bo3bo5bo20bo3bo5bo\$14b5o26b5o26b5o26b5o26b5o26b5o26b5o26b5o26b5o26b5o26b5o\$16bo30bo30bo30bo30bo30bo30bo30bo30bo30bo30bo\$9b3o28b3o28b3o28b3o28b3o28b3o28b3o28b3o28b3o28b3o28b3o\$9bobo28bobo28bobo28bobo28bobo28bobo28bobo28bobo28bobo28bobo28bobo10\$10bo\$9b3o28b3o29bo\$9bobo28bobo28b3o28b3o29bo61bo\$10bo60bobo28bobo28b3o28b3o28b3o28b3o29bo\$72bo60bobo28bobo28bobo28bobo28b3o28b3o29bo\$134bo61bo60bobo28bobo28b3o\$258bo60bobo\$320bo12\$288b3o\$288bobo28b3o\$319bobo14\$320bo\$319b3o\$319bobo\$320bo13\$319b3o\$319bobo!`

for p31 it deletes every third one (last one).

2718281828

Posts: 681
Joined: August 8th, 2017, 5:38 pm

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

I've been looking into creating a self-constructing spaceship in snowflakes.

I almost found a working construction arm... (Key: left is PUSH, right is PULL/FIRE)

`x = 41, y = 73, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e3bo29bo\$b5o25b5o\$bo3bo25bo3bo\$2obob2o23b2obob2o\$bo3bo25bo3bo\$b5o25b5o\$3bo29bo6\$2b3o27b3o\$2bobo27bobo19\$3bo34b3o\$2b3o33bobo\$2bobo\$3bo6\$33bo\$32b3o\$32bobo\$33bo10\$8b3o\$8bobo12\$2b3o\$2bobo2\$32b3o\$32bobo\$32bo!`

... But in the PULL/FIRE section, one of the spaceships is an R. Does anybody more experienced in Snowflakes have an idea how to make this work?

Goldtiger997

Posts: 512
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Does this work?
`x = 41, y = 85, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e3bo29bo\$b5o25b5o\$bo3bo25bo3bo\$2obob2o23b2obob2o\$bo3bo25bo3bo\$b5o25b5o\$3bo29bo6\$2b3o27b3o\$2bobo27bobo19\$3bo34b3o\$2b3o33bobo\$2bobo\$3bo6\$33bo\$32b3o\$32bobo\$33bo10\$8b3o\$8bobo12\$2b3o\$2bobo\$33b3o\$33bobo4\$31b3o\$31bobo3\$25b3o\$25bobo4\$24b3o\$24bobo!`
she/they // Please stop using my full name. Refer to me as dani.

"I'm always on duty, even when I'm off duty." -Cody Kolodziejzyk, Ph.D.

danny

Posts: 944
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

In the C1 soups this p35 popped up:
`x = 21, y = 12, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e3bo\$b5o\$bo3bo\$2obob2o\$bo3bo2bo\$b5o\$3bo8bo5b2o\$7bo10bo\$5bo6bo7bo\$19b2o\$8bo\$6bo!`
https://catagolue.appspot.com/object/xp35_8u2b2u80gz01131904y0ay16iozy2201/b2ci3ai4c8s02ae3eijkq4iz5ar6i7e

The interesting part is the stable way to push the snowflake back, as illustrated there:
`x = 16, y = 30, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e\$4b2o4bo\$5bo\$3bo6bo\$3b3o\$5bo7\$10bo\$4b2o\$5bo4bo\$3bo5\$4bo\$6bo\$3bo\$10bo\$5bo\$3bo6bo2\$6bo\$4bo!`

The push-back takes 1 tick longer than for the standard reflector, allowing for these p35 and p36 oscillators:
`x = 16, y = 22, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7ebo\$3bo\$o14bo\$7bo5bo\$2bo10b2o\$o6bo2\$3bo\$bo5\$bo12bo\$3bo8bo\$o\$7bo7bo\$2bo10bo\$o6bo\$15bo\$3bo8bo\$bo12bo!`

It also allows for this dotty p35 G-gun:
`x = 19, y = 25, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e12bo3bo\$14bo2\$14bo4\$10bo7bo\$bo12bo\$3bo\$o\$7bo\$2bo\$o6bo2\$3bo\$bo\$10bo7bo\$14bo\$11bo5bo2\$14bo3\$12bo3bo!`

Not sure if it is of more use.

Edit1:
It also allows for these p31:
`x = 30, y = 30, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e2\$14bo2bo\$11bo7bo\$15bo\$12bo5bo4\$14bobo\$4bo21bo\$6bo17bo\$3bo\$10bo9bo6bo\$5bo19bo\$3bo6bo9bo\$27bo\$6bo17bo\$4bo21bo\$14bobo4\$12bo5bo\$15bo\$11bo7bo\$13bo2bo!`
`x = 43, y = 25, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e11bo2bo14bo2bo\$8bo7bo9bo7bo\$12bo17bo\$9bo5bo11bo5bo3\$20bo\$11bobo8bo6bobo\$bo19b2o18bo\$3bo35bo\$o\$7bo9bo7bo9bo6bo\$2bo37bo\$o6bo9bo7bo9bo\$42bo\$3bo35bo\$bo19b2o18bo\$11bobo8bo6bobo\$20bo3\$9bo5bo11bo5bo\$12bo17bo\$8bo7bo9bo7bo\$10bo2bo14bo2bo!`

but I can't be used as a gun:
`x = 25, y = 25, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e11bo2bo\$8bo7bo\$12bo\$9bo5bo5\$bo9bobo\$3bo\$o\$8bo7bo\$2bo\$o7bo7bo2\$3bo\$bo9bobo3\$23bo\$22b3o\$9bo5bo6bobo\$12bo10bo\$8bo7bo\$10bo2bo!`

2718281828

Posts: 681
Joined: August 8th, 2017, 5:38 pm

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

The new catalyst supports this pi->Snowflake:
`x = 9, y = 9, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7ebo\$3bo\$o\$6b3o\$2bo5bo\$o5b3o2\$3bo\$bo!`

