x = 7, y = 42, rule = comb625
2.A.A$.5A$.A.A.A$A5.A2$.A3.A$A5.A$.5A$.A3.A$.A3.A$3.A10$3.A$3.A$3.A8$
.5A$A2.A2.A8$3.A$3.A$3.A!
n_states:3
neighborhood:Moore
symmetries:permute
var a={1,2}
var b={1,2}
var c={1,2}
var d={1,2}
var e={1,2}
var f={1,2}
var g={1,2}
var h={1,2}
var s={0,1,2}
var t={0,1,2}
var u={0,1,2}
var v={0,1,2}
var w={0,1,2}
var x={0,1,2}
var y={0,1,2}
var z={0,1,2}
0,1,1,1,0,0,0,0,0,2
1,1,1,1,1,1,1,1,1,2
1,1,1,1,1,0,0,0,0,2
1,1,1,1,0,0,0,0,0,2
1,0,0,0,0,0,0,0,0,2
0,2,2,0,0,0,0,0,0,1
2,2,2,2,2,2,2,0,0,1
2,2,2,2,2,2,0,0,0,1
2,2,2,2,0,0,0,0,0,1
1,s,t,u,v,w,x,y,z,0
2,s,t,u,v,w,x,y,z,0
x = 80, y = 201, rule = jelly
30.2A2.2A3.2A3.2A2.2A2$32.2A5.2A5.2A$10.2A3.2A2.2A3.2A12.A2.A12.2A3.
2A2.2A3.2A$31.A2.A10.A2.A$10.2A5.2A5.2A6.2A4.A2.A4.2A6.2A5.2A5.2A$9.A
2.A10.A2.A26.A2.A10.A2.A$16.A2.A14.A10.A14.A2.A$9.A2.A3.A2.A3.A2.A5.A
3.A6.A3.A5.A2.A3.A2.A3.A2.A$16.A2.A8.A5.A10.A5.A8.A2.A$16.A2.A8.A3.A
14.A3.A8.A2.A$17.2A11.A18.A11.2A$35.A8.A$35.A.A4.A.A$36.A6.A5$31.A16.
A$28.A22.A$28.A3.A14.A3.A$28.A4.A.A8.A.A4.A$19.2A10.A4.A6.A4.A10.2A$
29.A.A4.A6.A4.A.A$2A2.2A12.A2.A10.A2.A8.A2.A10.A2.A12.2A2.2A$21.2A.A
3.A6.A8.A6.A3.A.2A$2.2A15.2A7.A6.A8.A6.A7.2A15.2A$32.4A8.4A$28.A5.A.A
6.A.A5.A$29.2A3.A.A6.A.A3.2A$21.A2.2A.A24.A.2A2.A2$31.A.A12.A.A$27.A
3.A.A12.A.A3.A2$22.A34.A$23.A.A28.A.A6$24.A.A26.A.A$27.A24.A$24.A30.A
$25.A.A24.A.A$2.2A2.2A64.2A2.2A$30.A18.A$4.2A23.A20.A23.2A21$34.A10.A
$35.A8.A2$33.A12.A$23.A.A5.A3.A8.A3.A5.A.A$25.A5.A3.A8.A3.A5.A$25.A7.
A12.A7.A2$29.A2.A14.A2.A2$29.A2.A14.A2.A$12.2A2.2A44.2A2.2A2$14.2A48.
2A39$15.2A2.2A38.2A2.2A2$17.2A42.2A38$21.2A2.2A26.2A2.2A2$23.2A30.2A
34$27.2A2.2A14.2A2.2A2$29.2A18.2A!
#Rule = Cyclic 2
#Cycles = 5
#Cycle = 0
#States = 2
#Counts = 9
#SW 0,1
#NW 0,0,0,0,0
#NW 0,1,1,1,0
#NW 0,1,0,1,0
#NW 0,1,1,1,0
#NW 0,0,0,0,0
#RT 0,1,0,0,0,0,0,0,0
#RT 0,0,0,0,0,0,0,0,0
#RT 0,0,1,0,0,0,0,0,0
#RT 0,0,0,0,0,0,0,0,0
#RT 0,0,0,1,0,0,0,0,0
#RT 0,0,1,1,0,0,0,0,0
#RT 0,0,0,0,0,0,1,1,1
#RT 0,0,1,1,0,0,0,0,0
#RT 0,0,0,0,1,1,0,0,0
#RT 0,0,0,0,0,0,0,0,0
#Rows = 3
#Columns = 1
#L A2$A
preferably that all patterns are phoenixes
#Rule = Cyclic 2
#Cycles = 4
#Cycle = 0
#States = 2
#Counts = 9
#SW 0,1
#NW 0,0,0,0,0
#NW 0,1,1,1,0
#NW 0,1,0,1,0
#NW 0,1,1,1,0
#NW 0,0,0,0,0
#RT 0,1,0,0,0,0,0,0,1
#RT 0,0,1,0,0,0,0,0,0
#RT 0,0,1,0,0,0,0,1,0
#RT 0,0,1,0,0,0,0,0,0
#RT 0,0,0,1,0,0,1,0,0
#RT 0,0,0,0,0,0,0,1,0
#RT 0,0,0,0,1,1,0,0,0
#RT 0,1,0,1,0,0,0,0,0
#Rows = 54
#Columns = 142
#L 67.A6.A$68.A4.A2$65.A10.A7$58.A24.A2$55.A30.A$56.A28.A3$51.A38.A$52.