Also, I want to draw attention to this:
danny wrote:I'm not sure if this is known, but a weird 'sqrtgun'-type thing:
`x = 46, y = 32, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e3bo21bo\$b5o19b3o\$bo3bo21bo\$2obob2o14bobobob2o\$bo3bo21bo\$b5o19b3o\$3bo21bo5\$18bo21bo\$16b5o19b3o\$16bo3bo8b3o10bo\$15b2obob2o7bobo4bobobob2o\$16bo3bo21bo\$16b5o19b3o\$18bo21bo3\$6bo6b2o\$5b3o4bob2o13bobo\$6bo6b2o3\$16bo25bo\$14b5o9b2o10b5o\$14bo3bo8b2obo9bo3bo\$13b2obob2o8b2o9b2obob2o\$14bo3bo21bo3bo\$14b5o21b5o\$16bo25bo!`

Do you think anything useful could come out of it? maybe some spartan (basically made of snowflake and dots haha) glider duplicators could be placed on the side and be used to push the snowflakes forward
she/they // Please stop using my full name. Refer to me as dani.

"I'm always on duty, even when I'm off duty." -Cody Kolodziejzyk, Ph.D.

danny

Posts: 944
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

danny wrote:Does this work?
`x = 41, y = 85, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e3bo29bo\$b5o25b5o\$bo3bo25bo3bo\$2obob2o23b2obob2o\$bo3bo25bo3bo\$b5o25b5o\$3bo29bo6\$2b3o27b3o\$2bobo27bobo19\$3bo34b3o\$2b3o33bobo\$2bobo\$3bo6\$33bo\$32b3o\$32bobo\$33bo10\$8b3o\$8bobo12\$2b3o\$2bobo\$33b3o\$33bobo4\$31b3o\$31bobo3\$25b3o\$25bobo4\$24b3o\$24bobo!`

Unfortunately it doesn't. The issue is that your pattern has Gs in several different lanes, whereas if you look at my previous pattern the Gs are only in two lanes. Luckily, I found a different way of creating a construction arm with only two channels (I also found a 3 channel way which may be useful if this one doesn't work). Here it is:

`x = 188, y = 1001, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e27bo\$29bo\$28b2o3\$28bo\$26b5o\$26bo3bo\$25b2obob2o\$26bo3bo\$26b5o\$28bo15\$187bo67\$8bo\$6b5o\$o5bo3bo\$2bo2b2obob2o\$b2o3bo3bo\$6b5o\$8bo20bo\$27b5o130bo\$27bo3bo132bo\$22b2o2b2obob2o130b2o\$23bo3bo3bo\$21bo5b5o\$29bo134bo\$162b5o\$43b2o3b2o112bo3bo\$28b2o13bo2bo2bo111b2obob2o\$28bo13b2ob3ob2o111bo3bo12bo\$30bo131b5o\$164bo5bo\$168b5o\$29bo16bo121bo3bo\$21bo5b5o135b2obob2o2b2o\$23bo3bo3bo136bo3bo3bo\$22b2o2b2obob2o13bo121b5o5bo\$27bo3bo138bo\$27b5o\$29bo5bo101bo\$33b5o101bo\$33bo3bo100b2o\$32b2obob2o\$33bo3bo\$33b5o101bo\$35bo101b5o\$20b2o3b2o110bo3bo\$20bo2bo2bo109b2obob2o\$19b2o5b2o7b2o100bo3bo12bo\$23bo11bo101b5o\$22bobo12bo101bo5bo\$143b5o\$8bo14bo119bo3bo\$o5b5o131b2obob2o2b2o\$2bo3bo3bo132bo3bo3bo\$b2o2b2obob2o11bo119b5o5bo\$6bo3bo134bo\$6b5o\$8bo5bo\$12b5o112bo\$12bo3bo114bo\$11b2obob2o112b2o\$12bo3bo\$12b5o\$14bo115bo\$128b5o\$128bo3bo\$14b2o111b2obob2o\$14bo113bo3bo\$16bo111b5o\$130bo14bo\$143b5o\$143bo3bo3b2o\$142b2obob2o2bo\$143bo3bo5bo\$143b5o\$145bo6\$142bo\$140bo\$140b2o3\$141bo\$139b5o\$139bo3bo\$138b2obob2o\$139bo3bo\$139b5o\$124bo16bo\$122b5o\$117b2o3bo3bo\$118bo2b2obob2o\$116bo5bo3bo\$122b5o\$124bo11\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo26\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo96\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo32\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo! [[ STEP 2 T 80 ZOOM 2 Y -400 T 2500 PAUSE 1 ZOOM -2 Y 100 ]] `

The circuitry can probably be simplified by someone more experienced in snowflakes. However, the construction arm is not quite universal because it can only release Gs on one out of three lanes. This can be fixed by replacing the p3 splitters with p1 splitters, but I didn't know where to find them.

So...
@Snowflakes experts, what are some examples of p1 splitters (hopefully they have low repeat time)
@dvgrn and other macro-spaceship engineers, can this design work or have I missed something. Or should I find an easier rule.

Goldtiger997

Posts: 512
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Goldtiger997 wrote:@Snowflakes experts, what are some examples of p1 splitters (hopefully they have low repeat time)

Well, you might want to look at toroidalet's r.t.-68 splitter:

`x = 117, y = 62, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e13bo\$15bo\$14b2o3\$14bo\$12b5o\$12bo3bo\$11b2obob2o\$12bo3bo\$12b5o\$14bo23bo\$36b5o\$36bo3bo5bo\$35b2obob2o2bo\$36bo3bo3b2o\$36b5o\$38bo3\$48b2o32b2o\$48bo33bo\$48b2o32b2o2\$32bo\$30b5o46bo\$30bo3bo44b5o22bo\$29b2obob2o37bo5bo3bo5bo14bo\$30bo3bo36b5o2b2obob2o2b5o12b2o\$30b5o30bo5bo3bo3bo3bo3bo3bo5bo\$32bo30b5o2b2obob2o2b5o2b2obob2o2b5o\$57bo5bo3bo3bo3bo5bo5bo3bo3bo3bo5bo7bo\$34bo20b5o2b2obob2o2b5o11b5o2b2obob2o2b5o3bo\$26bo5b5o12bo5bo3bo3bo3bo5bo15bo5bo3bo3bo3bo3b2o\$28bo3bo3bo10b5o2b2obob2o2b5o27b5o2b2obob2o\$27b2o2b2obob2o3bo5bo3bo3bo3bo5bo31bo5bo3bo\$32bo3bo2b5o2b2obob2o2b5o43b5o\$32b5o2bo3bo3bo3bo5bo47bo\$34bo3b2obob2o2b5o56bo\$39bo3bo5bo56b5o5bo\$39b5o62bo3bo3bo\$32b2o7bo59bo3b2obob2o2b2o\$33bo65b5o2bo3bo\$31bo61bo5bo3bo2b5o\$68bo22b5o2b2obob2o3bo\$70bo14bo5bo3bo3bo3bo\$69b2o12b5o2b2obob2o2b5o\$77bo5bo3bo3bo3bo5bo7b2o\$75b5o2b2obob2o2b5o13bo\$61bo7bo5bo3bo3bo3bo5bo17bo\$63bo3b5o2b2obob2o2b5o\$62b2o3bo3bo3bo3bo5bo\$66b2obob2o2b5o\$67bo3bo5bo\$67b5o\$8bo60bo\$6b5o\$o5bo3bo\$2bo2b2obob2o\$b2o3bo3bo\$6b5o\$8bo!`

However, it does (sadly) have a lot of snowflakes in it, which may be a bit difficult.

Otherwise, you may want to take a look at searching 'splitter' in this thread. I found quite a few snowflake-signal-splitters, as well as other G->2R/2G's, but I don't know how useful those would be.
she/they // Please stop using my full name. Refer to me as dani.

"I'm always on duty, even when I'm off duty." -Cody Kolodziejzyk, Ph.D.

danny

Posts: 944
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

I accidentally made a p67 gun:
`x = 16, y = 13, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e7bo\$2bo2bo3b2o\$o4b2o2bo2bo\$2o9b2o2\$8b2o\$9bo5bo\$8b2o2\$2o9b2o\$o4b2o2bo2bo\$2bo2bo3b2o\$7bo!`

This is the smallest gun at p67, if I recall correctly, unless there's some smaller adjustable gun...which is very likely.

EDIT: Likely a c/18 partial candidate:
`x = 15, y = 7, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e11bo\$9b5o\$9bo3bo\$o2bo2bob2obob2o\$9bo3bo\$9b5o\$11bo!#C [[ STOP 18 ]]`

I'm surprised none of these reactions have yielded puffers yet...but I guess that's my fault for letting the rule die a little over the last couple months ^^;;

EDIT2: Wow, this might be even closer:
`x = 14, y = 7, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e10bo\$8b5o\$o7bo3bo\$2bo2bob2obob2o\$8bo3bo\$8b5o\$10bo!`
she/they // Please stop using my full name. Refer to me as dani.

"I'm always on duty, even when I'm off duty." -Cody Kolodziejzyk, Ph.D.

danny

Posts: 944
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

danny wrote:I accidentally made a p67 gun:
`x = 16, y = 13, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e7bo\$2bo2bo3b2o\$o4b2o2bo2bo\$2o9b2o2\$8b2o\$9bo5bo\$8b2o2\$2o9b2o\$o4b2o2bo2bo\$2bo2bo3b2o\$7bo!`

This is the smallest gun at p67, if I recall correctly, unless there's some smaller adjustable gun...which is very likely.

This part close to a stable splitter:
`x = 19, y = 12, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7eo\$3o2b2o\$2bo2bo2bo\$7b2o9bo\$16bo\$4b2o10b2o\$5bo5bo\$4b2o2\$7b2o\$5bo2bo\$5b2o!`

Parts of it can be used to build a reflector
`x = 146, y = 36, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e\$130bo\$64bo62bo4bo\$64b3o2b2o58bob2o\$66bo2bo2bo55b2o\$71b2o9bo\$80bo\$b2o65b2o10b2o25b2o18b2o13bo\$ob2o65bo5bo32bo19bo11bo\$b2o65b2o37b2o18b2o5bo5b2o2\$71b2o\$69bo2bo59b2o3b2o\$69b2o61bo4bo\$84bo49bo4bo\$82b5o\$82bo3bo\$81b2obob2o2b2o\$82bo3bo3bo\$82b5o5bo\$64bo13bo5bo\$62b5o9b5o\$62bo3bo9bo3bo\$61b2obob2o7b2obob2o\$62bo3bo9bo3bo\$62b5o9b5o\$64bo13bo3\$63b2o13b2o\$64bo13bo\$62bo17bo!`

but it is useless, as toroidalet 2-R splitter has a smaller repeat time of 110:
`x = 73, y = 14, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e27bo\$19bo2b2o5bo\$12b2o3bo4bo5b2o\$10bo2bo3b2o2b2o\$10b2o2\$b2o10b2o56b2o\$2bo4bo5bo57bo\$o12b2o56b2o2\$10b2o\$10bo2bo3b2o4b2o\$12b2o3bo5bo\$19bo5bo!`

2718281828

Posts: 681
Joined: August 8th, 2017, 5:38 pm

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

danny wrote:I accidentally made a p67 gun:
`x = 16, y = 13, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e7bo\$2bo2bo3b2o\$o4b2o2bo2bo\$2o9b2o2\$8b2o\$9bo5bo\$8b2o2\$2o9b2o\$o4b2o2bo2bo\$2bo2bo3b2o\$7bo!`

This is the smallest gun at p67, if I recall correctly, unless there's some smaller adjustable gun...which is very likely

reduced it slightly (bounding box by 2 in x-direction):
`x = 16, y = 13, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e7bo\$5bo3b2o\$bo3b2o2bo2bo\$11b2o\$o\$8b2o\$9bo5bo\$8b2o2\$2o9b2o\$o4b2o2bo2bo\$2bo2bo3b2o\$7bo!`
I don't think that there is a smaller p67 gun based on adjustable guns. This one is already quite small.