#L A36.A2$49.A42.A7$42.A56.A2$39.A62.A$40.A60.A3$2.A12.A110.A12.A$3.A10.
#L A112.A10.A2$A16.A106.A16.A15$A16.A106.A16.A2$3.A10.A112.A10.A$2.A12.
#L A110.A12.A
#Rule = Cyclic 2
#Cycles = 4
#Cycle = 0
#States = 2
#Counts = 9
#SW 0,1
#NW 0,0,0,0,0
#NW 0,1,1,1,0
#NW 0,1,0,1,0
#NW 0,1,1,1,0
#NW 0,0,0,0,0
#RT 0,1,0,0,0,0,0,0,1
#RT 0,0,0,1,1,0,0,0,0
#RT 0,0,1,0,0,0,0,1,0
#RT 0,0,0,0,0,0,0,0,1
#RT 0,0,0,1,0,0,1,0,0
#RT 0,0,1,1,0,0,1,0,0
#RT 0,0,0,0,1,1,0,0,0
#RT 0,0,0,0,1,0,0,0,0
#Rows = 40
#Columns = 40
#L 16.3A5.3A5.3A2$16.3A5.3A5.3A3$37.A.A$37.A.A$37.A.A6$37.A.A$37.A.A$37.
#L A.A$A.A$A.A$A.A3$37.A.A$37.A.A$37.A.A$A.A$A.A$A.A6$A.A$A.A$A.A3$5.3A
#L 5.3A5.3A2$5.3A5.3A5.3A
@RULE Phoenix
@TABLE
n_states:3
neighborhood:Moore
symmetries:permute
var a={0,1,2}
var b={a}
var c={a}
var d={a}
var e={a}
var f={a}
var g={a}
var h={a}
var i={1,2}
0,1,1,0,0,0,0,0,0,2
0,1,1,1,1,0,0,0,0,2
0,2,2,2,0,0,0,0,0,1
0,2,2,2,2,2,0,0,0,1
i,a,b,c,d,e,f,g,h,0
x = 5, y = 17, rule = Phoenix
2.B$2.B$5B$B.B.B3$B.B.B$5B2$5B$B.B.B5$B.B.B$2.B!
c0b0p0 wrote:There is no known glider in this rule.
x = 6, y = 3, rule = Phoenix
A3.2A$A$4.2A!
x = 131, y = 10, rule = Phoenix
115.A.A2.A3.A4.2A2$115.A.A2.A3.A4.2A5$A3.2A$A$4.2A!
x = 46, y = 9, rule = Phoenix
42.A$43.3A3$40.3A$43.A$A3.2A$A$4.2A!
x = 53, y = 47, rule = Fizzler
43.2A$44.2A$43.A.2A$42.3A.A$43.A3$42.A$49.2A$50.2A$49.A.2A$48.3A.A$
45.A3.A27$.2A$2.2A$.A.2A$3A.A$.A3$A!
@RULE Fizzler
B13/S3/K012
(Not to be confused with BSFKL notation)
@TABLE
n_states:3
neighborhood:Moore
symmetries:permute
var a = {0,1}
var b = {0,1}
var c = {0,1}
var d = {0,1}
var e = {0,1}
var f = {0,1}
var g = {0,1}
var A = {0,2}
var B = {0,2}
var C = {0,2}
var D = {0,2}
var E = {0,2}
var F = {0,2}
var G = {0,2}
var H = {0,2}
0,1,a,a,0,0,0,0,0,2
1,a,b,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,2
1,1,1,1,1,d,e,f,g,0
2,A,B,0,0,0,0,0,0,0
2,2,2,C,D,E,F,G,H,1
@RULE SafeFizzler
B13/S3 - B/S345678 - B/S2345678
@TABLE
n_states:4
neighborhood:Moore
symmetries:permute
var a = {0,1}
var b = {0,1}
var c = {0,1}
var d = {0,1}
var e = {0,1}
var f = {0,1}
var g = {0,1}
var A = {0,2}
var B = {0,2}
var C = {0,2}
var D = {0,2}
var E = {0,2}
var F = {0,2}
var G = {0,2}
var H = {0,2}
var I = {0,3}
var J = {0,3}
var K = {0,3}
var L = {0,3}
var M = {0,3}
var N = {0,3}
var P = {0,3}
var Q = {0,3}
0,1,a,a,0,0,0,0,0,2
1,a,b,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,2
1,1,1,1,1,d,e,f,g,0
2,A,B,0,0,0,0,0,0,0
2,2,2,C,D,E,F,G,H,3
3,3,0,0,0,0,0,0,0,0
3,I,J,K,L,M,N,P,Q,1
# This script calculate and emulate a B0 composite from the current emulated rule. (Try B024/S0123 or B678/S1278)
# Author: Feng Geng(shouldsee.gem@gmail.com), Sep 2016.
import golly as g
from glife import *
rule=g.getrule()
rule=rule.split(':')[0]
rule=g.getstring('rule to alternate',rule)
ruleB=rule.split('/')[0][1:]
ruleS=rule.split('/')[1][1:]
S=['S']
B=['B']
for i in range(9):
if str(i) in ruleB:
S.append(str(8-int(i)))
if str(i) in ruleS:
B.append(str(8-int(i)))
B=''.join(B)
S=''.join(S)
rule='/'.join([B,S])
# g.note(rule)
g.setrule(rule)
Return to Other Cellular Automata
Users browsing this forum: Hdjensofjfnen and 2 guests