2718281828

Posts: 681
Joined: August 8th, 2017, 5:38 pm

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

A new family of adjustable R-guns (p4n, n>8), here p36, p40, p44, p48:
`x = 39, y = 137, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e9\$25bo\$27bo\$22bo3b2o\$24bo6bo\$23b2o8bo4\$10b2o\$11bo4b3o8bobo\$9bo2\$28bo\$21b2o4b3o\$22bo4bobo\$20bo7bo5\$25bo\$27bo2bo\$24b3ob3o\$25bo2bo\$23bo3b2o9\$25bo\$27bo\$22bo3b2o\$24bo6bo\$23b2o8bo4\$9b2o\$10bo4b3o9bobo\$8bo2\$28bo\$27b3o\$27bobo\$28bo6\$25bo\$27bo2bo\$24b3ob3o\$25bo2bo\$23bo3b2o4\$25bo\$27bo\$22bo3b2o\$24bo6bo\$23b2o8bo4\$8b2o\$9bo4b3o10bobo\$7bo2\$28bo\$19b2o6b3o\$20bo6bobo\$18bo9bo7\$25bo\$27bo2bo\$24b3ob3o\$25bo2bo\$23bo3b2o11\$25bo\$27bo\$22bo3b2o\$24bo6bo\$23b2o8bo4\$7b2o\$8bo4b3o11bobo\$6bo2\$28bo\$27b3o\$27bobo\$28bo8\$25bo\$27bo2bo\$24b3ob3o\$25bo2bo\$23bo3b2o!`

Other periods might be possible as well using other 180° R-to-G reflectors.

2718281828

Posts: 681
Joined: August 8th, 2017, 5:38 pm

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Don't worry about stable splitters; I came to the fairly obvious realization that the snowflakes could be pushed before being fired off. So here's a demonstration. It's too large to run in LifeViewer, so it should be run in Golly at 10^2, zoomed in at the top:

`x = 188, y = 21179, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e27bo\$29bo\$28b2o3\$28bo\$26b5o\$26bo3bo\$25b2obob2o\$26bo3bo\$26b5o\$28bo14\$187bo68\$8bo\$6b5o\$o5bo3bo\$2bo2b2obob2o\$b2o3bo3bo\$6b5o\$8bo20bo\$27b5o130bo\$27bo3bo132bo\$22b2o2b2obob2o130b2o\$23bo3bo3bo\$21bo5b5o\$29bo134bo\$162b5o\$43b2o3b2o112bo3bo\$28b2o13bo2bo2bo111b2obob2o\$28bo13b2ob3ob2o111bo3bo12bo\$30bo131b5o\$164bo5bo\$168b5o\$29bo16bo121bo3bo\$21bo5b5o135b2obob2o2b2o\$23bo3bo3bo136bo3bo3bo\$22b2o2b2obob2o13bo121b5o5bo\$27bo3bo138bo\$27b5o\$29bo5bo101bo\$33b5o101bo\$33bo3bo100b2o\$32b2obob2o\$33bo3bo\$33b5o101bo\$35bo101b5o\$20b2o3b2o110bo3bo\$20bo2bo2bo109b2obob2o\$19b2o5b2o7b2o100bo3bo12bo\$23bo11bo101b5o\$22bobo12bo101bo5bo\$143b5o\$8bo14bo119bo3bo\$o5b5o131b2obob2o2b2o\$2bo3bo3bo132bo3bo3bo\$b2o2b2obob2o11bo119b5o5bo\$6bo3bo134bo\$6b5o\$8bo5bo\$12b5o112bo\$12bo3bo114bo\$11b2obob2o112b2o\$12bo3bo\$12b5o\$14bo115bo\$128b5o\$128bo3bo\$14b2o111b2obob2o\$14bo113bo3bo\$16bo111b5o\$130bo14bo\$143b5o\$143bo3bo3b2o\$142b2obob2o2bo\$143bo3bo5bo\$143b5o\$145bo6\$142bo\$140bo\$140b2o3\$141bo\$139b5o\$139bo3bo\$138b2obob2o\$139bo3bo\$139b5o\$124bo16bo\$122b5o\$117b2o3bo3bo\$118bo2b2obob2o\$116bo5bo3bo\$122b5o\$124bo11\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo26\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo36\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo38\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo11\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo108\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo38\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo11\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo32\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo60\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo32\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo60\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo38\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo32\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo44\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo44\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo44\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo44\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo44\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo44\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo44\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo44\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo50\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo56\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo56\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo56\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo56\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo56\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo11\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo56\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo68\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo68\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo68\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo68\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo68\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo68\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo68\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo68\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo68\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo11\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo32\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo44\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo42\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo38\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo42\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo32\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo48\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo44\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo42\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo44\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo42\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo50\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo42\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo56\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo42\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo38\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo11\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo108\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo50\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo42\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo56\$22b3o\$22bobo38\$22b3o\$22bobo21\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo15\$23bo\$22b3o\$22bobo\$23bo20\$22b3o\$22bobo20\$22b3o\$22bobo8\$45b3o\$45bobo14\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo42\$23bo\$22b3o\$22bobo\$23bo17\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo20\$22b3o\$22bobo38\$22b3o\$22bobo38\$22b3o\$22bobo20\$22b3o\$22bobo24\$23bo\$22b3o\$22bobo\$23bo11\$45b3o\$45bobo6\$23bo\$22b3o\$22bobo\$23bo18\$23bo\$22b3o\$22bobo\$23bo6\$46bo\$45b3o\$45bobo\$46bo!`

Here's the slow salvo that I used. It's very likely suboptimal but it demonstrates some useful reactions:

`x = 64, y = 292, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e2\$17bo3\$17b3o\$17bobo7\$22b3o\$22bobo6\$22b3o\$22bobo5\$20b3o\$20bobo5\$20b3o\$20bobo5\$21b3o\$21bobo12\$20b3o\$20bobo3\$26b3o\$26bobo5\$26b3o\$26bobo5\$26b3o\$26bobo5\$26b3o\$26bobo5\$26b3o\$26bobo5\$26b3o\$26bobo5\$26b3o\$26bobo5\$26b3o\$26bobo5\$27b3o\$27bobo6\$32b3o\$32bobo6\$32b3o\$32bobo5\$30b3o\$30bobo5\$30b3o\$30bobo5\$31b3o\$31bobo12\$30b3o\$30bobo3\$36b3o\$36bobo5\$36b3o\$36bobo5\$36b3o\$36bobo5\$36b3o\$36bobo5\$36b3o\$36bobo5\$36b3o\$36bobo5\$36b3o\$36bobo5\$36b3o\$36bobo5\$37b3o\$37bobo2\$20b3o\$20bobo4\$24b3o\$24bobo4\$23b3o\$23bobo10\$20b3o\$20bobo2\$26b3o\$26bobo5\$26b3o\$26bobo5\$27b3o\$27bobo8\$32b3o\$32bobo2\$22b3o\$22bobo4\$27b3o\$27bobo11\$30b3o\$30bobo3\$23b3o\$23bobo!`

Here are the steps that I think need to be taken to construct a geminoid spaceship in Snowflakes:

1. Come up with a better method of duplicating the two widely separated streams and turning one half into two closely packed streams. Something that I think should be done but haven't tried yet is moving the snowflake target round 90 degrees.
2. Find slow salvo recipes for the creation of the above mentioned pattern.
3. Find slow salvo recipes for the destruction of the above mentioned pattern.
4. Create a script to convert those slow salvos into the two-streamed form. (I actually created the demonstration pattern by hand, but these salvos will be much larger)
5. Put everything together.
6. Celebrate.

Goldtiger997

Posts: 512
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

danny wrote:EDIT: Likely a c/18 partial candidate:

There's also this C/18 extendable part:
`x = 7, y = 154, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e3bo\$b5o\$bo3bo\$2obob2o\$bo3bo\$b5o\$3bo2\$3bo5\$2b3o\$2bobo\$2b3o4\$3bo5\$3bo\$3bo\$3bo4\$3bo4\$3bo\$b2ob2o\$bobobo\$2obob2o\$3bo3\$3bo4\$3bo\$b5o\$bo3bo\$2obob2o\$3bo\$2b3o2\$3bo\$2o3b2o\$bo3bo2\$3bo\$b5o\$bo3bo\$2obob2o\$bo3bo\$b5o3\$2b3o\$3bo2\$3bo\$b5o\$bo3bo\$2obob2o\$bo3bo\$b5o\$3bo2\$3bo5\$2b3o\$2bobo\$2b3o4\$3bo5\$3bo\$3bo\$3bo4\$3bo4\$3bo\$b2ob2o\$bobobo\$2obob2o\$3bo3\$3bo4\$3bo\$b5o\$bo3bo\$2obob2o\$3bo\$2b3o2\$3bo\$2o3b2o\$bo3bo2\$3bo\$b5o\$bo3bo\$2obob2o\$bo3bo\$b5o3\$2b3o\$3bo2\$3bo\$b5o\$bo3bo\$2obob2o\$bo3bo\$b5o\$3bo2\$3bo5\$2b3o\$2bobo\$2b3o4\$3bo!`

I haven't found a completion, but I am trying with ntqfind.
Things to work on:
- Find a (7,1)c/8 ship in a Non-totalistic rule (someone please search the rules)
- Find a C/10 in JustFriends
- Find a C/10 in Day and Night
AforAmpere

Posts: 997
Joined: July 1st, 2016, 3:58 pm

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

2718281828 wrote:reduced it slightly (bounding box by 2 in x-direction)

Sorry:
`x = 16, y = 13, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e7bo\$5bo3b2o\$5b2o2bo2bo\$11b2o\$o\$8b2o\$9bo5bo\$8b2o2\$2o9b2o\$o4b2o2bo2bo\$2bo2bo3b2o\$7bo!`

Also, awesome work, goldtiger! Here's, from all directions, slow destructions of each different part (the X is impossible):
`x = 128, y = 77, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e86b2o\$86bo19b2o\$86b2o18bo\$106b2o\$76b2o\$76bo19b2o\$76b2o18bo\$36b2o58b2o\$b2o3b2o28bo16bo\$bo2bo2bo8b2o18b2o13b5o\$2ob3ob2o7bo34bo3bo\$16b2o32b2obob2o\$51bo3bo70b2o\$26b2o23b5o70bo\$4bo21bo26bo62b2o8b2o\$26b2o38b2o48bo\$66bo49b2o\$4bo61b2o7\$16b2o\$16bo\$16b2o2\$2bo33b2o13b2o\$3o33bo15bo\$o35b2o12bo\$2bo\$b2o3bo2bo56b2o\$2bo63bo\$o45b2o18b2o\$3o43bo\$2bo43b2o2\$26b2o22b2o\$26bo23bo15b2o\$26b2o24bo13bo\$66b2o3\$26b2o\$26bo\$26b2o2\$4bo3\$4bo2\$36b2o\$16b2o18bo\$2ob3ob2o7bo19b2o\$bo2bo2bo8b2o28b2o\$b2o3b2o38bo\$46b2o10\$7bo\$7b3o\$9bo2bo3bo\$7bo5bobo\$o2bo3b2o5bo\$7bo5bobo\$9bo2bo3bo\$7b3o\$7bo!`

Here's a slow salvo for a Z, which may be less costly than building half-carriers (this works in two orientations too):
`x = 70, y = 14, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e16b2o\$15b2obo\$16b2o49b2o\$66b2obo\$67b2o\$10b2o\$10bo\$o9b2o2\$43b2o\$32b2o4b2o3bo17b2o\$21b2o4b2o3bo4b2obo2b2o16bo\$21bo4b2obo2b2o4b2o21b2o\$21b2o4b2o!`

It's still insufficient for two other orientations, hmm
she/they // Please stop using my full name. Refer to me as dani.

"I'm always on duty, even when I'm off duty." -Cody Kolodziejzyk, Ph.D.

danny

Posts: 944
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

danny wrote:Here's a slow salvo for a Z, which may be less costly than building half-carriers (this works in two orientations too):
`x = 70, y = 14, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e16b2o\$15b2obo\$16b2o49b2o\$66b2obo\$67b2o\$10b2o\$10bo\$o9b2o2\$43b2o\$32b2o4b2o3bo17b2o\$21b2o4b2o3bo4b2obo2b2o16bo\$21bo4b2obo2b2o4b2o21b2o\$21b2o4b2o!`

It's still insufficient for two other orientations, hmm

Some slow salvos for still lifes which can push back a snowflake (like half-carrier and Z)
`x = 140, y = 23, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e4\$135b2o\$79b2o54bo\$79bo55b2o\$19b2o58b2o44b2o\$18b2obo47b2o54bo\$19b2o48bo55b2o\$69b2o41bo3b2o14b2o\$56bo3b2o14b2o38bo15bo\$13b2o45bo15bo39b2o14b2o\$13bo46b2o14b2o\$3bo9b2o3\$35b2o4b2o43b2o\$24b2o4b2o3bo4b2obo42bo\$24bo4b2obo2b2o4b2o43b2o\$24b2o4b2o!`

2718281828

Posts: 681
Joined: August 8th, 2017, 5:38 pm

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Perhaps I spoke too soon with my X, here's an extremely inefficient way to destroy one of the Z's, which makes it quite easy to destroy the rest:
`x = 130, y = 27, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e48b2o\$49bo\$48b2o3\$59b2o\$60bo\$59b2o2\$2o14b2o14b2o\$bo15bo15bo\$2o14b2o14b2o32b2o\$8b2o14b2o14b2o25bo\$9bo15bo15bo24b2o\$8b2o14b2o14b2o40b2o14b2o8b2o\$83bo15bo9bo4b2o\$82b2o14b2o8b2o5bo\$74b2o14b2o22b2o\$75bo15bo30bo\$74b2o14b2o28b3o\$120bo\$122bo\$121b2o3bo2bo\$122bo\$120bo\$120b3o\$122bo!`

Very nice work on the salvos, ee9, I didn't quite notice that those still lifes could serve that purpose, it's good to see them doing such.
she/they // Please stop using my full name. Refer to me as dani.

"I'm always on duty, even when I'm off duty." -Cody Kolodziejzyk, Ph.D.

danny

Posts: 944
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Thanks for the salvos, danny and 2718281828. However, most of those salvos are not slow salvos. i.e, the gaps between successive spaceships cannot always be as large as desired. Slow salvos are required for this project, but there should be some complex ways of synchronising Gs if need be. Here is a final step for a slow salvo synthesis of the p3 oscillator used in the splitter:

`x = 55, y = 132, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e27bo\$25b5o\$25bo3bo\$24b2obob2o\$25bo3bo\$25b5o\$9bo17bo\$7b5o\$7bo3bo\$6b2obob2o\$7bo3bo\$7b5o\$9bo4\$22bo9bo\$20b5o5b5o\$20bo3bo2bo2bo3bo\$19b2obob2o3b2obob2o\$20bo3bo5bo3bo\$20b5o5b5o\$3bo18bo9bo18bo\$b5o43b5o\$bo3bo43bo3bo\$2obob2o41b2obob2o\$bo3bo10b3o30bo3bo\$b5o10bobo30b5o\$3bo32b3o12bo\$36bobo4\$16b3o\$16bobo\$36b3o\$36bobo3\$18b3o\$18bobo\$34b3o\$34bobo3\$18b3o\$18bobo\$34b3o\$34bobo3\$17b3o\$17bobo\$35b3o\$35bobo7\$9b3o\$9bobo\$43b3o\$43bobo\$15b3o\$15bobo\$37b3o\$37bobo3\$15b3o\$15bobo\$37b3o\$37bobo3\$15b3o\$15bobo\$37b3o\$37bobo3\$15b3o\$15bobo\$37b3o\$37bobo3\$15b3o\$15bobo\$37b3o\$37bobo3\$15b3o\$15bobo\$37b3o\$37bobo3\$15b3o\$15bobo\$37b3o\$37bobo\$24b3o\$24bobo\$28b3o\$28bobo\$8b3o\$8bobo\$44b3o\$44bobo18\$14b3o\$14bobo!`

It should be easier from other directions. Perhaps in a redesign (which should be done before too much more slow salvo work is done) those spitters will face a different way

Goldtiger997

Posts: 512
Joined: June 21st, 2016, 8:00 am
Location: 11.329903°N 142.199305°E

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

Ah, sorry, for some reason I just assumed that sideways G's could always be annhilated 'slowly', but alas, I was wrong. Here's my most efficient snowflake destruction (a.k.a. not very good XD):
`x = 81, y = 21, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e32b2o\$31bob2o\$32b2o\$36b2o20b2o\$37bo21bo4b2o\$36b2o20b2o5bo\$64b2o\$77bo\$75b5o\$10b2o4b2o3b2o4b2o22b2o22bo3bo\$9bob2o4bo2bob2o4bo23bo21b2obob2o\$10b2o4b2o3b2o4b2o22b2o22bo3bo\$2o73b5o\$bo75bo\$2o62b2o\$36b2o20b2o5bo\$37bo21bo4b2o\$36b2o20b2o\$32b2o\$31bob2o\$32b2o!`

A fun reaction based off of it:
`x = 50, y = 11, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e2o13b2o10b2o\$bo14bo11bo4b2o\$2o13b2o10b2o5bo\$6b2o25b2o\$7bo38bo\$6b2o36b5o\$20b2o22bo3bo\$21bo21b2obob2o\$20b2o22bo3bo\$44b5o\$46bo!`
she/they // Please stop using my full name. Refer to me as dani.

"I'm always on duty, even when I'm off duty." -Cody Kolodziejzyk, Ph.D.

danny

Posts: 944
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

danny wrote:Ah, sorry, for some reason I just assumed that sideways G's could always be annhilated 'slowly', but alas, I was wrong. Here's my most efficient snowflake destruction (a.k.a. not very good XD):
`RLE`

Two way for destroying a snowflake using a 6G slow salvo:
`x = 75, y = 42, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e6\$52b2o5b2o\$52bo6bo\$19b2o10b2o19b2o5b2o5b2o\$6bo12bo11bo34bo\$4b5o10b2o10b2o7b2o24b2o\$4bo3bo31bo\$3b2obob2o30b2o\$4bo3bo\$4b5o\$6bo12\$19b2o10b2o18b2o4b2o4b2o\$6bo12bo11bo19bo5bo5bo\$4b5o10b2o10b2o18b2o4b2o4b2o\$4bo3bo\$3b2obob2o31b2o\$4bo3bo32bo\$4b5o32b2o\$6bo!`

And a 3G way for a getting a front-snowflake-pushback still life (above I used 4G):
`x = 45, y = 16, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e4\$24b2o6b2o\$6bo17bo7bo\$4b5o15b2o6b2o\$4bo3bo32b2o\$3b2obob2o31bo\$4bo3bo32b2o\$4b5o\$6bo!`

Edit1:
Slightly better snowflake destruction (5G):
`x = 36, y = 15, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e3\$10b2o4b2o\$4bo5bo5bo\$2b5o3b2o4b2o\$2bo3bo16b2o\$b2obob2o15bo\$2bo3bo16b2o7b2o\$2b5o11b2o12bo\$4bo13bo13b2o\$18b2o!`

10G for a side- and back-snowflake-pushback (3/4 snow-flake) still life and a Z out of it:
`x = 134, y = 31, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e3\$52b2o\$52bo\$19b2o10b2o19b2o36b2o\$6bo12bo11bo26b2o4b2o4b2o4b2o4b2o6bo\$4b5o10b2o10b2o7b2o16bo5bo5bo5bo5bo7b2o\$4bo3bo31bo17b2o4b2o4b2o4b2o4b2o\$3b2obob2o30b2o\$4bo3bo\$4b5o\$6bo4\$127b2o\$52b2o73bo\$52bo74b2o\$19b2o10b2o19b2o36b2o12b2o\$6bo12bo11bo26b2o4b2o4b2o4b2o4b2o6bo13bo\$4b5o10b2o10b2o7b2o16bo5bo5bo5bo5bo7b2o12b2o\$4bo3bo31bo17b2o4b2o4b2o4b2o4b2o\$3b2obob2o30b2o\$4bo3bo\$4b5o\$6bo!`

Similarly, the sideways hooked snowflake:
`x = 49, y = 13, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e\$25b2o5b2o5b2o5b2o\$10b2o13bo6bo6bo6bo\$10bo14b2o5b2o5b2o5b2o\$10b2o6b2o\$5bo12bo\$3b5o10b2o\$3bo3bo\$2b2obob2o\$3bo3bo\$3b5o\$5bo!`

And not sure if it is relevant but 4G for a snowflake pushback (without sending a G back) and 6G for a side-way push:
`x = 29, y = 12, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e2\$10b2o4b2o\$4bo5bo5bo8b2o\$2b5o3b2o4b2o7bo\$2bo3bo18b2o\$b2obob2o\$2bo3bo\$2b5o11b2o\$4bo13bo\$18b2o!`
`x = 60, y = 20, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e5\$5bo\$3b5o\$3bo3bo\$2b2obob2o\$3bo3bo\$3b5o10b2o\$5bo12bo38b2o\$10b2o6b2o26b2o9bo\$10bo14b2o5b2o12bo10b2o\$10b2o13bo6bo13b2o\$25b2o5b2o!`

Edit2:
improved 3/4 snowflake (7G) and Z (9G) on both directions:
`x = 119, y = 70, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e6\$20b2o4b2o53b2o\$7bo12bo5bo54bo\$5b5o10b2o4b2o53b2o\$5bo3bo31b2o\$4b2obob2o22b2o6bo\$5bo3bo23bo7b2o9b2o6b2o\$5b5o23b2o17bo7bo10b2o\$7bo44b2o6b2o9bo\$71b2o12\$20b2o4b2o53b2o\$7bo12bo5bo54bo\$5b5o10b2o4b2o53b2o\$5bo3bo31b2o\$4b2obob2o22b2o6bo\$5bo3bo23bo7b2o9b2o6b2o\$5b5o23b2o17bo7bo10b2o18b2o\$7bo44b2o6b2o9bo19bo\$71b2o18b2o\$113b2o\$113bo\$113b2o9\$20b2o4b2o53b2o\$7bo12bo5bo54bo\$5b5o10b2o4b2o53b2o\$5bo3bo31b2o\$4b2obob2o22b2o6bo\$5bo3bo23bo7b2o9b2o6b2o\$5b5o23b2o17bo7bo10b2o\$7bo44b2o6b2o9bo\$71b2o4\$91b2o\$91bo\$91b2o2\$108b2o\$108bo\$108b2o!`

Edit3:
All 3 types of reflectors: 5G front, 13G sideways, 16 backwards:
`x = 149, y = 74, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e5\$18b2o6b2o\$10bo7bo7bo18b2o\$8b5o5b2o6b2o17bo12b2o\$8bo3bo22b2o8b2o11bo\$7b2obob2o21bo22b2o\$8bo3bo22b2o\$8b5o\$10bo11\$23b2o4b2o53b2o\$10bo12bo5bo54bo\$8b5o10b2o4b2o53b2o\$8bo3bo31b2o\$7b2obob2o22b2o6bo\$8bo3bo23bo7b2o9b2o6b2o\$8b5o23b2o17bo7bo10b2o\$10bo44b2o6b2o9bo\$74b2o4\$94b2o36b2o\$94bo18b2o4b2o11bo\$94b2o17bo5bo12b2o\$113b2o4b2o4\$110b2o\$110bo\$110b2o10\$98b2o5b2o5b2o5b2o\$83b2o13bo6bo6bo6bo\$83bo14b2o5b2o5b2o5b2o\$57b2o4b2o18b2o6b2o35b2o5b2o\$57bo5bo8b2o17bo36bo6bo6b2o\$19b2o36b2o4b2o7bo18b2o35b2o5b2o5bo\$10bo8bo14b2o36b2o68b2o\$8b5o6b2o13bo\$8bo3bo21b2o\$7b2obob2o51b2o67b2o\$8bo3bo52bo68bo\$8b5o52b2o67b2o\$10bo!`

Edit4:
for the p3 we don't have to use the complicated 2Z-version - we can use the 2-snowflakes version:
`x = 279, y = 37, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e5\$255b2o\$255bo\$255b2o\$243b2o\$243bo\$243b2o\$152b2o15b2o47b2o\$152bo16bo48bo\$152b2o6b2o7b2o47b2o\$160bo\$160b2o47b2o\$119b2o88bo\$59b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o16bo89b2o\$59bo5bo5bo5bo5bo5bo5bo5bo17b2o\$59b2o4b2o4b2o4b2o4b2o4b2o4b2o4b2o\$194b2o\$17b2o5b2o83b2o18b2o6b2o6b2o47bo68b2o11b2o\$17bo6bo17b2o65bo19bo7bo7bo34b2o12b2o67bo12bo\$17b2o5b2o4b2o4b2o4bo12b2o52b2o18b2o6b2o6b2o33bo82b2o11b2o\$8bo21bo5bo5b2o11bo124b2o\$6b5o19b2o4b2o17b2o\$6bo3bo\$5b2obob2o\$6bo3bo\$6b5o\$8bo!`

and its destruction:
`x = 117, y = 112, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e9\$7bo\$5b5o\$5bo3bo10b2o\$4b2obob2o9bo67b2o\$5bo3bo10b2o66bo5b2o\$5b5o78b2o4bo\$7bo86b2o\$11bo\$8bobo2bo\$11bo36b2o10b2o36b2o\$7bo27b2o11bo11bo37bo\$5b5o25bo12b2o10b2o7b2o27b2o\$5bo3bo25b2o32bo\$4b2obob2o58b2o10b2o6b2o\$5bo3bo71bo7bo\$5b5o71b2o6b2o\$7bo27\$23b2o\$11bo11bo\$23b2o\$10bobo55b2o10b2o18b2o4b2o4b2o\$6bo4bo4bo28b2o21bo11bo19bo5bo5bo\$4b5o5b5o26bo22b2o10b2o18b2o4b2o4b2o\$4bo3bo2bo2bo3bo26b2o13b2o\$3b2obob2o3b2obob2o40bo29b2o\$4bo3bo5bo3bo41b2o28bo\$4b5o5b5o71b2o\$6bo9bo18\$20b2o4b2o\$11bo8bo5bo\$9b5o6b2o4b2o\$9bo3bo80b2o\$8b2obob2o20b2o57bo\$9bo3bo21bo50b2o6b2o\$9b5o21b2o49bo\$11bo31b2o41b2o\$7bo35bo\$5bo2bobo32b2o\$7bo\$11bo\$9b5o\$9bo3bo64b2o\$8b2obob2o63bo\$9bo3bo64b2o\$9b5o\$11bo51b2o4b2o17b2o4b2o4b2o\$63bo5bo18bo5bo5bo\$63b2o4b2o17b2o4b2o4b2o!`

2718281828

Posts: 681
Joined: August 8th, 2017, 5:38 pm

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

On a vastly off topic, and a bit of a lighter one at that, 1xN constructions! Of course we have five cells for the glider bouncer, found by A for Awesome:
`x = 10, y = 1, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7eobob2o3bo!`

However, newly found by yours truly is this 8-cell almost-puffer predecessor:
`x = 18, y = 1, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7eobo2bobo2bo2bobobo!`

As well as this 6-cell R-flotilla predecessor:
`x = 14, y = 1, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7eo2bobo2bobo2bo!`

And a slightly longer lasting almost-puffer predecessor at 9 cells:
`x = 20, y = 1, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7eobobo2bobo2bo2bobobo!`

I have not found linear growth. Here is a curiosity that creates a pseudo still life:
`x = 20, y = 3, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e2obobo2\$14bobob2o!`

Here is a 1x146 methuselah, 28-cells, and 1039861 generations:
`x = 146, y = 1, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7eobob2o3bo8bobo6bobo6bobo6bobo6bobo6bobo6bobo6bobo6bobo6bobo4bo36bobo!`
she/they // Please stop using my full name. Refer to me as dani.

"I'm always on duty, even when I'm off duty." -Cody Kolodziejzyk, Ph.D.

danny

Posts: 944
Joined: October 27th, 2017, 3:43 pm
Location: New Jersey, USA

### Re: Snowflakes (B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e)

danny wrote:I have not found linear growth. Here is a curiosity that creates a pseudo still life:
`x = 20, y = 3, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e2obobo2\$14bobob2o!`

13 and 12 cell linear growth, from the catagolue:
`x = 103, y = 23, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e11\$10b4obobobo2bobo2bo2bobobo35bobo2bobo2bo2bobob2o3b2obo!`

And a gun-type 1-dimensional linear growth:
`x = 44, y = 1, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7e3obob4ob6obobobob5obob2o2bo2bobobo!`

And something related to this off-topic:
8cell linear growth:
`x = 14, y = 6, rule = B2ci3ai4c8/S02ae3eijkq4iz5ar6i7eo2bobo2bobo2bo5\$6bobo!`

2718281828

Posts: 681
Joined: August 8th, 2017, 5:38 pm

PreviousNext